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PREFACE TO THE TWENTYFIRST REVISED EDITION

I am happy to be able to bring out this  revised edition.

Misprints and errors which came to my notice have been corrected.

Suggestions and healthy criticism from students and teachers to improve the book shall be
personally acknowledged and deeply appreciated to help me to make it an ideal book for all.

We are thankful to the Management Team and the Editorial Department of S. Chand & Company
Pvt. Ltd. for all help and support in the publication of this book.

D-1/87, Janakpuri                       H.K. DASS
New Delhi-110 058
Tel. 28525078, 28521776
Mob. 9350055078
hk_dass@yahoo.com

Disclaimer : While the author of this book have made every effort to avoid any mistake or omission and have used their skill,
expertise and knowledge to the best of their capacity to provide accurate and updated information. The author and S. Chand do not
give any representation or warranty with respect to the accuracy or completeness of the contents of this publication and are selling
this publication on the condition and understanding that they shall not be made liable in any manner whatsoever. S.Chand and the
author expressly disclaim all and any liability/responsibility to any person, whether a purchaser or reader of this publication or not,
in respect of anything and everything forming part of the contents of this publication. S. Chand shall not be responsible for any
errors, omissions or damages arising out of the use of the information contained in this publication.
Further, the appearance of the personal name, location, place and incidence, if any; in the illustrations used herein is purely
coincidental and work of imagination. Thus the same should in no manner be termed as defamatory to any individual.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



(vi)

PREFACE TO THE FIRST EDITION

It gives me great pleasure to present this textbook of Mathematics to the students pursuing
I.E.T.E and various engineering courses.

This book has been written according to the new revised syllabus of Mathematics of I.E.T.E.
and includes topics from the syllabi of the other engineering courses. There is not a single textbook
which entirely covers the syllabus of I.E.T.E. and the students have all along been facing great
difficulties. Endeavour has been made to cover the syllabus exhaustively and present the subject
matter in a systematic and lucid style. More than 550 solved examples on various topics have been
incorporated in the textbook for the better understanding of the students. Most of the examples have
been taken from previous question papers of I.E.T.E. which should make the students familiar with
the standard and trend of questions  set in the examinations. Care has been taken to systematically
grade these examples.

The author possesses very long and rich experience of teaching Mathematics to the students
preparing for I.E.T.E. and other examinations of engineering and has first hand experience of the
problems and difficulties that they generally face.

This book should satisfy both average and brilliant students. It would help the students to get
through their examination and at the same time would arouse greater intellectual curiosity in them.

I am really thankful to my Publishers, Padamshree Lala Shyam Lal Gupta, Shri Ravindra Kumar
Gupta for showing personal interest and his General Manager, Shri P.S. Bhatti and Km. Shashi Kanta
for their co-operations. I am also thankful to the Production Manager, Shri Ravi Gupta for bringing
out the book in a short period.

Suggestions for the improvement of the book will be gratefully acknowledged.

D-1/87, Janakpuri H.K. DASS
New Delhi-110 058
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FOREWORD

On my recent visit to India, I happened to meet Prof. H.K. Dass, who has written quite a number
of successful books on Mathematics for students at various levels.

During my meeting, Prof. H.K. Dass presented me with the book entitled
‘‘Advanced Engineering Mathematics” I am delighted to write this Foreword, as I am highly
impressed on seeing the wide variety of its contents. The contents includes many key topics, for
examples, advanced calculus, vector analysis, tensor analysis, fuzzy sets, various transforms and
special functions, probability (curiously some tests of significance are given under that chapter),
numerical methods; matrix algebra and transforms. In spite of this breadth , the development of the
material is very lucid, simple and in plain English.

I know of quite a number of other textbooks on Engineering Mathematics but the material that
has been included in this textbook is so comprehensive that the students of all the engineering streams
will find this textbook useful. It contains problems, questions and their solutions which are useful both
to the teachers and students, and I am not surprised that it has gone through various editions.The
style reminds me of the popular books of Schaum’s Series. I believe that this book will be also helpful
to non-engineering students as a quick reference guide.

This book is a work of dedicated scholarship and vast learning of Mr. Dass, and I have no
hesitation in recommending this book to the students for any Engineering degree world-wide.

Prof. K.V. Mardia
M.Sc. (Bombay), M.Sc.(Pune)
Ph.D. (Raj.), Ph.D. (N’cle),D.Sc.(N’cle)
Senior Research Professor
University of Leeds,
LEEDS (England)
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1.1 INTRODUCTION
Area of a rectangle depends upon its length and breadth, hence we can say that area is the

function of two variables i.e. its length and breadth.
z is called a function of two variables x and y if z has one definite value for every pair of

values of x and y. Symbolically, it is written as
z = f  (x, y)

The variable x and y are called independent variables while z is called the dependent variable.
Similarly, we can define z as a function of more than two variables.
Geometrically:   Let  z =  f  (x, y)

where x, y belong to an area A of the xy-plane. For each point (x, y) corresponds a value of z. These
values of (x, y, z) form a surface in space.

Hence, the function z = f  (x, y) represents a surface.

1.2  LIMIT
The function f  (x, y) is said to tend to the limit l as x  a and y  b if and only if the limit

l is independent of the path followed by the point (x, y) as x  a and y  b. Then

lim ( , )
x a
y b

f x y



= l

The function f  (x, y) in region R is said to tend to the limit l as x  a and y  b if and only
if corresponding to a positive number  (a, b), there exists another positive number  such that

 f  (x, y) – l  <  for 0 < (x – a)2 + (y – b)2 < 2

for every point (x, y) in R.

1.3 WORKING RULE TO FIND THE LIMIT
Step 1. Find the value of f  (x, y) along x  a and y  b.
Step 2. Find the value of f  (x, y) along y  b and x  a.

If the values of f  (x, y) in step 1 and step 2 remain the same, the limit exists otherwise
not.

Step 3. If a  0 and b  0, find the limit along y = mx or y = mxn. If the value of the limit
does not contain m then limit exists. If it contains m, the limit does not exist.
Note. (i) Put x = 0 and then y = 0 in f. Find its value f1.

(ii) Put y = 0 and then x = 0 in f. Find the value f2.
If f1  f2, limit does not exist.
If f1 = f2, then

Partial Differentiation
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2 Partial Differentiation

(iii) Put y = mx and find the limit f3.
If f1 = f2  f3, then limit does not exist.
If f1 = f2 = f3, then

(iv) Put y = mx2 and find the limit f4.
If f1 = f2 = f3  f4, then limit does not exist.
If f1 = f2 = f3 = f4, then limit exists.

Example 1. Evaluate 
2

4 20
0

lim
x
y

x y
x y




Solution. (i)
2

4 2 20

0lim lim
0x y

y

x y
x y y 




 

 = 0 = f1 (say)

(ii)
2

4 2 40

0lim lim
0x x

y

x y
x y x 




 

 = 0 = f2 (say)

Here, f1 = f2, therefore
(iii) Put y = mx

2

4 2 2 2 20
lim lim
x x
y

x mx mx
x m x x m 




 

 = 0 = f3 (say)

Here, f1 = f2 = f3, therefore
(vi) Put y = mx2

2

4 2 4 2lim
1x

y

x mx m
x m x m







 

 = f4

Here, f1 = f2 = f3  f4
Thus, limit does not exist. Ans.

Example 2. Evaluate 3 3

0
0

lim ( ).
x
y

x y





Solution. (i) 3 3 3

0
lim ( ) lim (0 )
x y
y

x y y
 


    = 0 = f1 (say)

(ii) 3 3 3

0
lim ( ) lim ( 0)
x x
y

x y x
 


    = 0 = f2 (say)

Here, f1 = f2, therefore
(iii) Put y = mx

3 3 3 3 3 3 3

0 0
lim ( ) lim lim ( ) lim ( )
x x y mx x
y

x y x y x m x
   


     
  

= 0 = f3 (say)

Here, f1 = f2 = f3, therefore
(iv) Put y = mx2

2

3 3 3 3 3 3 6

0 0
lim ( ) lim lim ( ) lim ( )
x x xy mx
y

x y x y x m x
  


     
  

= 3 3 3
0

lim (1 )
x

x m x


  = 0 = f4 (say)

Here, f1 = f2 = f3 = f4
Thus, limit exists with value 0. Ans.

Example 3. Evaluate 
2

2 21
2

3lim .
5x

y

x y
x y
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Partial Differentiation 3

Solution.  
2 2 2

2 2 2 2 2 21 1 2 1
2

3 3 3 (2)lim lim lim lim
5 5 (2) 5x x y x

y

x y x y x
x y x y x   



 
  

      

=
2

21

6 6 3lim
1 9 59x

x
x

 
 Ans.

Example 4. Evaluate 3 3
3

2 3lim .
4x

y

x
x y






Solution. (i)
3 3 3 33

3

2 3 2 3lim lim lim
4 4x y x

y

x x
x y x y  



      

=
2 3

133 3

2 3
0 0lim lim lim 0

1 4(0)
1 4

y x y
x x f

y
x

  

                 

(say)

(ii) 3 3 3 33 3

2 3 2 3lim lim lim
4 4y x y

x

x x
x y x y  



      

=
2 3

23

3

2 3
2 3 0 0lim lim 0108 1 0108 1x x

x x x f
x

x
 


 

   
 

(say)

Here, f1 = f2.

Hence, the limit exists with value 0. Ans.

EXERCISE 1.1
Evaluate the following limits:

1.
2 2

1
2

2lim
2x

y

x y
xy



 Ans.
3
4 2.

3 2

22
3

lim ,
x
y

x y
x y






Ans. 17

3.
3 3

3

2 3lim ,
4x

y

xy
x y






Ans. 0 4.

20
0

lim ; 0, 0
x
y

xy x y
y x



 


Ans. Limit does not exist

5.
2 20

0

lim ; 0, 0
x
y

x y x y
x y




 


Ans. Limit does not exist

6.
1
1

2lim
2x

y

xy x
xy y






Ans. 1 7.
3 3

2 20
0

2lim 0, 0
4x

y

x y x y
x y




 


Ans. 0

8.
2 3

2 20
0

lim 0, 0
x
y

x y x y
x y



 


Ans. 0 9.
2 20

0

2lim , 0, 0
x
y

xy x y
x y




 


Ans. 0

10.
1
1

3 ( 2)lim
2 ( 2)x

y

x y
y x






Ans.
1
2

1.4 CONTINUITY
A function f (x, y) is said to be continuous at a point (a, b) if

( , ) ( , )
lim ( , )

x y a b
f x y


= f (a, b)

A function is said to be continuous in a domain if it is continuous at every point of the domain.
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4 Partial Differentiation

1.5 WORKING RULE FOR CONTINUITY AT A POINT (a, b)
Step 1. f (a, b) should be well defined
Step 2.

( , ) ( , )
lim ( , )

x y a b
f x y


 should exist.

Step 3.
( , ) ( , )

lim ( , )
x y a b

f x y


 = f (a, b)

Example 5. Test the function f (x, y) = 

3 3

2 2 0, 0

0 0, 0

x y when x y
x y

when x y

 
 


  

for continuity.
Solution.  Step 1.  The function is well defined at (0, 0).

Step 2.
( , ) (0, 0)

lim ( , )
x y

f x y


=
3 3 3 3

2 2 2 2( , ) (0, 0) 0
lim lim lim

x y x y mx

x y x y
x y x y  

  
  

  

=
3 3 3

2 2 20
lim
x

x m x
x m x


  = 

3

20

(1 )lim
1x

x m
m




= 0

Thus, limit exists at (0, 0).
Step 3. limit of f (x) at origin = value of the function at origin.

3 3

2 2( , ) (0, 0)
lim

x y

x y
x y


 = f (0, 0) = 0

Hence, the function f is continuous at the origin. Ans.

Example 6. Discuss the continuity of f (x, y) = 2 2
, 0, 0

2, 0, 0

x x y
x y

x y

  


  
at the origin.

Solution.  Here, we  f (x, y) = 2 2
, 0, 0

2, 0, 0

x x y
x y

x y

  


  
Step 1. The function f (x, y) at (0, 0) is well defined.

Step 2.
2 2( , ) (0, 0)

lim
x y

x

x y 
 =

2 2 2 2 20 0
lim lim lim
x y mx x

x x

x y x m x  

   
   

 = 20

1lim
1x m 

For different values of m the limit f is not unique.

so the 2 2( , ) (0, 0)
lim

x y

x

x y 
 does not exist.

Hence f (x, y) is not continuous at origin. Ans.

1.6 TYPES OF DISCONTINUITY
(Gujarat Univ. I sem. Jan. 2009)

1. First Kind. f (x) is said to have discontinuity of first kind at
the point x = x1 if Right limit f (x1 + 0) and left limit f (x1 – 0) exist
but are not equal.

f (x – 0)
1

f (x
+ 0)

1

x1
(First kind)

X 

Y

O
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Partial Differentiation 5

2. Second Kind. f (x) is said to have discontinuity of the second
kind at x = x1 if neither right limit f (x1 + 0) exists nor left limit
f (x1 – 0) exists.

3. Third Kind (Mixed discontinuity). f (x) is said to have mixed discontinuity at the point
x = x1 if only one of the two limits right limit f (x1 + 0) and left limit f (x1 – 0) exists and not the
other.

f (x – 0)
1

f (x
+ 0)

1
OR

X 

Y 

O x1
Third kind (i)

X 

Y 

O x1
Third kind (ii)

f (x – 0)
1

f (x
+ 0)

1

4. Fourth Kind (Infinite discontinuity). f (x) is said to have infinite discontinuity at the point
x = x1 if either one or both limits right limit and left limit f (x1 – 0) is infinite.

If both limits do not exist and if f (x1 ± h) oscillates between limits one of which is infinite
as ± h  0. It is also a point of infinite discontinuity.

X 

Y 

x1O X 

Y 

O X 

Y 

O

f(
x

–
0)

1

f (
x

+
0)

1

f (
x

+
0)

1 f (x
– 0)
1 f (x

–
0)

1

f (
x

+
0)

1

x x
(Fourth kind)

OR OR

5. Fifth Kind (Removable discontinuity). If right limit f (x1 + 0)
is equal to left limit f (x1 – 0) is not equal to f (x1), then f (x) is said to
have removable discontinuity.

EXERCISE 1.2
Test for continuity:

1. f (x, y) =

2 2

2 2
( ) , when 0, 0

0, when 0, 0

xy x y x y
x y

x y

 
 

 
  

at origin. Ans. Continuous at origin.

2. f (x, y) = 

2 2

2 2 , when 0, 0

0, when 0, 0

x y x y
x y

x y

 
 

 
  

at origin. Ans. Not continuous at origin.

3. f (x, y) = 

3 3

3 3 , when 0, 0

0, when 0, 0

x y x y
x y

x y


 

 
  

 at origin. Ans. Not continuous at origin.

X 

Y
f (x – 0)

1

f (x
+ 0)

1

O x1
(Second kind)

O X 

Y 

f (x
+ 0)

1

f (x – 0)
1

x1
(Fifth kind)
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6 Partial Differentiation

4. f (x, y) = 2 2 , when 0, 0

0, when 0, 0

x y x y
x y

x y

  


  
at origin. Ans. Not continuous at origin.

5. f (x, y) =
3 3, when 0, 0

0, when 0, 0
x y x y

x y

   


 
at origin. Ans. Continuous at origin.

6. f (x, y) = 

2

2
2 ,

1 when 1, 2

x y
x y

x y

 

 
  

at the point (1, 2). Ans. Continuous at (1, 2).

7. Show that the function f (x, y) =
22 , ( , ) (1, 2)

0, ( , ) (1, 2)
x y x y

x y

  



is discontinuous at (1, 2).

8. Show that the function f (x, y) = 
1( ) sin , 0

0, 0

x y x y
x y

x y

  
      

  
 is continuous at (0, 0) but its partial derivatives of first order do not exist at (0, 0).

(A.M.I.E.T.E., Dec. 2007)

1.7 PARTIAL DERIVATIVES
Let z = f (x, y) be function of two independent variables x and y. If we keep y constant and

x varies then z becomes a function of x only. The derivative of z with respect to x, keeping y as
constant  is called partial derivative of ‘z’, w.r.t. ‘x’ and is denoted by symbols.

, ,z f
x x
 
  fx (x, y) etc.

Then
z
x



= 0

( , ) ( , )lim
x

f x x y f x y
x 

  


The process of finding the partial differential coefficient of z w.r.t. ‘x’ is that of ordinary
differentiation, but with the only difference that we treat y as constant.

Similarly, the partial derivative of ‘z’ w.r.t. ‘y’ keeping x as constant is denoted by

, ,z f
y y
 
 

fy (x, y) etc.

z
y



= 0

( , ) ( , )lim
y

f x y y f x y
y 

  


Notation.     
z
x

  = p,

z
y



 = q,
2

2
z

x



 = r,
2z

x y

 

 = s,
2

2
z

y



 = t

Example 7. If u = 1 1sin tan ,x y
y x

       
  

 then find the value of .u ux y
x y
 


 

Solution. u = 1 1sin tanx y
y x

       
  

u
x



= 2 2 2 22 2 2

1 1 1 1. .
11

y y
y x x yy y xx

xy
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Partial Differentiation 7

ux
x



= 2 22 2

x xy
x yy x




...(1)

u
y

 = 2 2 2 22 2 2

1 1 1

11

x x x
xy x yy y y xx

xy

                  

. uy
y

 = 2 22 2

x xy
x yy x

 


...(2)

On adding (1) and (2), we have . .u ux y
x y
 


   = 0 Ans.

Example 8. Find 
u
r



and 
u


 if u = er cos . cos (r sin )

Solution. u = er cos . cos (r sin )
u
r

 = er cos . [– sin (r sin ).sin ] + [cos .er cos ].cos (r sin )

(keeping  as constant)
= er cos .[– sin (r sin ).sin  + cos (r sin ).cos ]
= er cos .cos (r sin  + ) Ans.

u
 = er cos .[– sin (r sin ).r cos ] + [–r sin .er cos ].cos (r sin )

(keeping r as constant)
= – r er cos . [sin (r sin ).cos  + sin  cos (r sin )]
= – r er cos . sin (r sin  + ) Ans.

Example 9. If u = (1 – 2xy + y2)–1/2 prove that, 
u ux y
x y
 


 

 = y2 u3.

Solution. u = (1 – 2xy + y2)–1/2 ...(1)
Differentiating (1) partially w.r.t. ‘x’, we get

u
x



= 2 3/21 (1 2 ) ( 2 )
2

xy y y   

ux
x



= xy (1 – 2xy + y2)–3/2 ...(2)

Differentiating (1) partially w.r.t. ‘y’, we get
u
y



= 2 3/21 (1 2 ) ( 2 2 )
2

xy y x y    

uy
y



= (xy – y2) (1 – 2xy + y2)–3/2 ...(3)

Subtracting (3) from (2), we get
u ux y
x y
 


 

= xy (1 – 2xy + y2)–3/2 – (xy – y2) (1 – 2xy + y2)–3/2

= y2 (1 – 2xy + y2)–3/2 = y2u3. Proved.

Example 10. If z = eax + by.f (ax – by), prove that 
z zb a
x y
 


 

= 2abz.

(A.M.I.E.T.E., Summer 2004)
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8 Partial Differentiation

Solution. z = eax + by.f (ax – by) ...(1)
Differentiating (1) w.r.t. ‘x’, we get

z
x



= a eax + by.f (ax – by) + eax + by.a f (ax – by)

zb
x

 = a b eax + by.f (ax – by) + a b eax + by.f (ax – by) ...(2)

Differentiating (1) w.r.t. ‘y’, we get
z
y



= b eax + by.f (ax – by) + eax + by.(– b) f (ax – by)

za
y



= a b eax + by.f (ax – by) – a b eax + by.f (ax – by) ...(3)

On adding (2) and (3), we get
z zb a
x y
 


 

= 2ab eax + by f (ax –  by)


z zb a
x y
 


 

= 2a b z Proved.

1.8 PARTIAL DERIVATIVES OF HIGHER ORDERS

Let z = f (x, y) then 
z
x



 and 
z
y



 being the functions of x and y can further be differentiated

partially with respect to x and y.
Symbolically

z
x x
  
   

=
2

2
z

x



or
2

2
f

x



or fxx

z
y x
  
   

=
2z

y x

 

or
2 f

y x

 

or fyx

z
x y
  
   

=
2z

x y

  or

2 f
x y

  or fxy

Note.
2z

y x

 

=
2z

x y

 

Example 11. Prove that y = f (x + at) + g(x – at) satisfies
2

2
y

t



=
2

2
2
ya

x
 
   

where f and g are assumed to be at least twice differentiable and a is any constant.
 (U.P., I Sem; Jan 2011, A.M.I.E., Summer 2000)

Solution. y = f (x + at) + g(x – at) ...(1)
Differentiating (1) w.r.t. ‘x’ partially, we get

y
x



= f (x + at) + g(x – at)
2

2
y

x



= f (x + at) + g(x – at)

Differentiating (1) w.r.t. ‘t’ partially, we get
y
t


 = f (x + at).a + g(x – at) (– a)
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Partial Differentiation 9

2

2
y

t



= a2f (x + at) + g(x – at) a2

= a2 [f (x + at) + g(x – at)] = 
2

2
2
ya

x



Hence
2

2
y

t



=
2

2
2
ya

dx


Proved.

Example 12. If z = 2 1 2 1tan tan ,y xx y
x y

          
 prove that 

2 2 2

2 2 .z x y
y x x y
 


  

Solution. z = 2 1 2 1tan tany xx y
x y

          
(U.P., I Semester Comp. 2002)

z
x



= 1 2 2
2 2 2

2 2

1 1 12 tan
1 1

y yx x y
x yy x x

x y

                 

=
2 3

1
2 2 2 22 tan y x y yx

x x y x y
     

  

=
2 2

1
2 2

( )2 tan y x yx y
x x y

    
 

 = 12 tan yx y
x

    
 

2z
y x

  =

2 2 2

2 2 2 2 2

2

1 12 . . 1 2 1
1

x x yx
xy x y x y

x

         
Proved.

Example 13. If u = exyz, find the value of 
3

.u
x y z


  
(A.M.I.E. Winter 2000)

Solution. u = exyz

u
z



= exyz (x y)


2u
y z

 

= exyz (x) + exyz (x z) (x y) = exyz (x + x2y z)

3u
x y z


  
= exyz (1 + 2x y z) + exyz (y z).(x + x2y z)

= exyz [1 + 2 x y z + x y z + x2y2z2]
= exyz [1 + 3 x y z + x2y2z2] Ans.

Example 14. If v = 2 2 2 2( ) ,
m

x y z   then find the value of m (m 0) which will make
2 2 2

2 2 2
v v v

x y z
  

 
  

= 0.

Solution.  We have, v = 2 2 2 2( )
m

x y z 

v
x



=
12 2 2 2( ) (2 )

2

mm x y z x


   = 
12 2 2 2( )

m

mx x y z


 

2

2
v

x



=
2 12 2 2 2 2 22 21 ( ) (2 ) ( )

2

m mmm x x y z x m x y z
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10 Partial Differentiation

=
2 12 2 2 2 2 22 2( 2) ( ) ( )

m m

m m x x y z m x y z
      

=
22 2 2 2 2 22( ) [( 2) ]

m

m x y z m x x y z
       ...(1)

Similarly,
2

2
v

y



=

22 2 2 2( )
m

m x y z


  .[(m – 2) y2 + x2 + y2 + z2] ...(2)

2

2
v

z



=
22 2 2 2( )

m

m x y z


  .[(m – 2)z2 + x2 + y2 + z2] ...(3)

On adding (1), (2) and (3), we get
2 2 2

2 2 2
v v v

x y z
  

 
  

=
22 2 2 2( )

m

m x y z


   [(m – 2) (x2 + y2 + z2) + 3(x2 + y2 + z2)]

0 = m
12 2 2 2( )

m

x y z


   [m – 2 + 3]
2 2 2

2 2 2 0v v v
x y z

   
   

   

0 = m(m + 1) 
12 2 2 2( )

m

x y z


 
0 = m (m + 1)  m = 0, – 1 (m  0)

Hence, m = –1 Ans.

Example 15. If u = 
1

2 2(1 2 ) ,xy y


   prove that 2 2(1 ) u ux y
x x y y

               
 = 0.

Solution.  We have,  u = 
1

2 2(1 2 )xy y


  ...(1)

u
x



=
3

2 2
3

2 2

1 (1 2 ) ( 2 )
2

(1 2 )

yxy y y

xy y


    

 

2(1 ) ux
x





=
2

3
2 2

(1 )

(1 2 )

x y

xy y



 

2(1 ) ux
x x
     

=

3 1
2 2 22 2

2 3

3(1 2 ) ( 2 ) (1 ) (1 2 ) ( 2 )
2

(1 2 )

xy y xy x y xy y y

xy y

 
        
 
 

 

Cancelling 
1

2 2(1 2 )xy y   from numerator and denominator, we have

  = 
2 2 2

5
2 2

(1 2 ) ( 2 ) 3(1 )

(1 2 )

xy y xy x y

xy y

    

 

 = 
2 2 3 2 2 2

5
2 2

2 4 2 3 3

(1 2 )

xy x y xy y x y

xy y

    

 

              = 
2 2 3 2

5
2 2

2 2 3

(1 2 )

x y xy xy y

xy y

  

 
...(2)

Differentiating (1) partially w.r.t. y, we get

u
y



=
3

2 2
3

2 2

1 (1 2 ) ( 2 2 )
2

(1 2 )

x yxy y x y

xy y
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Partial Differentiation 11

2 uy
y



=
2 3

3
2 2(1 2 )

xy y

xy y



 

2 uy
y y
  
   

=

3 1
2 2 2 3 22 2

2 3

3(1 2 ) (2 3 ) ( ) (1 2 ) ( 2 2 )
2

(1 2 )

xy y xy y xy y xy y x y

xy y

 
         
 
 

 

Dividing numerator and denominator by 
1

2 2(1 2 )xy y  , we get

2 uy
y y
  
   

=
2 2 2 3

5
2 2

(1 2 )(2 3 ) ( ) 3 ( )

(1 2 )

xy y xy y xy y x y

xy y

     

 

=
2 2 3 2 3 4 2 2 3 3 4

5
2 2

(2 4 2 3 6 3 ) 3 3 3 3

(1 2 )

xy x y xy y xy y x y xy xy y

xy y

        

 

=
2 2 3 2

5
2 2

2 2 3

(1 2 )

x y xy xy y

xy y

   

 

...(3)

On adding (2) and (3), we get

2 2(1 ) u ux y
x x y y

    
       

 = 
2 2 3 2

5
2 2

2 2 3

(1 2 )

x y xy xy y

xy y

  

 

2 2 3 2

5
2 2

2 2 3

(1 2 )

x y xy xy y

xy y

   


 
= 0

Proved.

Example 16. Prove that if f (x, y) = 

2( )
41

x a
ye

y




 then

fxy (x, y) = fyx (x, y).

Solution. f (x, y) =

2( )
41

x a
ye

y




...(1)

Differentiating f (x, y) partially w.r.t. x, we get

fx (x, y) =

2 2( ) ( )
4 4

3/ 2
1 [ 2 ( )] ( ).

4 2

x a x a
y yx a x ae e

yy y

 
    



Differentiating again partially w.r.t. ‘y’ by product rule, we have

fyx (x, y) =

2 2( ) ( )3
4 4

5/ 2 7 / 2
3( ) ( ).
4 8

x a x a
y yx a x ae e

y y

 
  



=

2( )
24

7 / 2
( ) . .[6 ( ) ]
8

x a
yx a e y x a

y




  ...(2)

Differentiating (1) partially w.r.t. ‘y’, we have

fy (x, y) =

2 2( ) ( )2
4 4

3/ 2 5 / 2
1 ( ).

2 4

x a x a
y yx ae e

y y
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12 Partial Differentiation

Differentiating again partially w.r.t. ‘x’, we have

fxy(x, y) =

2 2 2( ) ( ) ( )3
4 4 4

5/ 2 5/ 2 7 / 2
( ) ( ) ( )
4 2 8

x a x a x a
y y yx a x a x ae e e

y y y

  
    

 

=

2( )
24

7 / 2
( ) [2 4 ( ) ]
8

x a
yx a e y y x a

y




  

=

2( )
24

7 / 2
( ) [6 ( ) ]
8

x a
yx a e y x a

y




  ...(3)

From (2) and (3), we have fxy (x, y) = fyx (x, y) Proved.

Example 17. If u = xy, show that 
3 3

2 .u u
x y xx y

 

   

Solution. u = xy

 log u = log xy = y log x
Differentiating partially, we have

1 . u
u x



= ,y
x and

1 . u
u y



 = log x


u
x



=
yu
x , 

u
y



 = u log x

2u
y x

 

=
1 . . .u u y uu y
x y x x y
  

     
=

.logu uy x
x x
 As logu u x

y
 

  

3u
x y x


  
= 2 2

. .log log
1 . .

u ux x u x
u u x xy

x xx x

               

= 2 2 2
1 log logu u y x u uy uy x
x x x xx x x
 

    
 

=
2

2 2 2 2 2
log logu uy uy x uy uy x

x x x x x
    

=
2

2 2 2 2
2 log logu uy uy x uy x

x x x x
    ...(1)

u
y



= u log x

2u
x y

 

= log .u ux
x x





  = log .u uyx

x x


u uy
x x
   

3

2
u

x y

 

= 2 2

. log . log (1)
1 . .

u ux x u x
u u x xy

x xx x

       


= 2 2 2 2
log logu uy uy y x u uy x
x xx x x x


    



= 2 2 2
2 log logu uy y x uy uy x

x xx x x
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Partial Differentiation 13

=
2

2 2 2 2
2 log logu uy uy x uy x

x x x x
    ...(2)

From (1) and (2), we get 
3

2
u

x y


 
 = 

3u
x y x


  
Proved.

Example 18. If u = log (x3 + y3 + z3 – 3xyz), show that
2

u
x y z

   
     

= 2
9

( )x y z


 
(U.P. I Semester, winter 2003)

Solution. u = log (x3 + y3 + z3 – 3xyz) ...(1)
Differentiating (1) partially w.r.t. ‘x’, we get

u
x

 =

2

3 3 3
3 3

3
x yz

x y z xyz


  
...(2)

Similarly,
u
y

 =

2

3 3 3
3 3

3
y zx

x y z xyz


  
...(3)

u
z



=
2

3 3 3
3 3

3
z xy

x y z xyz


  
...(4)

On adding (2), (3) and (4), we get
u u u
x y z
  

 
   =

2 2 2

3 3 3
3( )

3
x y z xy yz zx

x y z xyz
    

  

=
2 2 2

2 2 2
3( )

( ) ( )
x y z xy yz zx

x y z x y z xy yz zx
    

      
 = 

3
x y z 

 u
x y z

   
     

=
3

x y z 
2

u
x y z

   
     

=
3

x y z x y z
   

       

=
3 3 3

x x y z y x y z z x y z
  

 
        

= – 3(x + y + z)– 2 – 3(x + y + z)– 2 – 3 (x + y + z)– 2

= 2
9

( )x y z


 
Proved.

1.9 WHICH VARIABLE IS TO BE TREATED AS CONSTANT
Let x = r cos , y = r sin 

To find 
r
x



, we need  a relation between r and x.

r = x sec  ...(1)
Differentiating (1) w.r.t. ‘x’ keeping  as constant

r
x



= sec  ...(2)

Here, we have r2 = x2 + y2 ...(3)
Differentiating (3) w.r.t. ‘x’ keeping y as constant.
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14 Partial Differentiation

2 rr
x



= 2x or
r x
x r





 = cos  ...(4)

From (2), 
r
x

  = sec  and from (4), 

r
x



 = cos . These two values of 
r
x

  make confusion.

To avoid the confusion we use the following notations.

Notation. (i)
r
x 

 
    means the partial derivative of r with respect to x, keeping  as constant.

From (3), 
r
x 

 
    = sec 

(ii) 
y

r
x
 

  
 means the partial derivative of r with respect to x keeping y as constant.

From (4), 
y

r
x
 

  
 = cos 

(iii) When no indication is given regarding the variables to be treated as constant

x



 means ,
yx

 
   y




 means .
xy

 
  

r



 means ,
r 

 
  




 means .
r

 
  

Example 19. If x = r cos , y = r sin , find

(i)
x
r 

 
  

(ii)
r

y 
  

(iii) 
y

r
x
 

  
(iv) 

 
  x

y

Solution. (i)


 
  

x
r

 means the partial derivative of x with respect to r, keeping  as

constant.
x = r cos              

x
r 

 
  

 = cos 

(ii)
r

y 
  

 means the partial derivative of y with respect to , treating r as constant.

y = r sin              
r

y 
  

 = r cos 

(iii)
y

r
x
 

  
 means the  partial derivative of r with respect to x, treating y as constant. We have

to express r as a function of x and y.

r = 2 2x y (From the given equations)

y

r
x
 

  
=

2 2 2 2

1 1 .2
2

xx
x y x y


 

(iv) Before finding 
xy

 
  

 we have to express  in terms of x and y.

 = 1tan y
x

 (From the given equations)

xy
 
  

= 2 2 2

2

1 1.
1

x
xy x y

x





Ans.
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Partial Differentiation 15

EXERCISE 1.3

1. If z3 – 3yz – 3x = 0, show that 
22 2

2;z z z z zz z
x y x y x y

                  

2. If z(z2 + 3x) + 3y = 0, prove that 
2 2

2 2 2 3
2 ( 1) .
( )

z z z x
x y z x
  

 
  

3. If z = log (ex + ey), show that rt – s2 = 0.

4. If f (x, y) = x3y – xy3, find 

1
2

1 1

x
y

f f
x y 



   
 
   

Ans.
13
22



5. If  = 

2

4 ,
r

n tt e


 find what value of n will make 2
2

1 .r
r r tr
        

Ans. n = 
3
2



6. Show that the function u = arc tan (y/x) satisfies the Laplace equation 
2 2

2 2 0u u
x y
 

 
 

.

7. If z = y f (x2 – y2) show that .z z xzy x
x y y
 

 
 

8. Show that 
2 2 2

2 22z z z
x yx y

  
 

  
 = 0, where z = x . f (x + y) + y . g(x + y).

9. If u = log (x2 + y2) + 1tan .y
x

  
 
 

 Show that 
2 2

2 2
z u

x y
 


 

 = 0.

10. If u (x, y, z) = 2 2 2
1 ,

x y z 
 find the value of 

2 2 2

2 2 2
u u u

x y z
  

 
  

. Ans.
2 2 2 2

2
( )x y z 

11. If x = er cos  cos (r sin ) and y = er cos  sin (r sin )

Prove that  
x
r

  = 

1 1,y y x
r r r
  

 
  

Hence deduce that
2 2

2 2
1 1x x x
r r rr

  
 

 
= 0

12. If x = r cos , y = r sin , prove that

(i) 
1, . .r x xr

x r x r
   

 
    (ii) 

2 2

2 2x y
   


 

 = 0 (c) 
222 2

2 2
1r r r r
r x yx y

                   

13. If v = (x2 – y2). f (xy), prove that 
2 2

2 2
v v

x y
 


 

 = (x4 – y4) f (xy)

14. If ux + vy = 0 and 
u v
x y
  = 1, show that 

2 2

2 2
u v x y
x y y x
  

 
  

15. If z = xy + yx, verify that 
2 2z z

x y y x
 


   

16. If u = f (ax2 + 2h x y + by2) and v = (ax2 + 2hx y + by2) show that 
v vu u

y x x y
               

.

17. If u = rm, where r2 = x2 + y2 + z2, find the value of 
2 2 2

2 2 2 .u u u
x y z
  

 
  

Ans. m(m + 1)r m – 2

18. If x = ( ), ( )
2 2
r re e y e e      prove that 

x r
r x
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16 Partial Differentiation

19. If u (x, t) = a e– gx sin (nt – gx), satisfies the equation 
2

2
2 ,u ua

t x
 


 

 show that ag = 
2
n

.

20. If u = log (tan x + tan y), prove that, sin 2 sin 2u ux y
x y
 


 

 = 2.

21. If u = 
x
1

[(x – y) + (x + y)], then show that 
2 2

2
2

x u ux
x x y

   
     

22. If u = ex y z ,
xzf
y

 
 
 

 prove that

(i)
u ux y
x y
 


 

 = 2 x y z u, (ii)
u uy z
y z
 


 

 = 2 x y z u

Also deduce that 
2 2u ux y
z x z y
 


    (A.M.I.E., Summer 2001)

23. If u = f (x, y), x = r cos , y = r sin , then show that
22u u

x y
           

=
2 2

2
1u u

r r
           

1.10 HOMOGENEOUS FUNCTION
A function f (x, y) is said to be homogeneous function in which the power of each term is the

same.
A function f (x, y) is a homogeneous function of order n, if the degree of each of its terms

in x and y is equal to n. Thus
a0 xn + a1x

n – 1y + a2x
n – 2 y2 + ... + an – 1 xyn – 1 + an yn ...(1)

is a homogeneous function of order n.
The polynomial function (1) which can be written as

2 1

0 1 2 1...
n n

n
n n

y y y yx a a a a a
x x x x





                    
        

=
n yx

x
  
 

...(2)

(i) The function 
2 3

3 1 3 5y y yx
x x x

          
    

 is a homogeneous function of order 3.

(ii) 3/ 2
2 2 22

2

1 1
.
11

y yx
xx y xx

x y yyx
xx



 
     

              

 is a homogeneous function of order – 3/2.

(iii)
1

2 2sin
x y

x y
 

  is not a homogeneous function as it cannot be written in the form of

n yx f
x

 
 
 

 so that its degree may be pronounced. It is a function of homogeneous

expression.
1.11 EULER’S THEOREM ON HOMOGENEOUS FUNCTION

(U.P. I Semester, Dec. 2006)
Statement. If z is a homogeneous function of x, y of order n, then

. .z zx y
x y
 


 

= n z
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Partial Differentiation 17

Proof. Since z is a homogeneous function of x, y of order n.
 z can be written in the form

z = .n yx f
x

 
 
 

...(1)

Differentiating (1) partially w.r.t. ‘x’, we have
z
x



=
1

2. .n ny y ynx f x f
x x x

            
     


z
x



=
1 2. .n ny ynx f x y f

x x
       

   
Multiplying both sides by x, we have

zx
x



=
1. .n ny yn x f x y f

x x
      

   
...(2)

Differentiating (1) partially w.r.t. ‘y’, we have
z
y

 =

1.n yx f
x x

  
 

Multiplying both sides by y, we get

. zy
y

 =

1 .n yx y f
x

   
 

...(3)

Adding (2) and (3), we have

. .z zx y
x y
 


  = . n yn x f

x
 
 
 

 . .z zx y
x y
 


  = n z Proved.

Note. If u is a homogeneous function of x, y, z of degree n, then
u u ux y z
x y z
  

 
   = nu

I. Deduction from Euler’s theorem
If z is a homogeneous function of x, y of degree n and z = f (u), then

u ux y
x y
 


  =

( )
( )

f un
f u (Nagpur University, Winter 2003)

Proof.  Since z is a homogeneous function of x, y of degree n, we have, by Euler’s theorem,
z zx y
x y
 


  = nz ...(1)

Now z = f (u), given


z
x



= ( ) uf u
x



and
z
y

  = ( ) uf u

y



Substituting in (1), we get

( ) ( )u ux f u y f u
x y
  
 

= nf (u)


u ux y
x y
 


 

=
( )
( )

f un
f u

Note. If v = f (u) where v is a homogeneous function in x, y, z of degree n, then

u u ux y z
x y z
  

 
   =

( )
( )

nf u
f u
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18 Partial Differentiation

Example 20. Verify Euler’s theorem for z = 
1/3 1/3

1/ 2 1/ 2 .x y
x y


 (U.P. Ist Semester, Dec. 2009)

Solution. Here, we have

z =
1/ 3 1/ 3

1/ 2 1/ 2
x y
x y




= 

1/ 3
1/3

1
6

1/ 2
1/ 2

1

1

yx
x yx

xyx
x



    
               
   

...(1)

Thus z is homogeneous function of degree 1 .
6



By Euler’s theorem 
z zx y
x y
 


 

= 1 .
6

z ...(2)

Differentiating (1) w.r.t. ‘x’, we get

z
x



= 

2 1 11 1 1
3 3 32 2 2

21 1
2 2

1 1
3 2

x y x x y x

x y

       
        

      
      

 
 
 
 

 = 

1 2 1 11 1
6 3 6 32 2

21 1
2 2

1 1 1 1
3 3 2 2

x x y x x y

x y


  

  

 
 
 
 

zx
x



= 

5 1 5 11 1
6 3 6 32 2

21 1
2 2

1 1 1 1
3 3 2 2

x x y x x y

x y

  

 
 
 
 

...(3)

z
y

 = 

2 1 11 1 1
3 3 32 2 2

21 1
2 2

1 1
3 2

x y y x y y

x y

       
        

      
      

 
 
 
 

 = 

2 1 1 11 1
3 6 3 62 2

21 1
2 2

1 1 1 1
3 3 2 2

x y y x y y

x y

 
 

  

 
 
 
 


zy
y

 = 

1 5 1 51 1
3 6 3 62 2

21 1
2 2

1 1 1 1
3 3 2 2

x y y x y y

x y

  

 
 
 
 

...(4)

Adding (3) and (4), we get

z zx y
x y
 


  = 

5 1 5 1 1 5 1 51 1 1 1
6 3 6 3 3 6 3 62 2 2 2

21 1
2 2

1 1 1 1 1 1 1 1
3 3 2 2 3 3 2 2

x x y x x y x y y x y y

x y

      

 
 
 
 

       = 

5 5 1 11 1
6 6 3 32 2

21 1
2 2

1
6

x y x y x y

x y

 
    
  

 
 
 
 

 = 

1 1 1 11 1
3 3 3 32 2

21 1
2 2

1
6

x x y y x y

x y
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Partial Differentiation 19

       = 

1 11 1
3 32 2

21 1
2 2

1
6

x y x y

x y

  
    

   
   

 
 
 
 

     = 

1 1
3 3

1 1
2 2

1
6

x y

x y






z zx y
x y
 


 

= 
1
6

z ...(5)

From (2) and (5), Euler’s theorem is verified. Verified.

Example 21. If u = 1cos ,x y
x y

  
   

 show that

1 cot 0.
2

u ux y u
x y
 

  
  (U.P. Ist Semester, Dec. 2009)

Solution. Here, we have,  u = 1cos x y
x y

  
   

u is not a homogeneous function but if z = cos u, then

u = cos–1 z = 
x y
x y


 = 
1 1
2 2

1 1
.

1 1

y yx
yx xx x
xy yx

x x

                     
       

   

z is a homogeneous function in x, y of degree 
1 .
2

By Euler’s theorem, we have 
z zx y
x y
 


   = 

1
2

z

z u z ux y
u x u y
   


    = 

1
2

z

( sin ) ( sin )u ux u y u
x y
 

  
  = 

1 cos
2

u

u ux y
x y
 


  = 

1 cot .
2

u        
u ux y
x y
 


 

1 cot
2

u  = 0 Proved.

Example 22. If u = 1
8 8 8

2 3sin ,x y z

x y z
   
 

   
 show that

3 tanu u ux y z u
x y z
  

  
  

= 0. (U.P. I Sem., Winter 2003)

Solution.  We have, u = 1
8 8 8

2 3sin x y z

x y z
   
 

   

Here, u is not a homogeneous function but if v = sin u = 
8 8 8

2 3x y z

x y z

 

 
 then

v is a homogeneous function in x, y, z of degree – 3.

By Euler’s Theorem v v vx y z
x y z
  

 
  

= n v

v u v u v ux y z
u x u y u z
     

 
     

= –3 v ...(1)
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20 Partial Differentiation

Putting the value of 
v
u



 in (1), we get

cos cos cosu u ux u y u z u
x y z
  

 
  

= –3 sin u

u u ux y z
x y z
  

 
   =

sin3
cos

u
u

  = –3 tan u

3 tanu u ux y z u
x y z
  

  
   = 0 Proved.

Example 23. If u = 
4 4

log ,e
x y

x y
 
 

 
 show that 

u ux y
x y
 


   = 3.

(Nagpur University, Summer 2008, Uttarakhand, I Semester 2008)

Solution.  We have, u =
4 4

loge
x y
x y

 
 

 
Here, u is not a homogeneous function but if

z = eu = 

4
4

4 4
3

1

1

yx
xx y yx

x y xyx
x

    
                  

Then z is a homogeneous function of degree 3.
By Euler’s Deduction formula I

u ux y
x y
 


  =

( ) 3 3
( )

u

u
f u en
f u e

 
 Proved.

Example 24. If f (x, y) = 2 2 2
1 1 log log ,x y

xyx x y


 


 prove that

2f fx y f
x y

 
 

  = 0. (A.M.I.E. Summer 2004)

Solution. f (x, y) = 2 2 2
1 1 log logx y

xyx x y


 


=
0

2 2 2 2

log1 1 1 1

1

y
y x

yxx x x y
x x

                   
f (x, y) is a homogeneous function of degree – 2.
By Euler’s Theorem

f fx y
x y

 


  = –2.f  2f fx y f
x y

 
 

 
 = 0 Proved.

Example 25. If z be a homogeneous function of degree n, show that

(i)
2 2

2. . ( 1)z z zx y n
x y xx

  
  

  
                     (ii) 

2 2

2. . ( 1)z z zx y n
x y yy
  

  
  

(iii)
2 2 2

2 2
2 2. 2 . . ( 1) .z z zx xy y n n z

x yx y
  

   
  

(Uttarakhand Ist Semester, Dec. 2006)
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Partial Differentiation 21

Solution.  By Euler’s Theorem . z zx y
x y
 


   = n z ...(1)

Differentiating (1), partially w.r.t. ‘x’, we get
2 2

2.z z zx y
x x yx
  

 
  

=
zn
x




2 2

2. z zx y
x yx

 


 
= ( 1) zn

x





Proved (i) ...(2)

Differentiating (1), partially w.r.t. ‘y’, we have
2 2

2. z z zx y
y x y y
  

 
   

=
zn
y




2 2

2
x z y z
x y y
 


   = ( 1) zn

y





Proved (ii) ...(3)

Multiplying (2) by x, we have
2 2

2
2. .z zx xy

x yx
 


 

= ( 1) zn x
x



 ...(4)

Multiplying (3) by y, we have
2 2

2
2. .z zxy y

y x y
 


  

= ( 1) zn y
y



 ...(5)

Adding (4) and (5), we get
2 2 2

2 2
2 2. 2 . .z z zx xy y

x yx y
  

 
  

= ( 1) z zn x y
x y

  
    

= (n – 1) n z [From (1)]
= n(n – 1) z Proved (iii)

Example 26. If f (x, y) and  (x, y) are homogeneous functions of x, y of degree p and q
respectively and u = f (x, y) +  (x, y), show that

f (x, y) =
2 2 2

2 2
2 2

1 12
( ) ( )

u u u q u ux xy y x y
P P q x y P P q x yx y

        
               

(A.M.I.E.T.E. Winter 2000)
Solution.  Since f and  are homogeneous functions of degree p and q respectively, we have

f fx y
x y
 


  = P.f ...(1)

x y
x y
 


  = q. ...(2)

On adding (1) and (2), we get
f fx y
x x y y

               
= P f + q 

i.e.,
u ux y
x y
 


  = P f + q              ...(3)

Also
2 2 2

2 2
2 22f f fx xy y

x yx y
  

 
   = P (P – 1) f ...(4)

( , ) ( , )u f x y x y
u f
x x x
u f
y y y
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22 Partial Differentiation

And
2 2 2

2 2
2 22x xy y

x yx y
     

 
   = q (q – 1)  ...(5)

On adding (4) and (5), we obtain
2 2 2 2 2 2

2 2
2 2 2 22f f fx xy y

x y x yx x y y
             

                         
= P(P – 1) f + q (q – 1) 

2 2 2
2 2

2 22u u ux xy y
x yx y

  
 

   = P(p – 1) f + q (q – 1) 

Dividing by P (P – q), we get


2 2 2

2 2
2 2

1 2
( )

u u ux xy y
P P q x yx y

   
      

 = 
1 [ ( 1) ( 1) ]

( )
P P f q q

P P q
   



Subtracting 
1

( )
q u ux y

P P q x y
   

    
 from both sides, we get


2 2 2

2 2
2 2

1 ( 1)2
( ) ( )

u u u q u ux xy y x y
P P q x y P P q x yx y

        
               

=
1 ( 1)[ ( 1) ( 1) ]

( ) ( )
q u uP P f q q x y

P P q P P q x y
   

          

=
1 [ ( 1) ( 1) ( 1) [ ]]

( )
P P f q q q Pf q

P P q
       


[From (3)]

= 2 2 21 [ ) ( ) ]
( )

P P Pq P f q q q q
P P q

       


=
21 ( )[( ) ]

( ) ( )
P P qP Pq f f

P P q P P q


 
   = f (x, y) Proved.

Example 27. If z = n ny xx f y
x y

       
   

 then prove that

2 2 2
2 2

2 22z z z z zx xy y x y
x y x yx y

    
   

      = n2z. (Nagpur University, Summer 2003)

Solution. z =
n ny xx f y

x y
          

z = u + v ...(1)

where, u =
n yx f

x
 
 
 

 and v = 
n xy

y
   

 
Since u is a homogeneous function of x, y of degree n.

u ux y
x y
 


  = n u ...(2)

and
2 2 2

2 2
2 22u u ux xy y

x yx y
  

 
   = n(n – 1)u ...(3)

As v is a homogeneous function of x, y of degree –n.
v vx y
x y
 


  = –nv ...(4)

2 2 2

2 2 2

2 2 2

2 2 2

u f

u f
x x x
u f

y y y
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and
2 2 2

2 2
2 22v v vx xy y

x yx y
  

 
   = –n (– n – 1)v = n (n + 1)v ...(5)

On adding (2) and (4), we get

u v u vx y
x x y y

               
= nu – nv

z zx y
x y
 


  = nu – nv ...(6) [From (1)]

On adding (3) and (5), we get
2 2 2 2 2 2

2 2
2 2 2 22u v u v u vx xy y

x y x yx x y y
          

                         
 = n(n – 1) u + n (n + 1)v

2 2 2
2 2

2 22z z zx xy y
x yx y

  
 

   = n(n – 1)u + n (n + 1)v ...(7) [From (1)]

On adding (6) and (7), we have
2 2 2

2 2
2 22z z z z zx xy y x y

x y x yx y
    

   
      = n(n – 1)u + n (n + 1) v + nu – nv

= nu (n – 1 + 1) + nv (n + 1 – 1)
= n2u + n2v = n2 (u + v) = n2z Proved.

II. Deduction:  Prove that
2 2 2

2 2
2 22u u ux xy y

x yx y
  

 
   = g(u) [g(u) – 1] (Nagpur University, Winter 2003)

where, g(u) =
( )
( )

f un
f u

Proof. By Euler’s deduction formula I
u ux y
x y
 


  =

( ).
( )

f un
f u

( )Given ( )
( )

f un g u
f u

 
  

u ux y
x y
 


  = g(u) ...(1)

Differentiating (1) partially w.r.t. ‘x’, we have
2 2

2 .1u u ux y
x x yx

   
      

= ( ) ug u
x




2 2

2 .u ux y
x yx

 


 
= [ ( ) 1] ug u

x
 
 ...(2)

Similarly, on differentiating (1) partially w.r.t. ‘y’, we have
2 2

2 .u uy x
y xy

 


  = [ ( ) 1] ug u
y
 
 ...(3)

Multiplying (2) by x, (3) by y and adding, we get
2 2 2

2 2
2 22u u ux xy y

x yx y
  

 
   = [ ( ) 1] u ug u x y

x y
       

= [g (u) – 1]g(u) [From (1)]
= g(u) [g(u) – 1] Proved.

z u v
z u v
x x x
z u v
y y y

 
  

 
  
  

 
  

2 2 2

2 2 2
z u v

x x x
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Example 28. If u = 
3 3

1tan ,x y
x y

  
   

 prove that

(i) . .u ux y
x y
 


 

 = sin 2u (A.M.I.E., Winter 2001)

(ii)
2 2 2

2 2
2 2. 2u u ux xy y

x yx y
  

 
  

 = 2 cos 3u sin u.  (M.U. 2009; Nagpur University, 2002)

Solution.  Here u is not a homogeneous function. We however write

z = tan u = 

3 3
3

3 3
2 2

1 1
.

11

y yx
xx y yxx x

yx y xyx
xx

                                  
so that z is a homogeneous function of x, y of order 2.
(i) By Euler’s Theorem [Here f (u) = tan u]

 .u ux y
x y
 


  =

( )
( )

n f u
f u ...(1)

=
2

2
2 tan 2 sin cos

cossec
u u u

uu
  = 2 sin u cos u = sin 2u

(ii) By deduction II
2 2 2

2 2
2 2. 2u u ux xy y

x yx y
  

 
  

= g(u)[g(u) – 1]

Here sin 2u = g(u)


2 2 2

2 2
2 2. 2u u ux xy y

x yx y
  

 
   = sin 2u (2 cos 2u – 1) = 2 sin 2u cos 2u – sin 2u

= sin 4u – sin 2u = 2 cos 3u sin u Proved.

Example 29. If u = 1sin x y
x y

  
 

  

Prove that 
2 2 2

2 2
2 2 3

sin cos 22
4 cos

u u u u ux xy y
x yx y u

   
  

  
.

Solution.  We have, u = 1sin x y
x y

 


Let z = sin u = 1/ 2
1

( )
1

yx
x y x x x
x y yx

x

      
 
 

 
z = f (u) = sin u

z is a homogeneous function of degree 
1 .
2

By Euler’s deduction I
u ux y
x y
 


  =

( )
( )

f un
f u         

u ux y
x y
 


   = 

1 sin
2 cos

u
u

u ux y
x y
 


  =

1 tan
2

u
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Let g(u) =
1 tan
2

u

By Euler’s deduction II
2 2 2

2 2
2 22u u ux xy y

x yx y
  

 
   = g(u) [g(u) – 1] = 

21 1tan sec 1
2 2

u u  
 

= 
2

2 3 3
1 sin 1 1 sin sin cos 22 (1 2cos )
4 cos 4cos cos 4 cos

u u u uu
u u u u

     
  Proved.

EXERCISE 1.4
1. Verify Euler’s theorem in case

(i) f (x, y) = ax2 + 2hxy + by2               (ii) u = ( ) ( )n nx y x y 

2. If v = 
3 3

3 3 ,x y
x y

 show that . . 3v vx y v
x y
 

 
 

.

3. If u = 
3 3

2 2log ,x y
x y




 prove that . . 1u ux y

x y
 

 
 

.

4. If z = 2 2( ) / ( ),x y x y   prove that 
3. .
2

z zx y z
x x
 

 
 

5. If f (x, y) = x4y2 sin–1 y
x , then find the value of .f fx y

x y
 


 
(A.M.I.E.T.E., Winter 2001) Ans. 6 f (x, y)

6. If u = 1sin
x y
x y

 


, show that .u y u
x x y
 

 
 

7. If u = 
3 3

1sec x y
x y

  
   

, show that . .u ux y
x y
 


 

 = 2 cot u, then evaluate

2 2 2
2 2

2 22u u ux xy y
x yx y

  
 

  
(A.M.I.E.T.E., Winter 2001) Ans. –2 cot u (2 cosec2 u + 1).

8. If x = eu tan v, y = eu sec v, find the value of

. . . . . .
u u v vx y x y
x y x y

      
          

(A.M.I.E., Summer 2001) Ans. 0

[Hint: Eliminate u and apply formula I. Again eliminate v and apply the formula]

9. If u =
1/ 4 1/ 4

1
1./6 1/ 6sin ,x y

x y
  
 

  
 prove that

2 2 2
2 2

2 22u u ux xy y
x yx y

  
 

  
 = 21 tan [tan 11].

144
u u 

10. Find the value of 
2 2 2

2 2
2 22u u ux xy y

x yx y
  

 
  

 if u = sin–1 (x3 + y3)2/5.

Ans.
25 6tan sec 1

6 5
u u  
 

11. If u = 
2

1tan ,y
x

  
 
 

 find

(i) . . ,u ux y
x y
 


   and     (ii) 

2 2 2
2 2

2 2. 2 . .u u ux xy y
x yx y

  
 

  
 Ans. (i) 

2

2 4
xy

x y
 (ii) 

6

2 4 2
2

( )
xy

x y




12. If u = 
3 3

1tan ,
x y
x y

 


 find the value of 

2 2 2
2 2

2 22u u ux xy y
x yx y

  
 

  
    Ans. –2 sin3 u cos u
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13. If u = 
2 2 ,yf x y

x
    
 

 find the value of 
2 2 2

2 2
2 22u u ux xy y

x yx y
  

 
  

. Ans. 0

14. If z = xy/(x + y), find the value of 
2 2 2

2 2
2 22z z zx xy y

x yx y
  

 
  

. Ans. 0

15. Verify Euler’s theorem on homogeneous function when f (x, y, z) = 3x2yz + 5xy2z + 4z4

16. If u = ,Y Yx
X X

        
   

 prove by Euler’s theorem on homogeneous function that

2 2 2
2 2

2 22u u uX XY Y
x yx y

  
 

  
 = 0.

17. Given F (u) = V(x, y, z) where V is a homogeneous function of x, y, z of degree n, prove that
u u ux y z
x y z
  

 
    =

( )
( )

F un
F u

18. State and prove Euler’s theorem, and verify for u = 
x y z
y z x
  (A.M.I.E., Summer 2000)

19. If u = 
2 2 2

2 2 2 2 2 2cos ,x y z xy yz
x y z x y z




   
, show that 

2 2 2

2 2 2
4u u u x y zx y z

x y z x y z
  

  
    

1.12 TOTAL DIFFERENTIAL
In partial differentiation of a function of two or more variables, only one variable varies. But

in total differentiation, increments are given in all the variables.
1.13 TOTAL DIFFERENTIAL CO-EFFICIENT

Let z = f (x, y) ...(1)
If x, y be the increments in x and y respectively, let z be the corresponding increment
in z.
Then z + z = f (x + x, y + y) ...(2)
Subtracting (1) from (2), we have

z = f (x + x, y + y) – f (x, y) ...(3)
Adding and subtracting f (x, y + y) on R.H.S. of (3), we have

z = f (x + x, y + y) – f (x, y + y) + f (x, y + y) –  f (x, y)

z =
( , ) ( , ) ( , ) ( , )f x x y y f x y y f x y y f x yx y

x y
        

  
 

On taking limit when x  0 and y  0

dz =
f fd x d y
x y

 


 
...(4) [Remember]

dz is called as the total differential of z.

1.14 CHANGE OF TWO INDEPENDENT VARIABLES x AND y BY ANY OTHER
VARIABLE t.

Differentiation of composite function
If z = f(x, y)
Where x = (t)

y = (t)
Here z is composite function of t.
Dividing (4) by dt , we have
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d z
d t

=
z d x z dy
x d t y dt

 


 
...(5) [Remember]

Then d z
d t

 is called the total differential co-efficient of z.

1.15 CHANGE IN THE INDEPENDENT VARIABLES x AND y BY OTHER TWO
VARIABLES u AND v.

Let z = f (x, y)
where x =  (u, v)

y =  (u, v)
Then from (5), we obtain

z
u




= . .f x f y
x u y u

   


    ...(6)

and
z
v




= . .f x f y
x v y v

   


   
...(7)

Example 30. If u = x3 + y3 where, x = a cos t, y = b sin t, find du
dt

 and verify the result.

Solution. We have,  u = x3 + y3

x = a cos t
y = b sin t

d z
d t =

u d x u d y
x d t y d t

 


 

= (3 x2) (– a sin t) + (3 y2) (b cos t)
= –3 a3 cos2 t sin t + 3 b3 sin2 t cos t ...(1)

Verification. u = x3 + y3

= a3 cos3 t + b3 sin3 t
d u
d t

= – 3a3 cos2t sin t + 3b3 sin2 t cos t ...(2)

Results (1) and (2) are the same. Verified.
Example 31. If z = f (x, y) where x = eu cos v and y = eu sin v, show that

(i) z zy x
u v

 


 
= 2 .u ze

y



(M.U. 2009; Nagpur Univesity 2002)

(ii)
2 2

z z
x y

    
       

=
2 2

2u z ze
u v


               

(M.U. 2009)

Solution. (i) We have,
x = eu cos v, y = eu sin v

z
u




=
z x z y
x u y u

   


   
 = cos sinu uz z z ze v e v x y

x y x y
     

   

zy
u




= 2z zx y y
x y

 


 
...(1)

And
z
v




=
z x z y
x v y v
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= ( sin ) ( cos )u uz z z ze v e v y x
x y x y

       
   

zx
v




= 2z zx y x
x y

 
 

 
...(2)

On adding (1) and (2), we get
z zy x
u v

 


 
= 2 2 2 2 2 2( ) ( cos sin )u uz zx y e v e v

y y
 

  
 

= 2 2 2 2(cos sin )u uz ze v v e
y y

 
 

 
Proved.

(ii)
z
u




=
z x z y
x u y u

   


   

= ( cos ) sinu uz ze v e v
x y

 


 

u ze
u

 


= cos sinz zv v
x y

 


 
On squaring, we get

2
2u ze

u
  

  
=

2 2
2 2cos sin 2z z z zv v

x y x y
         

                
sin v cos v ...(3)

Again z
v




=
z x z y
x v y v

   


   

= ( sin ) ( cos )u uz ze v e v
x y

 
 

 

u ze
v

  
  

= sin cosz zv v
x y

 
 
 

On squaring, we get
2

2u ze
v

  
  

=
2 2

2 2sin cos 2 sin cosz z z zv v v v
x y x y

         
                

...(4)

On adding (3) and (4), we get
2 2

2u z ze
u v


               

=
2 2

2 2 2 2(sin cos ) (sin cos )z zv v v v
x y

    
         

=
2 2

z z
x y

    
       

Proved.

Example 32.  If u = u (y – z, z – x, x – y), prove that 
u u u
x y z

  
 

  
 = 0

(Nagpur University, Winter 2002, U.P., I Sem., Winter 2002, A.M.I.E winter 2001)
Solution.  Let r = y – z, s = z – x, t = x – y
so that u = u (r, s, t)

u
x




=
u r u s u t
r x s x t x

     
 

     

cos

cos and sin

sin

sin and cos

u

u u

u

u u

x e v
x xe v e v
u v

y e v
y ye v e v
u v
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= (0) ( 1) (1)u u u u u
r s t s t

    
     

    
...(1)

u
y




=
u r u s u t
r y s y t y

     
 

     

= (1) (0) ( 1)u u u
r s t

  
  

  
 = 

u u
r t

 


 
...(2)

u
z




=
u r u s u t
r z s z t z

     
 

     

= ( 1) (1) (0)u u u u u
r s t r s

    
     

    
...(3)

Adding (1), (2) and (3), we get 
u u u
x y z

  
 

   = 0 Proved.

Example 33. If u = ,y x z xu
x y x z

  
 
 

, show that 2 2 2u u ux y z
x y z

  
 

  
 = 0

(U. P. I. Sem., Dec. 2004, Nagpur University, Summer 2000)

Solution. Here, we have u = ,y x z xu
x y z x

  
 
 

 = u (r, s)

where r =
y x
x y


, and s = z x
z x


r =
1 1
x y
 and s = 1 1

x z


r
x




=
2

1
x

 and s
x




= 
2

1
x



r
y




= 2
1
y

and
s
z




= 2
1
z

r
z




= 0 and s
y




= 0

We know that,
u
x




=
u r u s
r x s x

   


   

= 2 2 2 2
1 1 1 1u u u u

r s r sx x x x
                    

 2 ux
x




= u u
r s

 
 
 

...(1)

u
y




= 2 2
1 10u r u s u u u

r y s y r s ry y
      

    
      

 2 uy
y




= u
r




...(2)

u
z




= 2 2
1 10u r u s u u u

r z s z r s sz z
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 2 uz
z




= u
s




...(3)

 On adding (1), (2) and (3), we get
2 2 2u u ux y z

x y z
  

 
  

 = 0 Proved.

Example 34. If  (cx – az, cy – bz) = 0 show that ap + bq = c :

where p = 
z zand q
x y

 


 
Solution.  Here, we have

 (cx – az, cy – bz) = 0
 (r, s) = 0

where r = cx – az,   s = cy – bz
r
x




= ,zc a
x





r za
y y

 
 

 

s
x




= ,zb
x






s zc b
y y

 
 

 

We know that,
r




=
r s

r x s x
   


   

0 =
z zc a b

r x s x
       

           

 0 =
zc a b

r x r s
    

       

c
r

 


=
z a b
x r s
    

    
     

za
x




 = 
a c

r

a b
r s

 


   


 

 ...(1)

Again
y




=
r s

r y s y
     


   

0 =
z za c b

r y s y
        
           

0 =
zc a b

s y r s
       

      
 c

s
 


 = 
z a b
y r s
    

    


zb
y




=
bc

s

a b
r s

 


   


 

...(2)

Adding (1) and (2), we get

z za b
x y

 


 
=

ac bc
r s

a b
r s

   
 
   


 


z za b
x y

 


 
= c  a p b q c  Proved.

[x and y are independent but
z is dependent on x and y]
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1.16 CHANGE IN BOTH THE INDEPENDENT AND DEPENDENT VARIABLES,
(POLAR COORDINATES)

Example 35. If w = f (x,y), x = r cos , y = r sin , show that
2 2

2
1w w

r r
    

        
=

2 2
f f
x y

    
       

Solution.  Here, x = r cos , y = r sin 
x
r




=  cos  y
r




=  sin 

x
 

= – r sin  y
 

=  r cos 

Now, w
r




= . .f x f y
x r y r

   


   

w
r




= . (cos ) . (sin )f f
x y

 
  

 
...(1)

w


= . .f x f y
x y

   


     
 = . ( sin ) . ( cos )f fr r

x y
 

   
 


1 w
r

 

= sin cosf f
x y

 
   
 

...(2)

Squaring (1) and (2) and adding, we obtain
2 2

2
1w w

r r
    

       
=

2 2
f f
x y

    
       

Proved.

Example 36. Transform the equation 
2 2

2 2
u u

x y
 


 

 = 0 into polar co-ordinates.

Solution. We have, x = r cos , y = r sin 

r2 = x2 + y2, = tan–1 y
x

u
x




= 2 2
u r u u x u y
r x x r r x y

       
  

       
 = 

sincosu u
r r

  
 

 
2

2
u

x



=

u
x x
  
   

=
sin sincos cos u u

r r r r
        

             

=
sin sin sincos cos cosu u u u

r r r r r r
           

                   

=
2 2

2 2
sin sincos cos u u u

r rr r

     
          

2 2

2
sin cos sinsin cosu u u u

r r r r r
       

             

=
2 2

2
2 2

sin cos sin coscos u u u
r rr r

      
  

   
2 2sin sin cosu u

r r r r
    

 
 

2 2

2 2 2
sin cos sinu u

r r
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= 
2 2 2 2 2

2
2 2 2 2

2sin cos 2sin cos sin sincos u u u u u
r r r rr r r

          
    

      
...(1)

u
y




=
u r u
r y y

    


   
 = 2 2

cossinu y u x u u
r r r rx y

    
   

     
2

2
u

y



=

u
y y
  
   

 = 
cos cossin sin u u

r r r r
        

            

=
cossin sin u u

r r r
    

      
 +  

cos cossin u u
r r r

     
       

=
2 2

2 2
cos cossin sin u u u

r rr r

     
    

     
2 2

2
cos sin coscos sinu u u u

r r r r r
       

           

=
2 2

2
2 2

sin cos sin cossin u u u
r rr r

      
  

    
2 2 2 2

2 2 2
cos sin cos sin cos cosu u u u

r r r r r r
         

   
    

=
2 2

2
2 2

2sin cos 2sin cossin u u u
r rr r

      
  

    
2 2 2

2 2
cos cosu u

r r r
   

 
 

...(2)

Adding (1) and (2), we get
2 2

2 2
u u

x y
 


 

 =
2

2 2 2 2
2

1(sin cos ) (sin cos )u u
r rr

 
      



2
2 2

2 2
1(sin cos ) u
r


   

 

                =
2 2

2 2 2
1 1u u u
r rr r

  
 

  
Ans.

Example 37. If u = f (r) and x = r cos , y = r sin , prove that

             
2 2

2 2
1" ( ) ' ( ).u u f r f r
rx y

 
  

 
(Nagpur University, Winter 2004)

(A.M.I.E.T.E., Winter 2003, U.P. I Semester, Winter 2005, 2000)
Solution.  Here, we have

x = r cos 
y = r sin 

r2 = x2 + y2 so that r x
x r





u = f (r)

u
x




= .d f r
d r x




                        
u
x




 = .d f x
d r r

Differentiating again w.r.t. x, we get

2

2
u

x



=

2

2 2

.1
. . .

rr x
d f r x d f x

x r d rd r r

            
= 

2

2 2

.1 .
. .

xr xd f x x d f r
r r d rd r r
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=
2 2 2 2 2 2 2

2 2 3 2 2 3.d f x d f r x d f x d f y
d r d rd r r r d r r r


   ...(1)

Similarly,
2

2
u

y



=

2 2 2

2 2 3
d f y d f x

d rd r r r
 ...(2)

On adding (1) and (2), we get
2 2

2 2
u u

x y
 


 

=
2 2 2 2 2

2 2 3
d f x y d f x y

d rd r r r
 



=
2

2
1 1( ) '( )d f d f f r f r

d r r rd r
   Proved.

Example 38. A function f (x, y) is rewritten in terms of new variables
u = ex cos y, v = ex sin y

Show that (i) f f fu v
x u v

  
 

  
and (ii) f f fv u

y u v
  

  
  

and hence deduce that

(iii)
2 2 2 2

2 2
2 2 2 2( )f f f fu v

x y u v
    

         

Solution. u = excos y, cos ,xu e y u
x


 




u
y




= – ex sin y = – v

v = ex sin y,  sinxv e y v
x


 


, cosxv e y u

y


 


(i) We know that
f
x




 = 
f u f v
u x v x

   


   

f
x




= f fu v
u v

 


 
... (1)  Proved.

(ii)
f
y




= .( ) – . .f u f v f f f fv u v u
u y v y u v u v

       
     

               ... (2) Proved.

(iii)
2

2
f

x



=

f
x x
  
   

= . . . .f fu v u v
u v u v

      
          

[From (1)]

=
f f f fu u v v u v

u u v v u v
        

             

=
f f f fu u u v v u v v

u u u v v u v v
              

                       

=
2 2 2 2

2 2
f f f f f fu u u v v u v v

u u v v u vu v

            
                            

=
2 2 2 2

2 2
2 2
f f f f f fu u u v u v v v

u v u u v vu v
     

    
      

...(3)
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2

2
f

y



=

f f fv u v u
y y u v u v
         

                 
[From (2)]

= f f f fv v u u v u
u u v v u v
        

                

=
f f f fv v v u u v u u

u u u v v u v v
              

                          

=
2 2 2 2

2 2
f f f f f fv v v u u v u u

u v v v u uu v

            
                                  

=
2 2 2 2

2 2
2 2
f f f f f fv u v v u v u u

u v v u v uu v
     

    
      

...(4)

On adding (3) and (4), we obtain
2 2

2 2
f f

x y
 


  =

2 2 2 2
2 2 2 2

2 2 2 2
f f f fu v v u

u v u v
   

  
   

=
2 2 2 2

2 2 2 2 2 2
2 2 2 2( ) ( ) ( )f f f fu v u v u v

u v u v
    

           
Proved.

Example 39. If x + y = 2 e cos and x – y = 2 ie sin 

Show that : 
2 2 2

2 2 4V V Vx y
x y

  
 

   (A.M.I.E.T.E., Winter 2007)

(Nagpur University, Summer 2001, Winter 2000, U.P., I Semester, Winter 2001)
Solution.  We have, x + y = 2 ecos  ...(1)

x – y = 2 i esin  ...(2)
By adding and subtracting equations (1) and (2), we have

2 x = 2e (cos  + i sin )   x = e+i

and 2 y = 2e (cos  – i sin ) y = e–i ...(3)
It is clear that V = f (x, y) and x, y are functions of  and . Hence V is a composite function
of  and .
We want to convert V, ,  in V, x, y respectively.
From equation (3), we have

             
x

    = ,ie x               
ix i e i x 

 


                   
– ,iy e y 

 
       and     

y
   = iie i y   

Now,
V
 = . .V x V y V Vx y

x y x y
     

  
      

and
2

2
V

 =
V V Vx y x y

x y x y
          

                  

=
V V V Vx x y y x y

x x y y x y
        

             

=
2 2 2 2

2 2
V V V V V Vx x y y x y

x x y x y yx y
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2

2
V

 =
2 2 2

2 2
2 2 2V V V V Vx y x y x y

x y x yx y
     

          
...(4)

Again
V
 =

V x V y V Vi x y
x y x y

      
          


 

= i x y
x y

  
   

2

2
V

 
=

V  
    

 = 
V Vi x y i x y

x y x y
      

          

= . .V V V Vix i x y i y i x y
x x y y x y

        
             

=
V V V Vx x y y x y

x x y y x y
        

              

=
2 2 2 2

2 2
V V V V V Vx x y y x y
x x y x y yx y

        
        

         


2

2
V


=

2 2 2
2 2

2 22V V V V Vx y x y x y
x y x y x y

      
              

...(5)

Adding (4) and (5), we get 
2 2

2 2
V V 


 
 = 

2
4 Vx y

x y

 

Proved.

EXERCISE 1.5

1. If z = u2 + v2 and u = at2, v = 2 at, find 
d z
d t

. Ans. 4 a2t (t2 + 2)

2. If z = sin–1 (x – y), x = 3 t, y = 4 t3; show that 
2

3 .
1

dz
dt t




3. If w = f (u, v), where  u = x + y and v = x – y, show that 2d w d w d w
d x d y d u

 

4. If u = xeyz, where y = 2 2a x , z = sin3 x. Find 
d u
d x Ans. eyz 

2
1 3 cotx x x

y
 
   

 

5. If u = x2 + y2 + z2 – 2 xyz = 1, show that 
2 2 2

0
1 1 1

d x d y d z

x y z
  

  

[Hint. du = 0u u udx dy dz
x y z

  
  

  
 = 2 (x – yz) dx + 2 (y – zx) dy + 2 (z – xy) dz = 0

But x2 + y2 + z2 – 2 xyz = 1,    y2 – 2xyz = 1 – x2 – z2

y2 – 2xyz + x2 z2 = 1 + x2 z2 – x2 – z2  (y – xz)2 = (1 – x2) (1 – z2)]
6. If z = z (u, v), u = x2 – 2xy – y2 and v = y . Show that

(x + y) ( ) 0z zx y
x y

 
  

 
 is equivalent to z

v



 = 0

7. If u = f (x2 + 2 y z, y2 + 2 z x), prove that
2 2 2( ) ( ) ( ) 0u d u d uy z x x y z z xy

x d y d z
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8. By changing the independent variables x and t to u and v by means of the relationships
u = x – at, v = x + at

Show that
2 2 2

2 2
2 2 4y y ya a

u vx t
  

 
  

9. If x2 = au + bv, y = au – bv, prove that 
1. .
2y v x u

d u d x v y
d x d u y v

        
                

10. If z = f (x, y) where x = uv, y = 
u v
u v

 , show that 2 .z z zx u v

d x d u d v
  

 

11. If u = 2 3 2 2cos , 3 2 , 4 2 , 2 3 find , .y u ux x r s y r s z r s
z r s

 
     

 

Ans. 
2

2 2
4 4 6 66 cos sin sin , 2 cos sin sinu y x y x y r y u y x s y xys yr

r z z z z s z z z zz z
 

     
 

12. If z = f (x, y) where x = eu cos v, y = eu sin v. Prove that
2 2 2 2

2uf f f fe
x y u v


                                 

13. If x = 
cos sin, and ( , )y z f x y

u u
 

  , then show that

   
2 2 2 2

4 3 4
2 2 2 2
z z z z zu u u

ux y u
    

   
    

14. If x = 1 2 3 2 2sin where 3 2 , 4 2 , 2 3 , find ,y u uz x r s y r s z r s
x r s

  
     

 

Ans. 
2 2 2 2

6 4 4 sin ,u r y z z yr
r xx x y x y


  

  

2

2 2 2 2

2 6 6 sinu y z s z ys
s xx x y x y


  

  

15. If z = f (u, v) where u = x cos  – y sin , v = x sin  + y cos , show that

   ,z z x zx y u v
x y u v

   
   

   
 being constant.

16. Given the transformation x = cosh  cos , y = sinh  sin 
establish the following equation for the function u (function of x, y and also of  ):

2 2 2 2
2 2

2 2 2 2(sinh sin )u u u u
x y

    
           

17. If z = f (x, y), where x = r cos , y = r sin , prove that

2 2 2 2

2
1z z z z

x y r r
          

                   

2 2 2 2

2 2 2 2 2
1 1and z z z z z

r rx y r r

       
              

18. If by substituting u = x2 – y2, v = 2 xy, f (x, y) =  (u, v). Show that
2 2 2 2

2 2
2 2 2 24 ( )f f u v

x y u v

      
         

19. If x = r sin  cos  , y = r sin  sin , z = r cos , v = v(x, y, z), prove that
2 2 2 2 2 2

1 1
sin

v v v v v v
x y z r r r
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20. If v be a potential function such that v = v(r) and r2 = x2 + y2+ z2, show that
2 2 2 2

2 2 2 2
2v v v d v d v
r d rx y z d r

  
   

  

21. Given that w = x + 2y + z2, x = r/s, y = r2 + es, and z = 2r, show that 212 2 .sw wr s r se
r s

 
  

 

22. Find 
w
v




when u = 0,  v = 0

If w =  (x2 + y – 2)4 + (x – y + 2)3 , x = u – 2 v + 1,
and y = 2 u + v – 2 Ans. 99

23. If x = u + v + w , y = v w + w u + u v, z = uvw and F is a function of x, y, z, then show that

2 3F F F F F Fu v w x y z
u v w x y z

     
    

     
24. If u = x + a y and v = x + b y, transform the equation

2 2 2

2 22 5 3 0z z z
x yx y

  
  

  
 into the equation 

2 z
u v

 

 = 0, find the values of a and b.

(A.M.I.E.T.E., Summer 2000) Ans. 2 21, , , 1
3 3

a b a b         
   

1.17  IMPORTANT DEDUCTIONS
Let z = f (x, y), then

dz =
f fdx dy
x y

 


 
If z = 0, dz = 0

0 =
f fdx dy
x y

 


 
  .f d y f

y d x x
 

 
 


d y
d x =

f
x–
f
y






[Remember] ...(1)

We can find 
2

2
d y
d x

 by differentiating (1).

Let
f
x




=
2 2 2

2 2, , , ,f f f fp q r s t
y x yx y

   
   

   

From (1) 
y
x




 = .p
q



On differentiating again, we obtain 
2

2 2

d p d qq p
d y d x d x
d x q


  ...(2)

But d p
d x

= p p d y
x y d x

 


 


d p
d x

= .f f d y
x x y x d x
      

         

d p
d x

=
2 2 2 2

2 2

f
f f dy f f p q r p sx r s

fy x dx y x q qx x
y
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d q
d x

=
q q d y f f p
x y d x x y y y q

           
                 

=
2 2

2
f f p t p q s t ps

x y q qy q
  

   
  

Making substitutions in (2), we obtain

2

2
d y
d x

= 2

qr ps qs tpq p
q q

q

 


  =  
2 2

3
q r pqs pqs p t

q
  




d y
d x

2

2 =
q r – pqs + p t–

q

2 2

3
2

Example 40. If x3 + 3 x2y + 6 xy2 + y3 = 1, find 
dy
dx .

Solution. Let f (x, y) = x3 + 3x2y + 6xy2 + y3 – 1 = 0
f
x


 = 3x2 + 6xy + 6y2

f
y




= 3x2 + 12xy + 3y2

d y
d x

= 
2 2 2 2

2 2 2 2
3 6 6 2 2
3 12 3 4

f
x xy y x xy yx

f x xy y x xy y
y


   

    
    


Ans.

Example 41. If  y3 – 3 ax2 + x3 = 0, then prove that
2

2
d y
d x

=
2 2

5
2 a x

y


Solution. Let  f (x, y) = y3 – 3ax2 + x3 ...(1)

p = 2 26 3 , 3f fa x x q y
x y

 
   

 

r =
2 2 2

2 26 6 , 0, 6f f fa x s t y
x yx y

  
     

  
2

2
y

x



=

2 2

3
2q r p q s p t

q
 

 ...(2) [Art 1.17]

Putting the values of p, q, r, s and t in (2), we get
2

2
y

x



=

2 2 2 2 2 2

2 3
(3 ) ( 6 6 ) 2( 6 3 ) (3 ) (0) ( 6 3 ) (6 )

(3 )
y a x a x x y a x x y

y
       



=
4 2 2

6
54 ( ) 54 ( 2 )

27
y a x a x x y

y
    



2

2
y

x



=

3 2 2 4 3

5
2 ( ) 2 (4 4 )y a x a x x a x

y
    

 ...(3)

Putting the value of y3  = 3 ax2 – x3 from (1) in (3), we get
2

2
y

x



=

2 3 2 2 4 3

5
2(3 ) ( ) 2 (4 4 )a x x a x a x x a x

y
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=
2 2 3 3 4 2 2 4 3

5
6 6 2 2 8 2 8a x a x a x x a x x a x

y
      


2

2
y

x



=

2 2

5
2a x

y
 Proved.

Example 42. If x3 + y3 – 3axy = 0, find dy
dx

 and 
2

2 .d y
dx

Solution. Let f (x, y) = x3 + y3 – 3axy = 0

p = 2 23 3 , 3 3f fx ay q y ax
x y

 
    

 

r =
2 2 2

2 26 , 3 , 6f f fx s a t y
x yx y

  
     

  

d y
d x

= 
2 2

2 2
3 3
3 3

f
x ay a y xx

f y ax y ax
y


 

   
  


2

2
d y
d x

=
2 2

3
2q r p q s p t

q
 

 ...(1) [Art. 1.17]

Putting the values of p, q, r, s and t in (1), we get
2

2
d y
d x

=
2 2 2 2 2 2

2 3
(3 3 ) 6 2(3 3 ) (3 3 ) ( 3 ) (3 3 ) (6 )

(3 3 )
y ax x x ay y ax a x ay y

y ax
      




=
2 2 2 2 2 2

2 3
2 ( ) 2 ( ) ( ) 2 ( )

( )
x y a x a x a y y a x y x a y

y a x
     




2

2
d y
d x

=
3

2 3
2

( )
a x y

a x y
Ans.

Example 43. Find 
dy
dx

when (cos x) y = (sin y) x

Solution. Given equation can be written as : (cos x)y – (sin y)x = 0
Here f (x, y) = (cos x)y – (sin y)x = 0

f
x




= y (cos x)y – 1 (– sin x) – (sin y)x log sin y

= – [y sin x (cos x)y – 1 + (sin y)x log sin y]
f
y




= (cos x)y log cos x – x (sin y)x –1 cos y

d y
d x

=

d f
d x
d f
d y

 [Art. 1.17]

d y
d x

=
1

1
sin (cos ) (sin ) log sin

(cos ) log cos (sin ) cos

y x

y x
y x x y y

x x x y y








...(1)

In (1), put (cos x)y for (sin y)x

d y
d x

=
1sin (cos ) (cos ) log sin

(cos )(cos ) log cos . cos
sin

y y

y
y

y x x x y
x xx x y

y
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=
(cos ) [ tan log sin ] tan log sin

log cos cot(cos ) [log cos cot ]

y

y
x y x y y x y

x x yx x x y
 




Ans.

Example 44. If f (x, y) = 0 and  (y, z) = 0, show that . . . .f d z f
y z d x x y

   


   
Solution.  f (x, y) = 0 ...(1)

 (y, z) = 0 ...(2)
Differentiating (1) w.r.t. x, we get

0 = .f f d y
x y d x

 


 
   

d y
d x

=

f
x
f
y








...(3)

Differentiating (2) w.r.t. ‘y’, we get

0 = . d z
y z d y

  


 
    

d z
d y

 = y

z








...(4)

Multiplying (3) and (4), we get

d y d z
d x d y

 =

f
x y
f
y z

    
        

    
       

      
d z
d x

 = 

f
x y
f
y z

 
 
 


 

 . .f d z
y z d x

 
 

= .f
x y

 
 

Proved.

Example 45. If u = x log xy where x3 + y3 + 3 xy = 1. Find d u
d x

(U.P. I Sem., Dec. 2005, Com. 2002)
Solution. We have, u = x log xy

u
x




=
1 . 1logx y xy
xy

 
 

 


u
x




= 1 + log xy ...(1)

u
y




=
1 . xx x
xy y

 ...(2)

x3 + y3 + 3 xy = 1
On differentiating, we get

2 23 3 3 3dy dyx y x y
dx dx

    = 0


d y
d x

=
2

2
x y
x y





...(3)

We know that
d u
d x

=
u d x u d y
x d x y d x

 


 

=
2

2(1 log ) .1 x x yxy
y x y

 
     

[From (1), (2), (3)]

=
2

21 log .x x yxy
y x y


 


Ans.
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EXERCISE 1.6

Find d y
d x

 in the following cases :

1. x sin (x – y) – (x + y) = 0 Ans. [y + x2 cos (x – y)] / [x + x2 cos (x – y)]
2. xy = yx Ans. y (y – x log y)/ x (x – y log x)

3. If ax2 + 2 hxy + by2 = 1, find 
2

2
d y
d x

Ans.
2

3( )
h ab
hx by




4. If u = x2y + y2z + z2x and if z is defined implicitly as a function of x and y by the equation

x2 + yz + z3 = 0

find 
u
x




, where u is considered as a function of x and y alone.

Ans.
2 2

2
22 ( 2 )

3
u xxy z y zx
x y z

 
        

5. Find ,dy
dx

 if tan–1 3 1 0x y
y
   Ans. 2 2 43 3

y
x x y y 

6. If f (x, y, z) = 0, prove that

–1dx dy dz
dy dz dxx yz

     
         
   .

z

dx f f
dy y x

    
         

Hint

1.18  TYPICAL CASES

Example 46. If x = f (u, v), y =  (u, v), find , , , .u u v v
x y x y

   
   

Solution. x = f (u, v) ...(1)
y =  (u, v) ...(2)

Differentiating (1), (2) w.r.t. x (treating y as constant), we obtain

1 = . .f u f v
u x v x

   


   
...(3)

0 = . .u v
u x v x

   


   
...(4)

Solving the equations (3) and (4) for u
x




 and v
x




, we obtain

u
x




=
. .

v
f f
u v v u




   


   

Ans.

v
x




=
. .

u
f f
u v v u




   


   

Ans.

Similarly, differentiating (1) and (2) w.r.t. y, we get

0 = . .f u f v
u y v y

   


   
...(5)

1 = . .u v
u y v y

   


   
...(6)

Solving the equations (5) and (6) for and ,u v
y y

 
 

  we obtain
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u
y




=
. .

f
v

f f
u v v u




   


   

Ans.

v
y




=
. .

f
u

f f
u v v u




   


   

Ans.

Example 47. If x = u2 – v2 and y = uv, find

, ,u u v
x y x

  
  

  and  v
y




(Nagpur University, Winter 2003)

Solution. Here, we have x = u2 – v2 ...(1)
y = uv ...(2)

x
u




= 2 u; y
u




= v

x
v




= – 2 v, y
v




= u

Differentiating (1) w.r.t. x, we get

 1 = 2 2u vu v
x x

 


 
...(3)

Similarly differentiating (2) w.r.t. x, we get

0 =
u vv u
x x

 


 
...(4)

On solving (3) and (4), we get
u
x




= 2 2 ,
2 2

u
u v 2 22 2

v v
x u v


 

 
Ans.

On differentiating (1) and (2) w.r.t. y, we get

0 = 2 2u vu v
y y

 


 
...(5)

1 =
u vv u
y y

 


  ...(6)

On solving (5) and (6), we get
v
y




= 2 2,u
u v

and
u
y




 = 2 2
v

u v
Ans.

Example 48. Find p and q, if x = a (sin u + cos v)
y = (cos sin )a u v
z = 1 + sin (u – v)

where p and q mean 
z zand
x y
 
   respectively..

Solution. We have, x = (sin cos )a u v ...(1)

y = (cos sin )a u v ...(2)
z = 1 + sin (u – v) ...(3)

Differentiating (3) w.r.t. x, we get
z
x




= cos (u – v) 
u v
x x

  
   

...(4)
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Differentiating (1) partially w.r.t. x, we get

1 = cos sinu va u v
x x

  
   

...(5)

Differentiating (2) partially w.r.t. x, we get

0 = sin cosu va u v
x x

  
    

...(6)

Solving (5) and (6) for u
x




 and 
v
x




, we get

u
x




=    
1 cos sin,

cos cos
v v u

u v xa a u v


 
  

Putting the values of u
x




 and v
x




 in (4), we get

zp
x





=      
1 cos sincos

cos cos
v uu v

u va a u v

 
  

   
zp
x





=  1 sin cosu v
a

 Ans.

Differentiating (3) w.r.t. y, we get
z
y




=  cos u vu v
y y

 
 
 

  
 

...(7)

Differentiating (1) and (2) partially w.r.t. y, we get

0 = cos sinu va u v
y y

  
   

...(8)

1 = sin cosu va u v
y y

  
    

...(9)

Solving (8) and (9) for 
u
y


  and 

v
y


 , we get

u
y




=
   

sin cos, and
cos cos

v v u
ya u v a u v


  

 

Putting the values of , andu v
y y

 
 

 in (7), we have

zq
y





= cos (u – v) 
   

sin cos
cos cos

v u
a u v a u v

 
  

   

q =  1 sin cosv u
a

  Ans.

EXERCISE 1.7

1. Fill in the blanks

(i)        If f (x, y, z) = 0, then  · ·x y z
y z x
  
  

 is equal to......

(ii)       If z = f (x, y), where x = (t), y =  (t), then  
dz
dt =......
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Y 

Z 

P 
T 

Q 

O

(iii) If  f (x, y) = 0, then  
dy
dx  = ......

(iv) If u  = x2 + y2, x  = s + 3t, y = 2s – t, then 
du
ds =

(v) If  f (x, y) = 0 and (y,z) = 0, then · ·f z
y z x
  
  

= 

(vi) If  f (x, y) = 0, then 
2

2

d y
dx

= .......Ans. (i) – 1 (ii) ( ) –

f
z dx z dy xiii

fx dt y dt
y


  

 


(iv)2x + 4y (v) ·f
x y
 
 

(vi) – 
2 2

3

– 2q r pqs p t
q



1.19 GEOMETRICAL INTERPRETATION OF



z
x

AND 



z
y

(Gujarat, I Semester, Jan. 2009)
Let z = f (x, y) be a surface S.
Let y = k be a plane parallel to XZ – plane, passing

through P (x, k, z) cutting the surface z = f (x, y) along the
curve APB.

This section APB is a plane curve whose equations are
z = f (x, y)
y = k

The slope of the tangent to this curve is given by z
x




.

Similarly, z
y




is the slope of the tangent to the curve

of intersection of the surface z = f (x, y) with a plane parallel to YZ-plane.
1.20 TANGENT PLANE TO A SURFACE

Let f (x, y, z) = 0 be the equation of a surface S. Now
we wish to find out the equation of a tangent plane to S at
the point P (x1, y1, z1).

Let Q (x1 + x1, y1 + y1, z1 + z1) be a neighbouring
point to P. Let the arc PQ be s and the chord PQ be c.

The direction cosines of PQ are

, ,x y z
c c c

  
  

     . , . , .x s y s z s
s c s c s c

     
     

As s   0, Q  P and PQ tends to a tangent line PT. The direction cosines of PT are

, ,dx dy dz
ds ds ds ...(1)

Differentiating F (x, y, z) = 0 w.r.t. ‘s’, we get
F dx F dy F dz
x ds y ds z ds

  
 

    = 0 ...(2)

From (1) and (2) it is clear that the tangent whose direction cosines are , ,dx dy dz
ds ds ds  is

A 

B P
(x, k, z)

O 

Y 

Z 

X 
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perpendicular to a line having direction ratios

, ,F F F
x y z

  
   ...(3)

There are a number of tangent lines at P to the curves joining P and Q. All these tangents will
be perpendicular to the line having direction ratios as given by (3).

Hence all these tangent lines will lie in a plane known as tangent plane.
Equation of tangent plane

     1 1 1
F F Fx – x + y – y + z – z
x y z

  
   = 0

Equation of the normal to the plane.
x – x y – y z – z= =

F F F
x y z

  
  

1 1 1

Example 49. Find the equation of the tangent plane and normal line to the surface
x2 + 2 y2 + 3 z2 = 12 at (1, 2, – 1).

Solution. F (x, y, z) = x2 + 2 y2 + 3 z2 – 12
F
x




= 2 , 4 , 6F Fx y z
y z

 
 

 

At the point (1, 2, – 1)
F
x




= 2, 8, 6F F
y z

 
  

 
Hence the equation of the tangent plane at (1, 2, – 1) is

2 (x – 1) + 8 (y – 2) – 6 (z + 1) = 0
 2 x + 8 y – 6z = 24  x + 4y – 3z = 12

Equation of normal is 1 2 1
2 8 6

x y z  
 


   

1 2 1
1 4 3

x y z  
 

 Ans.

Example 50. Show that the surface x2 – 2 yz + y3 = 4 is perpendicular to any number of the
family of surfaces x2 + 1 = (2 – 4a) y2 + a z2 at the point of intersection (1, – 1, 2).
Solution. f (x, y, z) = x2– 2 yz + y3 – 4 = 0 ...(1)

F (x, y, z) = x2 + 1 – (2 – 4 a) y2 – az2 = 0 ...(2)
f
x




= 2x, 22 3 , 2f fz y y
y z

 
    

 
Direction ratios to the normal of the tangent plane to (1) are

2 x, – 2 z + 3y2, – 2 y
DRs at the point (1, – 1, 2) are 2, – 1, 2.
Now differentiating (2), we get

F
x




= 2 x,  2 2 4 , 2 .F Fa y a z
y z

 
    

 
Direction ratios to the normal of the tangent plane to (2) are

2 x, (– 4 + 8 a) y, – 2az.
DRs at the point (1, – 1, 2) are 2, 4 – 8a, – 4a
Now

l1 l2 + m1 m2 + n1 n2 = (2) (2) + (– 1) (4 – 8 a) + 2 (– 4 a)
= 4 – 4 + 8 a – 8 a = 0.

Hence, the given surfaces are perpendicular at (1, – 1, 2). Ans.
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EXERCISE 1.8
1. Find the equation of tangent plane and the normal line to the surface

x y z = 6 at (1, 2, 3). Ans. 6x + 3y + 2z = 18, 
– 1 – 2 – 3
6 3 2

x y z
 

2. Find the equations of the tangent plane and the normal to the surface z2 = 4 (1 + x2 + y2) at

(2, 2, 6). Ans. 4x + 4y – 3z + 2 = 0, 
2 2 6

4 4 3
x y z  

 


3. Find the equations of the tangent plane and the normal to the surface
2 2

2 3
x y z   at (2, 3, – 1) Ans. 2x – 2y – z + 1 = 0, 

2 3 6
2 2 1

x y z  
 

 
4. Show that the plane 3x + 12y – 6z – 17 = 0, touches the conicoid 3x2 – 6y2 + 9z2 + 17 = 0.

Find also the point of contact. Ans. 
21, 2,
3

 
 
 

5. Show that the plane ax + by + cz + d = 0 touches the surface px2 + qy2 + 2z = 0,

if 
2 2a b
p q
  + 2 c d = 0.

Applications of differential Calculus
(Error, Jacobians, Taylor’s Series, Maxima and Minima)

1.21  ERROR DETERMINATION

We know that
0

lim
 


x

y
x = 

dy
dx



y
x = 

dy
dx  approximately     y = .dy x

dx
   
 

 approximately

Definitions:
(i)  x is known as absolute error in x.               (ii)  x

x
is known as relative error in x.

(iii) 100   
 

x
x

 is known as percentage error in x.

Example 51. The power dissipated in a resistor is given by P = 
2

.
E
R

 Find by using Calculus

the approximate percentage change in P when E is increased by 3% and R is decreased by
2%. (A.M.I.E., Summer 2001)

Solution. Here, we have  P = 
2E

R
    log P = 2 log E – log R

On differentiating, we get
2 –P RE

P E R
 

     
100 100100 2 –P E R

P E R
  

 

100 2 (3) – (– 2) 8P
P


  100 100Given, 2%, 2%E R
E R
      

Percentage change in P = 8% Ans.
Example 52. The diameter and altitude of a can in the shape of a right circular cylinder are
measured as 40 and 64 cm respectively. The possible error in each measurement is ± 5%. Find
approximately the maximum possible error in the computed value for the volume and the
lateral surface. Find the corresponding percentage error.
Solution. Here we have, Diameter of the can (D) = 40 cm
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4 m

1.5 m

100 D
D


= 
100 h

h


 = ± 5%

V = 
2

2 2( )
4 4

 
  

D hr h D h

log V = log 2 log log
4

 D h

V
V = 20  

 
D h

D h

100V
V
 = 

2 100 100 2( 5) ( 5) 15D h
D h
 

       Ans.

Again S = 2  r l =  D h
log S = log  + log D + log h

 S
S

= 0  
 

D h
D h

100 S
S

= 100 100 ( 5) ( 5) 10 
      

D h
D h Ans.

Example 53. The period T of a simple pendulum is

T = .
12
8

Find the maximum error in T due to possible errors upto 1% in l and 2% in g.
(U.P. I semester winter 2003)

Solution. We have, T = 2 .l
g



 log T = 
1 1log 2 log – log
2 2

  l g
Differentiating, we get

T
T


= 
1 1

0 –
2 2

l g
l g
 



 100
T

T
    

= 
1 100 – 100
2

l g
l g

              

But 100l
l


 = 1, 100 2
g
g


 

 100
T

T
    

= 
1 3[1 2]
2 2

 

Maximum error in T = 1.5% Ans.
Example 54. A balloon is in the form of right circular cylinder of radius 1.5 m and length
4 m and is surmounted by hemispherical ends. If the radius is increased by 0.01 m and the
length by 0.05 m, find the percentage change in the volume of the balloon.

(U.P. I Sem., Dec., 2005, Comp 2002)
Solution. Radius of the cylinder (r)  = 1.5 m

Length of the cylinder (h) = 4 m
Volume of the balloon = Volume of cylinder + Volume of two hemispheres

Volume (V) = 2 3 3 2 32 2 4
3 3 3

        r h r r r h r

 V = 2 242 . . 3 .
3

       r r h r h r r
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V
V = 

2 3 2

[2 . . 4 ] 2. . . 4 .
4 4
3 3

r r h r h r r r h r h r r

r h r r h r

          


   

= 
2

2 0.01 4 1.5 0.05 4 1.5 0.01
41.5 4 (1.5)
3

      

 

= 
0.08 0.075 0.06 0.215

6 3 9
 




100 V
V = 

100 0.215 21.5 2.389%
9 9


  Ans.

Example 55. In estimating the number of bricks in a pile which is measured to be
(5m × 10m × 5m), count of bricks is taken as 100 bricks per m3. Find the error in the cost
when the tape is stretched 2% beyond its standard length. The cost of bricks is ` 2,000 per
thousand bricks. (U.P., I Semester, Winter 2000)
Solution. Volume V = x y z

log V = log x + log y + log z
Differentiating, we get

V
V = 

  
 

x y z
x y z

100 V
V = 

100 100 100  
 

x y z
x y z  = 2 + 2 + 2

100 V
V


= 6

 V = 
6 6 (5 10 5)
100 100

 


V
= 15 cubicmetre.

Number of bricks in  V = 15 × 100 = 1500

Error in cost = 1500 2000 3000
1000




Thus error in cost, a loss to the seller of bricks = ` 3000. Ans.
Example 56. The angles of a triangle are calculated from the sides a, b, c. If small changes
 a,  b,  c are made in the sides, show that approximately

 A =    


a a – b. cos C – c. cos B
2

where  is the area of the triangle and A, B, C are the angles opposite to a, b, c respectively.
Verify that  A +  B +  C = 0 (U.P., I Sem., Winter 2001, A.M.I.E.T.E., 2001)
Solution. We know that

cos A = 
2 2 2–

2
b c a

b c
 a2 = b2 + c2 – 2 b c cos A ...(1)
Differentiating both sides of (1), we get

2a a = 2b  b + 2 c  c – 2b  c cos A – 2  b c cos A + 2b c sin A  A (approx.)
a  a = b  b + c c – b  c cos A –  b c cos A + b c sin A  A

 bc sin A  A = a  a – (b – c cos A)  b – (c – b cos A) c
 2  A = a a – (a cos C + c cos A – c cos A)  b – (a cos B + b cos A – b cos A)  c

1 sin
2

cos cos

   
 

   

 bc A

b C c B a
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2   A = a  a – a  b cos C – a  c cos B
= a (a –  b cos C –  c cos B)

  A = [ – . cos – . cos ]
2

  


a a b C c B ...(2)

Similarly,

 B = [ – . cos – . cos ]
2

  


b b c A a C ...(3)

 C = [ – . cos – . cos ]
2

  


c c a B b A ...(4)

On adding (2), (3) and (4), we get

[ A +  B +  C] = 
1 [( – cos – cos ) ( – cos – cos )

2
  


a b C c B a b a C c A b

+ (c – a cos B – b cos A) c]

= 
1 [( – ) ( – ) ( – ) ]

2
a a a b b b c c c    


= 0 [ b cos C + c cos B = a] Verified.

Example 57. The height h and semi-vertical angle  of a cone are measured, and from there
A, the total area of the cone, including the base, is calculated. If h and  are in error by small
quantities h and  respectively, find the corresponding error in the area. Show further that,

if  = 
 ,
6 an error of + 1 per cent in h will be approximately compensated by an error of

– 19.8 in  . (A.M.I.E.T.E., Summer 2003)
Solution. Let l be the slant height of the cone and r its radius

l = h sec 
r = h tan 
A =  r2 +  r l

=  h2 tan2  +  (h tan ) (h sec )
=  h2 [tan2  + tan  sec ]

A = 2 h h [tan2  + tan  sec ]
+  h2[2 tan  sec2   + sec2 . . sec  + tan  sec  tan  ]

A = 2h [tan  + sec ] tan . h + h2 [2 tan  sec  + sec2 + tan2]. sec . 
A = 2h [tan  + sec ] tan . h +  h2 [tan  + sec ]2 sec . 

A = h2 [tan  + sec ] 2 tan (tan sec ) sec .         

h
h

On putting A = 0, , 100 1, we get
6

h
h

 
    

 0 = 2 1tan sec 2 tan tan sec sec
6 6 6 100 6 6 6

h                            

 0 = 
12 tan tan sec sec

6 100 6 6 6
             

   


 0 = 
2 1 1 2 2 2 1 1 2 2

100 1003 3 3 3 3 3 3 3
   

         
   

C
D

B

h

A



l

r
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1

100 = 1 2 1 3 1
1003 3 3 100 3

   
       
 

  = 
1 180 9 60– degree –

100 3 5 3
 

    
 minutes = – 19.8 minutes Ans.

Example 58. Find the possible percentage error in computing the parallel resistance r of

three resistances r1, r2, r3  from the formula 
1 2 3

1 1 1 1= + +
r r r r

if r1, r2, r3 are each in error by plus

1.2%.

Solution. Here,
1
r

= 
1 2 3

1 1 1
 

r r r
...(1)

Differentiating, we get

2
1– dr
r

= 1 2 32 2 2
1 2 3

1 1 1– – –dr dr dr
r r r


1 100 
 
 

dr
r r = 31 2

1 1 2 2 3 3

100100 1001 1 1     
      

     

drdr dr
r r r r r r

= 
1 2 3 1 2 3

1 1 1 1 1 1(1.2) (1.2) (1.2) (1.2)
r r r r r r

 
     

 

= 
11.2  
 
 r

[From (1).]

                  
100 1.2%dr

r
 Ans.

Example 59. If the sides and angles of a plane triangle vary in such a way that its circum

radius remains constant, prove that ,da db dc+ + = 0
cos A cos B cos C

where da, db, dc are small

increments in the sides, a, b, c respectively.
Solution. From the sine rule,

sin
a

A = sin sin


b c
B C

We know that R = ,
2 sin

a
A                  ...(1)

Differentiating, we get
R
A



= 2
cos–

2 sin
a A

A
R
a




= 
1

2 sin A

By total differentiation dR = 
 


 
R RdA da
A a

0 = 2
cos 1– . .

2 sin2 sin


a A dA da
AA

,                 R being constant


cos 1
sin sin

A dA da
A A



CaB

R
O

A
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 cos
da

A = . 2 .
sin


a dA R dA

A [Using (1)]

 cos
da

A = 2 R d A ...(1)

Similarly, cos
db

B = 2 R d B ...(2)

and cos
dc

C = 2 R d C ...(3)

Adding (1), (2) and (3), we have

cos cos cos
 

da db dc
A B C = 2R [dA + dB + dC] ...(4)

But in any triangle ABC, A + B + C = 
Hence, dA + dB + dC = 0
Putting value of dA + dB + dC = 0 in (4), we get

cos cos cos
 

da db dc
A B C = 2 (0) 0 0

cos cos cos
    

da db dcR
A B C

Proved.

Example 60. Compute an approximate value of (1.04)3.01.
Solution. Let f (x, y) = xy

We have – 1



yf y x

x
, log




yf x x
y

Here, let x = 1, x = 0.04,
y = 3, x = 0.01 ...(1)

Now df = 
f fdx dy
x y
 


  ...(2)

 = – 1 logy yy x x x
Substituting the values from (1) in (2), we get

d f = (3) (1)3–1 (0.04) + (1)3 log (1) (0.01) = 0.12
(1.04)3.01 = f (1, 3) + d f = 1 + 0.12 = 1.12 Ans.

Example 61. Find 
1

2 3 5[(3.82) + 2(2.1) ]

Solution. Let f (x, y) = 
1

2 3 5( 2 )x y
Taking x = 4, x = 3.82 – 4 = – 0.18

y = 2, x = 2.1 – 2 = 0.1



f
x

= 
4 4– –2 3 35 51 2 8 1 1[ 2 ] (2 ) (4) [16 2(2) ]

5 5 5 16 10
      
 

x y x



f
y = 

4 4– –2 3 2 2 35 51 6 24 1 3[ 2 ] (6 ) (2) [16 2(2) ]
5 5 5 16 10

     x y y

By total differentiation, we get
f fdf x y
x y
 

   
  = 

1 3(– 0.18) (0.1) – 0.018 0.03 0.012
10 10
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1
2 3 5[(3.82) 2(2.1) ] = f (4, 2) + df

= 
1

2 3 5[(4) 2(2) ] 0.012 2 0.012 2.012     Ans.

EXERCISE 1.9
1. If the density  of a body be inferred from its weights W,  in air and water respectively, show that

the relative error in  due to errors W in W,  is 
– . .

– –
W

W W W
   

 
  

2. The period of oscillation of a pendulum is computed by the formula

T = 2 .
l
g



Show that the percentage error in T = 
1
2 [% error in l – % error in g]

If l = 6 cm and relative error in g is equal to 
1 ,

160
find the error in the determination of T..

(Given g = 981 cm/sec2) Ans. – 0.00153
3. The indicated horse power I of an engine is calculated from the formula.

I = PLAN/33000

where A = 2.
4
 d Assuming that errors of r percent may have been made in measuring P. L, N and

d. Find the greatest possible error in I. Ans. 5 r %
4. The dimensions of a cone are radius 4 cm, height 6 cm. What is the error in its volume if the scale

used in taking the measurement is short by 0.01 cm per cm. Ans. 0.96  cm3.
5. The work that must be done to propel a ship of displacement D for a distance s in time t is proportional

to s2 D2/3 t2.
Find approximately the percentage increase of work necessary when the displacement is increased

by 1%, the time is diminished by 1% and the distance is increased by 3%. Ans. 14 %
3

6. The power P required to propel a ship of length l moving with a velocity V is given by P = kV3 t2.
Find the percentage increase in power if increase in velocity is 3% and increase in length is 4%.

Ans. 17%
7. In estimating the cost of a pile of bricks measured as 2m × 15 m × 1.2 m, the tape is stretched 1%

beyond the standard length if the count is 450 bricks to 1 m3 and bricks cost ` 1300 per 1000, find
the approximate error in the cost. Ans. ` 631.80

8. In estimating the cost of a pile of bricks measured as 6 × 50 × 4, the tape is stretched 1% beyond
the standard length. If the count is 12 bricks to ft 3, and bricks cost ` 100 per 1000, find the
approximate error in the cost.                     (U.P. I Sem., Dec. 2004)   Ans. 720 bricks, ` 25.20

9. The sides of a triangle are measured as 12 cm and 15 cm and the angle included between them as
60°. If the lengths can be measured within 1% accuracy while the angle can be measured within 2%
accuracy. Find the percentage error in determining (i) area of the triangle (ii) length of opposite side
of the triangle.                                                                           (A.M.I.E.T.E., Winter 2002)

10. The voltage V across a resistor is measured with error h, and the resistance R is measured with an

error k. Show that the error in calculating the power W(V, R) = 
2V

R
generated in the resistor is

2 (2 – ).V Rh V k
R

 If V can be measured to an accuracy of 0.5 p.c. and R to an accuracy of 1 p.c.,

what is the approximate possible percentage error in W ? Ans. Zero percent
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11. Find the possible percentage error in computing the parallel resistance r of two resistance r1 and r2

from the formula 
1 2

1 1 1 , 
r r r

 where r1 and r2 are both is error by + 2% each. Ans. 2%

12. In the manufacture of closed cylindrical boxes with specified sides a, b, c (a  b  c), small changes
of A%, B%, C% occurred in a, b, c, respectively from box to box from the specified dimension.
However, the volume and surface area of all boxes were according to specification, show that:

( – ) ( – ) ( – )
 

A B C
a b c b c a c a b

13. Find the percentage error in calculating the area of ellipse x2/a2 + y2/b2 = 1, when error of + 1% is
made in measuring the major and minor axes. Ans. 2%

(U.P., I Sem, Jan 2011)

14. If f = 
1

2 2 10 ,x y z find the approximate value of f, when x = 1.99, y = 3.01 and z = 0.98.
Ans. 107.784

15. A diameter and altitude of a can in the form of right circular cylinder are measured as 4 cm and 6 cm
respectively. The possible error in each measurement is 0.1 cm. Find approximately the maximum
possible error in the value computed for the volume and lateral surface.
                                                           (A.M.I.E., Summer 2001)  Ans. 5.0336 cm3, 3.146 cm2

16. Prove that the relative error of a quotient does not exceed the sum of the relative errors of the
dividend and the divisor.                                                                   (A.M.I.E., Winter 2001)

1.22  JACOBIANS
If u and v are functions of the two independent variables x and y, then the determinant

u u
x y
v v
x y

 
 
 
 

is called the jacobian of u, v with respect to x, y and is written as
( , ) ,or
( , ) ,
u v u vJ
x y x y

 
   

Similarly, the jacobian of u, v, w with respect to x, y, z is

( , , )
( , , )
u v w
x y z


 = 

u u u
x y z
v v v
x y z
w w w
x y z

  
  
  
  
  
  

Example 62. If x = r cos ,  y = r sin  ; evaluate ( , )
( , )
x y
r


 

, and
( , )
( , )
r
x y

 


Solution. We have, x = r cos ,     y = r sin 
x
r




= cos ,
y
r




 = sin 

x
 

= – r sin ,
y

 
 = r cos 

( , )
( , )
x y
r


 

= 

x x
r
y y
r

 
 
 
 

 = 
cos sin
sin cos

r
r
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= r cos2  + r sin2  = r (cos2  + sin2 ) = r

Now, r2 = x2 + y2,              = 1tan y
x



r
x

 = 

x
r

,   
x



 = 2 2
y

x y



 = 
2
y

r


r
y

 = 

y
r

,    y

  = 2 2

x
x y  = 2

x
r

( , )
( , )
r
x y

 


= 

r r
x y

x y

 
 
 
 

 = 
2 2

x y
r r
y x

r r
  = 

2 2

3 3
x y
r r

  = 
2 2

3
x y

r


 = 
2

3
r
r

 = 
1
r

Ans.

Note : ( , ) ( , )
( , ) ( , )
x y r
r x y

  


  
 = 

1r
r
  = 1

Example 63. If x = a cosh  cos , y = a sinh  sin , show that
( , )
( , )
x y

  
 = 

2
( cosh 2 cos 2 )

2
a

 

Solution. Here, we have,   x = a cosh  cos 
                                        y = a sinh  sin 

( , )
( , )
x y

    = 

x x

y y

 
 
 
 

 = 
sinh cos cosh sin
cosh sin sinh cos

a a
a a

    
   

= 2 sinh cos cosh sin
cosh sin sinh cos

a
    
     = a2 [sinh2  cos2  + cosh2  sin2 ]

= a2 [sinh2  (1 – sin2) + (1 + sinh2 ) sin2 ]
= a2 [sinh2  – sinh2   sin2  + sin2 + sinh2  sin 2 ]

= a2 [sinh2  + sin2 ] = 
2

[ cosh 2 1 1 cos 2 ]
2

a
    = 

2
[ cosh 2 cos 2 ]

2
a

  Proved.

Example 64. If y1 = 2 3

1

x x
x , y2 = 3 1

2

x x
x , y3 = 1 2

3

x x
x .

Show that the Jacobian of y1, y2, y3 with respect to x1, x2, x3 is 4.
(U.P. I Sem. Jan 2011; 2004, Comp. 2002, A.M.I.E., Summer 2002, 2000, Winter 2001)

Solution. Here, we have y1 = 
2 3

1

x x
x , y2 = 

3 1

2

x x
x , y3 = 

1 2

3

x x
x

1 2 3

1 2 3

( , , )
( , , )
y y y
x x x




 = 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

y y y
x x x
y y y
x x x
y y y
x x x

  
  
  
  
  
  

 = 

2 3 3 2
2

1 11

3 3 1 1
2

2 22

2 1 1 2
2

3 3 3

x x x x
x xx

x x x x
x xx
x x x x
x x x







 = 
2 3 3 1 1 2

2 3 3 1 1 22 2 2
1 2 3

2 3 3 1 1 2

1
x x x x x x

x x x x x x
x x x x x x x x x





 = 

2 2 2
1 2 3
2 2 2
1 2 3

1 1 1
1 1 1
1 1 1

x x x
x x x





= – 1 (1 – 1) – 1 (– 1 – 1) + 1 (1 + 1)  = 0 + 2 + 2 = 4 Proved.
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Example 65. If x = r sin  cos ,
y = r sin  sin ,
z = r cos ,

Show that 
( , , )
( , , )
x y z
r


    = r2 sin . (U.P., I Semester, Winter 2000)

Solution. We have, x = r sin  cos , y = r sin  sin , z = r cos 
x
r


  = sin  cos ,

y
r


  = sin  sin ,

z
r


  = cos 

x
   = r cos  cos ,

y
   = r cos  sin ,

z
   = – r sin 

x
   = – r sin  sin ,

y
   = r sin  cos ,

z
   = 0

( , , )
( , , )
x y z
r


    = 

x x x
r
y y y
r
z z z
r

  
  
  
  
  
  

= 

sin cos cos cos sin sin
sin sin cos sin sin cos

cos sin 0

r r
r r

r

      
     

  

= 2
sin cos cos cos sin

sin sin sin cos sin cos
cos sin 0

r
     

     
  

= r2 sin  [sin  cos  (0 + sin  cos ) – cos  cos  (0 – cos  cos )
– sin  (– sin2  sin  –cos2 sin )]

= r2 sin  [sin2  cos2  + cos2  cos2  + sin2  sin2  + cos2  sin2 ]
= r2 sin  [(sin2  + cos2 ) cos2  + (sin2  + cos2 ) sin2 ]
= r2 sin  [cos2  + sin2 ] = r2 sin  Ans.

EXERCISE 1.10

1. If u = x2, v = y2, find
( , )
( , )
u v
x y




Ans. 4xy

2. If u = 1
y x

xy



 and v = tan–1 y – tan–1 x , find 
( , )
( , )
u v
x y




Ans. 0

3. If u = xyz, v = xy + yz + zx, w = x + y + z, compute ( , , )
( , , )
u v w
x y z




Ans. (x – y) (y – z) (z – x)

4. If x = r cos , y = r sin , z = z find 
( , , ) .
( , θ, z)
x y z
r




5. If u1 = 
1

n

x
x , u2 = 

2

n

x
x , ...... un–1 = 

1n

n

x
x


 and 2 2 2 2
1 2 3 ...... nx x x x    = 1 find 

1 2 1

1 2 1

( , ,...... )
( , ,...... )

n

n

u u u
x x x









Ans. 1
1
n
nx 

6. Find the value of 1 2 3

1 2 3

( , , )
( , , )
y y y
x x x




, y1 = (1 – x1), y2 = x1 (1 – x2), y3 = x1x2 (1 – x3) Ans. 2
1 2x x

7. If u = 
x

y z , v = 
y

z x , w = 
z

x y
 then show that 

( , , )
( , , )
u v w
x y z




= 0

8. Fill in the blanks

(i) If x = r cos , y = r sin , then the value of Jacobian 
( , )
( ,θ)
x y
r




 is ........ Ans. r
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(ii) If u = x (1 – y), v = xy, then the value of the Jacobian 
( , )
( , )
u v
x y




 = ........ Ans. x

1.23   PROPERTIES OF JACOBIANS
(1) First Property
If u and v are the functions of x and y, then

( , ) ( , )
( , ) ( , )
u v x y
x y u v

 


 
= 1 ( U. P. I Semester Dec. 2005 )

Proof. Let u = f (x, y) ...(1)
v =  (x, y) ...(2)

( , ) ( , )
( , ) ( , )
u v x y
x y u v

 


 
= 

u u x x
x y u v
v v y y
x y u v

   
   


   
   

On interchanging the rows and columns of second determinant

= 

u u x y
x y u u
v v x y
x y v v

   
   


   
   

= 

u x u y u x u y
x u y u x v y v
v x v y v x v y
x u y u x v y v

       
     

       
       

     
       

...(3)

On differentiating (1) and (2) w. r. t. u and v, we get

1

0

1

0

u u x u y
u x u y u
u u x u y
v x v y v
v v x v y
v x v y v
v v x v y
u x u y u

               
     

          
         
    


               

...(4)

On making substitutions from (4) in (3), we get

( , ) ( , )
( , ) ( , )
u v x y
x y u v

 


 
 = 

1 0
0 1  = 1 Proved.

Example 66. If x = uv, y = u v
u v



, find ( , )
( , )
u v
x y




.

Solution. Here it is easy to find , , ,x x y y
u v u v

   
   

. But to find , , ,u u v v
x y x y

   
   

 is

comparatively difficult. So we first find ( , )
( , )

x y
u v




( , )
( , )
x y
u v




 = 

x x
u v
y y
u v

 
 
 
 

 = 
2 2

2 2
( ) ( )

v u
v u

u v u v

 

= 2

1 1
2 2( )

uv
u v 

 = 2 ( 2 2)
( )

u v
u v




 = 2
4

( )
u v

u v

But
( , ) ( , )
( , ) ( , )
u v x y
x y u v

 


 
= 1  2

( , ) 4
( , ) ( )
u v u v
x y u v




 
 = 1 

2( , ) ( )
( , ) 4
u v u v
x y u v

 



Ans.
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Example 67. If u = xyz, v = x2 + y2 + z2, w = x + y + z, find J = ( , , )
( , , )

x y z
u v w




.

Solution. Since u, v, w are explicitly given, so first we evaluate (U.P. I Sem., Winter 2002)

J = 
( , , )
( , , )
u v w
x y z




J = 

u u u
x y z
v v v
x y z
w w w
x y z

  
  
  
  
  
  

 = 2 2 2
1 1 1

yz zx xy
x y z

= yz ( 2y – 2z ) – zx ( 2x – 2z ) + xy (2x – 2y) = 2 [yz ( y – z ) – zx ( x – z) + xy ( x – y)]
= 2 [x2y – x2z – xy2 + xz2 + y2z – yz2] = 2 [ x2 ( y – z ) – x ( y2 – z2 ) + yz ( y – z)]
= 2 ( y – z ) [x2 – x ( y + z ) + yz] = 2 ( y – z) [ y ( z – x) – x ( z – x )]
= 2 ( y – z ) ( z – x ) ( y – x ) = – 2 ( x – y) ( y – z ) ( z – x )

Hence, by JJ = 1, we have

J = 
( , , )
( , , )

x y z
u v w




 = 
1

2( ) ( ) ( )x y y z z x


  
Ans.

EXERCISE 1.11

1. Given u = x2 – y2, v = 2xy, calculate ( , )
( , )
x y
u v




Ans. 2 2
1

4( )x y

2. If x = uv, y = 
u v
u v



, find 
( , )
( , )
u v
x y




Ans.
2( )

4
u v

uv


3. If x = r sin  cos , y = r sin  sin , z = r cos , find 
( r,θ,φ)
( , , )x y z




Ans. 2
1
sinθr

4. Verify JJ = 1, if x = uv, y = 
u
v

5. Verify JJ = 1, if x = ev sec u, y = ev tan u.
6. Verify JJ = 1, if x = sin  cos , y = sin  sin 
(2) Second Property (Chain Rule)
If u, v are the functions of r, s where r, s are functions of x, y, then

( , )
( , )

u v
x y




= 
( , ) ( , )
( , ) ( , )
u v r s
r s x y

 


  (U.P. I Sem. Jan 2011)

Proof.
( , ) ( , )
( , ) ( , )
u v r s
r s x y

 


 
= 

u u r r
r s x y
v v s s
r s x y

   
   


   
   

On interchanging the columns and rows in second determinant

=

u u r s
r s x x
v v r s
r s y y

   
   


   
   

= 

u r u s u r u s
r x s x r y s y
v r v s v r v s
r x s x r y s y
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= 

u u
x y
v v
x y

 
 
 
 

 = 
( , )
( , )
u v
x y


 Proved.

Similarly,
( , , )
( , , )
u v w
x y z




= 
,

( , , ) ( , , )
( , , ) ( , )z
u v w r s t
r s t x y

 


 

Example 68. Find the value of the Jacobian
( , )
( , )
u v
r


  , wheree u = x2 – y2, v = 2x y and

x = r cos , y = r sin .
Solution. u = x2 – y2, v = 2 x y

( , )
( , )
u v
x y




= 

u u
x y
v v
x y

 
 
 
 

 = 
2 2
2 2

x y
y x


 = 4 (x2 + y2) = 4 r2

( , )
( , )
x y
r


  = 

x x
r
y y
r

 
 
 
 

 = 
cos sin
sin cos

r
r

  
   = r cos2  + r sin2  = r

( , )
( , )
u v
r


 

= 
( , ) ( , )
( , ) ( , )
u v x y
x y r

 


  
 = 4r2 . r = 4r3 Ans.

EXERCISE 1.12

1. If u = ex cos y, v = ex sin y, where x = lr + sm, y = mr – sl, verify 
( , ) ( , )
( , ) ( , )
u v x y
x y r s

 


 
 = 

( , )
( , )
u v
r s




2. If u = 
1 1

2 22 2(1 ) , (1 )x r v y r
 

  

w = 
1

2 2 2 2 22(1 ) wherez r r x y z


   

Show that 
( , , )
( , , )
u v w
x y z




 = 
5

2 2(1 )r


 (Q. Bank, U. P. 2001)

3. If u = x + y + z, u2 v = y + z, u3 w = z, show that 
( , , )
( , , )
u v w
x y z




 = u–5

Hint. Put r = x + y + z, s = y + z, t = z
u = r    u2 v = s        u3w = t

( , , )
( , , )
u v w
x y z


  = 

( , , ) ( , , )
( , , ) ( , , )
u v w r s t
r s t x y z

 


 
 = 

1 ( , , )
( , , )( , , )

( , , )

r s t
x y zr s t

u v w

 
  

   
  

4. If u = x + y + z, uv = y + z, uvw = z. Evaluate 
( , , )
( , , )
x y z
u v w




( U. P. I Sem. Winter 2003 ) Ans. u2v

5. If u3 + v3 = x + y, u2 + v2 = x3 + y3, show that 
( , )
( , )
u v
x y




 = 
2 21 ( )

2 ( )
y x

u v u v



(3) Third Property
If functions u, v, w of three independent variables x, y, z are not independent, then

( , , )
( , , )
u v w
x y z


 = 0
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Proof.   As u, v, w are not indepentent, then f (u, v, w) = 0 ...(1)
Differentiating (1) w.r.t x, y, z, we get

f u f v f w
u x v x w x

     
    

     
= 0 ...(2)

f u f v f w
u y v y w y

     
    

     
= 0 ...(3)

f u f v f w
u z v z w z

     
    

     
= 0 ...(4)

Eliminating , ,f f f
u v w

  
  

 from (2), (3) and (4), we have

u v w
x x x
u v w
y y y
u v w
z z z

  
  
  
  
  
  

= 0

On interchanging rows and columns, we get



u u u
x y z
v v v
x y z
w w w
x y z

  
  
  
  
  
  

= 0


( , , )
( , , )
u v w
x y z




= 0 Proved.

Converse (The sufficient condition)

If it is given that 
( , , )
( , , )
u v w
x y z




 = 0 and u, v, w are not independent of one another then they are

connected by a relation f (u, v, w) = 0.
Example 69. If u = x y + y z + z x, v = x2 + y2 + z2 and w = x + y + z, determine whether there

is a functional relationship between u, v, w and if so, find it.
Solution. We have, u = x y + y z + z x, v = x2 + y2 + z2, w = x + y + z

( , , )
( , , )
u v w
x y z




= 

u u u
x y z
v v v
x y z
w w w
x y z

  
  
  
  
  
  

 = 2 2 2
1 1 1

y z z x x y
x y z
  

= 2
1 1 1

y z z x x y
x y z
  

 = 2
1 1 1

x y z x y z x y z
x y z

      Rl  R1 + R2
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= 
1 1 1

2 ( )
1 1 1

x y z x y z   = 0  (R1 = R3)

Hence, the functional relationship exists between u, v and w.
Now, w2 = (x + y + z)2 = x2 + y2 + z2 + 2(x y + y z + z x)

w2 = v + 2u
w2 – v – 2u = 0          which is the required relationship. Ans.

Example 70. Verify whether the following functions are functionally dependent, and if so, find
the relation between them.

u = 1 1, tan tan
1
x y v x y

x y
 

 


Solution.
( , )
( , )
u v
x y




= 

u u
x y
v v
x y

 
 
 
 

 = 

2 2

2 2

2 2

1 1
(1 ) (1 )

1 1
1 1

y x
xy xy

x y

 
 

 

 = 2 2
1 1

(1 ) (1 )xy xy


 
 = 0

Hence u, v are functionally related.

tan–1 x + tan–1 y = 
1tan

1
x y

xy
 


v = tan– 1 u

 u = tan v. Ans.
EXERCISE 1.13

1. Verify whether u = ,x y x yv
x y x
 




 are

functionally dependent, and if so, find the relation between them. Ans. u = 
2 v

v


2. Determine functional dependence and find relation between

2,
( )

x y xyu v
x y x y


 
  Ans. 4v = 1– u2

3. Are x + y – z, x – y + z, x2 + y2 + z2 – 2yz functionally dependent ? If so, find a relation between
them. Ans. u2 + v2 = 2w

4. If u = x + y + z, v = x2 + y2 + z2, w = x3 + y3 + z3 – 3xyz, prove that u, v, w are not independent
and find the relation between them. Ans. 2w = u (3v – u2)

5. Are the following two functions of x, y, z functionally dependent ? If so find the relation between
them.

,x y x zu v
x z y z
 

 
  Ans. v = 

1
1 u

6. If u = 
x y

z


, v = 
y z

x


, w = 
( )y x y z

x z
 

, show that u, v, w are not independent and find the

relation between them.                                 (U.P., Ist Semester, 2009) Ans. uv – w = 1

1.24   JACOBIAN OF IMPLICIT FUNCTIONS
The variables x, y, u, v are connected by implicit functions

f1 (x, y, u, v) = 0 ... (1)
f2 (x, y, u, v) = 0 ... (2)

where u, v are implicit functions of x, y.
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Differentiating (1) and (2) w.r.t. x and y, we get

1 1 1f f fu v
x u x v x

   
 

    
= 0 ... (3)

1 1 1f f fu v
y u y v y

   
 

     = 0 ... (4)

2 2 2f f fu v
x u x v x

   
 

     = 0 ... (5)

2 2 2f f fu v
y u y v y

   
 

     = 0 ... (6)

Now, we have

1 2( , ) ( , )
( , ) ( , )
f f u v
u v x y

 


 
 = 

1 1

2 2

u uf f
x yu v

f f v v
x yu v

  
   

   
  

                              = 

1 1 1 1

2 2 2 2

f f f fu v u v
u x v x u y v y
f f f fu v u v
u x v x u y v y

      
 

       
      

 
       

 = 

1 1

2 2

f f
x y
f f
x y

 
 
 
 

 
 

[From (3), (4), (5), (6)]

                              =  2 1 2( , )( 1)
( , )
f f
x y






( , )
( , )
u v
x y




= 
2 1 2

1 2

( , ) / ( , )( 1)
( , ) / ( , )
f f x y
f f u v

 


 
In general, the variables x1, x2, ... xn are connected with u1, u2, ... un implicitly as f1(x1, x2, ... xn,

u1, u2, ... un) = 0, f2(x1, x2, ... xn, u1, u2, ... un) = 0 ... ... ... ... ... fn (x1, x2, ... xn, u1, u2, ... un) = 0
Then we have

1 2

1 2

( , , ... )
( , , ... )

n

n

u u u
x x x


 = 1 2 1 2

1 2 1 2

( , , ... ) / ( , , ... )
( 1)

( , , ... ) / ( , , ... )
n n n

n n

f f f x x x
f f f u u u

 


 

Example 71. If x2 + y2 + u2 – v2 = 0 and uv + xy = 0, prove that 
2 2

2 2
( , )
( , )
u v x y
x y u v

 


 
Solution. Let f1 = x2 + y2 + u2 – v2,    f2 = uv + xy

1 2( , )
( , )
f f
x y




= 

1 1

2 2

f f
x y
f f
x y

 
 
 
 

  = 
2 2x y
y x  = 2 (x2 – y2)

1 2( , )
( , )
f f
u v




= 

1 1

2 2

f f
u v
f f
u v

 
 
 
 

 = 
2 2u v
v u


 = 2 (u2 + v2)

But
( , )
( , )
u v
x y




= 

1 2

2

1 2

( , )
( , )( 1)

( , )
( , )

f f
x y
f f
u v








 = 
2 2

2 2
2 ( )
2 ( )

x y
u v




 = 
2 2

2 2
x y
u v




Proved.
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Example 72. If u3 + v + w = x + y2 + z2, u + v3 + w = x2 + y + z2, u + v + w3 = x2 + y2 + z, prove

that
( , , )
( , , )
u v w
x y z




 = 2 2 2 2 2 2
1 4 ( ) 16

2 3 ( ) 27
xy yz zx xyz

u v w u v w
   

   

Solution. Let f1 = u3 + v + w – x – y2 – z2

f2 = u + v3 + w – x2 – y – z2

f3 = u + v + w3 – x2 – y2 – z

Now, 1 2 3( , , )
( , , )
f f f
x y z




= 

1 2 2
2 1 2
2 2 1

y z
x z
x y

  
  
  

 = – 1 + 4 (yz + zx + xy) – 16 xyz

and 1 2 3( , , )
( , , )
f f f
u v w




= 

2

2

2

3 1 1

1 3 1

1 1 3

u

v

w
 = 2 – 3 (u2 + v2 + w2) + 27 u2 v2 w2

( , , )
( , , )
u v w
x y z




 = 3 1 2 3

1 2 3

( , , ) / ( , , )
( 1)

( , , ) / ( , , )
f f f x y z
f f f u v w

 


 
 = 2 2 2 2 2 2

1 4 ( ) 16
2 3 ( ) 27

yz zx xy xyz
u v w u v w

   
   

Proved.

Example 73. If x + y + z = u, y + z = uv, z = uvw, show that
( , , )
( , , )
x y z
u v w


  = u2 v

Solution. Let f1 = x + y + z – u
f2 = y + z – uv
f3 = z – uvw

1 2 3( , , )
( , , )
f f f
x y z




= 

1 1 1

2 2 2

3 3 3

f f f
x y z
f f f
x y z
f f f
x y z

  
  
  
  
  
  

 = 
1 1 1
0 1 1
0 0 1

 = 1

1 2 3( , , )
( , , )
f f f
u v w




= 

1 1 1

2 2 2

3 3 3

f f f
u v w
f f f
u v w
f f f
u v w

  
  
  
  
  
  

 = 

1 0 0
0v u

vw uw uv


 

  
 = – u2 v

But
( , , )
( , , )
x y z
u v w




= (–1)3

1 2 3

1 2 3

( , , )
( , , )

( , , )
( , , )

f f f
u v w

f f f
x y z







 = 
2

1
u v

  = u2 v Proved.

Example 74. If u, v, w are the roots of the equation ( – x)3 + ( – y)3 + ( – z)3 = 0 in  find

( , , ) .
( , , )
u v w
x y z


 (U.P. I Sem. Jan, 2011; Winter 2001)

Solution. ( – x)3 + ( – y)3 + ( – z)3 = 0
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 3 3 – 3(x + y + z) 2 + 3(x2 + y2 + z2)  – (x3 + y3 + z3) = 0
Sum of the roots = u + v + w = x + y + z ... (1)

Product of the roots = uv + vw + wu = x2 + y2 + z2 ... (2)

uvw = 3 3 31 ( )
3

x y z  ... (3)

Equations (1), (2) and (3) can be rewritten as
f1 = u + v + w – x – y – z
f2 = uv + vw + wu – x2 – y2 – z2

f3 = 3 3 31 ( )
3

uvw x y z  

1 2 3( , , )
( , , )
f f f
x y z




= 

1 1 1

2 2 2

3 3 3

f f f
x y z
f f f
x y z
f f f
x y z

  
  
  
  
  
  

 = 
2 2 2

1 1 1
2 2 2x y z

x y z

  
  

  

= 
2 2 2

1 1 1
( 1) ( 2) ( 1) x y z

x y z

    = 1 1 2
2 2 2 2 2

2 2 3

0 0 1
2 x y y z z C C C

C C Cx y y z z

    
  

= 
2

0 0 1
2 ( ) ( ) 1 1 2 ( ) ( ) ( )

2 ( ) ( ) ( )
x y y z z x y y z y z x y

x y y z z xx y y z z

         
     

1 2 3( , , )
( , , )
f f f
u v w




 = 

1 1 1

2 2 2

3 3 3

f f f
u v w
f f f
u v w
f f f
u v w

  
  
  
  
  
  

 = 

1 1 1
v w u w u v

vw wu uv
  

= 

1 1 2

2 2 3

0 0 1

( ) ( )

C C C
v u w v u v C C C

w v u u w v uv

 
    
 

= 

0 0 1
( ) ( ) 1 1 ( ) ( ) ( )

( ) ( ) ( )
v u w v u v v u w v u w

w u uv u v v w w u
      

    

( , , )
( , , )
u v w
x y z




 = –

1 2 3

1 2 3

( , , )
( , , )

( , , )
( , , )

f f f
x y z

f f f
u v w







 = –
2 ( ) ( ) ( )
( ) ( ) ( )

x y y z z x
u v v w w u

   
   

 = –
2 ( ) ( ) ( )
( ) ( ) ( )

x y y z z x
u v v w w u
  
  

Ans.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



64 Partial Differentiation

EXERCISE 1.14

1. If u3 + v3 = x + y, u2 + v2 = x3 + y3, then prove that 
( , )
( , )
u v
x y




 = 
2 21

2 2 ( )
y x
uv u v




2. If u3 + v3 + w3 = x + y + z,    u2 + v2 + w2 = x3 + y3 + z3,    u + v + w = x2 + y2 + z2,

show that 
( , , )
( , , )
u v w
x y z




 = 
( ) ( ) ( )
( ) ( ) ( )
x y y z z x
u v v w w u
  
  

3. If u = 
2 2 2

, ,
1 1 1

x y zv w
r r r

 
  

, show that

( , , )
( , , )
u v w
x y z




 = 2 5 2
1

(1 )r
 where r2 = x2 + y2 + z2

4. If u1 = x1 + x2 + x3 + x4,   u1u2 = x2 + x3 + x4,   u1u2u3 = x3 + x4,   u1u2u3u4 = x4

show that 1 2 3 4

1 2 3 4

( , , , )
( , , , )
x x x x
u u u u




 = 3 2
1 2 3u u u 

5. If u, v, w are the roots of the equation in  and 
λ λ λ

x y z
a b c

 
  

 = 1, then find 
( , , )
( , , )
x y z
u v w




.

Ans.
( ) ( ) ( )
( ) ( ) ( )
u v v w w u
a b b c c a
  
  

1.25  PARTIAL DERIVATIVES OF IMPLICIT FUNCTIONS BY JACOBIAN
Given f1 (x, y, u, v) = 0, f2 (x, y, u, v) = 0

1 1 1 1f f fu v
u x v x x

   
  

    
= 0 ... (1)

2 2 2 1f f fu v
u x v x x

   
  

    
= 0 ... (2)

Solving (1) and (2) , we get

1 2 1 2

u
x

f f f f
v x x v




   
  

   

= 
1 2 1 2

v
x

f f f f
x u u x




   
  

   

 = 
1 2 1 2

1
f f f f
u v v u
   

  
   

u
x



= 

1 2 1 2

1 2 1 2

f f f f
v x x v
f f f f
u v v u

   
  

   
   

  
   

 = –

1 2

1 2

( , )
( , )

( , )
( , )

f f
x v

f f
u v






v
x



= 
1 2 1 2

1 2 1 2

f f f f
x u u x
f f f f
u v v u

   
  

   
   

  
   

 = 

1 2

1 2

( , )
( , )

( , )
( , )

f f
x u

f f
v u






and if, f1 (x, y, z, u, v, w) = 0,  f2 = (x, y, z, u, v, w) = 0
f3 (x, y, z, u, v, w) = 0

x
u



= 1 2 3

1 2 3

( , , ) / ( , , )
( , , ) / ( , , )

f f f u y z
f f f x y z

 

 

and so on.
Note. First we write the Jacobian in the denominator and then we write the Jacobian in the

numerator by replacing x by u.
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Example 75. Use Jacobians to find
v

u
x
 

  
if :

u2 + xv2 – xy = 0 and u2 + xyv + v2 = 0
Solution. Let f1 = u2 + xv2 – xy,  f2 = u2 + xyv + v2

1 2( , )
( , )
f f
u v




= 

1 1

2 2

f f
u v
f f
u v

 
 
 
 

 = 
2 2
2 2
u xv
u xy v = 2uxy + 4uv – 4uxv

1 2( , )
( , )
f f
x v




= 

1 1

2 2

f f
x v
f f
x v

 
 
 
 

 = 
2 2

2
v y xv

yv xy v




= x y v2 + 2v3 – xy2 – 2yv – 2xyv2 = – xyv2 + 2v3 – xy2 – 2yv
u
x



= 1 2

1 2

( , ) / ( , )
( , ) / ( , )

f f x v
f f u v

 

 

 = 
2 3 22 2

2 4 2
xyv v xy yv

uxy uv xuv
  
 

Proved.

Example 76. If u = x + y2, v = y + z2, w = z + x2, prove that

(i)  
x
u



 = 
1

1 8 xyz
                (ii)  Also find 

2

2
x

u



.

Solution. (i) Here f1  u – x – y2,  f2 = v – y – z2

f3  w – z – x2.

Now 1 2 3( , , )
( , , )
f f f
u y z




= 
1 2 0
0 1 2
0 0 1

y
z


 


 = 1 ;

1 2 3( , , )
( , , )
f f f
x y z




= 

1 2 0
0 1 2

2 0 1

y
z

x

 
 

 
 = – 1 (1 + 0) + 2y (0 – 4zx) = – 1 – 8 xyz

x
u

 = 1 2 3

1 2 3

( , , ) / ( , , )
( , , ) / ( , , )

f f f u y z
f f f x y z

 

 

x
u



= 
1

1 8 xyz
 

   
 = 

1
1 8 xyz Proved.

(ii)
2

2
x

u



= 
x

u u
  
   

 = 
1

1 8u xyz
 
   

 = 2
1 (1 8 )

(1 8 )
xyz

uxyz


 


= 2
1 0 8

(1 8 )
x y zy z z x x y
u u uxyz

               

= 2
8

(1 8 )
x y zy z z x x y
u u uxyz

          
... (1)

We have, 1 2 3( , , )
( , , )
f f f
x u z




= 

1 1 0
0 0 2
2 0 1

z
x




 
 = 4 zx ;
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1 2 3( , , )
( , , )
f f f
x y u




= 
1 2 1

0 1 0
2 0 0

y

x

 



 = – 2x.

Now,
y
u



= 1 2 3

1 2 3

( , , ) / ( , , )
( , , ) / ( , , )

f f f x u z
f f f x y z

 

 


y
u



= 
4

1 8
zx

xyz

 

 = 
4

1 8
zx

xyz
z
u



= 1 2 3

1 2 3

( , , ) / ( , , )
( , , ) / ( , , )

f f f x y u
f f f x y z

 

 


z
u



= 
2

1 8
x
xyz



 

 = 
2

1 8
x
xyz




Substituting in (1), we have
2

2
x

u



= 
2 2 2

2
8 4 2

1 8 1 8 1 8(1 8 )
yz z x x y

xyz xyz xyzxyz

  
  

    

= 
2 2 2

3
8 ( 4 2 )

(1 8 )
yz z x x y

xyz
  


Ans.

Example 77. Given, x = u + v + w, y = u2 + v2 + w2, z = u3 + v3 + w3

show that
u
x



 = ( ) ( )
vw

u v u w 
Solution. Let f1 = u + v + w – x = 0

f2 = u2 + v2 + w2 – y = 0
f3 = u3 + v3 + w3 – z = 0
u
x



= 1 2 3

1 2 3

( , , ) / ( , , )
( , , ) / ( , , )

f f f x v w
f f f u v w

 

 

... (1)

1 2 3( , , )
( , , )
f f f
x v w


 = 

2 2

1 1 1
0 2 2

0 3 3

v w

v w



 = 
1 1

6 vw
v w

  = 6 vw (v – w) ... (2)

1 2 3( , , )
( , , )
f f f
u v w




= 
2 2 2

1 1 1
2 2 2

3 3 3

u v w

u v w
 = 6 (v – u) (w – u) (w – v) ... (3)

Thus from (1), (2) and (3), we get
u
x



 = 
6 ( )

6 ( ) ( ) ( )
vw v w

v u w u w v



  

 = ( ) ( )
vw

u v u w  Proved.

EXERCISE 1.15

1. If u2 + xv2 – uxy = 0, v2 – xy2 + 2uv + u2 = 0 find 
u
x



. Ans.
2 2( ) ( )

( ) (2 2 )
v uy u v xvy
u v u xy xv

  


  

2. If x = u + e–v sin u, y = v + e–v cos u, find ,u v
y x
 
 

. Ans.
3

sin
1

v

v
u v e u
y x e




 

 
  

3. If x = u2 – v2, y = 2uv, find 
( , )

; ; ; and
( , )

u u v v u v
x y x y x y
    
    

Ans.
2 3 2 3 2 2 2 2 2 2

1; ; ; ;
2 ( ) 2 ( ) 2 ( ) 2 ( ) 4 ( )

u v v u
u v u v u v u v u v
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4. If u3 + xv2 – uy = 0, u2 + xyv + v2 = 0 , find u
x



Ans.
2 3

2 2 2
2

2 6 2 4
xyv v

x y u x y u v v y x u v


   

5. If u2 + xv2 = x + y, v2 + yu2 = x – y, find ,u v
x y
 
 

Ans.
2 21 1 + +,

2 (1 ) 2 (1 )
x v y u

u xy v xy
 

  

6. If u = xyz, v = x2 + y2 + z2, w = x + y + z find 
x
u



Ans. 1
( ) ( )x y x z 

7. If u = x2 + y2 + z2, v = xyz, find 
x
u



Ans. 2 22 (2 )
x

x y

1.26 TAYLOR’S SERIES OF TWO VARIABLES
If f (x, y) and all its partial derivatives upto the nth order are finite and continuous for all points

(x, y), where
a  x  a + h, b  y  b + k

Then f (a + h, b + k) = ( , )f a b h k f
x y

  
    

2 3
1 1 ...
2! 3!

h k f h k f
x y x y

      
             

Proof. Suppose that f (x + h, y + k) is a function of one variable only, say x where y is assumed
as constant. Expanding by Taylor’s Theorem for one variable, we have

f (x + x, y + y) = 
2 2

2

( , )( , ) ( )( , ) ......
2!

f x y yf x y y xf x y y x
x x

  
   

 

Now expanding for y, we get

= 
2 2

2

( , )( , ) ( ) ( , )( , ) ..... ( , ) ......
2!

f x yf x y y f x yf x y y x f x y y
y x y yy

       
                

2 2

2
( ) ( , ) ( , ) ..... .....

2!
x f x y y f x y

yx
   

       

   = 
2 2

2

( , )( , ) ( )( , ) . .....
2!

f x yf x y yf x y y
y y

   
       

2 2 2

2

( , )( , )( , ) ( ). ... ...
2!

f x yf x yf x y xx y
x x y x

      
               

   = 
2 2

2
2

( , ) ( , ) 1 ( , ) ( , )( , ) . ( ) 2 . .
2!

f x y f x y f x y f x yf x y x y x x y
x y x yx

    
              

2
2

2
( , )( ) . ...f x yy
y


  

 

 f (a + h, b + k) =
2 2 2

2 2
2 2

1( , ) 2 .....
2!

f f f f ff a b h k h h k k
x y x yx y

      
              

 f (a + h, b + k) = 
2

1( , ) .....
2!

f a b h k f h k f
x y x y

      
             

On putting a = 0, b = 0, h = x, k = y, we get

f (x, y) = 
2 2 2

2 2
2 2

1(0, 0) 2 .....
2!

f f f f ff x y x x y y
x y x yx y
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Example 78. Expand ex. sin y in powers of x and y, x = 0, y = 0 as far as terms of third degree.
Solution.

x = 0, y = 0
f (x, y) ex sin y, 0

fx (x, y) ex sin y, 0

fy (x, y) ex cos y, 1

fxx (x, y) ex sin y, 0

fxy (x, y) ex cos y, 1

fyy (x, y) – ex sin y, 0

fxxx (x, y) ex sin y, 0

fxxy (x, y) ex cos y, 1

fxyy (x, y) – ex sin y, 0

fyyy (x, y) – ex cos y, – 1

By Taylor’s theorem

f (x, y) = 
2

1(0, 0) (0, 0) (0, 0)
2!

f x y f x y f
x y x y

      
            

3
1 (0, 0) ...
3!

x y f
x y

  
     

          = 
2 22(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

2 ! 2 ! 2 !x y xx xy yy
x xy yf x f y f f f f    

2
3 2 31 3 3 1(0, 0) (0, 0) (0, 0) (0, 0) ...

3! 3! 3! 3!xxx xxy xyy yyy
x yx f f x y f y f    

      ex sin y = 
2 2 3 230 (0) (1) (0) (1) (0) (0) (1)

2 2 6 6
x y x x yx y x y      

2 33 (0) ( 1) ...
6 6
xy y

   

          = 
2 3

.......
2 6

x y yy x y    Ans.

Example 79. Find the expansion for cos x cos y in powers of x, y upto fourth order terms.
Solution.
By Taylor’s Series

f (x, y) = 
2 2 21(0, 0) (0, 0) (0, 0) (0, 0) 2 (0, 0) (0, 0)

2 !x y x xy yyf x f y f x f x y f y f      

3 3 2 21 (0, 0) 3 (0, 0)
3! x x yx f x y f 

2 2 3 33 (0, 0) (0, 0)x y yxy f y f   

4 4 3 31 (0, 0) 4 (0, 0)
4 ! x x yx f x y f 

2 2 2 2 3 3 4 46 (0, 0) 4 (0, 0) (0, 0)x y x y yx y f xy f y f     + ...

cos x cos y  = 2 21 11 0 0 ( 0 ) (0 0 0 0)
2 6

x y         
4 2 2 41 ( 0 6 0 )

24
x x y y    

= 
2 2 4 2 2 2

1 ...
2 2 24 4 24
x y x x y y

      Ans.
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x = 0, y = 0

f (x, y) cos x cos y, 1
fx – sin x cos y, 0
fy – cos x sin y, 0
fxx – cos x cos y, – 1
fxy sin x sin y, 0
fyy – cos x cos y, – 1
fxxx sin x cos y, 0
fxx y cos x sin y, 0
fx yy sin x cos y, 0
fyyy cos x sin y, 0
fxxxx cos x cos y, 1
fxxx y – sin x sin y, 0
fxx yy cos x cos y, 1
fx yyy – sin x sin y, 0
fyyyy cos x cos y, 1

Example 80. Find the first six terms of the expansion of the function ex log (I + y) in a
Taylor’s series in the neighbourhood of the point (0, 0).
Solution.
Taylor’s series is

f (x, y) = (0, 0) f ff x y
x y

  
    

2 2 2
2 2

2 2
1 2 ...
2 !

f f fx x y y
x yx y

   
        

 ex log (1 + y) = 0 ( 0 1)x y   

     
2 21 [ (0) 2 1 ( 1)] ..

2 !
x xy y       

 ex log (1 + y) = 
2

2
yy x y        Ans.

EXERCISE 1.16

1. Expand ex cos y at (0, 0) upto three terms. Ans. 2 211 ( ) ........
2

x x y   

2. Expand z = e2x cos 3y in power series of x and y upto quadratic terms. (AMIE Summer 2004)

Ans. 2 291 2 2 ...
2

x x y   

3. Show that ey log (1 + x) = 
2

–
2
xx xy  approximately..

4. Verify sin (x + y) = 
3( ) .......

3
x yx y 

  

x = 0, y = 0
f (x, y) ex log (1 + y) 0

f
x


 ex log (1 + y) 0

f
y


 1

xe
y 1

2

2
f

x

 ex log (1 + y) 0

2

2
f

y

 2(1 )

xe
y


 – 1

2 f
x y

  (1 )

xe
y 1
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Example 81. Expand sin (xy) in powers of (x – 1) and 
2

y   
 

as far as the terms of second
degree. (Nagpur University, Summer 2003)
Solution. We have, f (x,y) = sin (xy)

Here
and 1

( 1) 1
   

     

a h x h x
a x x a

and
2

2 2

b k y k y

b y y b

    


      

By Taylor’s theorem for a function of
two variables, we have

   f (a + h, b + k) =  f (a, b) + hfx (a, b)
                                   + kfy (a, b)

 2 21 ( , ) 2 ( , ) ( , )
2! xx xy yyh f a b hkf a b k f a b  

 f (x, y)= 1, ( 1) 1, 1,
2 2 2 2x yf x f y f                    

       
2

21 ( 1) 1, 2 ( 1) 1 , (1, )
2! 2 2 2 2 2xx xy yyx f x y f y f
                           

         

 sin (xy) = 1 ( 1) . 0 . 0
2

x y       
 

22
21 ( 1) 2 ( 1) ( 1) ...

2! 4 2 2 2
x x y y

                                     

 sin (xy) = 
22

2 11 ( 1) ( 1) ...
8 2 2 2 2

x x y y                
   

Ans.

Example 82. Expand ex cos y near the point 1,
4
 

 
 

 by Taylor’s Theorem.

           (U.P., I Semester Dec. 2007)

Solution.  f (x + h, y + k) = ( , )f x y h k f
x y

  
    

2
1
2 !

h k f
x y

  
    

3
1 ....
3!

h k f
x y

  
     

ex cos y = f (x, y)= 1 ( 1),
4 4

f x y           

where h = x – 1, k = y
4


  = 1 ,
4

f h k   
 

Putting these values in Taylor’s Theorem, we get

ex cos y = ( 1)
42 2 2

e e ex y
           

    

           x = 1, y = 
2


f (x, y) sin (x y) 1
fx (x, y) y cos (xy), 0
fy(x, y) x cos (xy), 0

fxx (x, y) – y2 sin (xy),
2

4




fxy (x, y) cos (xy) – xy sin (xy),
2




fyy (x, y) – x2 sin (xy), – 1

x = 1, y = 
4


f (x, y) ex cos y
2

e

f
x


 ex cos y,

2
e

f
y


 – ex sin y,

2
e

2

2
f

x



ex cos y,
2

e

2

2
f

y

 – ex cos y,

2
e

2 f
x y

  –1 ex sin y,

2
e
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2
21 ( 1) 2( 1) ....

2 ! 4 42 2 2
e e ex x y y

                        
        

= 
22( 1)1 ( 1) ( 1) ....

4 2 4 42
e xx y x y y

                         
       

Ans.

Example 83. If f (x, y) = tan–1 (x y), compute an approximate value of f (0.9, – 1.2).
Solution. We have,

f (x, y) = tan–1 (x y)
Let us expand f (x, y) near the point (1, – 1)

f (0.9, – 1.2) = f (1 – 0.1, – 1 – 0.2)

= 
2

2
2

1(1, 1) ( 0.1) ( 0.2) ( 0.1)
2 !

f f ff
x y x

   
           

2 2
2

22 ( 0.1) ( 0.2) ( 0.2) ...f f
x y y

 
        

     ...(1)

      x = 1,   y = – 1

f (x, y) tan–1 (xy)
4




f
x


 2 2 ,

1
y
x y

1
2



f
y


 2 2 ,

1
x
x y

1
2

2

2
f

x

 2 2 2

(2 ) ,
(1 )

x y
x y




1
2

2 f
y x

 

2 2 2 2 2

2 2 2 2 2 2
1 (2 ) 1

(1 ) (1 )
x y x x y x y

x y x y
  


  0

2

2
f

y



2

2 2 2
(2 ) ,

(1 )
x x y

x y



1
2

Substituting the values of ,f f
x y

 
 

 etc. in (1), we get

f (0.9, – 1.2) = 21 1 1 1( 0.1) ( 0.2) ( 0.1)
4 2 2 2 2
                       

2 12 ( 0.1) ( 0.2) 0 ( 0.2) ...
2

        

= 22 10.05 0.1 (0.005 0.02)
28 2

    

= 0.786 0.05 0.1 0.0125 0.8235      Ans.
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Example 84. Obtain Taylor’s expansion of tan–1 y
x  about (1, 1) upto and including the second

degree terms. Hence compute f (1. 1, 0.9). (U.P., I Sem. Winter 2005, 2002)
Solution. x = 1, y = 1

f (x, y) 1tan y
x



4


f
x




2 2 2 2

2

1 ,
1

y y
y x x y
x

     
1
2



f
y




2 2 2

2

1 1 ,
1

x
xy x y

x

     
1
2

2

2
f

x

 2 2 2 2 2 2

(2 ) 2 ,
( ) ( )

y x xy
x y x y


 

1
2

2

2
f

y

 2 2 2 2 2 2

(2 ) 2 ,
( ) ( )

x y xy
x y x y
 


 

1
2



2 f
y x

 

2 2 2 2

2 2 2 2 2 2
( ) ( ) (2 ) ,

( ) ( )
x y x x y x

x y x y
  


  0

By Taylor’s Theorem

f (x, y) = 
2

2
2

1( , ) ( ) ( ) ( )
2 !

f f ff a b x a y b x a
x y x

   
          

2 2
2

22 ( ) ( ) ( ) ...f fx a y b y b
x y y

 
        

Here, a = 1, b = 1
1tan y

x
 = 21 1 1 1( 1) ( 1) ( 1)

4 2 2 2 ! 2
x y x                

2 12 ( 1) ( 1) (0) ( 1) ...
2

x y y          

1tan y
x

 = 2 21 1 1 1( 1) ( 1) ( 1) ( 1) ...
4 2 2 4 4

x y x y
         ...(1)

Putting (x – 1) = 1.1 – 1 = 0.1,   (y – 1) = 0.9 – 1 = – 0.1 in (1), we get

f (1.1, 0.9) = 2 21 1 1 1(0.1) ( 0.1) (0.1) ( 0.1)
4 2 2 4 4

     

                             = 0.786 – 0.05 +0.05 + 0.0025 – 0.0025 = 0.786 Ans.

Example 85. Expand ( ) ( )x h y k
x h y k
 
  

 in powers of h, k upto and inclusive of the second

degree terms. (A.M.I.E., Summer 2001)

Solution. f (x + h, y + k) =  
( ) ( )x h y k
x h y k
 
  

                                  f (x, y)  = 
x y

x y
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f
x




= 2
( )

( )
x y y x y

x y
 


 = 

2

2( )
y

x y

f
y




= 2
( )

( )
x y x x y

x y
 


 = 

2

2( )
x

x y
2

2
f

x

 = 

2

3
2

( )
y

x y



2 f
y x

 

= 
2 2 2

4 3 3
( ) 2 2 ( ) ( ) 2 2 2

( ) ( ) ( )
x y x x y x x y x x x y

x y x y x y
    

 
  

2

2
f

y



= 

2

3
2

( )
x

x y




f (x + h, y + k) = 
2

1( , ) ( , ) ( , ) ...
2 !

f x y h k f x y h k f x y
x y x y

      
             

( ) ( )x h y k
x h y k
 
  

= 
2 2

2 2( ) ( )
x y y xh k

x y x y x y
 

  
2 2 2

2
3 3 3

( 2 ) 1 2 1 ( 2 )2 ...
2 ! 2 ! 2 !( ) ( ) ( )
h y x y xh k k

x y x y x y
 

   
  

= 
2 2 2 2 2 2

2 2 3 3 3
2 ...

( ) ( ) ( ) ( ) ( )
x y h y kx h y h kxy k x

x y x y x y x y x y x y
     

     
Ans.

Example 86. Expand x2y + 3y – 2 in powers of x – 1 and y + 2 using Taylor’s Theorem.
(A.M.I.E.T.E., Winter 2003, A.M.I.E., Summer 2004, 2003)

Solution. f (x, y) = x2y + 3 y  – 2
Here a + h = x and h = x – 1,    so   a = 1

b + k = y and k = y + 2    so   b = – 2
x = 1, y = – 2

f (x, y) x2y + 3y – 2, – 10

fx (x, y) 2xy, – 4

fy (x, y) x2 + 3, 4

fxx (x, y) 2 y, – 4

fxy (x, y) 2 x, 2

fyy (x, y) 0, 0

fxxx (x, y) 0, 0

fxxy (x, y) 2, 2

fxyy (x, y) 0, 0

fyyy (x, y) 0, 0
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Now Taylor’s Theorem is

f (a + h, b + k) = 
2 2 2

2 2
2 2

( , ) ( , )

1( , ) 2
2 !a b a b

f f f f ff a b h k h h k k
x y x yx y

      
             

3 3 2 3
3 2 2 3

3 2 2 3
1 3 3 ...
3!

f f f fh h k hk k
x x y x y y

    
            

Putting the values of f (a, b) etc. in Taylor’s Theorem, we get
x2y + 3y – 2 = – 10 + [(x – 1) (– 4) + (y + 2) (4)]

1
2!

 [(x – 1)2 (– 4) + 2 (x – 1) (y + 2) (2) + (y + 2)2 (0)]

1
3!

 [(x – 1)3 (0) + 3 (x – 1)2 (y + 2) (2) + 3 (x – 1) (y + 2)2 (0) + (y + 2)3 (0)]

x2y + 3y – 2 = – 10 – 4 (x – 1) + 4 (y + 2) – 2 (x – 1)2 + 2 (x – 1) (y + 2) + (x – 1)2 (y + 2)Ans.

EXERCISE 1.17
1. Expand exy at (1, 1) upto three terms.

Ans. 2 21[1 ( 1) ( 1) [( 1) 4 ( 1) ( 1) ( 1) ]
2!

e x y x x y y          

2. Expand yx at (1, 1) upto second term Ans. 1 + (y – 1) + (x – 1) (y – 1) + .......
3. Expand eax sin by in powers of x and y as far as the terms of third degree. (U.P. I sem. Jan 2011)

Ans.  2 2 3 31 3 – ....
3!

by abxy a bx y b y  

4. Expand (x2y + sin y + ex) in powers of (x – 1) and (x – ).

Ans. 21
( 1) (2 ) ( 1) (2 ) 2 ( 1) ( ).

2
e x e x e x y             

5. Expand (1 + x + y2)1/2 at (1, 0). Ans. 
2 21 ( 1)2 1 ...

4 32 4
x x y  

    
  

6. Obtain the linearised form T(x, y) of the function f (x, y) = x2 – xy + 
1
2

y2 + 3 at the point (3, 2), using

the Taylor’s series expansion. Find the maximum error in magnitude in the approximation
f (x, y)  T (x, y) over the rectangle R:  | x – 3 | < 0.1, | y – 2 | < 0.1.

Ans. 8 + 4 (x – 3) – (y – 2)., Error 0.04.
7. Expand sin (x + h) (y + k) by Taylor’s Theorem.

Ans. 2 21sin ( ) cos cos ( ) sin ...
2

xy h x y xy hk xy h x y xy     

8. Fill in the blank:

f (x, y) = f (2, 3) + ............   Ans. ( 2) ( 3)x y
x y

  
     

f  + 
2

1 ( 2) ( 3) ...
2!

x y f
x y

  
      

9. If f (x) = 
2

1 2(0) (0) ( ), 0 1
2!
kf kf f k       then the value of  when k = 1 and f(x) = (1 – x)3/2 is

given as .......... (U.P. Ist Semester, Dec 2008)

1.27  MAXIMUM VALUE
A function f (x, y) is said to have a maximum value at x = a, y = b, if there exists a small

neighbourhood of (a, b) such that,
f (a, b) > f (a + h, b + k)
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Minimum Value. A function f (x, y) is said to have a minimum value for x =a, y = b, if there
exists a small neighbourhood of (a, b) such that

f (a, b) < f (a + h, b + k)
The maximum and minimum values of a function are also called extreme or extremum values

of the function.
f(x, y)

O Y 

X

O Y 

X 

Maximum

Minimum

f(x, y)

Maximum value of
f(x, y) at (a, b)

Minimum value of 
f(x, y) at (a, b)

Saddle point or Minimax. It is a point where a function is neither maximum nor minimum.
Geometrical Interpretation. Such a surface (looks like the leather seat on the back of a

horse) forms a ridge rising in one direction and falling in another direction.

1.28  CONDITIONS FOR EXTREMUM VALUES

If f (a + h, b + k) – f (a, b) remains of the same sign for all values (positive or negative) of h,
k then f (a, b) is said to be extremum value of f (x, y) at (a, b)

(i) If f (a + h, b + k) – f (a, b) < 0, then f (a, b) is maximum.
(ii) If f (a + h, b + k) – f (a, b) > 0, then f (a, b) is minimum.

By Taylor’s Theorem

f (a + h, b + k) = f (a, b) + 
2 2 2

2 2
2 2

( , )

1 2 ...
2!a b

f f f f fh k h hk k
x y x yx y

      
              

 f (a + h, b + k) – f (a, b) = 
2 2 2

2 2
2 2

( , )

1 2
2!a b

f f f f fh k h hk k
x y x yx y

      
             

...(1)

 f (a + h, b + k) – f (a, b) = 
( , )a b

f fh k
x y

  
   

...(2)

For small values of h, k, the second and higher order terms are still smaller and hence may be
neglected.

The sign of L.H.S. of (2) is governed by f fh k
x y

 


 
 which may be positive or negative

depending on h, k.
Hence, the necessary condition for f (a, b) to be a maximum or minimum is that

f fh k
x y

  
   

= 0  f
x




 = 0, 
f
y




 = 0

By solving the equations, we get, point x = a, y = b which may be maximum or minimum
value.

Then from (1)

f (a + h, b + k) – f (a, b) = 
2 2 2

2 2
2 2

1 2
2!

f f fh hk k
x yx y
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= 2 21 [ 2 ]
2!

h r h k s k t  ...(3)

where r = 
2 2 2

2 2, , at ( , )f f fs t a b
x yx y

  
 
  

Now the sign of L.H.S. of (3) is sign of [rh2 + 2hks + k2 t]

= sign of 2 2 21 [ 2 ]r h hkrs k rt
r

   = sign of 2 2 2 2 2 2 21 [( 2 ) ( )]r h hkrs k s k s k rt
r

    

= sign of 2 2 21 [( ) ( )]hr ks k rt s
r

  

= sign of 2 21 [(always + ve) ( )]k rt s
r

  [(hr + ks)2 = + ve]

= sign of 2 21 [ ( )]k rt s
r

  = sign of r if rt – s2 > 0

Hence, if rt – s2 > 0, then f (x, y) has a maximum or minimum at (a, b), according as r < 0 or
r > 0.

Note: (i) If rt – s2 < 0, then L.H.S. will change with h and k hence there is no maximum or
minimum at (a, b), i.e., it is a saddle point.

(ii) If rt – s2 = 0, then rh2 + 2shk + tk2 = 2 2 21 [( ) ( )]rh sk k rt s
r

  

= 21 ( )rh sk
r

  which is zero for values of h, k, such that


h
k = 

s
r



This is, therefore, a doubtful case, further investigation is required.
1.29 WORKING RULE TO FIND EXTREMUM VALUES

(i) Differentiate f (x, y) and find out 
2 2 2

2 2, , , ,f f f f f
x y x yx y

    
    

(ii) Put f
x




 = 0 and 
f
y


  = 0 and solve these equations for x and y. Let (a, b) be the values

of (x, y).

(iii) Evaluate r = 
2 2 2

2 2, ,f f fs t
x yx y

  
 
  

 for these values (a, b).

(iv) If rt – s2 > 0 and
(a) r < 0, then f (x, y) has a maximum value.
(b) r > 0, then f (x, y) has a minimum value.

(v) If rt – s2 < 0, then f (x, y) has no extremum value at the point (a, b).
(vi) If rt – s2 = 0, then the case is doubtful and needs further investigation.

Note: The point (a, b) which are the roots of 0,
f f
x y
 


 

 = 0, are called stationary points.

Example 87. Discuss the maximum and minimum of  x2 + y2 + 6x + 12.
Solution. We have, f (x, y) = x2 + y2 + 6x + 12

f
x



= 
2 2 2

2 22 6, 2 , 2, 2, 0f f f fx y
y x yx y
   

    
   

For maxima and minima,
f
x



= 0 and 
f
y

  = 0
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 2x + 6 = 0, and 2y = 0
 x = – 3, and y = 0
At (– 3, 0) rt – s2 = 2 × 2 – 0 = 4 > 0

r = 2 > 0
Hence f (x, y) is minimum when x = – 3 and y = 0
Minimum value = f (– 3, 0) = 9 + 0 – 18 + 12 = 3 Ans.
Example 88. Find the absolute maximum and minimum values of

f (x, y) = 2 + 2x + 2y – x2 – y2

on triangular plate in the first quadrant, bounded by the lines x = 0, y = 0 and y = 9 – x.
(Gujarat, I semester, Jan. 2009)

Solution. We have, f (x, y) = 2 + 2x + 2y – x2 – y2

f
x



= 2 – 2x,  
f
y



 = 2 – 2y

2

2
f

x



= – 2,  
2 2

20, 2f f
x y y
 

  
  

For maxima and minima,
f
x



= 0  2 – 2x = 0    x = 1

f
y

 = 0    2 – 2y = 0  y = 1

At (1, 1) rt – s2 = (– 2) (– 2) – 0 = 4 > 0
Hence f (x, y) is maximum at (1, 1).
Maximum value of f (x, y) = 2 + 2 + 2 – 1 – 1 = 4 Ans.

Example 89. Examine f (x, y) = x3 + y3 – 3 a x y for maximum and minimum values.
(U.P. I Sem., Dec. 2004), (M.U. 2004, 2003)

Solution. We have, f (x, y) = x3 + y3 – 3axy

p = 
f
x



 = 3x2 – 3ay,, q = 
f
y

  = 3y2 – 3ax

r = 
2

2 6 ,f x
x





s = 

2 2

23 , 6f fa t y
x y y
 

   
  

For maxima and minima

f
x



= 0 and  
f
y

   = 0

3x2 – 3 ay = 0. 3y2 – 3 ax = 0

 x2 = ay  y = 
2x

a
...(1)      y2 = ax ...(2)

Putting the value of y from (1) in (2), we get
x4 = a3x   x(x3 – a3) = 0

 x(x – a)(x2 + ax + a2) = 0
 x = 0, a
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Putting x = 0 in (1), we get y = 0,
Putting x = a in (1), we get y = a,

       Stationary pairs (0, 0) (a, a)
r 0 6a
s – 3a – 3a
t 0 6a

rt – s2 –9a2 < 0 27 a2 > 0
At (0, 0) there is no extremum value, since rt – s2 < 0.
At (a, a),  rt – s2 > 0,  r > 0
Therefore (a, a) is a point of minimum value.
The minimum value of f (a, a) = a3 + a3 – 3 a3 = – a3 Ans.
Example 90. Show that the function

f (x,y) = x3 + y3 – 63 (x + y) + 12 xy
is maximum at (– 7, – 7) and minimum at (3, 3).
Solution. We have, f (x,y) = x3 + y3 – 63 (x + y) + 12 xy ...(1)

f
x



= 3x2 – 63 + 12y,
f
y

  = 3y2 – 63 + 12x

2

2
f

x



= 6x,  
2

12,f
x y



 

2

2 6f y
y





For extremum, we have

p = 
f
x



 = 3x2 – 63 + 12y = 0  x2 + 4y – 21 = 0 ...(2)

q = 
f
y

  = 3y2 – 63 + 12x = 0  y2 + 4x – 21 = 0 ...(3)

r = 
2

2 6f x
x





       s  = 

2

12f
x y



         t = 

2

2 6f y
y





We have to solve (2) and (3) for x and y.
On subtracting (3) from (2), we have

x2 – y2 – 4 (x – y) = 0  (x – y) (x + y – 4) = 0
x = y and x + y = 4 ...(4)

If x = y then (2) becomes, x2 + 4x – 21 = 0, (x + 7)(x – 3) = 0
x = – 7, and  x = 3
y = – 7, and  y = 3

Two stationary points are (–7, –7) and (3, 3).
On solving (2) and (4), we get

x2 + 4 (4 – x) – 21 = 0,  x2 – 4x – 5 = 0
 (x – 5) (x + 1) = 0

x = – 1, x = 5
y = 5, y = – 1

Two more stationary points are (–1, 5) and (5, –1).
Hence four possible extremum points of f (x, y) are (– 7, – 7), (3, 3), (–1, 5) and (5, – 1)

may be.
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Stationary pairs (– 7, – 7) (3, 3) (– 1, 5) (5, – 1)
r = 6x – 42 + 18 – 6 30
s = 12 12 12 12 12
t = 6 y – 42 18 30 – 6
r t – s2 + 1620  + 180 – 324 – 324

At (– 7, – 7)
r = – ve, and rt – s2 = + ve

Hence, f (x, y) is maximum at (– 7, – 7),
At (3, 3) r = + ve, and rt – s2 = + ve
Hence, f (x, y) is minimum at (3, 3). Proved.
Example 91. Find the extreme values of u = x2 y2 – 5x2 – 8xy – 5y2.
Solution. We have,

u = x2 y2 – 5x2 – 8xy – 5y2  p = 
u
x




 = 2xy2 – 10x – 8y

q = 
u
y

  = 2x2 y – 8x – 10y  r = 

2

2
u

x



 = 2y2 – 10

s = 
2

4 8u xy
x y


 
 

 t = 
2

2

u
y

  = 2x2 – 10

For extreme values of u,
u
x




= 0, 
u
y

  = 0

2xy2 – 10x – 8y = 0  x = 2
8

2 10
y

y 
2x2 y – 8x – 10y = 0


2

2 2
8 82 8 10 0

2 10 2 10
y yy y

y y
            


2

2 2 2
128 64 10 0,

(2 10) 2 10
y

y y
  

 
  y = 0 then x = 0  

2

2 2 2
16 16 5 0

( 5) 5
y

y y
  

 

 16 y2 – 16 (y2 – 5) – 5 (y2 – 5)2 = 0
 16 y2 – 16 y2 + 80 – 5 (y2 – 5)2 = 0
 (y2 – 5)2 = 16  y2 – 5 = ± 4  y2 = 9 and 1 and  y = ± 3, ± 1

Now, x = 2

4
5

y
y 

If y = 1 then x = – 1; If y = – l then x = 1
If y = 3 then x = 3;  If y = – 3 then x = – 3

Stationary pairs (0, 0) (1, – 1) (– 1, 1) (3, 3) (– 3, – 3)

r = 2 y2 – 10 – 10 – 8 – 8 8 8

s = 4 x y – 8 – 8 – 12 – 12 28 28

t = 2 x2 – 10 – 10 – 8 – 8 8 8

rt – s2 + 36 – 80 – 80 – 720 – 720
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At (0, 0), r is – ve.
Origin (0, 0) is the only point at which r t – s2 > 0.
Hence, the function u is maximum at origin. Ans.
Example 92. A rectangular box, open at the top, is to have a volume of 32 c.c. Find the
dimensions of the box requiring least material for its construction.

(M.U. 2009; U.P. I semester Jan. 2011; Dec. 2005, A.M.I.E Summer 2001)
Solution. Let l, b and h be the length, breadth, and height of the box respectively and S its
surface area and V the volume.

V = 32 c.c.

 l b h = 32   b = 
32
lh

S = 2 (l + b) h + l b ...(1)
Putting the value of b in (1), we get

S = 2 
32 32l h l
l h l h

   
    

   

S = 2 l h + 
64 32
l h
 ...(2)

Differentiating (2) partially w.r.t. l, we get
S
l




= 2 h – 2

64
l ...(3)

 Differentiating (2) partially w.r.t. h, we get

S
h




= 2 l – 2

32
h

...(4)

For maximum and minimum S, we get
S
l


 = 0  2 h – 2

64
l

= 0  h = 2

32
l ...(5)

S
h


 = 0  2 l – 2

32
h

= 0   l = 2

16
h ...(6)

From (5) and (6), l = 4, h = 2 and b = 4
2

2

S
l


 = 3

128 128
64l

  = 2
2 S
l h

  = 2

2

2

S
h


 = 3

64 64 8
8h

 
22 2 2

2 2.S S S
l hl h

   
      

= (2) (8) – (2)2 = + 12

2

2

S
l


  = + 2, so S is minimum for l = 4, b = 4, h = 2 Ans.

EXERCISE 1.18
Find the stationary points of the following functions

1. f (x, y) = y2 + 4 xy + 3 x2 + x3 Ans. 
2 4, ,
3 3

  
 

Minimum
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2. f (x, y) = x3 y2 (1 – x – y) [A.M.I.E., Summer 2004] Ans. 
1 1, ,
2 3

 
 
 

Maximum

3. f (x, y) = x3 + 3 xy2 – 15 x2 – 15 y3 + 72x.  (M.U. 2007, 2005, 2004) Ans. (6, 0), (4, 0)

4. f (x, y) = x2 + 2xy + 2y2 + 2x + 3y such that x2 – y = 1. Ans. 
3 7 155, , .
4 16 128

    
 

5. xy e– (2x + 3y) (A.M.I.E., Winter 2000)

6. Find the extreme value of the function f (x, y) = x2 + y2 + xy + x – 4y + 5.

State whether this value is a relative maximum or a relative minimum.

Ans. Minimum value of f (x, y) at (– 2, 3) = – 2.

7. Find the values of x and y for which x2 + y2 + 6 x = 12 has a minimum value and find this minimum
value. Ans. (– 3, 0), 3.

8. Find a point within a triangle such that the sum of the square of its distances from the three angular
points is a minimum.

9. A tapering log has a square cross-section whose side varies uniformly and is equal to a at the top

and 3
2
ab b  

 
 at the bottom. Show that the volume of the greatest conical frustum that can be

obtained from the log is 
3

27( )
b l
b a



, where l is the length of the log.

10. A tree trunk of length l metres has the shape of a frustum of a circular cone with radii of its ends
a and b metres where a > b. Find the length of a beam of uniform square cross section which can

be cut from the tree trunk so that the beam has the greatest volume. Ans. 
38

27( )
a l
a b

1.30  LAGRANGE METHOD OF UNDETERMINED MULTIPLIERS
Let f (x, y, z) be a function of three variables x, y, z and the variables be connected by the

relation.
 (x, y, z) = 0 ...(1)

 f (x, y, z) to have stationary values,

f
x



 = 0, 
f
y

  = 0, 

f
z



= 0      
f f fdx dy dz
x y z
  

 
  

 = 0 ...(2)

By total differentiation of (1), we get dx dy dz
x y z
    

 
  

 = 0 ...(3)

Multiplying (3) by  and adding to (2), we get

f f fdx dx dy dy dz dz
x x y y z z

  
  

                          
= 0

f f fdx dy dz
x x y y z z

  
  

          
                   

= 0

This equation will hold good if
f
x x




 


 
= 0 ...(4)

f
y y




 


 
= 0 ...(5)

f
z z




 


 
= 0 ...(6)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



82 Partial Differentiation

On solving (1), (4), (5), (6), we can find the values of x, y, z and  for which
f (x, y, z) has stationary value.

Draw Back in Lagrange method is that the nature of stationary point cannot be determined.
Example 93. Find the point upon the plane ax + by + cz = p at which the function

f = x2 + y2 + z2 (Nagpur University, Winter 2000)
has a minimum value and find this minimum f.
Solution. We have, f = x2 + y2 + z2 ...(1)

ax + by + cz = p  = ax + by + cz – p ...(2)

f
x x




 


  = 0  2x +  a = 0  x =
2

a

f
y y




 


  = 0  2y +  b = 0  y =
2

b

f
z z




 


  = 0  2 z +  c = 0  z =
2

c

Substituting the values of x, y, z in (2), we get

2 2 2
a b ca b c               

     
= p

 (a2 + b2 + c2) = – 2p   = 2 2 2
2 p

a b c

 

 x = 2 2 2 2 2 2 2 2 2, ,a p b p c py z
a b c a b c a b c

 
     

The minimum value of f =
2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2( ) ( ) ( )
a p b p c p

a b c a b c a b c
 

     

=
2 2 2 2 2

2 2 2 2 2 2 2
( )

( )
p a b c p

a b c a b c
 


    Ans.

Example 94. Find the maximum value of u = xp yq zr when the variables x, y, z are subject
to the condition ax + by + cz = p + q + r.
Solution. Here, we have u = xp yq zr ...(1)
If log u = p log x + q log y + r log z ...(2)

1 u
u x

 =

p
x 

u pu
x x






1 u
u y

 =

q
y 

u qu
y y






1 u
u z

 =

r
z


u ru
z z






ax + by + cz = p + q + r
 (x, y, z) = ax + by + cz – p – q – r

x


 = a, y


  = b, z



 = c
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Lagranges equations are
u
x x




 


  = 0 
pu a
x

 = 0  x =
pu

a


u
y y




 


  = 0 
qu b
y

 = 0  y =
qu

b


u
z z




 


  = 0 
ru c
z

 = 0  z =
ru

c


Putting in (2), we have
pu qu ru
  

   = p + q + r

( )u p q r


   = p + q + r 
u


  = 1   = – u

x = pu pu p
a ua a


  



y = qu qu q
b ub b


  



z = ru ru r
c uc c


  


Putting in (1), we have

               Maximum value of u =
p q rp q r

a b c
     
     
     

Ans.

Example 95. Show that the rectangular solid of maximum volume that can be inscribed in
a sphere is a cube.
Solution. Let 2x, 2y, 2z be the length, breadth and height of the rectangular solid.
Let R be the radius of the sphere.
Volume of solid V = 8 x . y . z ...(1)

x2 + y2 + z2 = R2 ....(2)
  (x, y, z) = x2 + y2 + z2 – R2 = 0

V
x


  + x




 = 0  8yz +  (2x) = 0 ...(3)

V
y y




 


  = 0  8x z +  (2 y) = 0 ...(4)

V
z z




 


  = 0  8xy +  (2 z) = 0 ...(5)

From (3) 2  x = – 8y z  2  x2 = – 8x y z
From (4) 2  y = – 8x z  2  y2 = – 8x y z
From (5) 2  z = – 8x y  2  z2 = – 8 x y z

2  x2 = 2  y2 = 2  z2

 x2 = y2 = z2

 x = y = z
Hence, rectangular solid is a cube. Proved.

x

y
R

z

yy

O

z
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Example 96. A rectangular box, which is open at the top, has a capacity of 256 cubic feet.
Determine the dimensions of the box such that the least material is required for the construction
of the box. Use Lagrange’s method of multipliers to obtain the solution.
Solution. Let x, y, z be the length, breadth and height of the box.
 Volume = xyz = 256  xyz – 256 = 0 ...(1)
 (x, y, z) = x y z – 256
Let S be the material surface of the box.

S = x y + 2 y z + 2 z x
S
x


 = y + 2z and x


 = y z

S
y


 = x + 2z and y


 = x z

S
z


 = 2y + 2x and z


 = x y

By Lagrange’s method of multiplier, we have
S
x x




 


 
= 0  y + 2z +  yz = 0 ...(2)

S
y y




 


 
= 0  x + 2z +  xz = 0 ...(3)

S
z z




 


 
= 0  2y + 2x +  xy = 0 ...(4)

Multiplying (2) by x, we get
xy + 2 xz +  xyz = 0

 xy + 2 xz + 256  = 0             (xyz = 256)
 xy + 2 xz = – 256  ...(5)
Multiplying (3) by y, we get

xy + 2 yz +  xyz = 0
 xy + 2 yz + 256  = 0
 xy + 2 yz = – 256  ...(6)
Multiplying (4) by z, we get

2 yz + 2 xz +  xyz = 0  2 yz + 2 xz + 256  = 0
 2 yz + 2 zx = – 256  ...(7)
From (5) and (6), we have

xy + 2 xz = xy + 2 yz  2 xz = 2 yz  x = y
From (6) and (7), we have

xy + 2 yz = 2 yz + 2 xz  xy = 2 xz  y = 2z
From (1) xyz = 256

 (y) (y) 2
y 

 
 

= 256  y3 = 512  y = 8

x = 8, y = 8, z = 4
Hence, length = breadth = 8, height = 4. Ans.

y
x

z
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Example 97. Use the method of the Lagrange’s multipliers to find the volume of the largest

rectangular parallelopiped that can be inscribed in the ellipsoid 
2 2 2

2 2 2 1x y z
a b c

   .

(Nagpur Univesity, Summer 2008, Winter 2003)
(A.M.I.E.T.E., Summer 2004, U.P., I Semester, Winter 2002, 2000)

Solution.  Here, we have
2 2 2

2 2 2

x y z
a b c

  = 1

  (x, y, z) =
2 2 2

2 2 2 1 0x y z
a b c

    ...(1)

Let 2x, 2y, 2z be the length, breadth and height of the rectangular parallelopiped inscribed in
the ellipsoid.

V = (2x) (2y) (2z) = 8 xyz
V
x




= 8 yz; 8 , 8V Vxz xy
y z

 
 

 

x



= 2 2 2

2 2 2, ,x y z
y za b c
  
 

 

Lagrange’s equations are
V
x x




 


  = 0  8 yz +  2

2x
a = 0 ...(1)

V
y y




 


  = 0  8 xz +  2

2y
b = 0 ...(2)

V
z z

 
 

 
= 0  8 xy +  2

2z
c = 0 ...(3)

Multiplying (1), (2) and (3) by x, y, z respectively and adding, we get
2 2 2

2 2 224 2 x y zxyz
a b c
 

    
 

= 0
2 2 2

2 2 2 1x y z
a b c
 

   
 

 24 xyz + 2  (1) = 0   = – 12 xyz
Putting the value of  in (1), we get

8 yz + (– 12 xyz) 2

2x
a = 0         1 – 

2

2

3x
a

 = 0          x =  
3

a

Similarly from (2) and (3), we have

y = ,
3 3

b cz 

Volume of the largest rectangular parallelopiped = 8 xyz

= 
88

3 3 3 3 3
a b c abc    

    
    

Ans.

Example 98. The shape of a hole pored by a drill is a cone surmounted by cylinder. If the
cylinder be of height h and radius r and the semi-vertical angle of the cone be , where

tan h
r

   show that for a total height H of the hole, the volume removed is maximum if

h = H ( 7 1) / 6. (R.G.P.V., Bhopal I sem. 2003)
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Solution. Let ABCD be the given cylinder of height ‘h’ and radius ‘r’ and DPCO be the cone
of course, of radius r.
Now, since  is the semi-vertical angle of the cone.

 tan  =
PC r
OP OP

 ...(1)

but, given that tan  =
h
r

...(2)

From (1) and (2), we have 
h r
r OP
    OP  = 

2r
h

       ...(3)

Total height of the hole = H
 H = h + OP   OP = H – h ...(4)
From (3) and (4), we have

2r
h

= H – h ...(5)

Again, let  = H – h – 
2r

h
...(6)

In drilling a hole, the volume of the removed portion

r



= – 
2r
h , h




 = 
2

21 r
h

 

V = Volume of the cylinder + Volume of the cone.

=
2

2 2 2 21 1( ) .
3 3

rr h r OP r h r
h

       [From (3)]

V =
4

2

3
rr h
h


  ,

              
342

3
V rrh
r h

 
  


...(7)

By Lagrange’s Method

V
r r

  
 

 
= 0            

34 22
3

r rr h
h h
      

 
 =  0 ...(8)

V
h h

 
 

 
= 0            

4 2
2

2 21
3

r rr
h h

 
      

 
 = 0 ...(9)

Multiplying (8) by r and (9) by 2h, we get
4 2

2 4 22
3

r rr h
h h

  
     

 
= 0

4 2
2 22 2

3
r rr h h
h h

 
       

 
= 0

On subtracting, we get
4 2 26 2 22

3
r r rh
h h h

  
     

 
= 0        

4 26 4 2
3

r r h
h h

  
    

 
 = 0

2  r4 +  (– 4r2 + 2 h2) = 0

  r4 +  (– 2 r2 + h2) = 0          = 
4

2 22
r

h r


 

h

A B 

D C 

H 
P r

O
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Putting the value of  in (8), we get
3 4

2 2
4 22

3 2
r r rr h
h hh r

              
= 0 

2 4

2 2
2
3 ( 2 )
r rh
h h h r

 


 = 0 
2r H h
h

 
  

 
2 2

2
2 ( )( )
3 [ 2 ( )]

h H hh H h
h h h H h


  

 
= 0       

2 22 ( 2 )( )
3 2 2

H h h Hh H h
h H h
 

  
   = 0

2 22 2( )
3 3 2

H h hHh H h
h H
 

  
 = 0

3h2 – 2H h + 
2
3 (H – h) (3 h – 2 H) + H2 + h2 – 2 h H = 0

9h2 – 6H h + 6H h – 4H2 – 6h2 + 4Hh + 3H2 + 3h2 – 6h H = 0
6h2 – 2h H – H2 = 0

h =
2 22 4 24

12
H H H 

h =
7

6
H H

 = H
[ 7 1]

6


(–ve is not possible) Proved.

Example 99. A tent of a given volume has a square base of side 2a, has its four-side vertical
of length b and is surmounted by a regular pyramid of height h. Find the values of a and b
in terms of h such that the canvas required for its construction is minimum.
Solution. Let V be the volume and S be the surface of the tent.

V = 2 214 (4 )
3

a b a h [Volume of pyramid = 1
3

 Area of the base × height]

S = 2 28 4a b a a h  [Surface Area of pyramid = 
1
2

 perimeter × slant height]

S V
a a

 
 

 
= 0


2

2 2

2 2

4 88 4 8
3

a a hb a h a b
a h

        
= 0 ...(1)

S V
b b

 
 

 
= 0  8 a + 4  a2 = 0 ...(2)

S V
h h

 
 

 
= 0 

2

2 2

4 4
3

ah a
a h

 


= 0 ...(3)

From (2)  a + 2 = 0   a = – 2 ...(4)

From (3) 2 2 212 4ah a a h   = 0

 2 23h a a h   = 0 ...(5)

Substituting the value of  a from (4) in (5), we get

2 23 2h a h  = 0  9 h2 = 4a2 + 4h2  4a2 = 5h2

a =
5

2
h
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Substituting  a = – 2 and a = 
5

2
h  in (1) and simplifying, we get

2 2
2

2
2

5 5 88 4 2 8
4 35

4

h h hb h b
h h

       


= 0

  8 b + 6h + 
10

3
h

 – 16 b – 
16

3
h

 = 0           – 8b + 4h = 0      b = 
2
h

.

Thus, when a = 5
2

h  and b = 
2
h

we get the stationary value of S. Ans.

Example 100. Find the maximum and minimum distances of the point (3, 4, 12) from the
sphere x2 + y2 + z2 = 1.
Solution. Let the co-ordinates of the given point be (x, y, z), then its distance (D) from
(3, 4, 12).

D = 2 2 2( 3) ( 4) ( 12)x y z    

 F (x, y, z) = (x – 3)2 + (y – 4)2 + (z – 12)2

x2 + y2 + z2 = 1
 (x, y, z) = x2 + y2 + z2 – 1
F
x x

  
 

 
= 2 (x – 3) + 2  x = 0 ...(1)

F
y y

 
 

 
= 2 (y – 4) + 2  y = 0 ...(2)

F
z z

  
 

 
= 2 (z – 12) + 2  z = 0 ...(3)

Multiplying (1) by x, (2) by y and (3) by z and adding, we get
(x2 + y2 + z2) – 3x – 4y – 12z +  (x2 + y2 + z2) = 0
1 – 3x – 4y – 12 z +  = 0 ...(4)

From (1) x = 3
1 

...(5)

From (2) y = 4
1 

...(6)

From (3) z =
12

1 
...(7)

Putting these values of x, y, z in (4),we have

9 16 1441 0
1 1 1

     
     

 (1 + )2 = 169      1 +  = ± 13

Putting the value of 1 +  in (5), (6) and (7) we have the points
3 4 12, ,

13 13 13
 
 
 

 and 
3 4 12, ,

13 13 13
   

 
 

.

The minimum distance =
2 2 23 4 123 4 12

13 13 13
              
     

 = 12

The maximum distance =
2 2 23 4 123 4 12

13 13 13
              
     

 = 14 Ans.
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Example 101. If u = ax2 + by2 + cz2 where x2 + y2 + z2 = 1 and lx + my + nz = 0 prove
that stationary values of ‘u’ satisfy the equation

2 2 2l m n
a u b u c u

 
  

= 0

Solution. We have, u = ax2 + by2 + cz2 ...(1)
Let  = x2 + y2 + z2 – 1 ...(2)

 = lx + my + nz ...(3)
u
x


 = 2 a x,

u
y


 = 2 b y,

u
z


 = 2 c z

x
 
 = 2 x, y

 
 = 2 y, z

 
 = 2 z

x

 = l, y


 = m, z


 = n

By Lagrange’s method

1 2
u
x x x

   
   

  
= 0, 2 a x + 2 x l + 2 l = 0 ...(4)

1 2
u
y y y

   
   

  
= 0, 2 b y + 2 y l + 2 m = 0 ...(5)

1 2
u
z z z

   
   

  
= 0, 2 c z + 2 z l + 2 n = 0 ...(6)

Multiplying (4), (5) and (6) by x, y and z respectively and adding, we get
(2 ax2 + 2 by2 + 2 cz2) + (2 x2 + 2 y2 + 2 z2) 1 + (lx + my + nz) 2 = 0

2u + 21 = 0, 1 = – u
Putting the value of 1 in (4), (5) and (6), we get

2 a x – 2 x u + 2 l = 0, x =  
2

2
l

a u



2 b y – 2 y u + 2 m = 0, y =  
2

2
m

b u




2 c z – 2 z u + 2 n = 0, z = 2

2( )
n

c u



Putting the values of x, y, z in (3), we get

     

22 2
22 2

2 2 2
ml n

a u b u c u
 

 
  

 = 0     
2 2 2l m n

a u b u c u
 

  
 =  0 Proved.

EXERCISE 1.19

1. Show that the greatest value of xm yn where x and y are positive and x + y  = a is 
. .

( )

m n m n

m n
m n a

m n




,

where a is constant.
2. Using Lagrange’s method (of multipliers), find the critical (stationary values) of the function

f (x, y, z) = x2 + y2 + z2, given that z2 = xy + 1. Ans. (0, 0, – 1), (0, 0, 1).
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3. Decompose a positive number ‘a’ into three parts so that their product is maximum.

Ans. , ,
3 3 3
a a a

4. The sum, of three numbers is constant. Prove that their product is a maximum when they are equal.
5. Using the method of Lagrange’s multipliers, find the largest product of the numbers x, y and z when

x + y + z2 = 16. Ans. 
4096
25 5

6. Using the method of Lagrange’s multipliers, find the largest product of the numbers x, y and z when

x2 + y2 + z2 = 9. Ans. 3 3

7. Find a point in the plane x + 2y + 3z = 13 nearest to the point (1, 1, 1) using the method of

Lagrange’s multipliers. Ans. 
3 5,2,
2 2

 
 
 

8. Using the Lagrange’s method (of multipliers), find the shortest distance from the point
(1, 2, 2) to the sphere x2 + y2 = 36. Ans. 3

9. Find the shortest and the longest distances from the point (1, 2, – 1) to the

x2 + y2 + z2 = 24. Ans. 6,3 6
10. The sum of the surfaces of a sphere and a cube is given. Show that when the sum of the volumes

is least, the diameter of the sphere is equal to the edge of the cube.
11. The electric time constant of a cylindrical coil of wire can be expressed approximately by

K =
mxyz

ax by cz 
where z is the axial length of the coil, y is the difference between the external and internal radii
and x is the mean radius ; a, b, m and c represent positive constants. If the volume of the coil is
fixed, find the values of x and y which make the time constant K as large as possible.

12. If u = 
3 3 3

2 2 2 ,a b c
x y z

  where x + y + z = 1, prove that the stationary value of u is given by

, ,a b cx y z
a b c a b c a b c

  
     

13. Find maximum value of the expression 
1

n
i ii

a x

  with 2

1
1,

n
i

i
x


 

where a1 , a2, a3.......an are positive constants. Ans. 
1

2 2 2 2
1 2( ....... )na a a  

14. If r is the distance of a point on conic ax2 + by2 + cz2 = 1, lx + my + nz = 0 from origin, then
the stationary values of r are given by the equation.

2 2 2

2 2 2 0
1 1 1

l m n
ar br cr

  
  

(A.M.I.E.T.E., Winter 2002)

15. If x and y satisfy the relation ax2 + by2 = ab, prove that the extreme values of function
u = x2 + xy + y2 are given by the roots of the equation 4 (u – a) (u – b) = ab

(A.M.I.E.T.E., Winter 2000)

16. Use the Lagranges method of undetermined multipliers to find the minimum value of
x2 + y2 + z2 subject to the conditions x + y + z = 1, xyz + 1 = 0.

17. Test the function 2 22 2 ( )( , ) ( ) e yf x y x y e   for maxima and minima for points not on the circle
x2 + y2 = 1.

18. Find the absolute maximum and minimum values of the function
f (x, y) = cx2 + y2 – x over the region to 2x2 + y2  1 (AMIETE, Dec. 2008)
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2.1 DOUBLE INTEGRATION
We know that

( )
b

a
f x dx = 1 1 2 2 3 3

0

lim [ ( )δ ( )δ ( )δ
n
x

f x x f x x f x x


 

  +...

+ f (xn)  xn]
Let us consider a function f (x, y) of two variable x and y

defined in the finite region A of xy-plane. Divide the region A
into elementary areas.

A1, A2, A3, ...... An

Then ( , )
A

f x y dA
=  1 1 1 2 2 2
δ 0

lim ( , )δ ( , )δ ..... ( , )δn n n
n
A

f x x A f x y A f x y A



  

2.2 EVALUATION OF DOUBLE INTEGRAL
Double integral over region A may be evaluated by two

successive integrations.
If A is described as f1 (x)  y  f2 (x) [y1  y  y2]
and a  x  b,

Then ( , )A f x y dA  = 
2

1
( , )

b y

a y
f x y dx dy 

(1) First Method

( , )A f x y dA  = 
2

1
( , )

b y

a y
f x y dy dx 

f (x, y) is first integratred with respect to y treating
x as constant between the limits a and b.

In the region we take an elementary area
xy.Then integration w.r.t y (x keeping constant).
converts small rectangle xy into a strip PQ (y x). While
the integration of the result w.r.t. x corresponding to the
sliding to the strip PQ, from AD to BC covering the while
region ABCD.

Second method

( , )
A

f x y dxdy  = 2

1
( , )

d x

c x
f x y dx dy 

Multiple Integral

2
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Here f (x,y) is first integrated w.r.t x keeping y constant
between the limits x1 and x2 and then the resulting expression
is integrated with respect to y between the limits c and d

Take a small area xy. The integration w.r.t. x between
the limits x1, x2 keeping y fixed indicates that integration is
done, along PQ. Then the integration of result w.r.t y
corresponds to sliding the strips PQ from BC to AD covering
the whole region ABCD.

Note. For constant limits, it does not matter whether
we first integrate w.r.t x and then w.r.t y or vice versa.

Example 1. Evaluate 
1 2 2
0 0

( ) , 
x

x y dA where dA indicates small area in xy-plane.

(Gujarat, I Semester, Jan. 2009)

Solution.   Let I = 
1 2 2
0 0

( )
x

x y dy dx   
31 2

0
0

3
 

  
 


x

y
x y dx

1 2 3
0

1( 0) ( 0)
3

       x x x  dx 
31 3

0 3
 

  
 


x

x dx

1 3
0

4
3

  x dx  = 
14

0

4
3 4
 
 
 

x 1 [1 0]
3

   
1
3

  sq. units. Ans.

Example 2. Evaluate 
1 1 1/3 1/2 1/2

1 0
(1 )

x
x y x y dy dx

 


   . (M.U., II Semester 2002)

Solution. Here, we have

I =
1 1 1/3 1/2 1/2

1 0
(1 )

x
x y x y dy dx

 


   ...(1)

Putting   (1 – x) = c in (1), we get

I =
1 1/3 1/2 1/2

1 0
( )

c
x dx y c y dy


  ...(2)

      Again putting y = ct  dy = c dt in (2), we get

I =
1 1 1 11 1
3 2 2 2

1 0
( )x dx c t c c t c dt

 


 

=
1 11/3 1/2 1/2 1/2 1/2

1 0
(1 ) 


 x dx c t c t c dt

=
1 1 11/3 1/ 2 1/ 2 1/3 1/ 2 1 3/ 2 1

1 0 1 0
(1 ) (1 )

c
c x dx t t dt c x dx t t dt  

 
     

=
11
3

1

1 3,
2 2

   
  c x dx

1 1 1

0
(1 ) ( , )l mx x dx l m      

=
1 1/3

1

1 3
2 2

1 3
2 2




 c x dx    = 1 11/3 1/3

1 1

1 1 1 1.
2 2 2 2

12
c x dx c x dx

 

 
 

=
1 1/3

1 2


 c x dx  = 

1 1/3

1
.

2
x c dx
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Putting the value of c, we get

I =
14/3 7/31 11/3 1/3 4/3

1 1

1

(1 ) ( ) 4 72 2 2
3 3

x x
x x dx x x dx

 



        
 
 

 

=
3 3 3 3(1) (1) ( 1) ( 1)

2 4 7 4 7
        

 = 
9 9

2 14 28
     

Ans.

Example 3.  Evaluate ( ) , R
x y dy dx R  is the region bounded by x = 0, x = 2, y = x,

y = x + 2. (Gujarat, I Semester, Jan. 2009)
Solution.  Let I ( ) R

x y dy dx

The limits are x = 0, x = 2, y = x and y = x + 2

I
2 2

0
( )


  

x

x
dx x y dy  

222

0 2


 

  
 


x

x

y
xy dx

22 2 2
0

1( 2) ( 2)
2 2

x
x x x x dx
 

      
 


22 2 2 2

0

12 ( 4 4)
2 2

x
x x x x x dx
 

       
 


2

0
  [2x + 2x + 2] dx

2 2 2
00

2 (2 1) 2 [ ]    x dx x x  = 2 [4 + 2] = 12  Ans.

Example 4. Evaluate 
R

xy dx dy 
where R is the quadrant of the circle x2 + y2 = a2 where x   0 and y  0.

(A.M.I.E.T.E, Summer 2004, 1999)
Solution. Let the region of integration be the first quadrant of the circle OAB.

2 2 2 2 2( )
R

xy dx dy x y a y a x     
First we integrate w.r.t. y and then w.r.t. x.

The limits for y are 0 and 2 2a x  and for x, 0 to a.

= 
2 2

0 0

a a x
x dx y dy


  = 

2 2
2

0
0

2

a x
a y

x dx


 
 
 



= 2 2
0

1 ( )
2

a
x a x dx = 

2 2 4

0

1
2 2 4

a
a x x 

 
 

 = 
4

8
a

  Ans.

Example 5. Evaluate 2 ,
s

xy y dy dx
where S is a triangle with vertices (0, 0), (10, 1) and (1, 1).
Solution. Let the verties of a triangle OBA be (0, 0) (10, 1) and (1, 1).
Equation of OA is x = y.
Equation of OB is x = 10 y.
The region of OBA, given by the limits

y < x < 10 y and 0 < y < 1.

2
s

xy y dy dx = 
1 10 2 ½
0

( )
y

y
dy xy y dx 

x 
= 

a

0 1 2–1–2
X

x 
= 

2

X´

Y

2

y = x

y = x +
 2

dy

y  = a –x

2

2
2

P

Q y = 0 A

B

Y 

X O

dx
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= 
10

1 12 3/ 2 2 3/ 2
0 0

2 1 2 1( ) (9 )
3 3

y

y

dy xy y y dy
y y

 
  

 
 

1 2
0

18 y dy 

= 
13

0

1818 6
3 3
y 

  
 

Ans.

Example 6. Evaluate 2 ,
A

x dx dy  where A is the region in the first quadrant bounded by the

hyperbola xy = 16 and the lines y = x, y = 0 and x = 8. (A.M.I.E., Summer 2001)
Solution. The line OP, y = x and the curve PS, xy = 16 intersect at (4, 4).
The line SN, x = 8 intersects the hyperbola at S (8, 2). y = 0 is x-axis.
The area A is shown shaded.
Divide the area in to two part by PM
perpendicular to OX.
For the area OMP, y varies from 0 to x, and
then x varies from 0  to 4.
For the area PMNS, y -series from 0 to 16/x
and then x varies from 4 to 8.

 2
A

x dx dy = 
4 8 16/2 2
0 0 4 0

x x
x dx dy x dx dxy   

= 
4 8 16/2 2
0 0 4 0

x x
x dx dy x dx dy     =    4 8 16/2 2

0 00 4

x xx y dx x y dx 

= 

4 84 24 83
0 4

0 4

16 16
4 2
x x

x dx x dx
   

     
   

   = 64 + 8 (82 – 42) = 64 + 384 = 448. Ans.

Example 7. Evaluate 2( )x y dx dy  over the area bounded by the ellipse 
2 2

2 2 1x y
a b

 

(U.P. Ist Semester Compartment 2004)

Solution. For the ellipse 
2 2

2 2 1x y
a b

 


y
b  = 

2
2 2

21 x b
y a x

aa
     

 The region of integration can be expressed as

2 2 2 2and b b
a x a a x y a x

a a
       

 2( )x y dx dy  = 2 2( 2 )x y xy dx dy 

= 
2 2

2 2

/ 2 2
( / )

( 2 )
a b a a x

a b a a x
x y xy dx dy



  
  

=
2 2 2 2

2 2 2 2

/ /2 2
( / ) ( / )

( ) 2
a b a a x a b a a x

a b a a x a b a a x
x y dx dy xy dy dx

 

     
   

= 
2 2/ 2 2

0
2 ( ) 0

a b a a x

a
x y dy dx




  

[Since (x2 + y2) is an even function of y and 2xy is an odd function of y]

= 

2 2
3

2

0

2
3

b
a x

aa

a

y
x y dx

   
 



  
      



x 
= 

a

x 
= 

–a

X 

Y 

O
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= 
3

2 2 2 2 2 3/ 2
3

12 ( )
3

a

a

b b
x a x a x dx

a a

 
    

 


= 
3

2 2 2 2 2 3/ 2
30

4 ( )
3

a b b
x a x a x dx

a a

 
   

 


[On putting x = a sin  and dx = a cos  d]

= 
3

2 2 3 32
30

4 . sin . cos cos cos
3

b b
a a a a d

a a

  
        

 


= 
3

3 2 2 42
0

4 sin cos cos
3

ab
a b d

  
      

 
  = 

3
3 1 1 3 14 . . . . .

4 2 2 3 4 2 2
. ab

a b
   
 

= 3 3 2 2( ) ( )
4 4

a b ab ab a b
    Ans.

Example 8. Evaluate 2 2( )x y dx dy  throughout the area enclosed by n the curves y = 4x,

x + y = 3, y = 0 and y = 2.
Solution. Let OC represent y = 4x; BD,
x + y = 3; OB, y = 0, and CD, y = 2. The
given integral is to be evaluated over the
area A of the trapezium OCDB.
Area OCDB consists of area OCE, area
ECDF and area FDB.

The co-ordinates of C, D and B are
1 , 2
2

 
 
 

 (1, 2) and (3, 0) respectively.

 2 2( )
A

x y dy dx
= 2 2 2 2 2 2( ) ( ) ( )

OCE ECDE FDB
x y dy dx x y dy dx x y dy dx      

= 
½ 4 1 2 3 32 2 2 2 2 2
0 0 ½ 0 1 0

( ) ( ) ( )
x x

dx x y dy dx x y dy dx x y dy


         
I1 I2 I3

Now, I1 = 
43½ 4 ½ ½2 2 2 3

0 0 0 0
0

76( )
3 3

x
x y

dx x y dy x y dx x dx
 

    
 

   

= 
½4½ 3

0
0

76 76 76 1 1 19.
3 3 4 3 4 16 48

x
x dx

          


I2 = 
231 1 1 12 2 2 2

½ ½ ½ ½
0

8( ) 2
3 3
y

dx x y dy x y dx x dx
          

  
   

= 

13

½

2 8 2 8 2 1 8 1 23. .
3 3 3 3 3 8 3 2 12
x

x
                      

I3 = 
3 3 2 2

1 0
( )

x
dx x y dy


   = 

33 33 32 2
1 0

0

(3 )(3 )
3 3

x
y x

x y dx x x dx


         
   

 

= 
33 4 43 2 3 3

1
1

(3 ) (3 )3
3 4 3

x x x
x x dx x
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= 
81 1 16 2227 0 1
4 4 12 3

        

 2 2
1 2 3

19 23 22 463 31( ) 9 .
48 12 3 48 48A

x y dy dx I I I          Ans.

EXERCISE 2.1
Evaluate

1.
22

0 0

y
x xe dy dx  Ans. e2 – 1 2. 

0 0

a ay
xy dx dy  Ans. 

4

6
a

3.
2 2

0 0

a a y
dx dy


  Ans.  

2

4
a

4.  1 2
20

(1 )
y

y
xy dx dy  Ans. 

41
210

5.

22

0 0

ax xa
xy dy dx



  Ans. 
42

3
a 6.  

22 2 2
0 0

a ax x
x dy dx


  Ans.  

45
8
a

7.

2 2
2 2 2

0 0

a xa
a x y dy dx



   Ans. 
3

4
a

8. 

1 2(1 )
1 2

2 2
0 0 1

y
dx dy

x y



 
   Ans. 4



9.

2 2

2 2 2
0 0 (1 )

a xa

y

dx dy

e a x y



  
   Ans. 

2log
2 1

a

a
e
e




  10. 2 2
0 
 
a a

y

x dx dy

x y
          Ans. 

2
log ( 2 1)

2
a 

11

1 2
2 2

0 0

( 3 )
 

 
x y

x x y dx dy        (A.M.I.E.T.E., June 2009) Ans. 
14
3

12. (5 2 ) ,
A

x y dx dy    where A is given by y = 0, x + 2y = 3, x = y2. Ans. 217
60

13. ,
A

xy dx dy   where A is given by x2 + y2 – 2x = 0, y2 = 2x, y = x. Ans. 
7

12

14. 2 24 ,
A

x y dx dy   where A is the triangle given by y = 0, y = x and x = 1. Ans. 
1 3
3 3 2
    
 

15. 2 ,
R

x dx dy   where R is the two-dimensional region bounded by the curves y = x and y = x2.  Ans. 
1
20

16. (1 )
A

xy x y dx dy    where A is the area bounded by x = 0, y = 0 and x + y = 1. Ans.  
2
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2.3 EVALUATION OF DOUBLE INTEGRALS IN POLAR CO-ORDINATES

We have to evalaute 2 ( )2
( )1 1

( , )r

r
f r dr d

 
 

    over the region bounded by the staight lines

 = 1 and  = 2 and the curves r = r1 (q) and r = r2
(). We first integrate with respect to r between the
limits r = r1() and  r = r2() and taking  as constant.
Then the resulting expression is integrated with respect
to  between the limits  = 1 and  = 2.
The area of integration is ABCD. On integrating first
with respect to r, the strip extends from P to Q and the
integration with respect to  means the rotation ot this strip PQ from AD to BC.
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Example 9. Transform the integral to cartesian form and hence evaluate
3

0 0



 
a
r  sin  cos  dr d. (M.U., II Semester 2000)

Solution. Here, we have
3

0 0
sin cos


   

a
r dr d ...(1)

Here the region i.e., semicircle ABC of integration is bounded by
r = 0, i.e., x-axis.

r = a i.e., circle,  = 0 and  =  i.e., x-axis in the second quadrant.

( sin ) ( cos ) ( )    r r r d dr

Putting x = r cos , y = r sin , dx dy = r d dr in (1), we get
2 2

0

a a x

a
xy dy dx



  =
2 2

0

a a x

a
x dx y dy



 

= 

2 2
2

02

a x
a

a

y
x dx





 
   = 

2 2( )
2

a

a

a x
x dx






 = 2 31 ( )
2

a

a
a x x dx


  = 0 Ans. 

Since ( ) is odd function

( ) 0
a

a

f x

f x dx


 
 

 
 

Example 10. Evaluate 
22 2 – 2 2

0 0
( )

x x
x y dy dx 

Solution. 
22 2 – 2 2

0 0
( )

x x
x y dy dx 

Limits of y =  22 –x x  y2 = 2x – x2    x2 + y2 – 2x = 0 ...(1)
(1) represents a circle whose centre is (1, 0) and radius = 1.
Lower limit of y is 0 i.e., x-axis.
Region of integration is upper half circle.
Let us convert (1) into polar co-ordinate by putting

x = r cos , y = r sin 
r2 – 2 r cos  = 0  r = 2 cos 

Limits of r are 0 to 2 cos 

Limits of  are 0 to 
2


22 2 – 2 2
0 0

( )
x x

x y dy dx  = 
2 cos 22

0 0
( )r r d dr

 
  = 

2 cos42 cos 32 2
0 0 0

0
4
r

d r dr d
   

    
 

  

= 
42

0

3 1 34 cos 4
4 2 2 4

d
        

  Ans.

Example 11. Evaluate 
22 2 –

0 0 2 2
 

x x x dy dx

x y
by changing to polar coordinates.

Solution. In the given integral, y varies from 0 to 22 –x x and x varies from 0 to 2.

y = 22 –x x

r = 2 cos 

x = 2
X

Y

Y

rd  dr

= 0

=
—2
O

r = a

A 

B 

C O
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 y2 = 2x – x2

 x2 + y2 = 2x
In polar co-ordinates, we have r2 = 2r cos           r = 2 cos .

 For the region of integarion, r varies from 0 to 2 cos  and  varies from 0 to .
2


In the given integral, replacing x by r cos , y by r sin , dy dx by r dr d, we have

I = 
/ 2 2 cos / 2 2 cos

0 0 0 0

cos . cosr r dr d
r dr d

r
          

= 
2 cos2/ 2 / 2 3

0 0
0

2 4cos 2 cos 2. .
2 3 3
r

d d


  
       
 

  Ans.

EXERCISE 2.2
Evaluate the folloing:

1.
(1 – cos ) 2

0 0
2 sin

a
r d dr

 
    Ans. 38

3
a

2.
(1 cos ) 2

0 0
cos

a
r dr d

  
   Ans. 35

8
a

3.
2 2

A

r dr d

r a




  where A is a loop of r2 = a2 cos 2 Ans. 2 –

2
a

a


4. 2 sin
A

r d dr   where A is r = 2a cos  above initial line.    (A.M.I.E. Winter 2001)   Ans. 
32

3
a

5. Calculate the integral 
2

2 2
( )x y

dx dy
x y

  over the circle x2 + y2  1. Ans.  – 2

6. 2 2( )x y x dx dy  over the positive quadrant of the circle x2 + y2 = a2 by changing to polar coordinates.

Ans. 
2

5
a

7. 2 2R x y dx dy  by changing to polar coordinates, R is the region in the xy-plane bounded by the

circles x2 + y2 = 4                (AMIETE, Dec. 2009) Ans.
38

3


8. Convert into polar coordinates
22 2 –

0 0

a ax x
dx dy  Ans. 

2 cos/ 2

0 0

a

r d dr


 

9. 3 ,r dr d  over the area bounded between the circles r = 2b cos  and r = 2b cos . Ans. 
3
2


 (a4 – b4)

10. sinr dr d   over the area of the cardiod r = a (1 + cos ) above the initial line. Ans. 35
8

a
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11. 2 ,
A

x dr d  where A is the area between the circles r = a cos  and r = 2a cos . Ans. 
328

9
a

12. Transform the integral 
1

0 0
( , )

x
f x y dy dx  to the integral in polar co-ordinates.

Ans. 
/ 4 sec

0 0
( , )f r r d dr

 
  

2.4 CHANGE OF ORDER OF INTEGRATION
On changing the order of integration, the limits of integration change. To find the new limits,
we draw the rough sketch of the region of integration.
Some of the problems connected with double integrals, which seem to be complicated, can be
made easy to handle by a change in the order of integration.

Example 12. Evaluate 2 20
a a

y
x

dx dy
x y  by changing the order of integration.

(AMIETE, June 2010, Nagpur University, Summer 2008)
Solution. Here we have

I = 2 20
a a

y
x

dx dy
x y 

Here x = a, x = y, y = 0 and y = a
The area of integration is OAB.
On changing the order of integration Lower limit of
y = 0 and
upper limit is y = x.
Lower limit of x = 0 and upper limit is x = a.

I = 0
a

xdx   2 20
1y x

dy
x y





1
0 0

1 tan
y xa y

xdx
x x


    
1 1

0
tan tan 0

a x x
dx

x x
    

 

00
π π π[ ]
4 4 4

a a a
dx x    

  Ans.

Example 13. Change the order of integration in

I = 2
1 2 –

0

x

x
xy dx dy  and hence evaluate the same.

(A.M.I.E.T.E., June 2010, 2009, U.P. I Sem., Dec., 2004)

Solution. I = 2
1 2 –

0

x

x
xy dx dy 

x = a

Ay = 0O

y =
 x

By = a

Y

X

x = a

Ay = 0O

y =
 x

B (a, a)y = a

Y

X
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The region of integration is shown by shaded portion in the figure bounded by parabola y = x2

and the line y = 2 – x.
The point of intersection of the parabola y = x2 and the line y = 2 – x is B (1, 1).
In the figure below (left) we have taken a strip parallel to y-axis and the order of integration is

2
1 2 –

0

x

x
x dx y dy 

In the second figure above we have taken a strip parallel to x-axis in the area OBC and second
strip in the area ABC. The limits of x in the area OBC are 0 and y and the limits of x in the
area ABC are 0 and 2 – y.

= 
2 –2 21 2 2 – 1

0 0 1 0 0 0
0 0

2 2

y y
y y yx x

y dy x dx y dx x dx y dy y dy
   

     
      

     

= 
131 2 22 2 2 3

0 1 1
0

1 1 1 1(2 – ) (4 – 4 )
2 2 2 3 2

y
y dy y y dy y y y dy

 
    

  
  

= 
24

2 3

1

1 1 4 1 1 32 4 12 – 8 – 4 – 2 –
6 2 3 4 6 2 3 3 4

y
y y

              

= 
1 1 96 – 128 48 – 24 16 – 3 1 5 9 3
6 2 12 6 24 24 8

        
Ans.

Example 14. Evaluate the integral 
2

0 0
exp –

x x
x dx dy

y
  

  
 

  by changing the order of

integration (U.P. I Semester Dec., 2005)
Solution. Limits are given

y = 0 and y = x
x = 0 and x = 

Here, the elementary strip PQ extends from y = 0
to  y = x and this vertical strip slides from
x = 0 to x = .
The region of integration is shown by shaded
portion in the figure bounded by y = 0, y = x,
x = 0 and x = .
On changing the order of integration, we first
integrate with respect to x along a horizontal strip
RS which extends from x = y to x =  and this
horizontal strip slides from y = 0 to y =  to cover
the given region of integration.
New limits :

x = y and x = 
y = 0 and y = 

We first integrate with respect to x.
Thus,

2
–

0

x
y

y
dy xe dx

 
  = 

2
–

0
2– –

2

x
y

y

y x
dy e dx

y
 

 
 
 
 
 

 

= 

2 2
– – –2

0 0 0
– 0

2 2 2

x y
yy

y

y y y
dy e dy e e dy
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x =
 y

B

A

X

Y

O

x = 

= – –

0

1(– ) – ( )
2 2

y yy
e e


  

    
(Integrating by parts)

= 
1 1(0 – 0) 0
2 2

        
Ans.

Example 15. Change the order of the integration

0 0

x x ye y dy dx
   (B.P.U.T.; I Semester 2008)

Solution. Here, we have

0 0

x x ye y dy dx
  

Here the region OAB of integration is bounded by
y = 0 (x-axis), y = x (a straight line), x = 0, i.e., y axis.
A strip is drawn parallel to y-axis, y varies 0 to x and
x varies 0 to .
On changing the order of integration, first we integrate
w.r.t. x and then w.r.t. y.
A strip is drawn parallel to x-axis. On this strip x
varies from y to  and y varies from 0 to .

Hence
0 0

x xye y dy dx
   = 0

xy
y

y dy e dx
   

= 0

xy

y

e
y dy

y

  
  

=
2

0
[0 ]yy dy

e
y






=
2

0

1
2

ye dy
      Ans.

Example 16. Change the order of integration in the double integral

2

2 2

0 2 –

a ax

ax x
V dx dy 

Solution. Limits are given as
x = 0, x = 2a
y = 2 ax

and y = 22 –ax x  y2 = 2 ax
and (x – a)2 + y2 = a2

The area of integration is the shaded portion OAB. On changing the order of integration first
we have to integrate w.r.t. x, The area of integration has three portions BCE, ODE and ACD.

2

2 2

0 2 –

a ax

ax x
dx V dy 

= 
2 2

2 2
2 2

0 / 2 0 / 2

a a a a a y

y a y a
dy V dx dy V dx

 
   

2 2
2

0 –

a a

a a y
dy V dx


   Ans.

y =
 x

A

B

X

Y

O y = 0
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EXERCISE 2.3
Change the order of integration and hence evaluate the following:

1.
0 0

cos
( – ) ( – )

a x y dy
dx

a x a y  Ans. 0
cos( ) ( ) 2 sin .

( – ) ( – )
a a

y

y dx
a dy b a

a x a y 

2. 2
2 3 – 2 2
0

4

( )
a a x

x
a

x y dy dx    Ans. 
2 3 3 –2 2 2 2

0 0 0
( ) ( ) ( )

a ay a a y

a
a dy x y dx dy x y dx       

4314( ) .
35

a
b

3. 2
1 2 2 –1/ 2
0

( )
x

x
x y dy dx  Ans. 1 2 2 – 1/ 2

0
( ) .

y

y
dy x y dx 

4. 2 20 –
( , )

a y a

a y
f x y dx dy


  Ans. 2 2

2

0 – –
( , ) ( , )

a a a a

a x a x a
dx f x y dy dx f x y dy   

5.
2 2–

– 0
( , )

a a y

a
f x y dx dy  Ans. 

2 2

2 2

–

0 – –
( , )

a a x

a x
dx f x y dy 

6.
1 2

0

x

x

x
dy dx

y


  Ans. 
22

0
0 1 0

4; log
y y

a dy dy
xdx xdx

y y e


   

7. 2 20

b a

y

x dy dx
x y  (M.P. 2003)

8.
/

0 0

a bx a
x dy dx  Ans. 2

0 /
1( ) ( )
3

b a

ay b
a dy x dx b a b 

9.
5 2

0 2 –
( , )

x

x
f x y dx dy


  Ans. 

2 5 7 5

0 2 – 2 – 2
( , ) ( , )

y y
dy f x y dx dy f x y dx   

10. 2 2 –
0 –

( – )
y y
y

y x e dx dy

  Ans. 2 2 –

– –
( – )

x y
x

dx y x e dy


   (A.M.I.E., Summer 2000)

11.
1 2

0

y

y x y
yx dy



 
  (A.M.I.E.T.E., June 2009)

12. 2
2 –

0

a a x

x
a

xy dx dy   (U.P. I Semester, Dec., 2007)  Ans. 
22 –

0 0 0
3,

8
a ay a y a

xy dx dy xy dx dy  

13.
2 2

2 2

–

0 – –

a a a y

a a y
xy dx dy


  Ans. 

2 22 – ( – ) 4
0 0

2,
3

a a x a
x dx y dy a 

[Hint: Put x = a sin2   dx = 2 a sin  cos  d ]

14.
1 1 – 1/ 3 – 1/ 2 1/ 2
0 – 1

(1 – – )
y

x y x y dx dy  Ans. 
1 1 1–1 1 –3 2 2

– 1 0
3(1 – – ) , –
7

x
x dx y x y dy


 

15.
2

2 34
0 0

( )
xa
adx x y dy  Ans. 

2 3
0 4

( )
a a

a y
dy x y dx 

16.
1 2 2 –2 2 2 2
0 0 1 0

( ) ( )
y y

x y dx dy x y dx dy                               Ans. 
1 2 – 2 2
0

5( ) ,
3

x

x
dx x y dy 

17.
2 2– 2 2 2

0 0

a a x
y x y dx dy  by changing into polar coordinates. Ans. 

5

20
a

(U.P., I Semester, Dec. 2007, A.M.I.E., Summer 2001)

18.
1 2 2 2

2 2 2 2 2 20 1 0
1 1 1

y R
dx dy dx dy dy dx

x y x y x y
 

       
Recognise the region R of integration on the R.H.S. and then evaluate the integral on the right in the
order indicated. (AMIETE, Dec. 2004)

Ans. Region R is x = 0, x = y, y = 1 and y = 2, log 2.
4


19. Express as single integral and evaluate :
2 2–2

0 0 0
2

a
x a a x

ax dx dy x dx dy    Ans. 
2 2 3–2

0
5,
6 2

a
a y

y

a
dy x dx 
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20. Express as single integral and evaluate :
1 2 2 –2 2 2 2
0 0 1 0

( ) ( )
y y

x y dx dy x y dx dy      Ans. 
1 2 – 2 2
0

5( ) ,
3

x

x
dx x y dy 

21. If f(x, y) dx dy, where R is the circle x2 + y2 = a2, is R equivalent to the repeated integral.

(AMIE winter 2001) [Ans. 

2 1

0 0

( , ) .r r dr d


   ]

2.5 CHANGE OF VARIABLES
Sometimes the problems of double integration can be solved easily by change of independent

variables. Let the double integral as be ( , ) .
R

f x y dx dy  It is to be changed by the new variables
u, v.
The relation of x, y with u, v are given as x = f(u, v), y = (u, v). Then the double integration
is converted into.

{ ( , ), ( , )} | | ,
R

f u v u v J du dv


   where

Example 17. Evaluate 2( ) ,
R

x y dx dy  where R is the parallelogram in the xy-plane with

vertices (1, 0), (3, 1), (2, 2), (0, 1), using the transformation u = x + y and v = x – 2y.
(U.P., I Semester, 2003)

Solution. The region of integration is a parallelogram ABCD, where A (1, 0), B (3, 1), C (2, 2)
and D (0, 1) in xy-plane.
The new region of integration is a rectangle ABCD in uv-plane

 xy-plane A  (x, y) B  (x, y) C  (x, y) D  (x, y)
A (1, 0) B  (3, 1) C  (2, 2) D  (0, 1)
A  (u, v) B  (u, v) C  (u, v) D  (u, v)

uv-plane A  (x + y, x – 2y) B  (x + y, x – 2y) C  (u, v)
A  (1 + 0, 1 – 2 × 0) B  (3 + 1, 3 – 2 × 1) C  (2 + 2, 2 – 2 × 2) D  (0 + 1, 0 – 2 × 1)
A  (1, 1) B  (4, 1) C  (4, – 2) D  (1, – 2)

and
– 2

u x y
v x y
  

  
 

1 (2 )
3
1and ( – )
3

x u v

y u v

 



J = 

2 1
( , ) 13 3 –

1 1( , ) 3–
3 3

x x
x y u v

y yu v
u v

 
    

 
 

dx dy= | J | du dv = 
( , )
( , )

x x
x y u vdu dv du dv

y yu v
u v
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dx dy = 
1| |
3

J du dv du dv

2( )
R

x y dx dy  = 
1 4 2
– 2 1

1.
3

u du dv   = 
431 1 1

2– 2 – 2
1

1 7 7 [ ] 7 3 21
3 3

u
dv dv v

 
     

 
  Ans.

Example 18. Using the transformation x + y = u, y = uv, show that

1/ 2 2[ (1 – – )] ,
105

xy x y dx dy
  integration being taken over

the area of the tringle bounded by the lines x = 0, y = 0,
x + y = 1.

Solution. 1/ 2[ (1 – – )]xy x y dx dy 
x + y = u or x = u – y = u – uv,

, )
( , )
( v

x y
dx dy du dv

u



= 

x x
u v du dv
y y
u v

 
 
 
 

dx dy = 
1 – –

.
v u

du dv u du dv
v u



x = 0  u (1 – v) = 0
 u = 0, v = 1

y = 0  uv = 0
 u = 0, v = 0

x + y = 1  u = 1
Hence, the limits of u are from 0 to 1 and the limits of v are from
0 to 1.
The area of integration is a square OPQR in uv-plane.
On putting x = u – uv, y = uv, dx dy = u du dv in (1), we get

1/ 2 1/ 2 1/ 2( – ) ( ) (1 – )u uv uv v u du dv 

= 
1 12 1/ 2 1/ 2 1/ 2
0 0

3 3 3
3 2 2 2(1 – ) (1 – )
9 5
2

u u du v v dv   

= 

3 1 1 1 1 1 12. .1 22 2 2 2 2 2 2
7 5 32 1 1057 5 3 3
2 2 22 2 2 2

      
   

Ans.

EXERCISE 2.4

1. Evaluate –( )
0 0

sinx y y
e dx dy

x y
    

  
  by means of the transformation u = x + y, v = y from (x, y) to

(u, v) Ans. 1


2. Using the transformation x + y = u, y = uv, show that 
1 1 –

0 0
1 ( – 1)
2

x
x y
y

dy dx e
e   

(A.M.I.E. Winter 2001)
3. Using the transformation u = x – y, v = x + y, prove that 

– 1cos sin 1
2

R

x y
dx dy

x y


  where R is bounded

by x = 0, y = 0, x + y = 1
1 1 1( ), ( – ) so that | |
2 2 2

x u v y v u J      
Hint :
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2.6 AREA IN CARTESIAN CO-ORDINATES
Let the curves AB and CD be y1 = f1 (x) and y2 = f2 (x).
Let the ordinates AD and BC be x = a and x = b.
So the area enclosed by the two curves y1 = f1 (x) and y2 = f2(x) and x = a and x = b is ABCD.
Let P(x, y) and Q(x + x, y + y) be two neighbouring points, thent the area of the small

rectangle PQ = x. y.

Area of the vertical strip = 
2

2

1
1

0
lim

y y

yy y
x y x dy

 
     x the width of the strip is constant

throughout.
If we add all the strips from x = a to x = b, we get

The area ABCD = 
2 2

1 10
lim

b y b y

y a yx a
x dy dx dy

 
    

   2

1
Area

b y
a y

dx dy

Example 19. Find the area bounded by the parabola y2 = 4ax
and its latus rectum.
Solution. Required area = 2 (area (ASL)

= 
2

0 0
2

a ax
dy dx 

= 0
2 2

a
ax dx

= 
3/2 2

0

84
3/ 2 3

a
x aa

 
  

 
Example 20. Find the area between the parabolas y2 = 4 ax and x2 = 4 ay.
Solution. y2 = 4ax ...(1)

x2 = 4ay ...(2)
On solving the equations (1) and (2) we get the point of intersection (4a, 4a).
Divide the area into horizontal strips of width y, x varies

from 
2

,
4
yP

a
 to , 4Q ay  and then y varies from O(y = 0) to

A (y = 4a).

 The required area = 2
4 4

0 / 4

a ay

y a
dy dx 

=   2

4
2 3/ 2 34 44

0 0/ 4

0

4 – 4 –34 12
2

a

a aay
y a

y y ydy x dy ay a
a a

 
   

    
    

  

 

= 
3

3/ 2 2 2 24 (4 ) 32 16 16(4 ) – –
3 12 3 3 3

a aa a a a
a

          
Ans.

Example 21. Find by double integration the area enclosed by the pair of curves
y = 2 – x and y2 = 2(2 – x)

Solution. y = 2 – x
y2 = 2 (2 – x)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/
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On solving the equations (1) and (2), we get the points of
intersection (2, 0) and (0, 2).

A = dx dy 

The required area = 
2 2 (2 – )

0 2 –

x

x
dx dy 

=  2 22 (2 – )
2 –0 0

[ 4 – 2 – 2 ]x
xdx y dx x x  

= 

22
3/2

0

2 (4 2 ) – 2
3 – 2 2

xx x
 

   

= 
22

3/ 2

0

1– (4 – 2 ) – 2
3 2

xx x
 

 
 

 = 
4 8 2– 4
2 3 3

    
 

Ans.

EXERCISE 2.5
Use double integration in the following questions:
1. Find the area bounded by y = x – 2 and y2 = 2x + 4. Ans. 18.
2. Find the area between the circle x2 + y2 = a2 and the line x + y = a in the first quadrant.

Ans. ( – 2)a2/4

3. Find the area of a plate in the form of quadrant of the ellipse 
2 2

2 2 1.x y
a b

  Ans. 
4
ab

4. Find the area included between the curves y2 = 4 a(x + a) and y2 = 4 b (b – x). Ans. 8
3
ab

                                                         (A.M.I.E.T.E., Summer 2001)

5. Find the area bounded by (a) y2 = 4 – x and y2 = x. Ans. 16 2
3

(b) x – 2y + 4 = 0, x + y – 5 = 0, y = 0                 (A.M.I.E., Winter 2001) Ans. 27
2

6. Find the area enclosed by the leminscate r2 = a2 cos 2 . Ans. a2

7. Find the area common to the circles x2 + y2 = a2 and x2 + y2 = 2ax. Ans. 23–
3 4

a
 
 
  

8. Find the area included between the curves y = x2 – 6x + 3 and y = 2x + 9.

                                                       (A.M.I.E., Summer 2001) Ans. 88 22
3

9. Determine the area of region bounded by the curves xy = 2, 4y = x2, y = 4. Ans. 28 – 4 log 2
3

                                                                                                 (U.P. I Semester 2003)
2.7 AREA IN POLAR CO-ORDINATES

Area = r d dr
Let us consider the area enclosed by the curve r = f ().
Let P (r, ), Q(r + r,  + ) be two neighbouring points.
Draw ares PL and QM, radii r and r + r.

PL = r, PM = r
Area of rectangle PLQM = PL × PM

= (r) (dr) = r  r.
The whole area A is composed of such small rectangles.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Multiple Integral 107

Hence,

A = 
0
0

lim .
r

r r r d dr


 
     

Example 22. Find by double integration, the area lying inside the cardioid r = a (1 + cos )
and outside the circle r = a. (Nagpur University, Winter 2000)
Solution. r = a (1 + cos ) ...(1)

r = a ...(2)
Solving (1) and (2), by eliminating r, we get

a(1 + cos ) = a  1 + cos  = 1

cos  = 0  – or
2 2
 

 

limits of r are a and a(1 + cos )

limits of  are – to
2 2
 

Required area = Area ABCDA

= 
/ 2 for cardioid

– / 2 for circler
r d dr




 

= 
/ 2 (1 cos )

– / 2

a

a
r d dr

  


  = 

(1 cos )2/ 2

– / 2 2

a

a

r d
 





 
  

 


= 
2 / 2 2

– / 2
[(1 cos ) – 1]

2
a d




   = 

2 / 2 2
– / 2

(cos 2 cos )
2

a d



   

= 
/ 22 2

0
(cos 2 cos )a d


    = 

/ 2 / 22 2
0 0

cos 2 cosa d d
         

= 2 / 2 2
02 (sin ) 2

4 4
a a             

= 
2

( 8)
4

a
  Ans.

Example 23. Find by double integration, the area lying inside the circle r = a sin  and
outside the cardioid r = a (1 – cos ).
Solution. We have,

r = a sin  ...(1)
r = a (1 – cos ) ...(2)

Solving (1) and (2) by eliminating r, we have
sin  = 1 – cos   sin  + cos  = 1

Squaring above, we get
sin2 + cos2 + 2 sin  cos  = 1

 1 + sin 2 = 1  sin 2 = 0  2 = 0 or  =  = 0 or 
2


The required area is shaded portion in the fig.

Limits of r are a(1 – cos ) and a sin , limits of  are 0 and .
2


Required area = 
sin

2
0 (1 – cos )

a

a
r dr d

 


 

= 
sin2 / 2 2 2 22

0 0
(1 – cos )

1 [sin – (1 – cos ) ]
2 2

a

a

r d a d
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= 
2 / 2 2 2

0
(sin – 1 – cos 2 cos ]

2
a d


    

= 
2 / 2 2

0
(– 2 cos 2 cos )

2
a d


   

= 
2 / 2 / 22

0 0
– 2 cos 2 cos

2
a d d

         

= 
2

/ 2
0– 2. 2 (sin )

2 4
a          

= 
2

– 2 sin – sin 0
2 2 2

a          
 = 

2
– 2

2 2
a    

 = 2 1 –
4

a  
 
 

Ans.

Example 24. Find by double integration, the area lying inside a cardioid r = 1 + cos  and
outside the parabola r (1 + cos ) = 1.
Solutio. We have,

r = 1 + cos  ...(1)
r (1 + cos ) = 1 ...(2)

Solving (1) and (2), we get
(1 + cos ) (1 + cos ) = 1

(1 + cos )2 = 1
1 + cos  = 1

cos  = 0 
2


  

limits of r are 1 + cos  and 
1

1 cos 
       limits of  are – to .

2 2
 

Required area = Area ADCBA (Shaded portion)

= 
/ 2 1 cos

1– / 2
1 cos

r d dr
  


 

    = 
1 cos2

2
–

1
2

1 cos
2
r d

 



 

 
  

 
  = 

/ 2 2
2– / 2

1 1(1 cos ) –
2 (1 cos )

d




 
   

  


      = 
/ 2 2

2– / 2
2

1 1(1 cos 2 cos ) –
2

2 cos
2

d




 
 
            



     = 
/ 2 2 4

0

1 12 (1 cos 2 cos ) – sec
2 4 2

d
         

= 
/ 2 2 2 2

0

1(1 cos 2 cos ) – 1 tan sec
4 2 2

d
             


= 
/ 2 2 2

0

1 cos 2 11 2 cos – 1 tan sec
2 4 2 2

d
                    


= 
/ 2 2 2 2

0

1 cos 2 11 2 cos – sec tan sec
2 2 4 2 2 2

d
                 


= 
23

0

sin 2 1 22 sin – 2 tan tan
2 4 4 2 3 2



               

= 31 10 2 sin – tan – tan
2 4 2 2 4 6 4
         

 = 
3 1 1 3 42 – –
4 2 6 4 3
            

Ans.
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EXERCISE 2.6

1. Find the area of cardioid r = a(1 + cos ). Ans. 
23

2
a

2. Find the area of the curve r2 = a2 cos 2. Ans. a2

3. Find the area enclosed by the curve r = 2 a cos  Ans. a2

4. Find the area enclosed by the curve r = 3 + 2 cos . Ans. 11 
5. Find the area enclosed by the curve

r3 = a2 cos2 + b2 sin2. Ans. 2 2( )
2

a b


6. Show that the area of the region included between the cardioides r = a(1 + cos ) and r = a (1 – cos )

is 
2

(3 – 8).
2

a


7. Find the area outside the circle r = 2 and inside the cardioid r = 2(1 + cos ). Ans. ( + 8)

8. Find the area inside the circle r = 2a cos  and outside the circle r = a. Ans. 2 32
3 4

a
 

  
 

9. Find the area inside the circle r = 4 sin  and outside the lemniscate r2 = 8 cos 2 .

Ans. 8 4 3 – 4
3

   
 

2.8 VOLUME OF SOLID BY ROTATION OF AN AREA (DOUBLE INTEGRAL)
When the area enclosed by a curve y = f (x) is revolved
about an axis, a solid is generated, we have to find out
the volume of solid generated.
Volume of the solid generated about x-axis

= 2

1

( )

( )
2

b y x

a y x
PQ dx dy 

Example 25. Find the volume of the torus generated by revolving the circle x2 + y2 = 4 about
the line x = 3.
Solution. x2 + y2 = 4

V = (2 ) 2 (3 – )PQ dx dy x dx dy     

= 
2

2

2 4 –

– 2 – 4 –
2 (3 – )

x

x
dx x dy

 
  

=  
2

2

2 4 –
– 2 – 4 –

2 3 – x

x
dx y x y

  
= 2 2 2 2 2

– 2
2 [3 4 – – 4 – 3 4 – – 4 – ]dx x x x x x x


 

= 
2

2 2 2 –1 2 3/2

– 2

4 14 [3 4 – – 4 – ] 4 3 4 – 3 sin (4 – )
2 2 2 3
x xx x x dx x x        

= 24 6 6 24
2 2
         

Ans.

Example 26. Calculate by double integration the volume generated by the revolution of the
cardioid r = a (1 – cos ) about its axis.                                        (AMIETE, June 2010)
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Solution. r = a (1 – cos )

V = 2 2 ( )y dx dy V r d dr y       
= 2 ( sin )d r dr r   
= 

(1 – cos ) 2
0 0

2 sin
a

d r dr
 

   

= 
(1 – cos )3

3 3
0 0

0

22 sin (1 – cos ) sin
3 3

a
rd a d


   

       
 

 

= 
3 4 3

3

0

2 (1 – cos ) 2 8[16]
3 4 12 3
a a a


   

   
 

Ans.

Example 27. A pyramid is bounded by the three co-ordinate planes and the plane
x + 2y + 3z = 6. Compute this volume by double integration.
Solution. x + 2y + 3z = 6 ...(1)
x = 0, y = 0, z = 0 are co-ordinate planes.
The line of intersection of plane (1) and xy plane
(z = 0) is

x + 2y = 6 ...(2)
The base of the pyramid may be taken to be the triangle

bounded by x-axis, y-axis and the line (2).
An elementary area on the base is dx dy.
Consider the elementary rod standing on this area and

having height z, where

3z = 6 – x – 2y or  z = 
6 – – 2

3
x y

Volume of the rod = dx dy, z, Limits for z are 0 and 6 – – 2 .
3

x y

Limits of y are 0 and 6 –
2

x and limits of x are 0 and 6.

Required volume = 
6 – 6 –6 6

2 2
0 0 0 0

6 – – 2
3

x x x yz dx dy dx dy   

=  
6 –

6 2 2
0 0

1 6 – –
3

x

dx x xy y  = 
2

6

0

1 6(6 – ) (6 – ) 6 –– –
3 2 2 2

x x x x dx
       



= 
2 26

0

1 36 – 6 6 – 36 –12– –
3 2 2 4

x x x x x dx
 
  
 



= 
6 2 2
0

1 (72 – 12 – 12 2 – 36 – 12 )
12

x x x x x dx 

= 
63 26 2

0
0

1 1 12( – 12 36) – 36
12 12 3 2

x xx x dx x
 

   
 

  = 
1 [72 – 216 216] 6

12
    Ans.

EXERCISE 2.7

1.  Find the volume of the sphere x2 + y2 + z2 = a2 by revolving area of the circle x2 + y2 = a2.  Ans.
4
3
a3

2.9  CENTRE OF GRAVITY

x  = ,
x dx dy y dx dy

y
dx dy dx dy

 


 
   
   

O
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Example 28. Find the position of the C.G. of a semi-circular lamina of radius a if its density
varies as the square of the distance from the diameter.                     (AMIETE, Dec. 2010)
Solution. Let the bounding diameter be as the x-axis and a line perpendicular to the diameter
and passing through the centre is y-axis. Equation of the circle is x2 + y2 = a2. By symmetry

0.x 

y dx dy
y

dx dy





 
 

= 

2 2

2 2

– 32
– 0

2 – 2
– 0

( )

( )

a a x

a

a a x

a

dx y dyy y dx dy

y dx dy dx y dy






  
   

= 

2 2

2 2

–4

2 2 2–
0 –

– 2 2 3/ 23
–

–
0

3 ( – )4

4 ( – )

3

a x
a

a
a

a
aa x

a a
a

ydx
a x dx

a x dxydx

 
 
 


 
  
 

 




Put x = a sin 

= 

2 2 2 2 5 52 2
– –

2 2

2 2 2 3/ 2 4 42 4
– –

2 2

3 ( – sin ) cos 3 cos

4 ( – sin ) cos 4 cos

a a a d a d

a a a d a d

 

 

 

 

    



    

 

 

= 

4 2
3 3 8 16 325 3

3 14 4 15 3 15
4 2 2

a a a


                  


Hence C.G. is 320,
15

a 
  

Ans.

Example 29. Find C.G. of the area in the positive quadrant of the curve
x2/3 + y2/3 = a2/3.

Solution. For C.G. of area; ,
x dx dy y dx dy

x y
dx dy dx dy

    
   

x = 
 

 

2 / 3 2 / 3 3 / 2 2 / 3 2 / 3 3 / 2

2 / 3 2 / 3 3 / 2 2.3 2 / 3 3 / 2

( – ) ( – )
00 0 0

( – ) ( – )
000 0

a a x a a x

aa a x a x

x dx dy x dx y

dx ydx dy


  
 

[Put x = a cos3]

= 

0 3 2 / 3 2/3 2 3/ 2 22/3 2/3 3/ 2
0 2

02 / 3 2/3 3/2 2 / 3 2 / 3 2 3/ 2 2
0

2

cos ( – cos ) (– 3 cos sin )( – )

( – ) ( – cos ) (– 3 cos sin )

a

a

a a a a dx dx a x

dx a x a a a d





    


   


 

= 

3 3 3 2 4 52 2
0 0

2 3 2 4 22 2
0 0

5 6
2 2

423 cos sin cos sin sin cos
2

5 3
3 sin cos sin sin cos

2 2
2 4

a
a d a d

a d d

 

 

       
 

      

 

 

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



112 Multiple Integral

= 
3 4 (2) (6) 256

1 9 7 5 3 1 3153 11
2 2 2 2 2 22 2

a a a
 

     
,   Similarly,  256

315
ay 


Hence, C.G. of the area is 
256 256, .
315 315

a a 
   

Example 30. Find by double integration, the centre of gravity of the area of the cardioid
r = a (1 + cos ).
Solution. Let ( , )x y be the C.G. the cardioid

By Symmetry, 0.y 

x = A A

A A

x dx dy x dx dy

dx dy dx dy


   

   

= 

(1 cos ) (1 cos ) 2
– 0 – 0

(1 cos ) (1 cos )

– 0 0

( cos ) ( ) cos
a a

a a

r r d dr d r dr

r d dr d r dr

     

 
     

 

   


 

   

   

= 

( cos )3
3

3
–

–0
(1 cos ) 22 2

––
0

cos cos . (1 cos )3 3

(1 cos )
22

a a

a

r ad d

ar dd

 






  



 
       

  
       
 

 



= 

33
2 2

–

2
2

–

2 cos – 1 1 2 cos – 1
3 2 2

1 2 cos – 1
2 2

a d

a d









        
   

   
 





= 
3 2

2 6 4
– –

2 cos – 1 8 cos 4 cos
3 2 2 2 2
a ad d

 

 

           
    

= 
3

8 6 2 4
– –

8 2 cos – cos 2 cos
3 2 2 2
a d a d

 

 

       
  

= 
3

8 6 2 4
0 0

2 8 2 cos – cos 4 cos
3 2 2 2

a d a d
         
  

= 
3 / 2 / 28 6 2 4

0 0

16 (2 cos – cos ) (2 ) 4 cos (2 )
3
a t t dt a t dt

 
 

= 
3

232 2 7 5 3 1 5 3 1 3 1– 8
3 8 6 4 2 2 6 4 2 2 4 2 2
a a            

           

= 
3 3

2
2

32 35 5 3 8 15 16 5– 8
3 128 32 16 3 128 248 3
a a aa

a
                   Ans.

2.10 CENTRE OF GRAVITY OF AN ARC
Example 31. Find the C.G. of the arc of the curve

x = a ( + sin ), y = a(1 – cos ) in the positive quadrant.

Solution. We know that, ,
xds yds

x y
ds ds
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Now, ds = 
2 2dx dy d

d d
           

= 2 2 2 2 2 2{ (1 cos ) sin } 1 2 cos cos sina a d a d            

= 21 2 cos 1 2(1 cos ) 4 cos 2 cos
2 2

a d a d a d a d 
           

x  = 
00

0
0

2 sin cos( sin ) 2 cos 2 22

2 cos 2 sin2 2

a da a dx dx

ds a d





          
  

  
  


 

= 2 22
0 0

cos 2 sin cos (2 cos 2 sin cos ) 2
2 2 2 2 2
a ad t t t t dt


           

= 
3 2

0

cos 1 42 sin cos – 2 – 1 –
3 2 3 3

ta t t t a a


                  

y = 

2
0 0

0 0

(1 – cos ) 2 cos 2 sin cos
2 2 2

2 cos cos
2 2

a a d a dy ds

ds a d d

 

 

  
  

 
 

 

 
  

= 

3

0

0

sin
2 4 2

3 2 3
3 2 sin

2

a r
a a





 
  

 
 

  

 Hence, C.G. of the arc is
4 2– ,
3 3

aa      
Ans.

EXERCISE 2.8
1. Find the centre of gravity of the area bounded by the parabola y2 = x and the line x + y = 2.

Ans. 
8 1, –
5 2

 
 
 

2. Find the centroid of the tetrahedron bounded by the coordinate planes and the plane x + y + z = 1, the

density at any point varying as its distance from the face z = 0. Ans. 
1 1 2, ,
5 5 5

 
 
 

3. Find the centroid of the area enclosed by the parabola y2 = 4 ax, the axis of x and latus rectum.

Ans.
3 3,
20 16
a a 

 
 

4. Find the centroid of the loop of curve r2 = a2 cos 2 . Ans. 
2 , 0

8
a 

  
 

5. Find the centroid of solid formed by revolving about the x-axis that part of the area of the ellipse
2 2

2 2 1x y
a b

  which lies in the first quadrant. Ans. 3 , 0
8
a 

 
 

6. Find the average density of the sphere of radius a whose density at a distance r from the centre of the

sphere is 
3

0 31 .rk
a

 
    

  
0 1

2
k   

 

7. The density at a point on a circular lamina varies as the distance from a point O on the circumference.
Show that the C.G. divides the diameter through O in the ratio 3 : 2.
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1.11 TRIPLE INTEGRATION
Let a function f(x, y, z) be a continuous at every point of a finite region S of three dimensional

space. Consider n sub-spaces S1, S2, S3, ... Sn of the space S.
If (xr, yr, zr) be a point in the rth subspace.

The limit of the sum 
1

( , , )
n

r r r r
r

f x y z S


 , as n , Sr  0 is known as the triple integral of

f (x, y, z) over the space S.
Symbolically, it is denoted by

( , , )
S

f x y z dS
It can be calculated as 

2 2 2

1 1 1

( , , )
x y z

x y z
f x y z   dx dy dz. First we integrate with respect to z

treating x, y as constant between the limits z1 and z2. The resulting expression (function of x, y) is
integrated with respect to y keeping x as constant between the limits y1 and y2. At the end we
integrate the resulting expression (function of x only) within the limits x1 and x2.

2

1

( )





x b

x a
x dx   

2 2

1 1

( )

( )
( , )

y x

y x
x y dy

 

 
   

2 2

1 1

( , )

( , )
( , , )

z f x y

z f x y
f x y z dz




First we integrate from inner most integral w.r.t. z, then we integrate with respect to y and

finally the outer most with respect to x.
But the above order of integration is immaterial provided the limits change accordingly.

Example 32. Evaluate ( ) R
x y z  dx dy dz, where R : 0  x  1, 1  y  2, 2  z  3.

Solution.
1 2 3

0 1 2
( )dx dy x y z dz    =

321 2

0 1 2

( )
2

x y zdx dy
  
   

=
1 2 1 22 2

0 1 0 1

1 1[( 3) ( 2) ] (2 2 5) .1.
2 2

          dx dy x y x y dx x y dy

=
221 1 2 2

0 01

1 (2 2 5) 1 [(2 4 5) (2 2 5) ]
2 4 8

x ydx dx x x
  

        

=
121 1

0 0 0

1 1 9(4 16) . 2 ( 4) 4 4
8 2 2 2

xx dx x dx x
 

           Ans.

Example 33. Evaluate the integral : .
log 2 x x log y x y z

0 0 0
e dz dy dx

    
Solution.  

log 2 log

0 0 0
.

x x y x y ze dz dy dx


   
=

log 2 log log 2 log
00 0 0 0 0

( )
x x y xx y z x y z x ye dx e dy e dz e dx e dy e

     
=

log 2 log 2log log

0 0 0 0
( 1) ( . 1)

x xx y x y x y y xe dx e dy e e dx e dy e e      
=

log 2

0 0
( 1)

xx y xe dx e y e dy   = 
log 2

0 0
( 1) .     

x
x x y x ye dx ye e e e dy

=
log 2

00
( 1)

xx x y x ye dx ye e e      = 
log 2 2

0
[( 1) 1 ]x x x x xe dx xe e e e   

=
log 2 log 22 2 3 3

0 0
[ 1 ] ( )x x x x x x x xe dx xe e e e xe e e dx       
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=
log 2 log 23 3 3 3 3

3

0 0
1 .

3 3 3 3 9 3
   

            
x x x x x

x x xe e e x e ex dx e e e

=
3 log 2 3 log 2

3 log 2 log 2log 2 1 1 1
3 9 3 9 3

e ee e     

=
3 3

3 log 2 log 2
log 2 log 2log 2 1 1 1

3 9 3 9 3
e ee e     

=
8 8 8 1 1 8 19log 2 2 1 log 2
3 9 3 9 3 3 9

        Ans.

Example 34. Evaluate 
log 2

0 0 0

x x y x y ze
      dx dy dz.

(M.U. II Semester, 2005, 2003, 2002)

Solution. I =
log 2

00 0

  
  

x x yx y ze e dx dy

= 
log 2

0 0
( 1)

x x y x ye e dx dy     = 
log 2 2( ) ( )

0 0

x x y x ye e dx dy    
=

2log 2 2

0 0
. .

2

xy
x x yee e e dx

 
    = 

4 2log 2 2

0 2 2

x x
x xe ee e dx

 
   

 

         =
log 24 2 2 4 log 2 2 log 2 2 log 2

log 2

0

1 1 1 1
8 2 4 8 2 4 8 2 4

x x x
xe e e e e ee e

                        

=
log 16 log 4 log 4

log 2 1 1 1 1
8 2 4 8 2 4

e e e e
                

=
16 4 4 1 1 1 52 1
8 2 4 8 2 4 8

             
   

Ans.

Example 35. Evaluate ( )  2 2 2

R
x y z dx dy dz

where R denotes the region bounded by x = 0, y = 0, z = 0 and x + y + z = a, (a > 0)
Solution.  2 2 2( ) R

x y z dx dy dz

x + y + z = a or z = a – x – y
Upper limit of z = a– x – y
On x-y plane, x + y + z = a becomes x + y = a
as shown in the figure.
Upper limit of y = a – x
Upper limit of x = a

=  2 2 2

0 0 0
( )

a a x a x y

x y z
dx dy x y z dz

  

  
     = 

3
2 2

0 0 03

a x y
a a x zdx dy x z y z

 
  

  
  

=
3

2 2

0 0

( )( ) ( )
3

a a x a x ydx dy x a x y y a x y
   

        
=

3
2 2 2 3

0 0

( )( ) ( )
3

a a x a x ydx x a x x y a x y y dy
   

        

=
2 2 3 4 4

2

0 0

( )( ) ( )
2 3 4 12


  

       
a x

a x y y y a x ydx x a x y a x

y = 0

x + y = a

O X 

Y 

x = a

x
=

0

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



116 Multiple Integral

=
2 3 4 4

2 2 2

0

( ) ( ) ( )( ) ( ) ( )
2 3 4 12

a x a x a x a xdx x a x a x a x
   

        
=

2 4 4
2 2 2 3 4

0 0

( ) 1 ( )( ) ( 2 )
2 6 2 6

    
        

   
 

a ax a x a xa x dx a x a x x dx

=
3 4 5 5 5 5 5 5 5

2

0

1 ( )
2 3 4 10 30 6 4 10 30 20

a
x ax x a x a a a a aa

 
        

 
Ans.

Example 36. Compute 
( )3

dx dy dz
x y z 1    if the region of integration is bounded by the

coordinate planes and the plane x + y + z = 1. (M.U., II Semester 2007, 2006)
Solution. Let the given region be R, then R is expressed as

0  z  1 – x – y, 0  y  1 – x, 0  x  1.

3( 1)R

dx dy dz
x y z   =

1 1 1

30 0 0 ( 1)

  

    
x x y dzdx dy

x y z

=
1

1 1

20 0
0

1
2( 1)

x y
x

dx dy
x y z

 
  

 
     

=
1 1

2 20 0

1 1 1
2 ( 1 1) ( 1)

x
dx dy

x y x y x y

  
  

        
=

11 1 1

20 0 0 0

1 1 1 1 1
2 4 2 4 1( 1)

                  
xx ydx dy dx

x yx y

=
1 1

0 0

1 1 1 1 1 1 1 1
2 4 1 1 1 2 4 2 1

x xdx dx
x x x x

                     
=

12

0

1 (1 ) 1 1 1 1 5log( 1) log 2 log 2
2 8 2 2 2 8 2 8
                          

x x x

= 
1 5log 2
2 16

 Ans.

Example 37. Evaluate 2x yz  dx dy dz throughout the volume bounded by the planes x = 0,

y = 0, z = 0, 
x y z
a b c
   = 1. (M.U. II Semester 2003, 2002, 2001)

Solution. Here, we have

I = 2x yz  dx dy dz ...(1)
Putting x = au, y = bv, z = cw
dx = a du, dy = b dv, dz = c dw in (1), we get

I = 2 2a bc u v w a bc du dv dw
Limits are for u = 0, 1 for v = 0, 1 – u and for w = 0, 1 – u – v

u + v + w = 1

I =
1 1 1 3 2 2 2

0 0

  

    
u u v

u o v w
a b c u vw du dv dw  = 

121 1 3 2 2 2

0 0 02

u v
u wa b c u v du dv

 
  

   
=

3 2 2 1 1 2 2

0 0
(1 )

2


  
ua b c u v u v du dv

=
3 2 2 1 1 2 2 2

0 0
(1 ) 2(1 )

2


      
ua b c u v u u v v du dv

X 

Y 

Z 

O a 

c 

b 
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=
3 2 2 1 1 2 2 2 3

0 0
[(1 ) 2 (1 ) ]

2
ua b c u u v u v v


     du dv

=
13 2 2 2 3 41 2 2

0 0
(1 ) 2(1 )

2 2 3 4

u
a b c v v vu u u du


 

     

=
3 2 2 4 4 41 2

0

(1 ) 2(1 ) (1 )
2 2 3 4

a b c u u uu du
   

   
=

3 2 2 2 41

0

(1 )
2 12

a b c u u du
  = 

3 2 2 1 3 1 5 1

0
(1 )

24
 

a b c u u du

=
3 2 2 3 2 2 3 5(3, 5) .
24 24 8

a b c a b c
   = 

3 2 2 3 2 22! 4!. .
24 7! 2520

a b c a b c   
 

Ans.

2.12 INTEGRATION BY CHANGE OF CARTESIAN COORDINATES INTO
SPHERICAL COORDINATES

Sometime it becomes easy to integrate by changing the cartesian coordinates into spherical
coordinates.

The relations between the cartesian and spherical polar co-ordinates of a point are given by the
relations

x = r sin  cos 
y = r sin  sin 
z = r cos 

dx dy dz = | J | dr d d
= r2 sin  dr d d

Note. 1. Spherical coordinates are very useful if the expression x2 + y2 + z2 is involved in the
problem.

2. In a sphere x2 + y2 + z2 = a2 the limits of r are 0 and a and limits of  are 0,  and
that of  are 0 and 2.

Example 38. Evaluate the integral 2 2 2( )x y z   dx dy dz taken over the volume
enclosed by the sphere x2 + y2 + z2 = 1.
Solution. Let us convert the given integral into spherical polar co-ordinates. By putting

x = r sin  cos  ;   y = r sin  sin  ;   z = r cos 
2 2 2( )x y z  dx dy dz =

2 1 2 2

0 0 0
( sin )r r d d dr

 
    

= 
152 1 24

0 0 0 0 0 0
sin sin

5
rd d r dr d d

     
        

       =  
2 2

00 0

1 2cos
5 5

d d
      

=  2
0

2 4
5 5

 
  Ans.

Example 39. Evaluate ( )2 2 2x y z   dx dy dz over the first octant of the spheree
x2 + y2 + z2 = a2. (M.U. II Semester 2007)
Solution. Here, we have

I = 2 2 2( )  x y z dx dy dz ...(1)

Putting x = r sin  cos , y = r sin  sin , z = r cos  and dx dy dz = r2sin  dr d d in (1),
we get

Limits of r are 0, a for  are 0, 
2
  for  are 0, 

2
 .
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I = 2 22 2
0 0 0

. sin
a
r r dr d d

 

      = 42 2
0 0 0

sin
 

    
a

d d r dr

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2
sin cos sin sin cos
sin cos

x y z r r r
r r r

          
       

=    
5

/2 /2
0 0 0

cos
5

a
r   

     
 = 

5 5
. (1) . . .

2 5 10
a a

  Ans.

Example 40. Evaluate 2 2 2
dx dy dz

x y z   throughout the volume of the sphere x2 + y2 + z2 = a2.

(M.U. II Semester 2002, 2001)
Solution. Here, we have

I = 2 2 2
dx dy dz

x y z  ...(1)

Putting x = r sin  cos , y = r sin  sin , z = r cos  and dx dy dz = r2sin  dr d d in (1),
we get

The limits of r are 0 and a, for  are 0 and 
2
  for  are 0 and 

2
  in first octant.

I = 
2

2 2
20 0 0

sin8
a r dr d d

r

 
  

           [Sphere x2 + y2 + z2 lies in 8 quadrants]

I = 2 2
0 0 0

8 sin
a

d d dr
 

      =      /2 /2
0 0 08 cos 8 0 (0 1)( 0)

2
ar a          

 

= 8 .1.
2

a  = 4a Ans.

EXERCISE 2.9
Evaluate the following :

1.
1 2 3

1 2 3     dx dy dz (M.U., II Semester 2002) Ans. 48

2.
4

0 0 0

x x y
z dz dy dx



   (R.G.P.V. Bhopal I Sem. 2003) Ans. 70

3.
2 1 1 2 2 2

1 0 1
( )x y z


    dx dy dz Ans. 6

4.
1 1 1 2 2 2
0 0 0

( )x y z    dz dy dx (AMIETE, June 2006) Ans. 1

5.
1

1 0
( )

z x z

x z
x y z



 
    dx dy dz (AMIETE, Summer 2004) Ans. 0

6. ( )
R

x y z   dx dy dz, where R : 1  x  2;  2  y  3;  1  z  3 Ans. 2

7.
2 3 2

2

0 1 1   xy z dx dy dz  (AMIETE, Dec. 2007)   Ans. 26    8.
1 2 2 2

0 0 1  dx dy x yz dz   Ans. 1

9. 2x yz dx dy dz throughout the volume bounded by x = 0, y = 0, z = 0, x + y + z = 1.

(M.U. II Semester, 2003) Ans. 1
2520

10.
2 21 1 1

0 0 0

  

  
x x y

dz dy dx Ans. 1
3

     11.1.
log

1 1 1
log  

xe y e
z dz dx dy Ans. 21 ( 8 13)

2
e e 
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12. ,
T

y dx dy dz  where T is the region bounded by the surfaces x = y2, x = y + 2, 4z = x2 + y2 and

z = y + 3. (AMIETE Dec. 2008)

13.
2 2 2

0 0 0


   

x x y x y ze dz dy dx Ans.
12 6

4 21 1 1 1 [ 1] [ 1]
3 6 3 6 3 2

e e e e
 

       
  

(M.U. II Sem., 2003)

14. ( )x y z  dx dy dz over the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and

x + y + z = 1. Ans. 1
8

15. 2

0 0 0

  

  
a a x a x y

x dx dy dz   Ans.
5

60
a   16.

2 2 2

2 2 2

2 (4 ) /2 8

2 (4 ) /2 3

  

     
x x y

x x y
dz dy dx  Ans. 8 2

17.
1

1 0
( )



 
   

z x z

x z
x y z dz dx dy (M.U. II Semester, 2000, 02) Ans. 0

18.
2

0 0
( )




   

y x y

x y
x y z dx dy dz (M.U. II Semester 2004) Ans. 16

19.
2 2 2

2 2 21 x y z
a b c

   dx dy dz throughout the volume of the ellipsoid 
2 2 2

2 2 2
x y z
a b c

   = 1.

Ans.
2

4
abc

20.
2 2 2

2 2 2
x y z
a b c

  dx dy dz over the volume of the ellipsoid 
2 2 2

2 2 2
x y z
a b c

   = 1. Ans. 4
3

abc

21. 1 1 1l m nx y z   dx dy dz throughout the volume of the tetrahedron

     
 x  0, y  0, z  0, x + y + z  1.

Ans.
1

.
( )

l m n
l m n l m n   

22.
2 2 21

dx dy dz

x y z    taken throughout the volume of the sphere x2 + y2 + z2 = 1, lying in the first

octant. Ans.
2

8


23.
(1 cos )

0 0 0
2 1

(1 cos )

a h rd r dr dz
a

           Ans.
2

2
a h

24.
2 2/2 sin ( )/

0 0 0

a a r a
r d dr dz

  
   Ans. 

35
64
a

25. 2z dx dy dz  over the volume common to the sphere x2 + y2 + z2 = a2 and the cylinder

x2 + y2 + z2 = ax. Ans.
52

15
a

26. 2 2 2 2(1 )
V

dx dy dz
x y z    where V is the volume in the first octant. Ans. 

2

8


27.
2 2 2 3/2( )

dx dy dz
x y z   over the volume bounded by the spheres x2 + y2 + z2 = 16 and

x2 + y2 + z2 = 25. (M.U. II Semester, 2001, 03) Ans. 4 log (5/4)

28. 2

T
z dx dy dz  over the volume bounded by the cylinder x2 + y2 = a2 and the paraboloid

x2 + y2 = z and the plane z = 0. Ans.
8

12
a
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Y 

X 

O

y = a – x

(a, 0, 0)

y = x 

2.13 VOLUME = .dx dy dz
The elementary volume v is x . y . z and therefore

the volume of the whole solid is obtained by evaluating the
triple integral.

V = x y z

.V dx dy dz 
Note : (i) Mass = volume × density = ρ dx dy dz  if  is the density..

(ii) In cylindrical co-ordinates, we have φ
V

V r dr d dz 
(iii) In spherical polar co-ordinates, we have 2 sin θdr dθ dφ

V
V r 

Example 41. Find the volume of the tetrahedron bounded by the planes x = 0, y = 0, z = 0
and x + y + z = a. (M.U. II Semester, 2005, 2000)
Solution. Here, we have a solid which is bounded by x = 0, y = 0, z = 0 and x + y + z = a
planes.
The limits of z are 0 and a – x – y, the limits of y are 0 and 1 – x,
the limits of x are 0 and a.

V =
0 0 0

  

    
a a x a x y

x y z
dx dy dz  =  00 0

  

  
a a x a x y

x y
z dx dy

=
0 0

( )
a a x

x y
a x y dx dy



 
  

=
2

0 02

a xa

x

yay xy dx




 
   

=
2

0

( )( ) ( )
2

a a xa a x x a x dx
 

     
=

2 2
2 2

0 2 2
a a xa ax ax x ax dx
 

       
=

2 2

0 2 2
 

   
 

a a xax dx

=
2 2 3 3

3

0

1 1 1.
2 2 6 2 2 6 6

           
  

a
a ax x ax a . Ans.

Example 42. Find the volume of the cylindrical column standing on the area common to the
parabolas y2 = x, x2 = y and cut off by the surface z = 12 + y – x2. (U.P., II Sem., Summer 2001)
Solution. We have,

y2 = x
x2 = y
z = 12 + y – x2

V =
2

2

1 12

0 0

x y x

x
dx dy dz

 

    = 
2

1
2

0
(12 )

x

x
dx y x dy  

=
2

21
2

0
12

2
 

   
 

x

x

ydx y x y

O Y

X

z = 0
dxdy

z = a–x–y

x + y + z = a

Z

y = x2

x = y2

O X

Y

X

Y
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= 
41

5/ 2 2 4

0
12 12

2 2
x xx x x x dx

 
      

 

= 
12 5 5

3/2 7 / 2 3

0

2 212 4
3 4 7 10 5

x x xx x x
 

      
 

=
1 2 1 1 1 2 1 18 4 4
4 7 10 5 4 7 10 5

           = 
560 35 40 14 28 569

140 140
   

 Ans.

Example 43. A triangular prism is formed by planes whose equations are ay = bx, y = 0 and
x = a. Find the volume of the prism between the planes z = 0 and surface z = c + xy.

(M.U. II Semester 2000; U.P., Ist Semester, 2009 (C.O) 2003)

Solution. Required volume =
0 0 0

bxa c xya dz dy dx


  
=

0 0
( ) 

bxa a c xy dy dx

=
2

0 0
2

bx
a axycy dx
 

  
 

=
2 2 2 4

3
2 20 0 0

2 42 2
     

            
     

a aa cbx b bc x b xx dx
a aa a

=
2 2

(4 )
2 8 8

abc b a ab c a b   Ans.

2.14 VOLUME OF SOLID BOUNDED BY SPHERE OR BY CYLINDER
We use spherical coordinates (r, , ) and the cylindrical coordinates are (, , z) and the
relations are x =  cos , y =  sin .
Example 44. Find the volume of a solid bounded by the spherical surface x2 + y2 + z2 = 4a2

and the cylinder x2 + y2 – 2 a y = 0.

Solution. x2 + y2 + z2 = 4a2 ...(1)

x2 + y2 – 2 a y = 0 ...(2)
Considering the section in the positive quadrant of the
xy-plane and taking z to be positive (that is volume above
the xy-plane) and changing to polar co-ordinates,
(1) becomes

r2 + z2 = 4a2   z2 = 4 a2 – r2

 z = 2 24 a r

(2) becomes r2 – 2 a r sin  = 0  r = 2a sin 

Volume = dx dy dz
=

2 2/2 2 sin 4

0 0 0
4

  
  

a a r
d r dr dz (Cylindrical coordinates)

z = c + xy

z = 0
Y

X

Z

x = a

ay = bx

O

Y

X X

Y

(0, a)

O
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=  
2 2/2 2 sin 4

00 0
4

   
a a rd r dr z  = 

/2 2 sin
2 2

0 0
4 . 4

 
  

a
d r dr a r

=
2 sin/2

2 2 3/2

0 0

14 (4 )
3

a

d a r
       = 

/2
2 2 2 3/2 3

0

4 (4 4 sin ) 8
3


       a a a d

=
3/2 /2

3 3 3 3

0 0

4 8 4( 8 cos 8 ) (1 cos )
3 3

 
        aa a d d

=
3 / 2

0

32 1 31 cos 3 cos
3 4 4
a d

       
 

=
/ 23 3

0

32 1 3 32 1 3sin 3 sin
3 12 4 3 2 12 4
a a                

 = 
332 2

3 2 3
a    

 Ans.

Example 45. Find the volume enclosed by the solid
/ / /

           
     

2 3 2 3 2 3x y z
a b c

 = 1

Solution. The equation of the solid is
2/3 2/3 2/3

           
     

x y z
a b c  = 1

Putting
1/3

 
 
 

x
a = u  x = a u3  d x = 3 au2 du

1/3
 
 
 

y
b = v  y = b v3  d y = 3 bv2 dv

1/3
 
 
 

z
c = w  z = c w3  d z = 3 c w2 dw

The equation of the solid becomes
u2 + v2 + w2 = 1 ...(1)

V = dx dy dz ...(2)
On putting the values of dx, dy and dz in (2), we get

V = 2 2 227abc u v w du dv dw ...(3)
(1) represents a sphere.
Let us use spherical coordinates.

u = r sin  cos , v = r sin  sin ,
w = r cos , du dv dw = r2sin  dr d d

On substituting spherical coordinates in (3), we have

V =
1 /2 /2

2 2 2 2 2 2

0 0 0
27 . 8 sin cos . sin sin

 

    
     r

abc r r

. r2 cos2 . r2 sin  dr d d

=
1 / 2 / 2

8 2 2 5 2

0 0 0
216 sin cos sin cos

r
abc r dr d d

 

    
       

=
19

0

3 3 3
32 2 2216 .

9 2 3 92
2

ra b c

   
    
            

 

 = 

33 3 31 1 22 224 . . . .
2 23 9

2

abc
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=

2
1 1 32!2 2 26 . .

2 ! 7 5 3 3
2 2 2 2

abc

  
  
  

   
   
   

 =
1 1 46 . .
4 357 5 3

2 2 2

abc abc  
     
     
     

Ans.
Example 46. Find the volume bounded above by the sphere x2 + y2 + z2 = a2 and below by
the cone x2 + y2 = z2. (U.P. II Semester 2002)
Solution. The equation of the sphere is x2 + y2 + z2 = a2 ...(1)
and that of the cone is   x2 + y2 = z2 ...(2)
In polar coordinates x = r sin  cos , y = r sin  sin , z = r cos 
The equation (1) in polar co-ordinates is

(r sin  cos )2 + (r sin  sin )2 + (r cos )2 = a2

 r2 sin2  cos2  + r2 sin2  sin2  + r2 cos2  = a2

 r2 sin2  (cos2  + sin2 ) + r2 cos2  = a2

 r2 sin2  + r2 cos2  = a2

 r2 (sin2  + cos2 ) = a2

 r2 = a2      r = a
The equation (2) in polar co-ordinates is

(r sin  cos )2 + (r sin  sin )2 = (r cos )2

 r2 sin2  (cos2  + sin2 ) = r2 cos2     r2 sin2  = r2 cos2 

 tan2  = 1     tan  = 1   = 4




Thus equations (1) and (2) in polar coordinates are respectively,

r = a and  = 
4




The volume in the first octant is one fourth only.

Limits in the first octant : r varies 0 to a,  from 0 to 4


 and  from 0 to 2


.

The required volume lies between x2 + y2 + z2 = a2 and x2 + y2 = z2.

V = 2 4 2

0 0 0
4 sin

 

    
a

r dr d d  = 
3

2 4

0 0 0
4 sin

3

a
rd d

 
 

      
=    

3 3 3
2 4 2 4 2

000 0 0

4 4 14 sin . cos 1
3 3 3 2

    
               a a ad d d

= 32 11
3 2

a    
 

Ans.

2.15 VOLUME OF SOLID BOUNDED BY CYLINDER OR CONE
We use cylindrical coordinates (r, , z).
Example 47. Find the volume of the solid bounded by the parabolic y2 + z2 = 4x and the
plane x = 5.
Solution. y2 + z2 = 4x, x = 5

V =
2 2

2

5 2 4 5 2 4

0 2 4 0 0 0
4

 

  
     

x x y x x y

x x y
dx dy dz dx dy dz

x  + y  = z22 2

x  + y = a22 2 2 + z

Z  

O 

X

Y
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y + z = 4

X

Y

Z

x  + y  = 42 2

O

=  
25 2 5 24 2

00 0 0 0
4 4 4     

x xx ydx dy z dx dy x y

=
25

2 1

0 0

44 4 sin
2 2 2

    
xy x ydx x y

x
 = 

5 5

0 0
4 0 2 4

2
x dx x dx          

=
52

0
4 50

2
 

    
x Ans.

Example 48. Calculate the volume of the solid bounded by the following surfaces :
z = 0, x2 + y2 = 1, x + y + z = 3

Solution. x2 + y2 = 1 ...(1)
x + y + z = 3 ...(2)

z = 0 ...(3)

Required Volume =  dx dy dz  =  30 (3 )x ydx dy z x y dx dy     
On putting x = r cos , y = r sin , dx dy = r d dr, we get

= (3 cos sin )r r r d dr      = 
2 1

2 2

0 0
(3 cos sin )d r r r dr


     

=
12 3 32

0 0

3 cos sin
2 3 3

  
      
  r r rd  = 

2

0

3 1 1cos sin
2 3 3

       
  d

=
2

0

3 1 1sin cos
2 3 3


       

 = 
1 1 13 sin 2 cos 2 3
3 3 3

        Ans.

Example 49. Find the volume bounded by the cylinder x2 + y2 = 4 and the planes y + z = 4
and z = 0.

Solution. x2 + y2 = 4  y = 24  x
y + z = 4  z = 4 – y and z = 0

x varies from –2 to + 2.

V = dx dy dz  = 
2

2

2 4 4

2 4 0

 

    
x y

x
dx dy dz

=  
2

2

2 4 4
02 4

 

   
x y

x
dx dy z

=
2

2

2 4

2 4
(4 )



  
 

x

x
dx dy y  = 

2

2

422

2 4

4
2

x

x

ydx y



 

 
 

 
=

2
2 2 2 2

2

1 14 4 (4 ) 4 4 (4 )
2 2

          dx x x x x

=
22

2 2 1

2 2

48 4 8 4 sin
2 2 2



 

       x xx dx x  = 16 Ans.

Example 50. Find the volume in the first octant bounded by the cylinder x2 + y2 = 2 and the
planes z = x + y, y = x, z = 0 and x = 0. (M.U. II Semester 2005)
Solution. Here, we have the solid bounded by
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x2 + y2 = 2 (cylinder)
                             (or r2 = 2)

z = x + y  z = r (cos  + sin )  (plane)
y = x  r sin  = r cos   (plane)

 tan  = 1  q = 
4


x = 0  r cos  = 0  cos  = 0   = 
2


z varies from 0 to r (cos  + sin )
r varies from 0 to 2

 varies from 
4


 to 
2


 V =
/2 2 (cos sin )

/4 0 0

   

    
  

r

r z
r dr d dz

=  
/2 2 (cos sin )

0/4 0

   

   
  r

r
r z dr d

=
/2 2

2

/4 0
(cos sin )



   
    r

r dr d

=
23/2

/4 0
(cos sin )

3



  

 
      r d  = 

/2

/4

2 2 (cos sin )
3



  
    d

=   / 2
/ 4

2 2 sin cos
3


    = 

2 2 1 1 2 2(1 0)
3 32 2

       
  

Ans.

Example 51. Show that the volume of the wedge intercepted between the cylinder
x2 + y2 = 2ax and planes z = mx, z = nx is (m – n) a3. (M.U. II Semester, 2000)
Solution. The equation of the cylinder is x2 + y2 = 2 a x
we convert the cartesian coordinates into cylindrical coordinates.

x = r cos 
y = r sin 

x2 + y2 = 2ax  r2 = 2ar cos 
 r = 2a cos 

r varies from 0 to 2a cos 

 varies from 
2


  to 
2


and z varies from z = nx (z = nr cos ) to z = m x (z = m r cos )

V =
/2 2 cos cos

0 0 cos
2

  

    
  

a mr

r z nr
r dr d dz

=  
/ 2 2 cos cos

cos0 0
2

a mr
nrr

r z dr d
  

  
 

=
/2 2 cos

0 0
2 .( ) cos

 

  
   

a

r
r m n r dr d

=
/2 2 cos

2

0 0
2 ( ) cos

 

  
   

a

r
m n r dr d


=
/4y = x

Y

O Y

X

Z


=
/4y = x  = /2 

Y

X

x  + y  = 222

r =  2

x = 0

O

r = 2a cos 

X

Y

O

z = nx

z = mx
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X 

Y 

Z 

O az = 0

z = a  – r22

=
2 cos3/2

0 0

2 ( ) cos
3




 

 
   

 
a

rm n d  =
3/2

3

0

82 ( ) cos cos
3



 
    am n d

=
/ 2

3 4

0

16( ) cos
3

m n a d


 


   = 3 316( ) 3 1. . . . ( )

3 4 2 2
m n a m n a 

   Ans.

Example 52. A cylindrical hole of radius b is bored through a sphere of radius a. Find the
volume of the remaining solid. (M.U. II Semester 2004)
Solution. Let the equation of the sphere be

x2 + y2 + z2 = a2

Now, we will solve this problem using cylindrical coordinates
x = r cos 
y = r sin 
z = z

Limits of z are 0 and 2 2 2( ) a x y i.e., 2 2a r
Limits of r are a and b.

and the limits of  are 0 and 2


V =
2 2/2

0 0
8

 

   
  

a a r

r b z
r dr d dz  =  

2 2/2

00
8

 

  
 

a a r

r b
z r dr d

=
/2

2 2 1/2

0
8 ( ) .



  
  

a

r b
a r r dr d

=
2 2 3/2/2

0

( ) 18 .
3 / 2 2



 

      
  

a

b

a r d  = 
3/ 2

2 2 2
0

8 ( )
3

a b d


   
=  

3 3
/ 22 2 2 22 2

0
8 4( ) ( )
3 3

a b a b 
    Ans.

Example 53. Find the volume cut off from the paraboloid

 
2

2 yx z
4

 = 1 by the plane z = 0. (M.U. II Semester 2005)

Solution. We have
2

2
4

 
yx z = 1 (Paraboloid) ...(1)

z = 0 (x-y plane) ...(2)

z varies from 0 to 1 – x2 – 
2

4
y

y varies from 22 1 x   to 22 1 x
x varies from –1 to 1.

V =  dx dy dz  = 

2
2 2

2

1 2 1 1 4

1 2 1 0

yx x

x
dx dy dz

 
    

 
    

=
2

2

21 2 1
2

1 2 1
1

4



  

 
   

  
x

x

yx dx dy

=
2 21 2 1

2

0 0
4 1

4

  
   

  
x yx dx dy

X 

Y 

Z 

–2 

–1 

2 O
1
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=

22 131
2

0 0

4 (1 ) .
12


 
  

 
x

yx y dx

=
1

2 2 2 3/ 2

0

84 (1 ) . 2 1 (1 )
12

x x x d x      
=

1
2 3/ 2 2 3/ 2

0

24 2(1 ) (1 )
3

x x d x     
On putting x = sin , we get

V =
1 /2

2 3/2 2 3/2

0 0

4 164 (1 ) ( sin ) cos
3 3

x dx d


      
=

/2
4

0

16 16 3 1cos . . .
3 3 4 2 2

 
     d Ans.

Example 54. Find the volume enclosed between the cylinders x2 + y2 = a x, and z2 = a x.
Solution. Here, we have x2 + y2 = ax ...(1)

z2 = ax ...(2)

V = dx dy dz
=

2

20

a ax x ax

ax x ax
dx dy dz



      = 
2

2 20 0
2

a ax x ax

a x
dx dy dz



   

=  
2

2 00
2

a ax x ax

ax x
dx dy z



   = 
2

20
2



  
a ax x

ax x
dx dy ax  =  

2

20
2 

 
a ax x

ax x
ax dx y

=  2

0 0
2 2 4   

a a
ax dx ax x a x a x dx

Putting x = a sin2 so that dx = 2a sin  cos  d, we get

V =
/2

2 2

0
4 sin sin . 2 sin cos


     a a a a a d

=
/2

3 3 2

0
8 sin cos


  a d

=
3

3 3

3 32 162 28 4
157 5 3 32 .

2 2 2 2

 
aa a Ans.

EXERCISE 2.10

1. Find the volume bounded by the coordinate planes and the plane.  
x y z
a b c  = 1 Ans. 6

abc

2. Find the volume bounded by the cylinders y2 = x and x2 = y between the planes z = 0 and

x + y + z = 2. Ans. 11
30

3. Find the volume bounded by the co-ordinate planes and the plane.
l x + m y + n z = 1 (A.M.I.E.T.E. Winter 2001) Ans. 

1
6 l m n

4. Find the volume of the sphere x2 + y2 + z2 = a2 by triple integration. (AMIETE, June 2009) Ans. 34
3
a

X O  X  

Y  

Y

y = 2 1 – x2

y = –2 1 – x2

x  + y  = 12
2

4

x  + y  = ax 2 2
(a, 0)

z = a x
2

O 

Y

X 

Z
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5. Find the volume of the ellipsoid 
2 2 2

2 2 2 
x y z
a b c

 = 1 Ans. 4
3
a b c

6. Find the volume bounded by the cylinder x2 + y2 = a2 and the planes y + z = 2a and z = 0.
(M.U. II Semester 2000, 02, 06) Ans. 2a3

7. Find the volume bounded by the cylinder x2 + y2 = a2 and the planes z = 0 and y + z = b.
Ans. a2b

8. Find the volume of the region bounded by z = x2 + y2,  z = 0,  x = – a,  x = a and y = – a, y = a.

Ans. 48
3

a
9. Find the volume enclosed by the cylinder x2 + y2 = 9 and the planes x + z = 5 and z = 0.

Ans. 45 – 36
10. Compute the volume of the solid bounded by x2 + y2 = z, z = 2x.(A.M.I.E., Summer 2000)

Ans. 2
11. Find the volume cut from the paraboloid 4 z = x2 + y2 by plane z = 4.

(U.P. I Semester, Dec. 2005) Ans. 32
12. By using triple integration find the volume cut off from the sphere x2 + y2 + z2 = 16 by the plane

z = 0 and the cylinder x2 + y2 = 4 x. Ans. 64 (3 4)
9

 

13. The sphere x2 + y2 + z2 = a2 is pierced by the cylinder x2 + y2 = a2 (x2 – y2).

Prove that the volume of the sphere that lies inside the cylinder is 
38 5 4 2

3 4 3 3
 

  
  

a .

14. Find the volume of the solid bounded by the surfaces z = 0, 3 z = x2 + y2 and x2 + y2 = 9.

(A.M.I.E.T.E., Summer 2005) Ans.
27

2


15. Obtain the volume bounded by the surface z = 1 1x yc
a b

       
   

 and a quadrant of the elliptic cylinder

2 2

2 2
x y
a b

 = 1, z > 0 and where a, b > 0. Ans. abc  (A.M.I.E.T.E., Dec. 2005)

16. Find the volume of the paraboloid x2 + y2 = 4z cut off by the plane z = 4. Ans. 32 

17. Find the volume bounded by the cone z2 = x2 + y2 and the paraboloid z = x2 + y2. Ans. 6


18. Find the volume enclosed by the cylinders x2 + y2 = 2ax and z2 = 2 a x. Ans.
3128

15
a

19. Find the volume of the solid bounded by the plane z = 0, the paraboloid z = x2 + y2 + 2 and the cylinder
x2 + y2 = 4. Ans. 16

20. The triple integral dx dy dz  gives

(a) Volume of region (b)  Surface area of region T
(c) Area of region T (d)  Density of region T. (A.M.I.E.T.E., Dec. 2006, 2002) Ans. (a)

2.16   SURFACE AREA
Let z = f(x,y) be the surface S. Let its projection on the

x-y plane be the region A. Consider an element 8x. y in the
region A. Erect a cylinder on the element x. y having its
generator parallel to OZ and meeting the surface S in an
element of area s.

 x y = s cos ,
Where  is the angle between the xy-plane and the

tangent plane to S at P, i.e., it is the angle between the Z-
axis and the normal to S at P.
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The direction cosines of the normal to the surface F (x, y, z) = 0 are proportional to

, ,F F F
x y z

  
  

 The direction of the normal to S [F = f (x, y) – z] are proportional to , , 1z z
x y
 

 
 

 and

those of the Z-axis are 0, 0 , 1.

Direction cosines = 
2 2 22 2 2

1, , ,

1 1 1

zz
yx

z z z z z z
x y x y x y

  

                                              

Hence                         cos  = 
22

1

1z z
x y

              

 (cos  = l1l2 + m1 m2 + n1 n2)

S = cos
x y 

  = 
22

1z z x y
x y

                
;   S = 

22

1
A

z z dx dy
x y

              


Example 55. Find the surface area of the cylinder x2 + z2 = 4 inside the cylinder x2 + y2 = 4.
Solution. x2 + y2 = 4

2 2 0 or , 0z z x zx z
x x z y
  

    
  

22

1z z
x y

           
 = 

2

2 1x
z

  = 
2 2

2
x z

z


 = 2
4

4 x

Hence, the required surface area = 
2 22

2 4

0 0
8 1

x z z dx dy
x y

               
 

= 
22 4

0 0 2

28
4

x
dx dy

x




   = 

22 4
00 2

116 [ ]
4

xy dx
x




  = 

2 2
0 2

116 [ 4 ]
4

x dx
x






= 
2

0
16 dx  = 2

016 ( )x  = 32 Ans.
Example 56. Find the surface area of the sphere x2 + y2 + z2 = 9 lying inside the cylinder
x2 + y2 = 3y.
Solution. x2 + y2 + z2 = 9

2 2
z

x z
x





= 0,    
z x
x z


 


2 2
z

x z
y



 = 0,  

z y
y z


 


22

1z z
x y

              
 = 

2 2

2 2 1x y
z z

   = 
2 2 2

2
x y z

z
 

 = 2 2
9

9 x y 
= 2

9
9 r

cos
sin

x r
y r
  

   
x2 + y2 = 3y  or r2 = 3 r sin   or   r = 3 sin .

Hence, the required surface area

= 
22

1z z dx dy
x y

              
  = 

3sin/ 2

2
0 0

34
9

r d dr
r






   = 
/ 2 3sin

0 2
0

12
9

r drd
r







 

=  
/ 2

3sin2
0

0

12 [ 9 ]d r


    = 
/ 2

2

0

12 [ 9 9 sin 3] d
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= 
/ 2

0

36 ( cos 1) d


     = / 2
036 ( sin )     = 36 1

2
   

 
 = 18 ( – 2) Ans.

Example 57. Find the surface area of the section of the cylinder x2 + y2 = a2 made by the
plane x + y + z = a.
Solution. x2 + y2 = a2 ... (1)

x + y + z = a ... (2)
The projection of the surface area on xy-plane is a circle

x2 + y2 = a2

1
z
x





= 0    or 1z
x


 


1
z
y



 = 0    or 1

z
y


 


22

1z z
x y

           
= 2 2( 1) ( 1) 1     = 3

Hence the required surface area

= 

2 2 22

0 0

4 1
a a x z z dx dy

x y

                = 

2 2

0 0

4 3
a a x

dx dy


 

= 
2 2

0
0

4 3 [ ]
a

a xy dx  = 
2 2

0

4 3
a

a x dx

= 
2

2 2 1

0

4 3 sin
2 2

a
x a xa x

a
 

  
 

 = 
2

4 3 0
2 2

a 
 

 
= 

2
4 3

4
a 

  
 

 = 23 a Ans.

Example 58. Find the area of that part of the surface of the paraboloid of the paraboloid
y2 + z2 = 2 ax, which lies between the cylinder, y2 = ax and the plane x = a.
Solution. y2 + z2 = 2 ax ... (1)

y2 = ax ... (2)
x = a ... (3)

Differentiating (1), we get

2 zz
x



= 2 , z aa
x z





2 2
z

y z
y



 = 0,

z y
y z


 


22

1z z
x y

           
= 

2 2

2 2 1a y
z z

   = 
2 2

2 1a y
z



2 2

2 2

2

2

y z ax

z ax y

  
 

   

= 
2 2

2 1
2
a y
a x y





 = 
2 2 2

2
2

2
a y a x y

a x y
  


 = 

2

2
2

2
a a x

a x y




S = 
22

0

1
a ax

ax

z z
dx dy

x y


               = 
22

2
0

2
2

a ax

ax

y axa ax dx dy
ax y y ax

 
 

    
 

= 2
0

2
2

a ax

ax

a xa dx dy
ax y


   = 2

0

12
2

a ax

ax

a a x dx dy
ax y
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= 1

0

2 sin
2

axa

ax

ya a x dx
ax





 
  

 


= 
1 1

0

1 12 sin sin
2 2

a

a a x dx    
      

  = 
0

2
4 4

a

a a x dx          


= 
0

2
2

a

a a x dx
  = 3/2

0
2 [( 2 ) ]

2 2 3
aa a x

  

= 3/ 2 3/ 2[(3 ) ]
6

a a a
  = 

2
[3 3 1]

6
a

 Ans.

EXERCISE 2.11
1. Find the surface area of sphere x2 + y2 + z2 = 16. Ans. 64 
2. Find the surface area of the portion of the cylinder x2 + y2 = 4 y lying inside the sphere

x2 + y2 + z2 = 16. Ans. 64.
3. Show that the area of surfaces cz = xy intercepted by the cylinder x2 + y2 = b2

is 
2 2 2

A
c x y

dx dy
c

 
 , where A is the area of the circle x2 + y2 = b2, z = 0

Ans.
1

2 2 222 π ( )
3

c b c
c

 
  
 
 

4. Find the area of the portion of the sphere x2 + y2 + z2 = a2 lying inside the cylinder x2 + y2 = ax.
Ans. 2 ( – 2) a2

5. Find the area of the surface of the cone z2 = 3 (x2 + y2) cut out by the paraboloid z = x2 + y2 using surface
integral. Ans. 6

2.17 CALCULATION OF MASS
We have,

Volume = V
dx dy dz                        Density =  = f (x, y, z)

[Density = Mass per unit volume]             Mass = Volume × Density

Mass = V
dx dy dz                          ( , , )

V
Mass f x y z dx dy dz 

Example 59. Find the mass of a plate which is formed by the co-ordinate planes and the plane

1,x y z
a b c
    the density is given by  = k x y z. (U.P., I Semester, Dec., 2003)

Solution. The plate is bounded by the planes x = 0, y = 0, z = 0 and 1.x y z
a b c
  

Mass = dx dy dz   = 1 1

0 0 0
( )

z y zc b a
c b c dx dy dz k xyz

        
     

= 
1 1

0 0 0

z y zc b a
c b ck z dz y dy x dx

        
       = 

121

0 0
0

2

y zaz b cc b
c xk z dz y dy

       
 

 
  
 

 

= 
221

0 0
1

2

zc b
c a y zk z dz y dy

b c

  
 

   
    = 

22 1

0 0
1

2

zc b
ck a z yz dz y dy

c b

  
 

       
 

= 
22 3 21

20 0

21 1
2

zc b
ck a z y y zz dz y dy

c b cb
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= 

122 2 4 3

20
0

21 1
2 2 34

zb
cck a y z y y zz dz

c b cb

  
            

     


= 
4 4 42 2 4 3

20

21 1 1
2 2 34

ck a b z b z b zz dz
c c b cb

                 
       



= 
42 2 2 2

0

2 1
2 2 4 3

ck a b b b zz dz
c

        
  

  = 
42 2

0
1

2 12
ck a b z dz

c
  
  [Put z = c sin2 ]

= 
2 2 2

2 2 42
0

sin (1 sin ) (2 sin cos )
12

k a b c c c d


     

= 
2 2 2 2 / 2 2 8

0
sin (cos ) sin cos

12
k a b c d


      = 

2 2 2 2 / 2 3 9
0

sin cos
12

k a b c d


  

= 
2 2 2 2

3 1 9 1
2 2

12 3 9 22
2

k a b c
 

 
 = 

2 2 2 2 5
12 2 7

k a b c
  = 

2 2 2 (1) ( 5)
12 2 6 5 5

k a b c
 

 = 
2 2 2

720
k a b c

Ans.

2.18 CENTRE OF GRAVITY

, ,
x dx dy dz y dx dy dz z dx dy dz

x y z
dx dy dz dx dy dz dx dy dz

  
  

  
  
  

Example 60. Find the co-ordinates of the centre of gravity of the positive octant of the sphere
x2 + y2 + z2 = a2, density being given = k xyz.

Solution.  x  = V

V

x dx dy dz

dx dy dz








 = 
z dx dy dz

dx dy dz







 = 
2

V

V

x yz dx dy dz

xyz dx dy dz



Converting into polar co-ordinates, x = r sin  cos , y = r sin  sin , z = r cos ,
dx dy dz = r2 sin  dr d d

x =  

/ 2 / 2 2 2
0 0 0

/ 2 / 2 2
0 0 0

( sin cos ) ( sin sin ) ( cos ) ( sin )

( sin cos ) ( sin sin ) ( cos ) ( sin )

a

a

r r r r dr d d

r r r r dr d d

 

 

       

       

  
  

= 

/ 2 / 2 6 4 2
0 0 0

/ 2 / 2 5 3
0 0 0

sin cos sin cos

sin cos sin cos

a

a

r dr d d

r dr d d

 

 

     

     

  
  

= 

/ 2 / 22 4 6
0 0 0

/ 2 / 2 3 5
0 0 0

sin cos sin cos

sin cos sin cos

a

a

d d r dr

d d r dr

 

 

     

     

  
  

= 

/ 2 / 23 5 7

0 0 0
/ 2 / 22 4 6

0 0 0

cos sin
3 5 7

cos sin
2 4 6

a

a

r

r

 

 

      
     
     

            
     

 = 

7

6

1 1
3 5 7

1 1
2 4 6

a

a

    
           
    
           

 = 16
35

a

Similarly, y = z  = 
16
35

a
;       Hence, C.G. is 

16 16 16, ,
35 35 35

a a a 
 
 

Ans.
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2.19 MOMENT OF INERTIA OF A SOLID
Let the mass of an element of a solid of volume V be   x y z.

Perpendicular distance of this element from the x-axis = 2 2y z

M.I. of this element about the x-axis = 2 2x y z y z    

M.I. of the solid about x-axis = 2 2( )
V

y z dx dy dz 
M.I. of the solid about y-axis = 2 2( )

V
x z dx dy dz 

M.I. of the solid about z-axis = 2 2( )
V

x y dx dy dz 
The Perpendicular Axes Theorem
If Iox and Ioy be the moments of inertia of a lamina about x-axis and y-axis respectively and Ioz

be the moment of inertia of the lamina about an axis perpendicular to the lamina and passing
through the point of intersection of the axes OX and OY.

IOZ = IOX + IOY
The Parallel Axes Theorem
M.I. of a lamina about an axis in the plane of the lamina equals the sum of the moment of

inertia about a parallel centroidal axis in the plane of lamina together with the product of the mass
of the lamin a and square of the distance between the two axes.

IAB = IXX + My–2

Example 61. Find M.I. of a sphere about diameter.
Solution. Let a circular disc of  x thickness be
perpendicular to the given diameter XX at a distance x
from it.

The radius of the disc = 
2 2a x

Mass of the disc =   (a2 – x2)
Moment of inertia of the disc about a diameter perpendicular on it

= 21
2

MR  = 2 2 2 21 [ ( )] ( )
2

a x a x     = 2 2 21 ( )
2

a x  

M.I. of the sphere = 2 2 21 ( )
2

a

a
a x dx


    = 4 2 2 4

0

12 [ 2 ]
2

a
a a x x dx     

  

= 
2 3 5

4

0

2
3 5

a
a x xa x

 
    

 
 = 

5 5
5 2

3 5
a aa

 
    

 

= 58
15

a   = 3 22 4
5 3

a a  
 

 = 22
5

M a Ans.

Example 62. The mass of a solid right circular cylinder of radius a and height h is M. Find
the moment of inertia of the cylinder about (i) its axis (ii) a line through its centre of gravity
perpendicular to its axis (iii) any diameter through its base.
Solution. To find M.I. about OX. Consider a disc at a distance x from O at the base.

M.I. of the about OX, = 
2 2( )

2
a dx a 

 = 
4

2
a dx 

(i) M.I. of the cylinder about OX
4

0 2
h a dx 
  =  

4

02
ha x 

 = 
4

2
a h 

 = 
2

2( )
2

aa h    = 
2

2
M a
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(ii) M.I. of the disc about a line through C.G. and
perpendicular to OX.
IOX + IOY = IOZ
IOX + IOX = IOZ

IOX = 
1
2 OZI

M.I. of the disc about a line through

C.G. = 
21

2 2
M a 

  
 

 = 
2

4
M a

M.I. of the disc about the diameter = 
2

2

4
a dx a

  
  
 

M.I. of the disc about line GD = 
22

2( )
4 2

a dx ha dx x       
 

Hence, M.I. of cylinder about GD = 
22

2
0 0

( )
4 2

h ha hdx a dx x       
  

=  
32 2

0
0

4 4 2

h
ha a hx x

         
   

 = 
3 32 2 2

4 3 2 3 2
a h a h a h              

     

= 
2 2 3

4 12
a h a h   

  = 
2 2

4 12
M a M h



(iii) M.I. of cylinder about line OB (through) base

IOB = 
2

2G
hI M    

 
 = 

2 2 2

4 12 4
M a M h M h

   = 
2 2

4 3
M a M h

 Ans.

Example 63. Find the moment of inertia and radius of gyration about z-axis of the region in

the first octant bounded by 1x y z
a b c
   .

Solution. Let r be the density.  M.I. of tetrahedron about z-axis
= 2 2( ) ( )dx dy dz x y 

= 1 12 2
0 0 0

( )
x x ya b c
a a bdx x y dy dz

        
        = 

11 2 2
00 0

( ) ( )
x yx ca b a badx x y dy z

           

= 
1 2 2

0 0
( ) 1

xa b
a x ydx x y dy c c

a b

  
 

     
  

= 
2 31 2 2

0 0
1 1

xa b
a x x y x yc dx x y dy

a b a b

  
 

             
    

 

= 
12 2 3 4

2
0

0

1 1
2 3 4

xb
aa x x y y x yc dx x y

a b a b

  
              

    


= 
22

2 2
0

1 1 1
2

a x x x xc dx x b b
a a b a

                
     


3 43 4

1 1 1
3 4
b x x b x

a a b a

               
      

= 
2 2 4 42 2 2

2
0

1 1 1 1
2 3 4

a x x x b x b xb c x dx
a a a a
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= 
2 42 2

0
1 1

2 12
a x x b xbc dx

a a

           
     



= 
3 4 2 2 3 4

2
2 2 3 40

1 2 4 6 41
2 12

a x x b x x x xbc x dx
a aa a a a

    
                   



= 
3 4 5 2 2 2 3 4

2 2 3 40
0

1 2 6 4
2 3 2 125

a
a x x x b x x x xbc x dx

a aa a a a

    
                   



= 
3 3 3 2

0

1 2 2
2 3 2 5 12 5

a a a a b abc a a a a
                     



= 
3 2

60 60
a abbc
 

  
 

 = 2 2( )
60
abc a b 

Radius of gyration = 
. .M I

Mass  = 

2 2( )
60

6

abc a b

abc




  = 
2 21 ( )

10
a b Ans.

2.20  CENTRE OF PRESSURE
The centre of pressure of a plane area immersed in a fluid is the point at which the resultant

force acts on the area.
Consider a plane area A immersed vertically in a homogeneous liquid. Let x-axis be the line of

intersection of the plane with the free surface. Any line in this plane and perpendicular to x-axis is
the y-axis.

Let P be the pressure at the point (x, y). Then the pressure on elementary area x y is P x y.

Let ( , )x y  be the centre of pressure. Taking moment about y-axis.

A
x P dx dy  = A

Px dx dy

x = A

A

Px dx dy

P dx dy



Similarly, y = A

A

Py dx dy

P dx dy



Example 64. A uniform semi-circular lamina is immersed in a fluid with its plane vertical and
its bounding diameter on the free surface. If the density at any point of the fluid varies as the
depth of the point below the free surface, find the position of the centre of pressure of the lamina.
Solution. Let the semi-circular lamina be

x2 + y2 = a2

By symmetry its centre of pressure lies on OY. Let ky be the density of  the fluid.

  y  = A

A

Py dx dy

P dx dy



= 
( )

( )
A

A

y y dx dy

y dx dy







( = ky)

= 
( . )

( . )
A

A

ky y y dx dy

ky y dx dy



 = 
3

2
A

A

y dx dy

y dx dy



 = 

2 2

2 2

3
0

2
0

a a x

a

a a x

a

dx y dy

dx y dy









 

 

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



136 Multiple Integral

= 

2 2

2 2

4

0

3

0

4

3

a x
a

a

a x
a

a

ydx

ydx









 
 
 

 
 
 





 = 

2 2 2

2 2 3/2

( )3
4 ( )

a

a
a

a

dx a x

dx a x













= 

/ 2 2 2 2 2
/ 2

/ 2 2 2 2 3/ 2
/ 2

( cos ) ( sin )3
4 ( cos ) ( sin )

a d a a

a d a a






 

   

   




(Put x = a sin )

= 

/ 2 5
/ 2

/ 2 4
/ 2

cos3
4 cos

da

d






 

 

 




 = 

/ 2 5
0

/ 2 4
0

2 cos3
4 2 cos

da

d





 

 




 = 

4 2
3 5 3

3 14
4 2 2

a


 


 = 
32
15

a
 Ans.

EXERCISE 2.12

1. Find the mass of the solid bounded by the ellipsoid 
2 2 2

2 2 2 1x y z
a b c

    and the co-ordinate planes, where

the density at any point P (x, y, z) is k xyz. Ans. P
2. If the density at a point varies as the square of the distance of the point from XOY plane, find the mass

of the volume common to the sphere x2 + y2 + z2 = a2 and cylinder x2 + y2 = ax.

Ans. 54 8
15 2 15

k a   
 



3. Find the mass of the plate in the form of one loop of leminscate r2 = a2 sin 2 , where  = k r2.

Ans. 
4π

16
k a

4. Find the mass of the plate which is inside the circle r = 2a cos  and outside the circle r = a, if the
density varies as the distance from the pole.

5. Find the mass of a lamina in the form of the cardioid r = a (1 + cos ) whose density at any point varies

as the square of its distance from the initial line. Ans.  
421 π k

32
a

6. Find the centroid of the region in the first octant bounded by + + = 1x y z
a b c . Ans.  , ,

4 4 4
a b c 

 
 

7. Find the centroid of the region bounded by z = 4 – x2 – y2 and xy-plane. Ans. 
40, 0,
3

 
 
 

8. Find the position of C.G.. of the volume intercepted between the parallelepiped x2+y2 = a(a – z) and the

plane z = 0. Ans. 0, 0,
3
a 

 
 

9. A solid is cut off the cylinder x2 + y2 = a2 by the plane z = 0 and that part of the olane z = mx for which
z is positive. The density of the solid cut off at any point varies as the height of the point above plane

z = 0. Find C.G. of the solid. Ans.
64=
45 π

maz

10. If an area is bounded by two concentric semi-circles with their common bounding diameter in a free

surface, prove that the depth of the centre of pressure is 
2 2

2 2
3 π ( ) ( )
16

a b a b
a ab b
 

 

11. An ellipse 
2 2

2 2 1x y
a b

   is immersed vertically in a fluid with its major axis horizontal. If its centre be

at depth h, find the depth of its centre of pressure. Ans.
2

4
bh

h
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12. A horizontal boiler has a flat bottom and its ends are plane and semi-circular. If it is just full of water,
show that the depth of centre of pressure of either end is 0.7 × total depth approximately.

13. A quadrant of a circle of radius a is just immersed vertically in a homogeneous liquid with one edge in

the surface. Determine the co-ordinates of the centre of pressure. Ans.
3 3 π,
8 16
a a 

 
 

14. Find the product of inertia of an equilateral triangle about two perpendicular axes in its plane at a vertex,
one of the axes being along a side.

15. Find the M.I. of a right circular cylinder of radius a and height h about axis if density varies as distance

from the axis. Ans. 52 π
5

k a h

16. Compute the moment of inertia of a right circular cone whose altitude is h and base radius r, about (i)

the axis of symmetry (ii) the diameter of the base.                Ans.
4 2

2 2π π( ) ( ) (2 3 )
10 60
h r h ri ii h r

17. Find the moment of inertia for the area of the cardioid r = a (1 – cos ) relative to the pole.

Ans. 
435 π

16
a

18. Find the M.I. about the line  =  
π
2  of the area enclosed by r = a (1 + cos ).

19. Find the moment of inertia of the uniform solid in the form of octant of the ellipsoid
2 2 2

2 2 2 1 aboutx y z OX
a b c

   Ans. 2 2( )
5
M b c

20. Prove that the moment of inertia of the area included between the curves y2 = 4 ax and x2 = 4 ay about

the x-axis is 2,144
35

M a , where M is the mass of area included between the curves.

21. A solid body of density p is the shape of solid formed by revolution of the cardioid r = a (1 + cos )
about the initial line. Show that its moment of inertia about a straight line through the pole perpendicular

to the initial line is 
5352 .

105
l a  

 
 (U. P. II Semester, Summer 2001)

22. Find the product of inertia of a disc in the form of a quadrant of a circle of radius ‘a’ about bounding

radii.  (U. P. II Semester, Summer 2002) Ans.
4

4
a



23. Show that the principal axes at the origin of the triangle enclosed by x = 0, y = 0, 1x y
a b
   are inclined

at angles  and 
πα
2

  to the x-axis, where a = 1
2 2

1 tan
2

ab
a b

  
   

   (U.P. II Semester Summer 2001)

Choose the correct answer:

24. The triple integral T
dx dy dz  gives

(i) Volume of region T (ii) Surface area of region T
(ii) Area of region T (iv) Density of region T. (A.M.I.E.T.E. 2002)

Ans. (i)
25. The volume of the solid under the surface az = x2 + y2 and whose base R is the circle x2 + y2 = a2

is given as

(i) 2a


(ii)
3

2
a

Ans. (ii)

(iii) 34
3

a (iv) None of the above. [U.P., I. Sem. Dec. 2008]
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3.1 DEFINITION
An equation which involves differential co-efficient is called a differential equation.
For example,

1.
2

2
1
1

dy x
dx y





2. 

2

2 2 8 0d y dy y
dxdx

   3. 

3
2 2 2

21 dy d yk
dx dx

     
   

4. ,u ux y nu
x y

 
 

 
5.

2z z
x y y
 


  

There are two types of differential equations :
(1) Ordinary Differential Equation

A differential equation involving derivatives with respect to a single independent variable is
called an ordinary  differential equation.

(2) Partial Differential Equation
A differential equation involving partial derivatives with respect to more than one independent
variable is called a partial differential equation.

3.2  ORDER AND DEGREE OF A DIFFERENTIAL EQUATION
The order of a differential equation is the order of the highest differential co-efficient present in the
equation. Consider

1.
2

2 sin .d q dq qL R E wt
dt cdt

   2.
22

2cos sin 8 tand y dyx x y x
dxdx

    
 

3.
3 22 2

21 dy d y
dx dx

                
The order of the above equations is 2.
The degree of a differential equation is the degree of the highest derivative after removing

the radical sign and fraction.
The degree of the equation (1) and (2) is 1. The degree of the equation (3) is 2.

3.3  FORMATION OF DIFFERENTIAL EQUATIONS
The differential equations can be formed by differentiating the ordinary equation and
eliminating the arbitrary constants.
Example 1. Form the differential equation by eliminating arbitrary constants, in the following
cases and also write down the order of the differential equations obtained.
(a) y = A x + A2 (b) y = A cos x + B sin x (c) y2 = Ax2 + Bx + C.

(R.G.P.V. Bhopal, June 2008)
138
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Solution. (a) y = Ax + A2 ... (1)

On differentiation 
dy A
dx



Putting the value of A in (1), we get 
2dy dyy x

dx dx
    
 

Ans.

On eliminating one constant A we get the differential equation of order 1.
(b)  y = A cos x + B sin x

On differentiation sin cosdy A x B x
dx

  

Again differentiating
2

2 cos – sind y A x B x
dx

     
2

2 ( cos sin )d y A x B x
dx

  


2

2
d y y
dx

  
2

2 0d y y
dx

  Ans.

This is differential equation of order 2 obtained by eliminating two constants A and B.
(c)  y2 = Ax2 + Bx + C

On differentiation 2 2dyy Ax B
dx

 

Again differentiating 
22

22 2 2d y dyy A
dxdx

   
 

On differentiating again 
3 2 2

3 2 22 0d y dy d y dy d yy
dx dxdx dx dx

   
3 2

3 23 0d y dy d yy
dxdx dx

  Ans.

This is the differential equation of order 3, obtained by eliminating three constants A, B, C.

EXERCISE 3.1
1. Write the order and the degree of the following differential equations.

(i) 
2

2
2 0;d y a x

dx
        (ii) 

3
2 22

21 ;dy d y
dx dx

     
   

      (iii) 
3 42

2 4
2 0.d y dyx y y

dxdx

            

Ans. (i) 2,1  (ii) 2,2  (iii) 2,3
2. Give an example of each of the following type of differential equations.

(i) A linear-differential equation of second order and first degree Ans. Q, 1 (i)
(ii) A non-linear differential equation of second order and second degree    Ans. Q, 1 (ii)

(iii) Second order and third degree. Ans. Q 1 (iii)
3. Obtain the differential equation of which y2 = 4a(x + a) is a solution.

Ans.
2

2 22 0dy dyy xy y
dx dx

     
 

4. Obtain the differential equation associated with the primitive Ax² + By² = 1.

Ans.
22

2 0d y dy dyxy x y
dx dxdx

    
 

5. Find the differential equation corresponding to

      y = a e3x + bex. Ans.
2

2 4 3 0d y dy y
dxdx
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6. By the elimination of constants A and B, find the differential equation of which

y = ex (A cos x + B sin x) is a solution. Ans.
2

2 2 2 0d y dy y
dxdx

  

7. Find the differential equation whose solution is y = a cos (x = 3). (A.M.I.E., Summer 2000)

Ans. tan ( 3)dy x
dx

  

8. Show that set of function 
1,x
x

 
 
 

 forms a basis of the differential equation x2y + xy – y = 0.

Obtain a particular solution when y (1) = 1, y (1) = 2. Ans.
3 1
2 2
xy

x
 

3.4 SOLUTION OF A DIFFERENTIAL EQUATION
In the example 1(b), y = A cos x + B sin x, on eliminating A and B we get the differential
equation 2

2 0d y y
dx

 

y = A cos x + B sin x is called the solution of the differential equation 
2

2 0d y y
dx

  .

The order of the differential equation 
2

2 0d y y
dx

   is two and the solution

y = A cos x + B sin x contains two arbitrary constants. The number of arbitrary constants in
the solution is equal to the order of the differential equation.
An equation containing dependent variable (y) and independent variable (x) and free from

derivative, which satisfies the differential equation, is called the solution (primative) of the
differential equation.

3.5 DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE
We will discuss the standard methods of solving the differential equations of the following

types:
  (i) Equations solvable by separation of the variables.     (ii) Homogeneous equations.
(iii) Linear equations of the first order.                         (iv) Exact differential equations.

3.6 VARIABLES SEPARABLE
If a differential equation can be written in the form

( ) ( )f y dy x dx 

We say that variables are separable, y on left hand side and x on right hand side.
We get the solution by integrating both sides.
Working Rule:
Step 1. Separate the variables as   ( ) ( )f y dy x dx 

Step 2. Integrate both sides as    ( ) ( )f y dy x dx  
Step 3. Add an arbitrary constant C on R.H.S.

Example 2. Solve :
(2 log 1)

sin cos
dy x x
dx y y y





(UP, II 2008, U.P.B. Pharm (C.O.) 2005)

Solution. We have,      
(2log 1)

sin cos
dy x x
dx y y y
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Separating the variables, we get
(sin y + y cos y) dy = {x (2 log x + 1)} dx

Integrating both the sides, we get  (sin cos ) (2log 1)y y y dy x x dx C    
         cos sin (1) sin 2 logy y y y dy x xdx x dx C         


2 2 21cos sin cos 2 log
2 2 2
x x xy y y y x dx C

x
 

         
 




2 2

sin 2log
2 2
x xy y x x dx C    


2 2 2

sin 2 log
2 2 2
x x xy y x C    

 2sin logy y x x C  Ans.

Example 3. Solve the differential equation.
4 3 sec( ).dyx x y x y

dx
   (A.M.I.E.T.E., Winter 2003)

Solution. 4 3 sec( )dyx x y x y
dx

                 
3 secdyx x y xy

dx
    
 

Put v = xy, 
dv dyx y
dx dx

      
3 secdvx v

dx
 

 3sec
dv dx

v x
                 3cos dxv dv c

x
   

  sin v = 2
1

2
c

x
                 sin xy = 2

1
2

c
x

 Ans.

Example 4. Solve :       cos (x + y)dy = dx

Solution.     cos (x + y) dy = dx  sec( )d y x y
d x

 

On putting       x + y = z

So that      1 d y d z
d x d x

   1d y d z
d x d x

 

    1 secd z z
d x

   1 secd z z
d x

 

Separating the variables, we get

1 sec
d z dx

z



On integrating,

    
cos

cos 1
z dz dx

z


  
11

cos 1
dz x C

z
     

                   2

11
2cos 1 1

2

dz x Cz

 
 
   

   
 



     
211 sec

2 2
z dz x C    

      tan
2
zz x C  
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tan
2

x yx y x C
   

      tan
2

x yy C
  Ans.

Example 5. Solve the equation.
(2x2 + 3y2 – 7) x dx – (3x2 + 2y2 – 8) y dy = 0 (U.P. II Semester, Summer 2005)

Solution. We have
(2x2 + 3y2 – 7) x dx – (3x2 + 2y2 – 8) y dy = 0

Re-arranging (1), we get 
2 2

2 2
3 2 8
2 3 7

x dx x y
y dy x y

 


 
Applying componendo and dividendo rule, we get

2 2

2 2
5 5 –15

– – –1
x dx y dy x y
x dx y dy x y

 
      2 2 2 25

3 1
x dx y dy x dx y dy
x y x y

  
       

Multiplying by 2 both the sides, we get

               2 2 2 2
2 2 2 25

3 1
x dx y dy x dx y dy
x y x y

    
            

Integrating both sides, we get
log (x² + y² – 3) = 5 log (x² – y² – 1) + log C

 x² + y² – 3 = C (x² – y² – 1)5 Ans.
where C is arbitrary constant of integration.

EXERCISE 3.2
Solve the following differential equations :

1. tandx y dy
x
     Ans. x cos y = C         2. 

2

2

1

1

ydy
dx x





    Ans. sin–1 y = sin–1 x + C

3. 2 1/ 2 2(1 ) 1 0y x dy x y dx                Ans. 2 21 1y x C   
4. sec² x tan y dx + sec² y tan x dy = 0       Ans. tan x tan y = C
5. (1 + x²) dy – x y dx = 0 Ans. y² = C (1 + x²)
6. (ey + 1) cos x dx + ey sin x dy = 0 Ans. (ey + 1) sin x = C
7. 3 ex tan y dx + (1 – ex) sec² y dy = 0 Ans. (1 – ex)³ = C tan y
8. (ey + 2) sin x dx – ey cos x dy = 0 Ans. (ey + 2) cos x = C

9. 2x y ydy e x e
dx

   Ans.
3

3
y x xe e C  

10. 1 tan ( )d y y x
d x

   [Put y – x = z] Ans. sin (y – x) = ex+c

11.
2(4 ) 1d xx y

d y
  Ans. 1 4tan 2

2
x y x C 

 

12.
2(4 1)d y x y

d x
     [Hint. Put 4x + y +1 = z] Ans. 1 4 1tan 2

2
x y x C  

 

3.7 HOMOGENEOUS DIFFERENTIAL EQUATIONS

A differential equation of the form ( , )
( , )

dy f x y
dx x y
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is called a homogeneous equation if each term of f (x, y) and  (x, y) is of the same degree i.e.,
2

2
3
3

x y ydy
dx x x y






In such case we put   y = vx. and 
dvdy v x
dxdx



The reduced equation involves v and x only. This new differential equation can be solved by
variables separable  method.

Working Rule

Step 1. Put y = vx so that 
dvd y v x
dxd x

             Step 2. Separate the variables.

Step 3. Integrate both the sides. Step 4. Put yv
x

  and simplify..

Example 6. Solve the following differential equation
(2xy + x2) y = 3y2 + 2xy (A.M.I.E.T.E. Dec. 2006)

Solution. We have, (2xy + x2) 23 2dy y xy
dx

  
2

2
3 2
2

dy y xy
dx xy x






Put y = vx so that 
dy dvv x
dx dx

 

On substituting, the given equation becomes 
2 2 2 2

2 2
3 2 3 2

2 12
dv v x vx v vv x
dx vvx x

 
  




2 23 2 2

2 1
dv v v v vx
dx v

  





2

2
2 1

2 1
dv v v v dxx dv
dx v xv v

       

 2
2 1v dxdv

xv v
   
    log (v2 + v) log x + log c

 v2 + v = cx 
2

2
y y cx

xx
 

 y2 + xy = cx3

Example 7. Solve the equation :

sindy y yx
dx x x

 

Solution. sindy y yx
dx x x

  ... (1)

Put  y = vx in (1) so that  
dy dvv x
dx dx

 

sindvv x v x v
dx

  

      sindvx x v
dx

  sindv v
dx



Separating the variable, we get

       sin
dv dx

v
  cosecv dv dx C  

  log tan
2
v x C   log tan

2
y x C
x
  Ans.
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EXERCISE 3.3
Solve the following differential equations:

1. (y² – xy) dx + x²dy = 0 Ans. logx x C
y
 

2. (x² – y²) dx+2xy dy = 0   (AMIETE, June 2009) Ans.  x² + y² = ax

3. ( ) ( ).dyx y x y y x
dx

   Ans. logy xy a
x
 

4. x (x – y) dy + y² dx = 0     (U.P. B. Pharm (C.O.) 2005) Ans. y = x log C y

5.
2 0

2
dy x y
dx x y


 

   Ans. y – x = C (x + y)³         6.  tandy y y
dx x x

      Ans. sin y C x
x


7.
2

2
3

3
dy x y y
dx x


    Ans. 3x + y log x + Cy = 0   8.   

2 22
2

dy x y
dx x y


     Ans. 4y² – x² = 2

C
x

9. (x² + y²) dy = xy dx Ans.
2

2 log
2
x y C
y

  

10. x²y dx – (x³ + y³) dy = 0 Ans.
3

3 log
3

x y C
y


 

11. (y² + 2xy) dx + (2 x² + 3xy) dy = 0 (AMIETE, Summer 2004) Ans. xy² (x + y) = C
12. (2xy² – x³) dy + (y³ – 2yx²) dx = 0 Ans. y² (y² – x²) = Cx–2

13. (x³ – 3 xy²) dx + (y³ – 3 x²y) dy = 0, y (0) = 1 Ans. x4 – 6x² y² + y4 = 1
14. 2 xy² dy – (x³ + 2y³) dx = 0 Ans. 2y³ = 3x³ log x + 3x³ + C

15. sin siny yx dy y x dx
x x

   
 

Ans. cos logy x C
x
 

16. cos sin sin cos 0y y y y dyx y y y x x
x x x x dx

         
   

Ans. cos yx y a
x


17.
2 2y x ydy

dx x
 

 Ans. 2 2 2y x y C x  

18. (log log 1)dyx y y x
dx

     (AMIETE, Summer 2004) Ans. log y Cx
x


19.
2 2log log 0x xxy dx y x dy

y y
 

   
 

 given that y (1) = 0

Ans.
2 2

2 2 2
3log log 1

2 4 4
x x x y

yy y e
   

20. (1 ) 1 0
x x
y y xe dx e dy

y
 

    
 

  (AMIETE, June 2009) Ans.
x

yy xe e C
y

  

3.8 EQUATIONS REDUCIBLE TO HOMOGENEOUS FORM

Case I.
a b
A B


The equations of the form
dy ax + by + c=
dx Ax + By + C

can be reduced to the homogeneous form by the substitution if 
a b
A B
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       x = X + h,  y = Y + k               (h,k being constants)


d y d Y
d x d X



The given differential equation reduces to
( ) ( )
( ) ( )

d Y a X h b Y k c a X bY a h bk c
d X A X h B Y k C A X BY Ah B k C

       
 

       
Choose h, k so that      a h + b k + c = 0

A h + K k + C = 0

Then the given equation becomes homogeneous 
d Y a X bY
d X A X BY






Case II. If 
a b
A B
 then the value of h, k will not be finite.

1a b
A B m
         (say)

 A = a m, B = b m

The given equation becomes 
( )

d y a x b y c
d x m a x b y c

 


 

Now put ax + by = z and apply the method of variables separable.

Example 8. Solve : 2 3
2 3

dy x y
dx x y

 


 
Solution. Put x = X + h, y = Y + k.
The given equation reduces to


( ) 2( ) 3
2( ) ( ) 3

d Y X h Y k
d X X h Y k

   


   
1 2
2 1

  
 

      
2 ( 2 3)

2 (2 3)
X Y h k

X Y h k
   


    .... (1)

Now choose h and k so that h + 2k – 3 = 0, 2h + k – 3 = 0
Solving these equations we get h = k = 1


2

2
d Y X Y
d X X Y




 ... (2)

Put Y = v X, so that 
d Y d vv X
d X d X

 

The equation (2) is transformed as

              
2 1 2

2 2
d v X v X vv X
d X X v X v

 
  

 
21 2 1

2 2
d v v vX v
d X v v

 
  

   2
2
1

v d Xdv
Xv

   
 

                
1 1 3 1
2 (1 ) 2 1

d Xdv dv
v v X

 
  (Partial fractions)

On integrating, we have

          
1 3log(1 ) log(1 ) log log
2 2

v v X C    
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2 2

3
1log log

(1 )
v C X
v



 

2 2
3

1
(1 )

v C X
v





2 2
3

1

1

Y
X C X
Y
X




  
 

 2
3( )

X Y C
X Y





 or    X + Y = C2 (X – Y)³

Put X = x – 1 and Y = y – 1            x + y – 2 = a (x – y)³     Ans.
Example 9. Solve : (x + 2y) (dx – dy) = dx + dy
Solution. (x + 2y) (dx – dy) = dx + dy      (x + 2y – 1) dx – (x + 2y + 1) dy = 0


2 1
2 1

dy x y
dx x y

 


  ...(1)

Hence
a b
A B
     i.e., 1 2

1 2
  
 

(Case of failure)

Now put x + 2y = z so that 1 2 d y d z
d x d x

 

Equation (1) becomes
1 1 1
2 2 1

d z z
d x z


 

 
( 1) 3 12 1

1 1
dz z z
dx z z

 
  

 

   
1

3 1
z dz dx
z



 

1 4 1
3 3 3 1

dz dx
z

    

On integrating,              
4 log (3 1)

3 9
z z x C   

                    3z + 4 log (3z – 1) = 9x + 9C

    3 (x + 2y) + 4 log (3x + 6y – 1) = 9x + 9C
        3x – 3y + a = 2 log (3x + 6y – 1) Ans.

EXERCISE 3.4
Solve the following differential equations :

1.
2 9 20
6 2 10

dy x y
dx x y

 


  Ans. (2x – y)² = C (x + 2y – 5)

2.
1
5

dy y x
dx y x

 


  Ans. 1 3log[( 3)² ( 2)²] 2 tan
2

yy x a
x

 
    



3.
2
6

dy x y
dx x y

 


  Ans. (y + 4)² + 2 (x + 2) (y + 4) – (x + 2)² = a²

4.
2
4

dy y x
dx y x

 


   (AMIETE, Dec. 2009) Ans. – (y – 3)² + 2(x + 1) (y – 3) + (x + 1)² = a

5.
2 5 3
2 4 6

dy x y
dx x y

 


  Ans. (x – 4y + 3) (2x + y – 3) = a

6. (2x + y + 1) dx + (4x + 2y – 1) dy = 0 Ans. 2 (2x + y) + log (2x + y – 1) = 3x + C
7. (x – y – 2) dx – (2x – 2y – 3) dy = 0 Ans. log (x – y – 1) = x – 2y + C

(U.P. B. Pharm (C.O.) 2005)
8. (6x – 4y + 1) dy – (3x – 2y + 1) dx = 0 (A.M.I.E.T. E., Dec. 2006)

Ans. 4x – 8y – log (12x – xy + 1) = c
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9.
3 2 7
7 3 3

dy y x
dx y x

 
 

   (A.M.I.E.T.E., Summer 2004) Ans. (x + y – 1)5 (x – y – 1)2 = 1

10.
2 4

3 3
dy y x
dx y x

 


 
      (AMIETE, Dec. 2010)

Ans. 
2 2 22 ( 5 21) 15 ,

32 (5 21) 21
X xY XX XY Y c
Y yY X

     
        

3.9 LINEAR DIFFERENTIAL EQUATIONS
A differential equation of the form

d y P y Q
d x

  ... (1)

is called a linear differential equation, where P and Q, are functions of x (but not of y) or constants.

In such case, multiply both sides of (1) by Pdx
e 

Pdx Pdxdye Py Q e
dx

   
 

  ... (2)
The left hand side of (2) is

.
Pdxd y e

dx
 
 
 



(2) becomes    . .
P dx P dxd y e Q e

dx
 

 
 

 

Integrating both sides, we get

  . .
P dx Pdx

y e Q e dx C  
This is the required solution.

Note. 
Pdx

e   is called the integrating factor..

Solution is      y × [I.F.] = Q [I.F.] dx + C

Working Rule
Step 1. Convert the given equation to the standard form of linear differential equation

i.e.
d y Py Q
d x

 

Step 2. Find the integrating factor i.e. I.F. = Pdx
e 

Step 3. Then the solution is  ( . .) ( . .)y I F Q I F dx C 
Example 10. Solve:    2( 1) ( 1)xdyx y e x

dx
    (A.M.I.E.T.E., Summer 2002)

Solution. ( 1)
1

xdy y e x
dx x

  


               Integrating factor  = 
1log( 1) log( 1)1 1

1

dx
x xxe e e

x
      




The solution is 1 1. .( 1).
1 1

x xy e x dx e dx
x x

  
  

      1
xy e C

x
 


Ans.
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Example 11. Solve a differential equation

    3 2 5 3( ) (3 1) 2 .dyx x x y x x x
dx

      (Nagpur University, Summer 2008)

Solution. We have 3 2 5 3( ) (3 1) 2dyx x x y x x x
dx

     

                
2

3
3 1dy x y

dx x x





 = 
5 3

3
2x x x

x x
 


         

2

3
3 1dy x y

dx x x





 = x² – 1

                I.F. = 

2
3 3 –13

3 1
log( ) log( )

3
1

x dx
x x x xx xe e e

x x




     




Its solution is

 I.F. ( . .)y Q I F dx C              3
1y

x x
 
 

 
 = 

2

3
1x dx C

x x





      3
y

x x
 = 

2

2
1

( 1)
x dx C

x x



           3

y
x x

  = 
1 dx C
x


     3

y
x x

  = log x + C                      y = (x³ – x) log x + (x³ – x) C      Ans.

Example 12. Solve 3sin 2 tan
2

dy xx y
dx

    
 

(Nagpur University, Summer 2004)

Solution. Given equation : 3sin 2 tan
2

dy xx y
dx

    
3tan2 2

sin sin

x
dy y
dx x x

 

This is linear form of 
dy Py Q
dx

 


2

sin
P

x
   and  

3tan
2

sin

x

Q
x




2

sinI.F.
dxPdx xe e  

2log tan2 cosec 22 tan
2

x
x dx xe e  

   Solution is      .(I.F.) I.F.( )y Q dx C 
           2tan

2
xy  = 

3

2
tan

2tan
2 2sin cos

2 2

x
x C

x x
 


  = 

4

2

tan1 2
2 cos

2

x

dx C
x



     = 4 21 tan .sec
2 2 2

x x dx C ... (1)

Putting tan
2
x t  so that  21 sec

2 2
x dx dt  on R.H.S. (1), we get

             2 41.tan (2 )
2 2
xy t dt C         

5
2tan

2 5
x ty C 

            
5

2
tan

2tan
2 5

x
xy C  Ans.

EXERCISE 3.5
Solve the following differential equations:

1. 31 3dy y x
dx x

   Ans. 
5 23

5 2
x xxy C  
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2. (2y – 3x) dx + x dy = 0 Ans. y x² = x³ + C

3. cot cosdy y x x
dx

  Ans.
2sinsin

2
xy x C 

4. sec tandy y x x
dx

  Ans. 1
sec tan

C xy
x x


 


5. 2cos tandyx y x
dx

  Ans. tantan 1 xy x Ce  

6. 5( ) 3 ( )dyx a y x a
dx

    Ans. 2y = (x + a)5 + 2C (x + a)³

7. cos ( sin cos ) 1dyx x y x x x
dx

   Ans. x y = sin x + C cos x

8. log 2logdyx x y x
dx

  Ans. y log x = (log x)² + C

9. 22 logdyx y x x
dx

  Ans.
4 4

2 log
4 16
x xy x x C  

10. (2 cot sin 2 ) 0dr r d     Ans.
4

2 sinsin
2

r C 
  

11.
1cos sin 2
2

dy y x x
dx

  Ans. sinsin 1 xy x Ce  

12. 2 2 1/ 2(1 ) 2 (1 )dyx xy x x
dx

    Ans. 2 21 (1 )y x C x   

13. sec sindyx y x
dx

   (A.M.I.E.T.E., Dec 2005) Ans. y = –sin x – 1 + cesinx

14. tan cos , (0) 0y y x x y     (A.M.I.E.T.E., June 2006) Ans. y = x cos x

15. Solve (1 + y2) dx = (tan–1 y – x) dy  (AMIETE, Dec. 2009) Ans. x = – tan–1 y – 1 + 
1tan yce


16. Find the value of  so that e2 is an integrating factor of differential equation x (1 – y)

dx – dy = 0.      (A.M.I.E.T.E., Summer 2005) Ans.
1
2

 

17. Slove the differential equation cot 3 dyx
dx –3y = cos 3x + sin 3x, 0 < x < 

2


.

(AMIETE, Dec.  2009)  Ans.  1cos 3 6 sin 6 cos 6
12

y x x x x  

18. The value of  so that ey2 is an integrating factor of the differential equation
2

2( ) 0 is
y

e xy dy dx


   (A.M.I.E.T.E. Dec., 2005)

(a) –1 (b) 1 (c) 
1
2

(d) 
1
2

 Ans. (c)

19. The solution of the differential equation (y + x)2 2dy a
dx

  is given by

(a) tan y cy x a
a
    

 
(b)  tan y cy x

a
    

 

(c)  tan ( )y x a y c   (d) ( ) tan ca y x y
a

    
 

Ans. (a)
(AMIETE, June 2010)
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3.10 EQUATIONS REDUCIBLE TO THE LINEAR FORM (BERNOULLI EQUATION)
The equation of the form

+ = ndy Py Qy
dx ...(1)

where P and Q are constants or functions of x can be reduced to the linear form on dividing

by yn and substituting 1
1
n z

y 


On dividing bothsides of (1) by yn, we get

1
1 1
n n

dy P Q
dxy y 

  ...(2)

Put 1
1
n z

y 
 , so that         (1 )

n
n dy dz

dx dxy


    
1

1n
dy dz
dx ny




 (2) becomes 
1

1
dz Pz Q

n dx
 


 or (1 ) (1 )dz P n z Q n

dx
   

which is a linear equation and can be solved easily by the previous method discussed in
article 3.8 on page 144.
Example 13. Solve  x²dy + y(x + y) dx = 0 (U.P. II Semester Summer 2006)
Solution. We have, x² dy + y (x + y) dx = 0


dy y
dx x

  = 
2

2
y
x

  2 2
1 1 1dy

dx xyy x
  

Put 1 z
y

   so that 2
1 dy dz

dx dxy


The given equation reduces to a linear differential equation in z.

                2
1dz z

dx x x
  

                    
1

log log1/ 1 .
dx x xxe e e

x
    I.F.

Hence the solution is

                 2
1 1 1. .z dx C
x xx
    3z x dx C

x
  

                  
21
2

x C
xy



   


 2
1 1

2
C

xy x
   Ans.

Example 14. Solve: log xdyx y y xy e
dx

  (A.M.I.E., Summer 2000)

Solution.     log xdyx y y xy e
dx

 

Dividing by xy, we get

      
1 1 log xdy y e
y dx x

  ...(1)

Put                   log y = z, so that 1 dy dz
y dx dx



Equation (1) becomes, xdz z e
dx x
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1
logI.F.

dx xxe e x  

Solution is xz x x e d x C 
x xz x xe e C  

                 log x xx y xe e C   Ans.

Example 15. Solve: 
tan (1 ) sec .
1

xdy y x e y
dx x

  


(Nagpur University, Summer 2000)

Solution.         
tan (1 ) sec
1

xdy y x e y
dx x

  


      
sincos (1 )
1

xdy yy x e
dx x

  
 ...(1)

Put                   sin y = z,  so that cos dy dzy
dx dx



(1) becomes      (1 )
1

xdz z x e
dx x

  


1
1

1
log(1 ) log1 1. .

1
dx x xxI F e e e

x
      




Solution is           
1 1. (1 ) .

1 1
x xz x e dx C e dx C

x x
    

  
                 

sin
1

xy e C
x
 

 Ans.

Example 16. Solve: 2tan tan cos cosdyy x y x
dx

  (Nagpur University, Summer 2000)

Solution.   2tan tan cos cosdyy x y x
dx

 

  2sec tan sec tan cosdyy y y x x
dx

 

Writing    z = sec y, so that  sec tandz dyy y
dx dx



The equation becomes 2tan cosdz z x x
dx

 

tan logsecI.F. sec
x dx xe e x  

 The solution of the equation is
2sec cos secz x x x dx C 

               sec sec cos siny x x dx C x C   
sec (sin )cosy x C x  Ans.

Example 17.        1dxx y y
dy
 

   
 

(Nagpur University, Summer 2004)

Solution.          (1 )dyx y y
dx

    
 

                     1dy yy
dx x x

       1 11dy y
dx x x
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which is in linear form of .dy Py Q
dx

 

      
11 ,P
x

   
 

1Q
x



   
11

logI.F.
dxPdx x xxe e e

      
  = log. .x x xe e e x xe  x

Its solution is

(I.F.) I.F.( )y Q dx C 
                   

1( . ) ( . )x xy x e x e dx C
x

    ( . )x xy x e e dx C 
                 y (x . ex) = ex + C

      
1 xCy e
x x

  Ans.
Example 18. Solve the differential equation.

        y log y dx + (x – log y) dy = 0 (Uttarakhand II Semester, June 2007)
Solution. We have,

y log y dx + (x – log y) dy = 0

     
log

log
dx x y
dy y y

 
 

log
log log

dx x y
dy y y y y


 

     
1

log
dx x
dy y y y

 

  
1

log log(log )I.F. log
dy

y y ye e y  


Its solution is            
1.log (log )x y y dy
y

 
                   

(log ).log
2
yx y C



  Ans.

Example 19. Solve: (1 + y²) dx = (tan–1 y – x) dy.
(AMIETE, June 2010, 2004, R.G.P.V., Bhopal, April 2010, June 2008,

U.P. (B. Pharm) 2005)
Solution. (1 + y²) dx = (tan–1 y – x) dy

       
1

2
tan

1
dx y x
dy y

 


 
1

2 2
tan

1 1
dx x y
dy y y



 
 

This is a linear differential equation.

       12
1

tan1I.F.
dy

yye e
 



Its solution is
1 1

1
tan tan

2
tan.
1

y y
yx e dy Ce

y
 



 


Put   tan–1 y = t on R.H.S., so that 2
1

1
dy dt

y




 1 1tan tan 1. . . tan 1y t t t yx e e t dt C t e e C e y C
         

           11 tantan 1 yx y Ce
    Ans.
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Example 20. Solve : 2sin cosdrr r
d

  


(Nagpur University, Summer 2005)

Solution. The given equation can be written as 2cos sindr r r
d

   


... (1)

Dividing (1) by 2 cos ,r   we get 2 1 tan secdrr r
d

     


... (2)

Putting 1r v   so that 2 dr dvr
d d

 
 

 in (2), we get

tan secdv v
d

   


tan logsecI.F. sec
d

e e
     

Solution is            sec sec , secv C          2sec secv d C    
                

sec tan C
r

   1 (sin cos )r C   


1

sin cos
r

C


   Ans.

EXERCISE 3.6
Solve the following differential equations:

1. 2
1 1 2 xdy x e

dx yy
  Ans. ex + x²y + Cy = 0

2. 4 43 3 2dy y x y
dx x

  Ans. 5 3
3

1 x Cx
y

 

3. 2tan secdy y x y x
dx

  Ans. sec x = (tan x + C) y

4. 2 22 tan tan , if 1 at 0dy y x y x y x
dx

    Ans.
3

21 tansec 1
3

xx
y

  

5. tan tan cos secdy x y x y
dx

  Ans. sin y sec x = x + C

6. dy + y tan x . dx = y² sec x . dx Ans. y (x + C) + cos x = 0
7. (x² y² + xy) y dx + (x² y² – 1) x dy = 0 Ans. x y = log C y

8. (x² + y² + x) dx + xy dy = 0 Ans.
4 3

2 2 2
2 3
x xx y C   

9. 33 xdy y e y
dx

  Ans.
2

2
1 6 x xe C e
y

 

10. (x – y²) dx + 2 x y dy = 0 Ans.
2

logy x C
x
 

11. 1y xdye e
dx

   
 

Ans.
2

2

x
x y ee C  

12. 2 3 4 cosdyx y x y x
dx

  Ans. x3 = y3(3 sin x – C)

13.
2

2
23 .

1
dy xy
dx x y

 
 Ans.

5 4 3
3 2( 1)

5 2 3
x x xy x C    

14. cos 4 sin 4 secdyx y x y x
dx

  Ans.
3

2 tansec 2 tan
3

xy x x C
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15. 3 2sin 2 cosdy x y x y
dx

  Ans.
221tan ( 1)

2
xy x C e  

16.
1 3

2
1 2 tan

1
dy x y x
dxy

 
 Ans.

21 21tan ( 1)
2

xy x C e   

17. e–y sec² y dy = dx + x dy Ans. x ey = tan y + C

18. ( 1) 1dyx y
dx

   Ans. x + y + 2 = C ey

19.
3

2 2x
dy y
dx e y


 Ans. e–2x y² + 2 log y + C = 0

20. dx – xy (1 + xy2) dy = 0 Ans.
22 / 21 2 yy Ce

x
   

21. 2
2log (log )dy y yy y

dx x x
              (A.M.I.E.T.E., Summer 2004, 2003, Winter 2003, 2001)

Ans. 2
1 1

log 2
C

x y x
 

22. 23 dy xy xy
dx

     (A.M.I.E.T.E., June 2009) Ans. 23 /21 xy Ce 

27. 3 6dyx y x y
dx

      (AMIETE, June 2010) Ans. 5 5 2
1 5

2
C

y x x
 

23. General solution of linear differential equation of first order 
dx Px Q
dy

   (where P and Q

are constants or functions of y) is

(a)  . .P dx P dxye Q e   dx + c  (b) . .P dy P dyxe Q e   dy + c

(c)  .P dxy Q e  dx + c            (d)  .P dyx Q e  dy + c  (AMIETE, June, 2010)   Ans. (b)

3.11  EXACT DIFFERENTIAL EQUATION
An exact differential equation is formed by directly differentiating its primitive (solution)

without any other process
Mdx + Ndy = 0

is said to be an exact differential equation if it satisfies the following condition

       =M N
y x

 
 

where M
y




 denotes the differential co-efficient of M with respect to y keeping x constant and N
x




,

the differential co-efficient of N with respect to x, keeping y constant.
Method for Solving Exact Differential Equations
Step I. Integrate M w.r.t. x keeping y constant
Step II. Integrate w.r.t. y, only those terms of N which do not contain x.
Step III. Result of I + Result of II = Constant.
Example 21. Solve :

(5x4 + 3x2y2 – 2xy3) dx + (2x3y – 3x2y2 – 5y4) dy = 0
Solution. Here, M = 5x4 + 3x2y2 – 2xy3, N = 2x3y – 3x2y2 – 5y4
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M
y


  =  6x2y – 6xy2,

N
x


 = 6x2y – 6xy2

Since,
M
y




 = 
N
x




, the given equation is exact.

Now (terms of  is not containing )M dx N x dy C   (y constant)

         4 2 2 3 45 3 2 5x x y xy dx y dy C     
          x5 + x3y2 – x2y3 – y5 = C Ans.

Example 22. Solve:    2 2 22 cos 2 1 sin 3 0xy x xy dx x x dy     
(Nagpur University, Summer 2000)

Solution. Here we have

        2 2 22 cos 2 1 sin 3 0xy x xy dx x x dy      ... (1)
M dx + N dy =  0 ... (2)

Comparing (1) and (2), we get

M = 2xy cos x² – 2xy + 1 
M
y


  = 2x cos x² – 2x

N = sin x² – x² + 3              
N
x




 = 2x cos x² – 2x

Here, 
M
y


  = 

N
x




So the given differential equation is exact differential equation.

Hence solution is   
as const

(terms of  not containing )
y

M dx N x dy C  

   2(2 cos 2 1) 3xy x xy dx dy C    


2[ (2 cos ) (2 ) 1] 3y x x y x dx dy C    
               22 cos 2 1 3y x x dx y x dx dx y dy C      
Put x2 = t   so that   2x dx = dt

                                 
2

cos 2 3
2
xy t dt y x y C   

                                       y sin t – x² y + x + 3y = C
                                      y sin x² – yx² + x + 3y = C Ans.

Example 23. Solve :
/ /(1 ) 1 0x y x y x dye e

y dx
 

    
 

(Nagpur University, Summer 2008, A.M.I.E.T.E. June, 2009)
Solution. We have,

            1 1 0
x x
y y x dye e

y dx

            
    1 0

x x x
y y y xe dx e e dy

y

   
      
   
   

   1
x
yM e       2

x
yM x e

y y
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x x
y y xN e e

y
        2 2

1 1
x x x x
y y y yN x xe e e e

x y y y y


    



M
y


  = 

N
x




   Given equation is exact.

Its solution is 1 (terms of  not containing )
x
ye dx N x dy C

 
   
 
 
 

 1 0
x
ye dx dy C

 
   
 
 
               

x
yx ye C  Ans.

Example 24. Solve: [1 log ( )] 1 0xx y dx dy
y

 
    

 
(Nagpur University, Winter 2003)

Solution. [1 log ] 1 0xx y dx dy
y

 
    

 

 [1 log log ] 1 0xx y dx dy
y

 
     

 
which is in the form M dx + N dy = 0

    M = [1 + log x + log y]     and                   1 xN
y

 

                 1M
y y





    and         1N

x y





            
M
y


 = 

N
x




Hence the given differential equation is exact.

  Solution is      
constant

(terms not containing )
y
M dx N x dy C  

y constant

 (1 log log )x y dx dy C    
                log logx x dx y dx y C     ... (1)

Now,    log log .(1)x dx x dx 
1(log ) (log ) log .dx x x x dx x x x dx

dx x
       

               log log [log 1]x x dx x x x x x     
   Equation (1) becomes        x + x log x – x + x log y + y = C

     x [log x + log y] + y = C   x log xy + y = C Ans.

EXERCISE 3.7
Solve the following differential equations (1 – 12).

1. (x + y – 10) dx + (x – y – 2) dy = 0 Ans. 
2 2

10 2
2 2
x yxy x y C    

2. (y2 – x2) dx + 2x y dy = 0 Ans.
3

2

3
x x y C 

3.  / /1 3 3 1 0x y x y xe dx e dy
y

 
    

 
 (R.G.P.V. Bhopal, Winter 2010)   Ans. x + 3y ex/y = C
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4. (2x – y) dx = (x – y) dy Ans.
2

2

2
yxy x C  

5. (y sec2 x + sec x tan x) dx + (tan x + 2y) dy = 0 Ans. y tan x + sec x + y2 = C
6. (ax + hy + g) dx + (hx + by + f) dy = 0    Ans. ax² + 2h xy + by2 + 2gx + 2fy + C = 0

7. (x4 – 2xy2 + y4) dx – (2x2y – 4xy3 + sin y) dy = 0 Ans.
5

2 2 4 cos
5
x x y xy y C   

8. (2xy + ey) dx + (x2 + xey) dy = 0 Ans. x2y + xey = C
9. (x2 + 2ye2x) dy + (2xy + 2y2e2x) dx = 0 Ans. x2y + y2 e2x = C

10. 11 cos ( log sin ) 0y y dx x x x y dy
x

           
  (M.D.U., 2010)

Ans. y (x + log x) + x cos y = C
11. (x3 – 3xy2) dx + (y3 – 3x3y) dy = 0, y(0) = 1 Ans. x4 – 6x2y2 + y4 = 1
12. The differential equation M (x, y) dx + N (x, y) dy = 0 is an exact differential equation if

(a) 
M N
y x

 


   = 0 (b) 
M N
y x

 


   = 0    (c) 1M N
y x

 
 

     (d) None of the above

(A.M.I.E.T.E. Dec. 2010, Dec 2006)  Ans. (b)

3.12 EQUATIONS REDUCIBLE TO THE EXACT EQUATIONS
Sometimes a differential equation which is not exact may become so, on multiplication by a
suitable function known as the integrating factor.

Rule 1. If 

M N
y x

N

 


 
 is a function of x alone, say f (x), then ( )

I.F.
f x dx

e 

Example 25. Solve (2x log x – xy) dy + 2y dx = 0 ... (1)
Solution.         M = 2y,              N = 2x log x – xy

         2,M
y




     2(1 log )N x y
x


  



Here,   2 2 2 log (2 log ) 1 ( )
2 log (2 log )

M N
x y x yy x f x

N x x xy x x y x

 


          
 

            
1

1
( ) log log –1 1I.F.

dxf x dx x xxe e e e x
x

      

On multiplying the given differential equation (1) by 
1
x , we get

2 (2log ) 0y dx x y dy
x

   
2y dx y dy c
x

   
           212 log

2
y x y c  Ans.

EXERCISE 3.8
Solve the following differential equations:

1. (y log y) dx + (x – log y) dy = 0 Ans. 2x log y = c + (log y)²

2.  3 2 21 1 1 1 0
3 2 4

y y x dx y x dy      
 

Ans.
4 3 4 6

4 12 12
yx y x x c  
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3. (y – 2x3) dx – x (1 – xy) dy = 0 Ans.
2

2

2
y yx c
x

   

4. (x sec2y – x2 cos y) dy = (tan y – 3x4) dx Ans. 31 tan siny x y c
x

   

5. (x – y2) dx + 2xy dy = 0 Ans. y2 = cx – x log x

Rule II. If 

N M
x y

M

 


 
 is a function of y alone, say f (y), then

( )
I.F.

f y dy
e 

Example 26. Solve (y4 + 2y) dx + (xy3 + 2y4 – 4x) dy = 0
Solution. Here M = y4 + 2y;    N = xy3 + 2y4 – 4x ...(1)

         
34 2;M y

y


 


3 4N y
x


 




3 3 3

4 3
( 4) (4 2) 3( 2) 3 ( )

2 ( 2)

N M
y y yx y f y

M yy y y y

 
          

 

        
3

3
( ) 3log log 3

3
1I.F.

dyf y dy y yye e e e y
y


      



On multiplying the given equation (1) by 3
1
y  we get the exact differential equation.

2 3
2 42 0xy dx x y dy
y y

   
          

   

2
2 2y dx y dy c
y

 
    

 
           2

2
2x y y c
y

 
    

 
Ans.

EXERCISE 3.9
Solve the following differential equations:

1. (3x2y4 + 2xy) dx + (2x3y3 – x2) dy = 0 Ans.
2

3 2 xx y c
y

 

2. (xy3 + y) dx + 2(x2y2 + x + y4) dy = 0 Ans.
2 4 6

2

2 3
x y yxy c  

3. y(x2y + ex)dx – exdy = 0 Ans.
3

3

xx e c
y

 

4. (2x4y4ey + 2xy3 + y) dx + (x2y4ey – x2y2 – 3x) dy = 0 Ans.
2

2
3

y x xx e c
y y

  

Rule III. If M is of the form M = y f1 (xy) and N is of the form N = x f2(xy)

Then I.F. = 
1

. .M x N y

Example 27. Solve y (xy + 2x2y2) dx + x (xy – x2y2) dy = 0
Solution.              y (xy + 2x2y2) dx + x (xy – x2y2) dy = 0 ... (1)
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Dividing (1) by xy, we get
y (1 + 2xy) dx + x (1 – xy) dy = 0 ... (2)
M = y f1 (xy),   N = x f2 (xy)

                 2 2
1 1 1I.F.

M N (1 2 ) (1 ) 3x y xy xy xy xy x y
  

   

On multiplying (2) by 2 2
1 ,

3x y
 we have an exact differential equation

    2 2
1 2 1 1 0

3 33 3
dx dy

x yx y xy
   

         
   

      2
1 2 1

3 33
dx dy c

x yx y
 

     
 
 


1 2 1log log

3 3 3
x y c

xy
                  

1 2log logx y b
xy

        Ans.

EXERCISE 3.10
Solve the following differential equations

1. (y – xy2) dx – (x + x²y) dy = 0 Ans. log x xy A
y

 
  

 

2. y (1 + xy) dx + x(1 – xy) dy = 0 Ans. log 1yxy c xy
x

    
 

2. y (1 + xy) dx + x (1 + xy + x2y2) dy = 0 Ans. 2 2
1 1 log

2
y c

xyx y
  

4. (xy sin xy + cos xy) y dx + (xy sin xy – cos xy) x dy = 0 Ans. y cos xy = cx

Rule IV. For of this type of ( ) ( ) 0,m n m nx y ay dx bx dy x y a y dx b x dy        the integrating factor
is xh yk.

where
1 1,m h n k

a b
   

   and
1 1m h n k

a b
    


 

Example 28. Solve (y3 – 2x2y) dx + (2xy2 – x3) dy = 0
Solution. (y3 – 2x2y) dx + (2xy2 – x3) dy = 0

              y2 (ydx + 2xdy) + x2 (–2ydx – xdy) = 0

Here m = 0, h = 2, a = 1, b = 2,     2, 0, 2, 1m n a b        

0 1 2 1
1 2
h k   

   and  
2 1 0 1

2 1
h k   


 

 2h + 2 = 2 + k + 1 and h + 3 = 2k + 2
 2h – k = 1 and h – 2k = –1
On solving h = k = 1. Integrating Factor = x y
Multiplying the given equation by x y, we get

(xy4 – 2x3y2) dx + (2x2y3 – x4y) dy = 0
which is an exact differential equation.

4 3 2( 2 )xy x y dx C         
2 4 4 22
2 4

x y x y C 
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          x2y4 – x4y2 = C         x2 y2 (y2 – x2) = C      Ans.

Example 29. Solve (3y – 2xy3) dx + (4x – 3x2y2) dy = 0.     (U.P., II Semester, June 2007)

Solution. (3y – 2xy3) dx + (4x – 3x2y2) dy = 0

             (3y dx + 4x dy) + xy2(–2y dx – 3x dy) = 0 ...(1)
Comparing the coefficients of (1) with

( ) ( ) 0,m n m nx y a y dx b xdy x y a y dx b x dy        we get
m = 0, n = 0, a = 3, b = 4

1, 2, 2, 3m n a b        
To find the integrating factor xh yk

1 1m h n k
a b
   

  and 
1 1m h n k

a b
    


 

0 1 0 1
3 4
h k   

  and 
1 1 2 1

2 3
h k   


 


1 1

3 4
h k 

  and 
2 3

2 3
h k 

    4h – 3k + 1 = 0 ... (2)

and 3h – 2k = 0   
2
3
kh  ... (3)

Putting the value of h from (3) in (2), we get
8 – 3 1 0
3
k k      1 0

3
k

    k = 3

Putting k = 3 in (2), we get 2 2 3 2
3 3
kh 

  

    I.F. = xhyk  = x2y3

On multiplying the given differential equation by x2y3, we get
x2y3 (3y – 2xy3)dx + x2y3(4x–3x2y2) dy = 0
(3x2y4 – 2x3y6) dx + (4x3y3 – 3x4y5) dy = 0

This is the exact differential equation.

Its solution is  2 4 3 6(3 2 ) 0x y x y dx  
4

3 4 6

2
xx y y C  Ans.

EXERCISE 3.11
Solve the following differential equations.
1. (2y dx + 3x dy) + 2xy (3y dx + 4x dy) = 0 Ans. x2y3 (1 + 2xy) = c

2. (y2 + 2yx2) dx + (2x3 – xy) dy = 0 Ans.
3/2

1/ 2 24( )
3

yxy c
x

   
 

3. (3x + 2y2)y dx + 2x (2x + 3y2) dy = 0 Ans. x2y4 (x + y2) = c

4. (2x2y2 + y) dx – (x3y – 3x) dy = 0 Ans. 10 / 7 5 / 7 4 /7 –12 / 77 7
5 4

x y x y c  

5. x (3y dx + 2x dy) + 8y4 (y dx + 3x dy) = 0 Ans. x3y2 + 4x2y6 = c
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Rule V.
If the given equation M dx + N dy = 0 is homogeneous equation and Mx + Ny  0, then

1
Mx Ny  is an integrating factor..

Example 30. Solve
3 3

2
dy x y
dx xy




Solution. (x3 + y3) dx – (xy2) dy = 0 ... (1)
Here M = x3 + y3,           N = –xy2

I.F. 3 3 2 4
1 1 1

( ) ( )Mx Ny x x y xy y x
  

  

Multiplying (1) by 4
1
x

 we get 3 3 2
4 4

1 1( ) ( ) 0x y dx xy dy
x x

   


3 2

4 3
1 0,y ydx dy
x x x

 
    

 
which is an exact differential equation.

        
3

4
1 y dx c
x x

 
   

 
           

3

3log
3
yx c
x

  Ans.

EXERCISE 3.12
Solve the following differential equations:

1. x2y dx – (x3 + y3) dy = 0 Ans.
3

3 log
3
x y c
y

  

2. (y3 – 3xy2) dx + (2x2y – xy2) dy = 0 Ans. 3log 2 logy x y c
x
  

3. (x2y – 2xy2) dx – (x3 – 3x2y) dy = 0 Ans. 2log 3logx x y c
y
  

4. (y3 – 2yx2) dx + (2xy2 – x3) dy = 0 Ans. x2y4 – x4y2 = c
3.13 EQUATIONS OF FIRST ORDER AND HIGHER DEGREE

The differential equations will involve 
dy
dx  in higher degree and 

dy
dx  will be denoted by p.

The differential equation will be of the form f (x, y, p) = 0.
Case 1. Equations solvable for p.
Example 31. Solve : x2 = 1 + p2

Solution.               x2 = 1 + p2  p2 = x2 – 1

    2 1p x   
2 1dy x

dx
    2 1dy x dx  

which gives on integration  2 211 log 1
2 2
xy x x x c      Ans.

Case II. Equations solvable for y.
  (i) Differentiate the given equation w.r.t. “x”.
(ii) Eliminate p from the given equation and the equation obtained as above.

(iii) The eliminant is the required solution.
Example 32. Solve: y = (x – a) p – p2.
Solution. y = (x – a) p – p2 ... (1)
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Differentiating (1) w.r.t. “x” we obtain

( ) 2dy dp dpp x a p
dx dx dx

   

( ) 2dp dpp p x a p
dx dx

   

 0 ( ) 2dp dpx a p
dx dx

  

 0 [ 2 ]dp x a p
dx

    0dp
dx



On integration, we get p = c.
Putting the value of p in (1), we get

y = (x – a) c – c2 Ans.
Case III. Equations solvable for x
  (i) Differentiate the given equation w.r.t. “y”.
(ii) Solve the equation obtained as in (1) for p.

(iii) Eliminate p, by putting the value of p in the given equation.
(iv) The eliminant is the required solution.
Example 33. Solve:            y = 2px + yp2

Solution. y = 2px + yp2 ... (1)

      2px = y – yp2  2 yx yp
p

  ... (2)
Differentiating (2) w.r.t. “y” we get

  2
12 dx y dp dpp y

dy p dy dyp
   

       2
2 1 y dp dpp y
p p dy dyp
     2

1 y dp dpp y
p dy dyp
   

 2
1 1 1 dpp y
p dyp

 
     

 


2 2

2
1 1p p dpy

p dyp
 

 

       1 y dp
p dy

    
dy dp
y p

   log log logy p c  

 log p y = log c  p y = c 
cp
y



Putting the value of p in (1), we get
2

22 c cy x y
y y

  
         

 y2 = 2 cx + c2

 y2 = c(2x + c) Ans.
Class IV. Clairaut’s Equation.
The equation y = px + f (p) is known as Clairaut’s equation. ... (1)
Differentiating (1) w.r.t. “x”, we get

( )dy dp dpp x f p
dx dx dx

  

 ( )dp dpp p x f p
dx dx

    0 ( )dp dpx f p
dx dx

 

 [ ( )] 0dpx f p
dx

   0dp
dx

        p = a   (constant)
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Putting the value of p in (1), we have
y = ax + f (a)

which is the required solution.
Method. In the Clairaut’s equation, on replacing p by a (constant), we get the solution of the
equation.
Example 34. Solve : p = log (p x – y)
Solution.  p = log (p x – y) or ep = p x – y   or   y = p x – ep

Which is Clairaut’s equation.
Hence its solution is y = a x –ea Ans.

EXERCISE 3.13
Solve the following differential equations.

1. xp2 + x = 2yp Ans. 2cy = c2x2 + 1

2. x(1 + p2) = 1 Ans.  2 1 1tan xy c x x
x

 
   

3. x2p2 + xyp – 6y2 = 0 Ans. 2
13 ,cy y c x

x
 

4.
dy dx x y
dx dy y x

   Ans. xy = c, x2 – y2 = c

5. y = px + p3 Ans. y = ax + a3

6. x2 (y – px) = yp2 Ans. y2 = cx2 + c2

3.14 ORTHOGONAL TRAJECTORIES
Two families of curves are such that every curve of either
family cuts each curve of the other family at right angles.
They are called orthogonal trajectories of each other.
Orthogonal trajectories are very useful in engineering
problems.
For example:
  (i) The path of an electric field is perpendicular to equi-

potential curves.
(ii) In fluid flow, the stream lines and equipotential lines

are orthogonal trajectories.
(iii) The lines of heat flow is perpendicular to isothermal curves.
Working rule to find orthogonal trajectories of curves
Step 1. By differenciating the equaton of curves find the differential equations in the form

, , 0dyf x y
dx

   
 

Step 2.  Replace 
dy
dx

 by 
dx
dy

  (M1. M2 = –1)

Step 3. Solve the differential equation of the orthogonal trajectories i.e., , – 0dxf x y
dy

 
 

 
Self-orthogonal. A given family of curves is said to be ‘self-orthogonal’ if the family of
orthogonal trajectory is the same as the given family of curves.
Example 35. Find the orthogonal trajectories of the family of curves xy = c.
Solution. Here, we have

xy = c ... (1)

Y

XO

90°
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Differentiating (1), w.r.t., “x”, we get

0dyy x
dx

  
dy y
dx x

 

On replacing 
dy
dx

 by 
dx
dy

 , we get

     dx y
dy x

    dy x
dx y



     y dy = x dx ... (2)

Integrating (2), we get        
2 2

2 2
y x c 

                     y2 – x2 = 2c Ans.

Example 36. Show that the family of porabolas y2 = 2cx + c2 is “self-orthogonal.”
Solution. Here we have

y2 = 2cx + c2 ... (1)

Differentiating (1), we get 2 2dyy c
dx

 
dyc y
dx



Putting the value of c in (1), we have  
2

2 2 dy dyy y x y
dx dx

       
   

... (2)

Putting dy p
dx

  in (2), we get
 y2 = 2ypx + y2p2 ... (3)

This is differential equation of give n family of parabolas.

For orthogonal trajectories we put 
1
p

  for p in (3)
2

2 21 12y y x y
p p

   
      

   
      

2
2

2
2yx yy

p p
  

       y2p2 = – 2pyx + y2

Rewriting, we get
  y2 = 2ypx + y2p2

Which is same as equation (3). Thus (2) is D.E. for the given family and its orthogonal
trajectories.
Hence, the given family is self-orthogonal. Proved.

EXERCISE 3.14

Find the orthogonal trajectories of the following family of curves:
1. y2 = cx3 Ans. (x + 1)2 + y2 = a2 2. x2 – y2 = cx Ans. y (y2 + 3x2) = c
3. x2 – y2 = c Ans. xy = c

4. (a + x) y2 = x2 (3a – x) Ans. (x2 + y2)5 = cy3 (5x2 + y2)
5. y = ce–2x + 3x, passing through the point (0, 3) Ans. 9x – 3y + 5 = –4e6(3 – y)

6. 16x2 + y2 = c Ans. y16 = kx
7. y = tan x + c Ans. 2x + 4y + sin 2x = k
8. y = ax2 Ans. x2 + 2y2 = c
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9. x2 + (y – c)2 = c2 Ans. x2 + y2 = cx

10. x2 + y2 + 2gx + 2fy + c = 0 Ans. x2 + y2 + 2fy – c = 0

3.15   POLAR EQUATION OF THE FAMILY OF CURVES

Let the polar equation of the family of curves be ( , , ) 0f r c  ... (1)

Working Rule
Step 1. On differentiating and eliminating the arbitrary constant c between (1) and

( , , ) 0f r c   we get the differential equation of (1) i.e.,

, , 0drF r
d

    
... (2)

Step 2. Replace 
dr
d  by 2 dr

dr


  in (2). Here we will get the differential equation of orthogonal

trajectory i.e.,
2, 0dF r r

dr
   

 
... (3)

Step 3. Integrating (3) to get the equation of the orthogonal trajectory.
Example 37. Find the orthogonal trajectory of the cardioids r = a (1 – cos  ).
Solution.   We have,  r = a(1 – cos  ) ... (1)

Differentiating (1) w.r.t.  , we get sindr a
d

 


... (2)
Dividing (2) by (1) to eliminate a, we get

  
1 sin

1 cos
dr

r d



   2

2sin cos
2 2

1 1 2sin
2

 




 
cot

2


 ... (3)

which is the differential equation of (1).

Replacing 
dr
d  by 2 dr

dr


  in (3), we get 
21 – cot

2
dr

r dr
    

 

       cot
2

dr
dr
 
 

Separating the variables we get tan
2

dr d
r


   ... (4)

Integrating (4), we get log 2 logcos log
2

r c
  2log cos

2
c 



 2cos
2

r c 
  (1 cos )

2
cr   

Which is the required trajectory. Ans.
Example 38. Find the orthogonal trajectory the family of curves

 r2 = c sin2 
Solution.  We have

r2 = c sin2  ... (1)

Differentiating (1), we get  2 2 cos 2drr c
d

 


... (2)

Dividing (2) by (1), to eliminate ‘c’ we get 
2 2cot 2dr
r d

 


... (3)
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Replacing 
dr
d  by 2 dr

dr


  in (3), we have 
22 2cot 2dr

r dr
    

 

            2 2cot 2dr
dr


   ... (4)

Separating the variables of (4), we obtain tan 2dr d
r
    ... (5)

Integrating (5), we get  
1log log cos 2 log
2

r c  

      2 log r = log c cos 
           r2 = c cos2 

which is the required trajectory Ans.

EXERCISE 3.15
Find the orthogonal trajectory of the following families of the curves:

1. r ce Ans. r ke 2. 2r c  Ans.
2

4r ke





3. (1 cos )r a   Ans. (1 cos )r c   4. sinn nr n a  Ans. cosn nr n c 

5. 2cosr a  Ans. 2 sinr c 
6. 2 (sin cos )r a   Ans. 2 (sin cosr c  

7. 2(1 sin )r c   Ans. 2 cos .cotr k  

8. 1 2 cos
ar 

 
Ans. 2 3sin (1 cos )r    

3.16 ELECTRICAL CIRCUIT
We will consider circuits made up of
(i) Voltage source which may be a battery or a generator.
(ii) Resistance, inductance and capacitance.

The formation of differential equation for an electric circuit depends upon the following laws.

(i) ,
dqi
dt

(ii) Voltage drop across resistance R = Ri

(iii) Voltage drop across inductance L = . diL
dt

(iv) Voltage drop across capacitance C = 
q
C

Kirchhoff’s laws
I.   Voltage law.   The algebraic sum of the voltage drop around any closed circuit is equal

to the resultant electromotive force in the circuit.
II.   Current law.   At a junction or node, current coming is equal to current going.
(i) L - R series circuit.   Let i be the current flowing in the circuit containing resistance R

and inductance L in series, with voltage source E, at any time t.

By voltage law 
diRi L
dt = E   

di R Ei
dt L L

...(1) (M.U. II Semester, 2009)

This is the linear differential equation

I.F. =  
R Rdt t
L Le e
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Its solution is .
R t
Li e = 

R t
LE e dt A

L


 .
R t
Li e = 

R t
LE L e A

L R
 


– Rt

LEi Ae
R

  ...(2)

At t = 0, i = 0  – EA
R



Thus, (2) becomes i = 1
 

  
Rt
LE e

R
(ii) C-R series circuit. Let i be current in the circuit containing resistance R, L, and capacitance

C in series with voltage source E, at any time t.
By voltage law

qRi
C

 = E
dqi
dt

   


dq qR
dt C

 = E

Example 39. Solve the equation 0 sindiL Ri E wt
dt

 

where L, R and E0 are constants and discuss the case when t increases indefinitely.

Solution. 0 sindiL Ri E wt
dt

 


di R i
dt L

 = 0 sin
E

wt
L

I.F. = 
R Rdt t
L Le e 

Solution is .
R t
Li e = 0 sin

R t
LE e wt dt A

L


–1
2 2

sin sin – tan
a x

a x e be bx dx b x
aa b

        


 .
Rt
Li e = –10

2
2

2

sin – tan

R t
LE e Lwwt A

L RR w
L

   
 



i = 
––10

2 2 2
sin – tan

R t
LE Lwwt Ae

RR L w

   
 

As t increases indefinitely, then 
– Rt

LAe tends to zero.

so i = –10
2 2 2

sin – tanE Lwwt
RR L w

 
 
 

Ans.

E  sin t0 w

L R

tO

R
E i

E

–+

LR

i
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EXERCISE 3.16

1. A coil having a resistance of 15 ohms and an inductance of 10 henries is connected to 90 volts supply.
Determine the value of current after 2 seconds. (e–3 = 0.05) Ans. 5.985 amp.

2. A resistance of 70 ohms, an inductance of 0.80 henry are connected in series with a battery of 10 volts.

Determine the expression for current as a function of time after t = 0. 
         Ans.

175–
21 1 –

7
t

i e
 
   

3. A circuit consists of resistance R ohms and a condenser of C farads connected to a constant e.m.f. E; if
q
C is the voltage of the condenser at time t after closing the circuit Show that –q E Ri

C
 and hence

show that the voltage at time t is 
–

1 –
t

CRE e
 
 
  .

4. Show that the current 
–

. .
t

R Cqi e
CR

 during the discharge of a condenser of charge Q coulomb through

a resistance R ohms.
5. A condenser of capacity C farads with voltage v0 is discharged through a resistance R ohms. Show that

if q coulomb is the charge on the condenser, i ampere the current and v the voltage at time t.

q = Cv, v = Ri and i = – ,dq
dt  hence show that v = v0

1–
.Rce

6. Solve cosdiL Ri E wt
dt

  Ans.
–

2 2 2 ( cos sin – Re )
Rt
LEi R wt Lw wt

L w R
 



7. A circuit consists of a resistance R ohms and an inductance of L henry connected to a generator of
E cos (wt + ) voltage. Find the current in the circuit. (i = 0, when t = 0).

Ans. 
––1 –1

2 2 2 2 2 2
cos [ – tan ] – . cos – tan

R t
LE Lw E Lwi wt e

R RR L w R L w

       

3.17 VERTICAL MOTION
Example 40.  A body falling vertically under gravity encounters resistance of the atmosphere.
If the resistance varies as the velocity, show that the equation of motion is given by

du
dt

= g – ku

where u is the velocity, k is a constant and g is the acceleration due to gravity. Show that as

t increases, u approaches the value g/k. Also, if u = 
dx
dt

 where x is the distance fallen by the
body from rest in time t, show that

x = –
2– (1 – )ktgt g e

k k
Solution. Let the mass of the falling body be unity.

Acceleration = 
du
dt

Force acting downward = 1. du du
dt dt



Force of resistance = ku

Net force acting downward = g – ku  –du g ku
dt

 ...(1)Proved.

 –
du

g ku = dt
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Integrating, we get –
du

g ku = dt

 t = – 1/1– log ( – ) log log ( – ) kg ku A g ku A
k

 

A(g – ku)–1/k = et  (g – ku) = Ak e–kt

 u = ––
k

ktg A e
k k

If t increases very large then – 0
k

ktA e
k



 u = 
g
k when t  Proved.

Given u = 
dx
dt 

2

2
du d x
dt dt



Putting the values of du
dt

and u in (1), we get

2

2
d x dxk

dtdt
 = g  (D2 + kD) x = g

A.E. is m(m + k) = 0  m = 0, m = – k
C.F. = A1 + A2e

–kt

P.I. = 2
1 1

2
g t g

D kD kD




= 
11 21

21

t t Dg g
Dk k k
k


   

    
 

 = 
21t D t gg

k k k
   
 

x = –
1 2 kt g t

A A e
k

...(2)

Putting the values of t = 0 and x = 0 in (2), we get
0 = A1 + A2  A2 = – A1

(2) becomes x = –
1 1– kt gtA A e

k
 ...(3)

On differentiating (3), we get –
1

ktdx gA ke
dt k

  ...(4)

On putting 0,dx
dt

 when t = 0 in (4), we get 1 1 20 –g gA k A
k k

   

Putting the value of A1 in (3), we get

–
2 2– ktg g gtx e

kk k
    –

2– (1 – )ktgt gx e
k k

 Proved.

Example 41. The acceleration and velocity of a body falling in the air approximately satisfy
the equation :
Acceleration = g – kv2, where v is the velocity of the body at any time t, and g, k are constants.
Find the distance traversed as a function of the time, if the body falls from rest.

Show that value of v will never exceed .g
k
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Solution Acceleration = g – k v2  2–dv g k v
dt

 
2 .

–
dv dt

g k v



1 1 1

2 . – .
dv dt

g g k v g k v

 
  

  
On integrating, we get

1 1 1log ( . ) – log ( – . )
2 2

g k v g k v t A
g k gk

  


.1 log

2 – .
g k v

gk g k v


= t + A ...(1)

On putting t = 0, v = 0 in (1), we get 1 log 1 0 0
2

A A
gk

   

Equation (1) becomes . .1 log log 2
2 – . – .

g k v g k v
t gk t

gk g k v g k v
 

  


.

– .
g k v
g k v


= 2 gk te

By componendo and dividendo, we have

.k v
g = 

2 –

2 –

– 1 – tan
1

gkt gk t gk t

gkt gk t gk t

e e e h gk t
e e e

 
 

 v = tang h gk t
k

Whatever the value of t may be tanh 1.gk t

Hence the value of v will never exceed .g
k

Proved.

dx
dt

= tanhg gk t
k

Integrating again, we get x = tanh
g gk t dt
k

 = 1 log cosh gk t B
k

when t = 0, x = 0 then B = 0

 x = 1 log cosh gk t
k

Ans.

EXERCISE 3.17
1. A moving body is opposed by a force proportional to the displacement and by a resistance proportional

to the square of velocity. Prove that the velocity is given by

2
2– cx cV ae

b ab
  Hint. Equation of motion is 2

1 2– –VdVm K x K V
dx



2. A particle of mass m is projected vertically upward with an initial velocity v0. The resisting force at any
time is K times the velocity. Formulate the differential equation of motion and show that the distance s
covered by the particle at any time t is given by

s = 
–0

2 (1 – ) –Ktg v ge t
K KK
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3. A particle falls in a vertical line under gravity (supposed constant) and the force of air resistance to its
motion is proportional to its velocity. Show that its velocity cannot exceed a particular limit.

Ans. gV
K



4. A body falling from rest is subjected to a force of gravity and an air resistance of 
2n

g
times the square of

velocity. Show that the distance travelled by the body in t seconds in 
2

g
n

log cosh nt.

5. A body of mass m, falling from rest is subject to the force of gravity and an air resistance proportional
to the square of the velocity Kv2. If it falls through a distance x and possesses a velocity v, at the instant,
prove that

2
2

2 2
2 log where

–
kx a mg a
m ka v

 
   

 
                          (A.M.I.E.T.E., June 2009)

HEAT CONDUCTION
Example 42. The rate at which a body cools is proportional to the difference between the
temperature of the body and that of the surrounding air. If a body in air at 25°C will cool
from 100° to 75° in one minute, find its temperature at the end of three minutes.
Solution. Let temperature of the body be T°C.

( – 25)dT k T
dt

  or – 25
d T k dt

T


log  (T – 25) = kt + log A or log 
– 25T kt
A



T – 25 = A ekt ...(1)
When t = 0, then T = 100, from (1) A = 75

When t = 1, then T = 75 and A =75, From (1) 
2
3 = ek

 (1) becomes T = 25 + 75 ekt

When t = 3,     then  T = 25 + 75 e3k = 25 + 75 × 8 / 27 = 47.22 Ans.
Example 43. The rate at which the ice melts is proportional to the amount of ice at the instant.

Find the amount of ice left after 2 hours if half the quantity melts in 30 minutes.
Solution. Let m be the amount of ice at any time t.


dm km
dt

              
dm k dt
m



dm k dt C
m

                log m = kt + C ...(1)

At t = 0, m = M
             log M = 0 + C                 C = log M

On putting the value of C, (1) becomes,
log m = kt + log  M ...(2)

m =M/2        when t =1/2 hour

log log log
2 2 2 2
M k M kM

M
   

            
1 1log or 2 log
2 2 2

k k  
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On putting the value of k in (2), we have  log m= 
12 log
2

 
 
 

t+ log M ...(3)

On putting t= 2 hours in (3), we have log m = 4 log 
1
2

+ log M


41log log

2
m
M

   
 

or    
1 or

16 16
m Mm
M

 

After 2 hours, amount of ice left = 
1

16 of the amount of ice at the beginning. Ans.

CHEMICALACTION:
Example 44. Under certain conditions, cane sugar is converted into dextrose at a rate, which is

proportional to the amount unconverted at any time. If out of 75 grams of sugar at t = 0, 8 grams are

converted during the first 3 minutes, find the amount converted in 
11
2

 hours.
Solution. Let M  be the amount of cane sugar initially, m be the amount of cane sugar

converted into dextrose.
Then according to problem,

( – )dm K M m
dt

    or   
dm Km KM
dt

 

which is a linear differential equation.
I.F.  = e Kdt  = ek.t

Solution is          m ek.t  =  KMekt dt = Mekt + C
     m = M + Ce–k.t    ...(1)

(i) At t = 0, m= 0,     M = 75
(1) becomes            m = 75 –75 e–k.t ...(2)
      0 = 75 + C                C = –75

(ii) At t = 30, m = 8
           8 = 75 –75 e–30k                  67 = 75e–30k

      e–30k = 
67
75 ...(3)

(iii) At t = 90, (2) becomes

 m = 75 –75 e– 90 k  = 75 –75 
367

75
 
 
 

from(3) ...(4)

      = 75 –
 
 

3

2

67

75  = 
30076375 –
5625 = 75 – 53.45 = 21.55 Ans.

Example 45. Uranium disintegrates at a rate proportional to the amount present at any
instant. If m1 and m2 grams of uranium are present at time t1 and t2 respectively, show that half
life of uranium is

1 2

1

2

( – ) 2t t log
mlog
m

Solution. Let m be the amount of uranium at any time t.

–dm km
dt




2 2

1 1

1
2 1

2

– log ( – )
m t

m t

mdm k dt k t t
m m

    ...(1)
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Let the mass m reduce to 
2
m

in time t.     Also
22

0
–

m t

m

dm k dt
m

 
           log 

2
m

– log m = – kt  kt = log 2 = log 2 
log 2k

t


Substituting the value of k in (1), we get

1
2 1

2

log 2log ( – ),
m

t t
m t

    2 1

1

2

( – ) log 2

log

t tt
m
m

 Proved.

   EXERCISE 3.18
1. Radium decomposes at a rate proportional to the amount present. If 5% of the original amount

disappears in 50 years, how much will remain after 100 years? Ans. 90.25%
2. If a thermometer is taken outdoors where the temperature is 0°C from a room in which the

temperature is 21°C and the reading drops to 10°C  is 1 minute, how long after its removal will
the reading be 5°C ? Ans. 2 minutes, 13 seconds.

3. In one dimensional steady state heat conduction for a hollow cylinder with constant thermal
conductivity k in the region a r b  , the temperature TTr at a distance r ( )a r b   is
given by

0,rdTd r
dr dr

    
with Tr = T1 where r = a and Tr = T2 where  r = b. Use this to determine steady state temperature

distribution Tr in the cylinder in terms of r.      Ans.
1 2 2 1 1 2

1 2 1 2

– log – log
log

log( / ) log( / )r
T T T r T r

T r
r r r r

 

MISCELLANEOUS  QUESTION
Example 46. If the population of a country doubles in 50 years, in how many years will it

treble, assuming that the rate of increase is proportional to the number of inhabitants?
Solution. Let t  = time in years,

y = population after t years
P= original population (when t= 0).

The rate of increase of population is proportional to the population, so that
dy
dt = ky, where k is a constant. or k dt = dy/y

Integrating,   kt = c + log y ... (1)
When    t = 0, y = P
When    t = 50, y = 2P
Substituting in (1),     0 =  c + log P, and   50k = c + log 2P
Solving,    c = – log P

             50k = – log P + log 2P = log 2  or     k = 
1
50 log 2

The value of t when population has trebled is obtained by putting y = 3P in (1). We get

kt = c + log 3P = – log P + log 3P = log 3

  t = 
1
k log 3  =

50
log 2 · log 3 years. Ans.
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3.18 LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER WITH CONSTANT
COEFFICIENTS
The general form of the linear differential equation of second order is

                
2

2
d y dyP Qy R

dxdx
  

where P and Q are constants and R is a function of x or constant.
Differential operator. Symbol D stands for the operation of differential i.e.,

      ,dyDy
dx


2

2
2

d yD y
dx



1
D

 stands for the operation of integration.

2
1

D
 stands for the operation of integration twice.

2

2
d y dyP Qy R

dxdx
    can be written in the operator form.

D2y + P Dy + Q y = R   (D2 + PD + Q) y = R

3.19 COMPLETE SOLUTION = COMPLEMENTARY FUNCTION + PARTICULAR
 INTEGRAL
Let us consider a linear differential equation of the first order

dy Py Q
dx

  ...(1)

Its solution is          ( )
Pdx Pdx

ye Q e dx C  
         ( )

Pdx Pdx Pdx
y Ce e Qe dx

 
   

          y = cu + v (say) ...(2)

where Pdx
u e


   and 

Pdx Pdx
v e Q e dx


  

(i) Now differentiating Pdx
u e


   w.r.t. x, we get 

Pdxdu Pe Pu
dx


   

 0du Pu
dx

  
( ) ( ) 0d cu P cu
dx

 

which shows that y = c.u is the solution of  0dy Py
dx

 

(ii) Differentiating (
PdxPdx

v e Qe   dx with respect to x, we get

( )
Pdx Pdx Pdx Pdxdv Pe Qe dx e Qe

dx


             
dv Pv Q
dx

  


dv Pv Q
dx

   which shows that y = v is the solution of 
dy

Py Q
dx

 

Solution of the differential equation (1) is (2) consisting of two parts i.e. cu and v.
cu is the solution of the differential equation whose R.H.S. is zero. cu is known as complementary
function. Second part of (2) is v free from any arbitrary constant and is known as particular integral.
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Complete Solution = Complementary Function + Particular Integral.

       y = C.F.+ P.I.

3.20 METHOD FOR FINDING THE COMPLEMENTARY FUNCTION

(1) In finding the complementary function, R.H.S. of the given equation is replaced by zero.
(2) Let y = C1 emx be the C.F. of

2

2 0d y dyP Qy
dxdx

   ...(1)

Putting the values of y, dy
dx

 and 
2

2
d y
dx

 in (1) then C1e
mx (m2 + Pm + Q) = 0

             m2 + Pm + Q = 0. It is called Auxiliary equation.
(3) Solve the auxiliary equation :
Case I : Roots, Real and Different. If m1 and m2 are the roots, then the C.F. is

1 2
1 2

m x m xy C e C e 
Case II : Roots, Real and Equal. If both the roots are m1, m1 then the C.F. is

1
1 2( ) m xy C C x e 

Equation (1) can be written as
                (D – m1)(D – m1)y = 0 ... (2)
Replacing              (D – m1)y = v in (2), we get

                 (D – m1)v = 0 ... (3)

1– 0dv m v
dx

            1
dv m dx
v
               1 2log logv m x c            1

2
m xv c e

        1
2

m xv c e

From (3) 1
2( –1) m xD y c e

This is the linear differential equation.
                                  1 1– –I.F. m dx m xe e 
Solution is
                              1 1 1– –

2 1. ( ) ( )m x m x m xy e c e e dx c  2 1c dx c  2 1c x c 

                                     1
2 1( ) m xy c x c e 

                                  1
1 2C.F. ( ) m xc c x e 

Example 47. Solve:
2

2 8 15 0.d y dy y
dxdx

  

Solution. Given equation can be written as
(D2 – 8D + 15) y = 0

Here auxiliary equation is m2 – 8m + 15 = 0
 (m – 3) (m – 5) = 0  m = 3, 5
Hence, the required solution is

y = C1 e3x + C2e
5x Ans.

Example 48. Solve:  
2

2 6 9 0d y dy y
dxdx

  

Solution. Given equation can be written as
(D2 – 6D + 9) y = 0
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A.E. is m2 – 6m + 9 = 0                   (m – 3)2 = 0                   m = 3, 3
Hence, the required solution is

y = (C1 + C2x) e3x Ans.

Example 49. Solve: 
2

2 4 5 0,d y dy y
dxdx

  

     y = 2 and 
2

2
dy d y
dx dx

  when x = 0.

Solution. Here the auxiliary equation is
m2 + 4m + 5 = 0

Its root are 2 i 
The complementary function is

     y = e–2x (A cos x + B sin x) ...(1)
On putting y = 2 and x = 0 in (1), we get
                           2 = A
On putting A = 2 in (1), we have

     y = e–2x [2 cos x + B sin x] ...(2)
On differentiating (2), we get

  2 2[ 2sin cos ] 2 [2cos sin ]x xdy e x B x e x B x
dx

     

= e–2x [(– 2B – 2) sin x + (B – 4) cos x]
2

2
2 [( 2 2)cos ( 4)sin ]xd y e B x B x

dx
    

– 2e–2x [(– 2B – 2) sin x + (B – 4) cos x]
= e–2x [( – 4B + 6) cos x + (3B + 8) sin x]

But
2

2
dy d y
dx dx



e–2x [(–2B –2) sin x + (B – 4) cos x] = e–2x [(– 4B + 6) cos x + (3B + 8) sin x]
On putting x = 0, we get

                  B – 4 = – 4B + 6  B = 2
(2) becomes,      y = e–2x [2 cos x + 2 sin x]

     y = 2e–2x [sin x + cos x] Ans.

Exercise 3.19
Solve the following equations :

1.
2

2 3 2 0d y dy y
dxdx

   Ans. y = C1 ex +  C2 e2x 2.  
2

2 30 0d y dy y
dxdx

   Ans.  y = C1e
5x + C2e

–6x

3.
2

2 8 16 0d y dy y
dxdx

   Ans. y = (C1 + C2x) e4x

4.
2

2
2 0d y y

dx
  Ans. 1 2cos siny C x C x   

5. 2( 2 2) 0, (0) 0, (0) 1D D y y y       (A.M.I.E.T.E., June 2006)  Ans.  y = e–x sin x

6.
3 2

3 22 4 8 0d y d y dy y
dxdx dx

    Ans. y = C1e
2x + C2cos 2x + C3sin 2x

7.
4 2

4 232 256 0d y d y
dx dx

    (AMIETE., Dec. 2004) Ans. y= (C1 + C2x) cos 4x + (C3 + C4x) sin 4x
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8.
4 3 2

4 3 2– 4 8 8 4 0d y d y d y dy y
dxdx dx dx

    Ans. y = ex [(C1 + C2 x) cos x + (C3 + C4 x) sin x]

9.
4 2

4 2 0,d y d y
dx dx

  (0) (0) (0) 0, (0) 1y y y y      Ans. y = x – sin x

10. The equation for the bending of a strut is EI 
2

2 0d y Py
dx

 

If y = 0 when x = 0, and y = a when 
1 ,
2

x   find y.. Ans.
sin

1sin
2

Pa x
EIy
P
EI



11.
3 2

3 26 12 8 0,d y d y dy y
dxdx dx

    y(0) = 0, and (0) 0y   and (0) 2y 

(A.M.I.E.T.E. Dec. 2008) Ans. y = x2e–2x

12.
3 2

3 2
4 4 0,d y d y dy y
dxdx dx

    y(0) = 0, (0) 0,y  (0) 5,y   Ans. y = 1cos 2 sin 2
2

xe x x  

13. 8 6 2( 6 – 32 ) 0D D D y  (A.M.I.E.T.E., Summer 2005)

Ans. y = C1 + C2x + C3
2 2

4 5 6cos 2 sin 2x xe C e C x C x  

14. Show that non-trivial solutions of the boundary value problem ( ) 4– 0, (0) 0 (0),ivy w y y y  

y(L) = 0, ( ) 0y L   are 
1

( ) sinnn

n xy x D
L





    
 

 where nD  are constants.  (AMIETE, Dec. 2005)

15. Solve the initial value problem 6 11 6 0,y y y y      y(0) = 0, (0) 1,y  (0) –1.y 

                                  (A.M.I.E.T.E., Dec. 2006)        Ans. y = 2e–x – 3e–2x+ e–3x.

16. Let y1, y2 be two linearly independent solutions of the differential equation 2– ( ) 0.yy y  
Then, c1y1 + c2 y2, where c1, c2 are constants is a solution of this differential equation for
(a) c1 = c2 = 0 only.      (b) c1 = 0  or  c2 = 0     (c) no value of c1, c2.   (d) all real c1, c2

(A.M.I.E.T.E., Dec. 2004)
3.21  RULES TO FIND PARTICULAR INTEGRAL

 (i) 
1 1
( ) ( )

ax axe e
f D f a

  If f (a) = 0 then 1 1
( ) ( )

ax axe x e
f D f a

   


    If ( ) 0f a   then 21 1
( ) ( )

ax axe x e
f D f a

  


(ii) 11 [ ( )]
( )

n nx f D x
f D

 Expand [f (D)]–1 and then operate.

(iii) 2 2
1 1sin sin

( ) ( )
ax ax

f D f a



 and 2 2

1 1cos cos
( ) ( )

ax ax
f D f a




       If f (– a2) = 0 then 2 2
1 1sin sin

( ) ( )
ax x ax

f D f a
  

 

(iv) 
1 1( ) ( )
( ) ( )

ax axe x e x
f D f D a

    


(v) 
1 ( ) ( )ax axx e e x dx

D a
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3.22
1 1
( ) ( )

ax axe e
f D f a

 

We know that, D.eax = a.eax,  D2eax = a2.eax,…............., Dn eax = an eax

Let f (D) eax = (Dn + K1D
n–1 + … + Kn) eax = (an + K1a

n–1 +…+ Kn)eax = f (a) eax.

Operating both sides by 1
( )f D

    
1 1( ) ( )
( ) ( )

ax axf D e f a e
f D f D

  


1 1 1( )
( ) ( ) ( )

ax ax ax axe f a e e e
f D f D f a

   

If f (a) = 0, then the above rule fails.

Then 1 1 1
( ) ( ) ( )

ax ax axe x e x e
f D f D f a

  
 

       


1 1
( ) ( )

ax axe x . e
f D f a

If ( ) 0f a   then 


21 1
( ) ( )

ax axe = x e
f D f a

Example 50. Solve the differential equation
2

2
d x g gx L

t ldt
 

where g, l, L are constants subject to the conditions,

x = a, 0dx
dt

 at t = 0.

Solution. We have,
2

2
d x g gx L

t ldt
               2 g gD x L

l l
   
 

A.E. is 2 0gm
l

  
gm i
l

 

               C.F. = 1 2cos sing gC t C t
l l



                 P.I. = 0

2 2

1 1

0

tg g gL L e L Lg g gl l lD D
l l l


   

  
[D = 0]

    General solution is = C.F. + P.I.

                   1 2cos sing gx C t C t L
l l

   
        

   
...(1)

                 1 2sin cosdx g g g gC t C t
dt l l l l

   
        

   

Put t = 0     and     0dx
dt



                  20 gC
l

     C2 = 0
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(1) becomes             1 cos gx C t L
l

  ...(2)

Put x = a and t = 0 in (2), we get
                   a = C1 + L or C1 = a – L

On putting the value of C1 in (2), we get ( ) cos gx a L t L
l

 
    

 
Ans.

Example 51. Solve :
2

3
2 6 9 5 xd y dy y e

dxdx
  

Solution. (D2 + 6D + 9)y = 5e3x

Auxiliary equation is m2 + 6m + 9 = 0           (m + 3)2 = 0          m = – 3, – 3,
                 C.F. = (C1 + C2x) e–3x

                  P.I. = 
3 3

3
2 2

1 5.5. 5
366 9 (3) 6(3) 9

x x
x e ee

D D
 

   

The complete solution is
3

3
1 2

5( )
36

x
x ey C C x e   Ans.

Example 52. Solve :
2

3 2
2 6 9 6 7 log 2x xd y dy y e e

dxdx
    

Solution.                  (D2 – 6D + 9)y = 6e3x + 7e–2x – log 2
A.E. is (m2 – 6m + 9) = 0  (m – 3)2 = 0,  m = 3, 3

                      3
1 2C.F. ( ) xC C x e 

               P.I. = 3 2
2 2 2

1 1 16 7 ( log 2)
6 9 6 9 6 9

x xe e
D D D D D D

  
     

= 3 2 0
2

1 1 16 7 log 2
2 6 4 12 9 6 9

x x xx e e e
D D D

 
    

= 
2 3 2 2 3 21 7 1 7 16 log 2 3 log 2

2 25 9 25 9
x x x xx e e x e e         

 

Complete solution is 3 2 3 2
1 2

7 1( ) 3 log 2
25 9

x x xy C C x e x e e     Ans.

EXERCISE 3.20
Solve the following differential equations:

1. [D2 + 5D + 6] [y] = ex Ans. 2 3
2 2 12

x
x x eC e C e  

2.
2

3
2 3 2 xd y dy y e

dxdx
   Ans.

3
2

1 2 2

x
x x eC e C e 

(A.M.I.E.T.E. June 2010, 2007)

3. (D3 + 2D2 – D – 2) y = ex Ans. – – 2
1 2 3 6

x x x xxC e C e C e e  

4.
2

2 2 2 sinhd y dy y x
dxdx

   Ans. 1 2[ cos sin ]
10 2

x x
x e ee C x C x


   

5.
2

2 4 5 2coshd y dy y x
dxdx

    Ans. 2
1 2

1( cos sin )
10 2

x
x x ee C x C x e


   

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



180 Differential Equations

6. (D3 – 2D2 – 5D + 6) y = e3x Ans.
3

– 2 3
1 2 3

.
10

x
x x x x eC e C e C e  

7.
3 2

3 2 4 4 xd y d y dy y e
dxdx dx

    Ans. 1 2 3cos 2 sin 2
5

x
x x eC e C x C x  

8.
2

3
2 6 9 xd y dy y e

dxdx
   Ans.

2
3 3

1 2( )
2

x xxC C x e e 

9.
3 2

23 3 xd y d y dy y e
dxdx dx



    Ans.

3
2

1 2 3( )
6

x xxC C x C x e e   

10.
2

2 6 cosh 2xd y dy y e x
dxdx

   Ans. 3 –2 3
1 2

1 1
10 8

x x x xC e C e xe e  

11. (D – 2) (D + 1)2 y = e2x + ex Ans. 2 2
1 2 3( )

9 4

x
x x xx eC e C C x e e   

12. (D – 1)3 y = 16 e3x Ans. (C1 + C2x + C3 x2) ex + 2e3x

3.23 11 [ ( )] .
( )

n nx f D x
f D



Expand [f (D)]–1 by the Binomial theorem in ascending powers of D as far as the result of
operation on xn is zero.

Example 53. Solve the differential equation
2 2

2
2 ( )d y a Ra y l x

pdx
  

where a, R, p and l are constants subject to the conditions y = 0, 0dy
dx

 at x = 0.

Solution.
2 2

2
2 ( )d y aa y R l x

pdx
   

2
2 2( ) ( )aD a y R l x

p
  

A.E. is m2 + a2 = 0  m ia 
     C.F. = C1 cos ax + C2 sin ax

     P.I. = 
2

2 2
1 ( )a R l x

pD a



 = 

12 2

2 2 2

2

1 1 ( ) 1 ( )
1

a R R Dl x l x
p pa D a

a


 
   
      
    
 

        = 
2

21 ( ) ( )R D Rl x l x
p pa

 
    

 

    y = 1 2cos sin ( )RC ax C ax l x
p

   ...(1)

On putting y = 0, and x = 0 in (1), we get 0 = 1
RC l
p

  1
R lC
p

 

On differentiating (1), we get 1 2sin cosdy Ra C ax a C ax
dx p

    ...(2)

On putting 0dy
dx

  and x = 0 in (2), we have

0 = 2
Ra C
p

      2 .
RC

a p


On putting the values of C1 and C2 in (1), we get

y = cos . sin . ( )
.

R R Rl a x a x l x
p a p p

     y = 
sin cos .R ax l a x l x

p a
     

Ans.
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EXERCISE 3.21
Solve the following equations :

1. (D2 + 5D + 4) y = 3 – 2x Ans. 4
1 2

1 (11 4 )
8

x xC e C e x   

2.
2

2 2d y dy y x
dxdx

   Ans. (C1 + C2 x) e–x + x – 2

3. (2D2 + 3D + 4) y = x2 – 2x    Ans.
3

24 23 23 1[ cos sin ] [8 28 13]
4 4 32

x
e A x B x x x


   

4. (D2 – 4D + 3) y = x3 Ans. 3 3 2
1 2

1 (9 36 78 80).
27

x xC e C e x x x    

5.
3 2

2
3 25 6 1 .d y d y dy x

dxdx dx
    Ans. 2 3 3 21 252

36 3
x xA Be C e x x x       

 

6.
4

4
4 4d y y x

dx
  Ans. 4

1 2 3 4
1( cos sin ) ( cos sin ) ( 6)
4

x xe C x C x e C x C x x    

7. 2 2 2
2 2 ( ) .cxd y dyp p q y e p q x

dxdx



    

Ans. 
2 2

2
1 2 2 2 2 2 2 2 2 2 2

4 6 2[ cos sin ]
( ) ( )

Cx
px e p q p x p qe C qx C qx x

p C q p q p q p q
  

     
     

8. D2 (D2 + 4) y = 96 x2 Ans. C1 + C2x + C3 cos 2x + C4 sin 2x + 2x2 (x2 – 3)

3.24 2 2
1 sinsin

( ) ( )
axax

f D f a



                               2

1 coscos
( ) ( )2

axax
f D f –a

D (sin ax) = a.cos ax, D2 (sin ax) = D (a cos ax) = – a2. sin ax
D4 (sin ax) = D2.D2 (sin ax) = D2 (– a2 sin ax) = (– a2)2 sin ax
(D2)n sin ax = (– a2)n sin ax
Hence, f (D2) sin ax = f ( – a2) sin ax

2 2
2 2

1 1( ) sin . ( ).sin
( ) ( )

f D ax f a ax
f D f D

  

2
2

1sin (– ) sin
( )

ax f a ax
f D

  2 2
1 sinsin

( ) ( )
axax

f D f a
 



Similarly, 2 2
1 coscos

( ) ( )
axax

f D f a



If f (– a2) = 0 then above rule fails.

2 2
1 sinsin

( ) ( )
axax x

f D f a


 

If 2( ) 0f a    then, 2
2 2

1 sinsin
( ) ( )

axax x
f D f a


 

Example 54. Solve : (D2 + 4) y = cos 2x
(R.G.P.V., Bhopal June, 2008, A.M.I.E.T.E. Dec 2008)

Solution. (D2 + 4) y = cos 2x
Auxiliary equation is m2 + 4 = 0

2 ,m i       C.F. = AA cos 2x + B sin 2x
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                  P.I. = 2
1 cos 2

4
x

D 
 = 

1 1. cos 2 sin 2 sin 2
2 2 2 4

x xx x x x
D

   
 

Complete solution is cos 2 sin 2 sin 2
4
xy A x B x x   Ans.

Example 55. Solve : 
3 2

3 33 4 2 cosxd y d y dy y e x
dxdx dx

      (U.P., II Semester, Summer 2006, 2001)

Solution. Given (D3 – 3D2 + 4D – 2) y = ex + cos x
A.E. is m3 – 3m2 + 4m – 2 = 0

 (m – 1) (m2 – 2m + 2) = 0, i.e., m = 1, 1 i
 C.F. = C1e

x + ex (C2 cos x + C3 sin x)

                P.I. 2 3 2
1 1 cos

( 1) ( 2 2) 3 4 2
xe x

D D D D D D
 

     

= 
1 1 cos

( 1) (1 2 2) ( 1) 3( 1) 4 2
xe x

D D D


       

= 
1 1 cos

( 1) 3 1
xe x

D D


 
 = 2

1 3 1 cos
1 9 1

x Dx e x
D






= 
( 3sin cos ).

9 1
x x xe x  


   = 

1. (3sin cos )
10

xe x x x 

Hence, complete solution is

y = 1 2 3
1( cos sin ) (3sin cos )

10
x x xC e e C x C x x e x x     Ans.

Example 56. Solve : 3 2( 1) cos
2

xxD y e    
 

(Nagpur University, Summer 2004)

Solution.               
3 2( 1) cos

2
xxD y e    

 
A.E. is m3 + 1 = 0

(m + 1) (m2 – m + 1) = 0  m = – 1

or
( 1) 1 4 1 3

2 2
im     

  
1 3
2 2

m i 

  C.F.  = 2
1 2 3

3 3cos sin
2 2

x
xC e e C x C x  
  

 

  P.I.  = 
2

3
1 cos

21
xx e

D
        

 = 2
3 3
1 1cos

21 1
xx e

D D
   

  
[Put D = – 1]

= 3 2
1 1 cos 1

21 3 1
xx e

D D
   

  

= 0
3 3 2

1 1 1 1 1cos
2 21 1 3( 1) 1

x xe x e
D D

 
   

 = 
1 1 1 1cos
2 2 1 4

xx e
D

 
 

= 
1 1 ( 1)cos 1
2 2 ( 1) ( 1) 4

xD x e
D D


 

 
 = 2

1 1 ( sin cos ) 1
2 2 4( 1)

xx x e
D
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= 2 2
1 1 sin 1 1 1cos
2 2 2 4( 1) ( 1)

xx x e
D D

  
 

Put    D2 = – 1 = 
1 1 sin 1 1 1cos
2 2 ( 1 1) 2 ( 1 1) 4

xx x e  
   

 = 
1 sin cos 1
2 4 4 4

xx x e  

            P.I. = 
1 1 (cos sin )
2 4

xx x e  

Hence, the complete solution is

y = 2
1 2 3

3 3 1 1cos sin (cos sin )
2 2 2 4

x
x xC e e C x C x x x e  
      

 
Ans.

EXERCISE 3.22
Solve the following differential equations :

1.
2

2 6 sin 4d y y x
dx

  Ans. 1 2
1cos 6 sin 6 sin 4

10
C x C x x 

2.
2

2 2 3 sind x dx x t
dtdt

   Ans.
1[ cos 2 sin 2 ] (cos sin )
4

te A t B t t t   

3.
2

2 2 5 sin 2 ,d x dx x t
dtdt

   given that when t = 0, x = 3 and 0dx
dt



Ans. 55 53 1cos 2 sin 2 (4cos 2 sin 2 )
17 34 17

te t t t t      

4.
2

2 7 6 2sin 3 ,d y dy y x
dxdx

    given that y = 1, 0dy
dx

  when x = 0.

Ans. 613 27 1 (7 cos3 sin 3 )
75 25 75

x xe e x x   

5. (D3 + 1) y = 2cos2 x

Ans.
1
2

1 2 3
3 3 1cos sin 1 ( 8sin 2 cos 2 )

2 2 65
xxC e e C x C x x x  

       
 

6. (D2 + a2) y = sin ax         (A.M.I.E.T.E., June 2009)  (Ans. 1 2cos sin cos
2
xC ax C ax ax
a

 

7. (D4 + 2a2D2 + a4) y = 8 cos ax Ans.
2

1 2 3 4 2( cos sin ) cosxC C x C ax C ax ax
a

   

8.
2

2 3 2 sin 2d y dy y x
dxdx

   (A.M.I.E.T.E., Summer 2002)

Ans. 2
1 2

1 (3cos 2 sin 2 )
20

x xC e C e x x   

9.
2

2 sin3 cos 2d y y x x
dx

  Ans. 1 2
1cos sin [ sin 5 12 cos ]
48

C x C x x x x   

10.
2

2
2 2 3 2 10sin 3xd y dy y e x

dxdx
     given that y (0) = 2 and y(0) = 4

Ans. 3 229 1 2 1[cos 3 2sin 3 ]
12 12 3 3

x x xe e e x x   

11.
2

2
2 3 2 4cosd y dy y x

dxdx
       (R.G.P.V., Bhopal, I Semester, June 2007)

Ans. 2 2
1 2

1 (3sin 2 cos 2 ) 1
10

x x xC e C e e x x     

12.
2

2
2 2 3 cosd y dy y x x

dxdx
   

Ans. 2
1 2

1 1 4 2[ cos 2 sin 2 ] (cos sin ) ( )
4 3 3 9

xe C x C x x x x x     
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13. 3 2( 3 4 2) cosxD D D y e x             Ans. 1 2 3
1( cos sin ) (3sin cos )

10
xC C x C x e x x   

14. (D3 – 4D2 + 13 D) y = 1 + cos 2x
Ans. 2

1 2 3
1( cos3 sin 3 ) (9sin 2 8cos 2 )

290 13
x xC e C x C x x x    

15. (D2 – 4D + 4) y = e2x + x3 + cos 2x

Ans. 2 2 2 3 2
1 2

1 1 1( ) (2 6 9 6) sin 2
2 8 8

x xC C x e x e x x x x      

16.
2

2
2 sind y n y h px

dx
  ( )P n

where h, p and n are constants satisfying the conditions

y = a, 
dy b
dx

  for x = 0                      Ans. 2 2 2 2
sincos sin

( ) ( )
b ph h pxa nx nx
n n n p n p

 
      

17. 2 6sin 2 18cos 2 ,y y y x x      y (0) = 2, (0) 2y  Ans.  – e–2x + 3 cos 2x

3.25 1 1. ( ) . . ( )
( ) ( )

ax axe x e x
f D f D a

   


[ ( )] ( ) ( ) ( ) ( )ax ax ax axD e x e D x ae x e D a x       

2[ ( )] [ ( ) ( )]ax axD e x D e D a x     = 2( ) ( ) ( ) ( )ax axe D aD x ae D a x    

         = 2 2 2( 2 ) ( ) ( ) ( )ax axe D a D a x e D a x     

Similarly,        [ ( )] ( ) ( )n ax ax nD e x e D a x   

        ( )[ ( )] ( ) ( )ax axf D e x e f D a x   

                
1( ) .[ ( ) ( )]
( )

ax axe x e f D a x
f D

    ...(1)

Put ( ) ( ) ,f D a x X    so that 
1( ) .

( )
x X

f D a
 


Substituting these values in (1), we get

1 1 [ . ]
( ) ( )

ax axe X e X
f D a f D




   1 1[ . ( )] ( )
( ) ( )

ax axe x e x
f D f D a

  


Example 57. Solve : (D2 – 4D + 4) y = x3 e2x

Solution. (D2 – 4D + 4) y = x3 e2x

A.E. is m2 – 4m + 4 = 0       (m – 2)2 = 0          m = 2, 2
C.F. = (C1 + C2 x) e2x

P.I. = 3 2 2 3
2 2

1 1
4 4 ( 2) 4( 2) 4

x xx e e x
D D D D

 
     

    = 
4 5

2 3 2 2
2

1 1.
4 20

x x xx xe x e e
DD

 
    

 

The complete solution is 
5

2 2
1 2( ) .

20
x x xy C C x e e   Ans.

Example 58. Solve the differential equation :
3 2

2
3 27 10 sinxd y d y dy e x

dxdx dx
    (AMIETE, June 2010, Nagpur University, Summer 2005)
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Solution.      
3 2

2
3 27 10 sinxd y d y dy e x

dxdx dx
        D3y – 7D2y + 10 Dy = e2x sinx

A.E. is
m3 – 7m2 + 10 m = 0                   (m – 2) (m2 – 5m) = 0

 m (m – 2) (m – 5) = 0     m = 0, 2, 5

C.F = 0 2 5
1 2 3

x x xC e C e C e 

P.I. = 2
3 2

1 sin
7 10

xe x
D D D 

2
3 2

1 . sin
( 2) 7 ( 2) 10( 2)

xe x
D D D


    

2
3 2 2

1 .sin
6 12 8 7 28 28 10 20

xe x
D D D D D D


       

2
3 2

1 sin
6

xe x
D D D


 

  
2

2 2
1 sin

( 1 ) ( 1 ) 6
xe x

D D


   

2 1 sin
1 6

xe x
D D


  

2 1 sin
1 7

xe x
D




2
2

1 7 sin
1 49

x De x
D





2

2
1 7 sin

1 49( 1 )
x De x


 

2 1 7 sin
50

x De x


2
(sin 7cos )

50

xe x x 

Complete solution is
                 y = C.F. + P.I.

               y
2

2 5
1 2 3 (sin 7cos )

50

x
x x eC C e C e x x     Ans.

Example 59. Solve 
3

2
3( 6 9) .

xeD D y
x



  

(Nagpur University, Summer 2002, A.M.I.E.T.E., June 2009)
Solution A.E. is m2 + 6m + 9 = 0

(m + 3)2 = 0  m = – 3, – 3
C.F. = (C1 + C2x) e– 3x

P.I. = 
3

3
2 3 2 3

1 1 1
6 9 ( 3) 6( 3) 9

x
xe e

D D x D D x




     

= 3
2

1 1
6 9 6 18 9

xe
D D D x


    

= 3 3
2

1 ( )xe x
D

 

= 
2 1 3 1 3

3 31
2 ( 2) ( 1) 2 2

x x
x xx x e x ee e

D x

    
  

       

Hence, the solution is y = 
3

3
1 2( )

2

x
x eC C x e

x


  Ans.

Example 60. Solve (D2 + 5D + 6) y = e–2x sec2x (1 + 2 tan x) (A.M.I.E.T.E., Summer 2003)
Solution. (D2 + 5D + 6) y = e–2x sec2x (1 + 2 tan x)
Auxiliary Equation is m2 + 5m + 6 = 0

 (m + 2) (m + 3) = 0    m = –2, and m = –3
Hence, complementry function (C.F.) = C1e

–2x + C2e
–3x

P.I. = 2 2
2 2

1 12 sec 2 (1 2 tan ) sec (1 2 tan )
5 6 ( 2) 5( 2) 6

xe x x x e x x
D D D D
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= 2 2
2

1 sec (1 2 tan )
4 4 5 10 6

xe x x
D D D

 
    

2 2
2 2 2

2 2 2
1 sec 2 tan secsec (1 2 tan )x x x x xe x x e

D D D D D D
   

    
   

2 2 21 1sec 2 tan sec
( 1) ( 1)

xe x x
D D D D

 
 

2 2 21 1 1 1sec 2 tan sec
1 1

xe x x x
D D D D

                 
2 2 2 2 21 1 1 1sec sec 2 tan sec 2 tan sec

1 1
xe x x x x x x

D D D D
        

2 2tan .sec 2 tan 2 tan sec 2x x x xe x e ex x dx x e e x x dx        
Now, 2 2 2sec sec .2sec sec tan .x x x xe e x dx e x e x x x dx   

2 2sec 2 sec .tanxe x ex x x dx  
P.I. = 

2 2 2 2tan . sec 2 sec tan tan 2 sec tanx e x x x x xe x x e x e e x x dx x e e x xdx         
2 2 2 2 2 2[tan sec tan ] [tan (sec tan 2 ] (tan 1)x x xe x x x e x x x e x         

Complete solution is

2 3 2
1 2. . . . (tan 1)x x xy C F P I C e C e e x        

Example 61. Solve the differential equation (D2 – 4D + 4) y = 8x2 e2x sin 2x
(U.P. II Semester, Summer 2008, Uttrakhand 2007, 2005, 2004; Nagpur University June 2008)
Solution. (D2 – 4D + 4) y = 8x2 e2x sin 2x

  A.E. is (m2 – 4m + 4) = 0       (m – 2)2 = 0      m = 2, 2
             C.F.  = (C1 + C2x) e2x

P.I. = 2 2
2

1 8 sin 2
4 4

xx e x
D D 

 = 2 2
2

18 sin 2
( 2)

xx e x
D 

= 2 2
2

18 sin 2
( 2 2)

xe x x
D  

  = 2 2
2

18 sin 2xe x x
D

= 2 21 ( cos2 ) sin 2 cos28 2 2
2 4 8

x x x xe x x
D
         

= 
2

2 1 sin 2 cos28 cos2
2 2 4

x x x x xe x
D
 
   
 

= 
2

2 sin 2 2 cos2 sin 2 cos2 1 sin 2 sin 28 ( 1)
2 2 2 4 8 2 2 2 4 8

x x x x x x x x x xe
                                  

            
   = e2x [ – 2x2 sin 2x – 2x cos 2x + sin 2x – 2x cos 2x + sin 2x + sin 2x]
   = e2x [– 2x2 sin 2x – 4x cos 2x + 3 sin 2x] = – e2x [4x cos 2x + (2x2 – 3) sin 2x]

Complete solution is, y = C.F. + P.I.
y =  (C1 + C2x) e2x – e2x [4x cos 2x + (2x2 – 3) sin 2x] Ans.

EXERCISE 3.23
Solve the following equations :

1. (D2 – 5D + 6) y = ex sin x Ans. 2 3
1 2 (3cos sin )

10

x
x x ey C e C e x x   
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2.
2

2
2 7 10 sinxd y dy y e x

dxdx
   Ans.

2
2 5

1 2 (3cos sin )
10

x
x x ey C e C e x x   

3.
3

3 2 4 cosxd y dy y e x
dxdx

   Ans. 2
1 2 3( cos sin ) (3sin cos )

20

x
x x xey C e e C x C x x x    

4. (D2  – 4D + 3) y = 2xe3x + 3e3x cos 2x

Ans. 3 3 2 3
1 2

1 3( ) (sin 2 cos 2 )
2 8

x x x xy C e C e e x x e x x     

5.
2

2 22
xd y dy ey

dxdx x



   Ans. y = (C1 + C2 x) e–x – e–x log x

6. (D2 – 4) y = x2 e3x Ans.
3

2 2 2
1 2

12 62
5 5 25

x
x x e xy C e C e x        

7. (D2 – 3D + 2) y = 2x2 e4x + 5e3x Ans.
4

2 2 3
1 2

5[18 30 19]
54 2

x
x x xey C e C e x x e     

8.
2

2 4 sinhd y y x x
dx

  Ans. 2 2
1 2

2sinh cosh
3 9

x x xy C e C e x x   

9.
2

2 2
2 2 ( ) coshtd y dyh h p y ke pt

dtdt
       Ans. –[ cos sin ] sin

2
ht htky e A pt B pt te pt

p
  

3.26 TO FIND THE VALUE OF
1 sin .
( )

nx ax
f D

Now 1 1 1(cos sin )
( ) ( ) ( )

n n iax iax nx ax i ax x e e x
f D f D f D ia

  


      
1 1sin Imaginary part of
( ) ( )

n iax nx ax e x
f D f D ia

  


      
1 1cos Real part of
( ) ( )

n iax nx ax e x
f D f D ia

  


Example 62. Solve
2

2 2 sind y dy y x x
dxdx

  

Solution. Auxiliary equation is m2 – 2m + 1 = 0 or m = 1, 1
  C.F. = (C1 + C2 x) ex

  P.I. = 2
1 sin
2 1

x x
D D


 

  (eix = cos x + i sin x)

= Imaginary part of 2
1 (cos sin )
2 1

x x i x
D D


 

 = Imaginary part of 2
1
2 1

ixx e
D D


 

= Imaginary part of 2
1

( ) 2( ) 1
ixe x

D i D i


   
 = Imaginary part of 2

1
2(1 ) 2

ixe x
D i D i


  

= Imaginary part of 
1

21 11 (1 )
– 2 2

ixe i D D x
i i


      

= Imaginary part of  (cos sin ) 1 (1 )
2
ix i x i D x    

 
= Imaginary part of 

1 ( cos sin ) [ 1 ]
2

i x x x i  

  P.I. = 
1 1 1cos cos sin
2 2 2

x x x x 

Complete solution is y = 1 2
1( ) ( cos cos sin )
2

xC C x e x x x x    Ans.
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EXERCISE 3.24
Solve the following differential equations :

1. (D2 + 4)y = 3x sin x Ans.C1 cos 2x + C2 sin 2x + x sin x – 
2
3  cos x

2.
2

2 sin3 cosd y y x x x
dx

   Ans. 1 2
1 3 cos3 sin 3 5cos

10 5
x xC e C e x x x x       

3.
2

2
2 sin x xd y y x x e x e

dx
    Ans. 2

1 2
1 [ sin cos ] (2 3 9)
2 12

x x xxC e C e x x x e x x     

4. (D4 + 2D2 + 1) y = x2 cos x

Ans. 3 4 2
1 2 3 4

1 1( ) cos ( )sin sin ( 9 ) cos
12 48

C C x x C C x x x x x x x     

3.27 GENERAL METHOD OF FINDING THE PARTICULAR INTEGRAL OF ANY
FUNCTION  (x)

P.I. = 
1 ( )x y

D a
 

 ...(1)

or
1( ) ( ) ( )D a x D a y

D a
    


                ( ) ( – )x D a y  or ( ) –x Dy ay 

            ( )dy ay x
dx

    which is the linear differential equation.

Its solution is     ( )
a dx adx

ye e x dx
 

    or ( )ax axye e x dx  
 y = ( )ax axe e x dx                 

1 ( ) ( )ax –axx = e e x dx
D – a

Example 63. Solve
2

2 9 sec3 .d y y x
dx

 

Solution. Auxiliary equation is 2 9 0m    or 3 ,m i 
                 C.F. = C1 cos 3x + C2 sin 3x

P.I. = 2
1 1sec3 sec3

( 3 ) ( 3 )9
x x

D i D iD
  

 
 = 

1 1 1 sec3
6 3 3

x
i D i D i
     

   = 
1 1 1 1sec3 sec3
6 3 6 3

x x
i D i i D i
   

 
...(1)

Now, 3 31 sec3 sec3
3

ix ixx e e x dx
D i


               

1 ( ) ( )ax axx e e x dx
D a

 
    



= 3 3 3cos3 sin 3 (1 tan 3 ) ( log cos3 )
cos3 3

ix ix ixx i x ie dx e i x dx e x x
x


    

Changing i to – i, we have 31 sec3 ( log cos3 )
3 3

ix ix e x x
D i

 


Putting these values in (1), we get

    P.I. = 
3 31 log cos3 log cos3

6 3 3
ix ixi ie x x e x x

i
              

= 
3 3 3

3 logcos3 logcos3
6 18 6 18

ix ix ix
ixx e x xe ee x

i i

 

  

= 
3 3 3 31 . logcos3

3 2 9 2

ix ix ix ixx e e e e x
i

  
 = 

1sin 3 cos3 log cos3
3 9
x x x x 

Hence, complete solution is 1 2
1cos3 sin 3 sin 3 cos3 log cos3

3 9
xy C x C x x x x         Ans.
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EXERCISE 3.25
Solve the following differential equations :

1.
2

2 secd y a y ax
dx

  (R.G.P.V., Bhopal April, 2010)

Ans. 1 2 2
1cos sin sin cos log cosxC ax C ax ax ax ax

a a
   

2.
2

2 cosecd y y x
dx

  Ans. C1 cos x + C2 sin x – x cos x + sin x log sin x

3. (D2 + 4) y = tan 2x Ans. 1 2
1cos 2 sin 2 cos 2 log (sec 2 tan 2 )
4

C x C x x x x  

4.
2

2 ( cot )d y y x x
dx

   (A.M.I.E. Winter 2002)
Ans. C1 cos x + C2 sin x – x cos 2x – sin x log (cosec x – cot x)

3.28 CAUCHY EULER HOMOGENEOUS LINEAR EQUATIONS
1

1
1 01 .... ( )

n n
n

n n nn n
d y d ya x a x a y x
dx d x




 
     ... (1)

where a0, a1, a2, ... are constants, is called a homogeneous equation.

Put   , log ,z
e

dx e z x D
dz

  

  
1.dy dy dz dy dy dy dyx x Dy

dx dz dx x dz dx dz dx
     

Again,
2 2

2 2 2
1 1 1d y d dy d dy dy d y dz

dx dx dx x dz dz x dxdx x dz
          
   

 = 
2 2

2
2 2 2 2 2

1 1 1 1 1 ( )dy d y d y dy D D y
dz x x dzx dz x dz x

 
       

 
;  

2
2 2

2 ( )d yx D D y
dx

 

or                  
2

2
2 ( 1)d yx D D y

dx
      Similarly. 

3
3

3 ( 1) ( 2)d yx D D D y
dx

  

The substitution of these values in (1) reduces the given homogeneous equation to a differential
equation with constant coefficients.

Example 64. Solve:             
2

2 4
2 2 4d y dyx x y x

dxdx
   (A.M.I.E. Summer 2000)

Solution. We have,
2

2 4
2 2 4d y dyx x y x

dxdx
   ... (1)

Putting ,zx e ,dD
dz

 ,dyx Dy
dx


2

2
2 ( 1)d yx D D y

dx
  in (1), we get

4( 1) 2 4 zD D y Dy y e         or     2 4( 3 4) zD D y e  

A.E. is 2 3 4 0m m          ( 4) ( 1) 0m m         m = –1, 4

      C.F. = 4
1 2

z zC e C e    P.I. = 4
2

1
3 4

ze
D D 

      [Rule Fails]

= 
4

4 41 1
2 3 2 (4) 3 5

z
z z z ez e z e

D
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Thus, the complete solution is given by
4

4
1 2 5

z
z z z ey C e C e         4 41

2
1 log
5

Cy C x x x
x

   Ans.

Example 65. Solve 
2

2 2
2 sin ( log )d y dyx x y x

dxdx
   (Nagpur University, Summer 2005)

Solution. We have,
2

2 2
2 sin ( log )d y dyx x y x

dxdx
   ... (1)

Let x = ez, so that z = log x, dD
dz



(1) becomes
D (D – 1) y + Dy + y = sin (2z)        (D2 + 1) y = sin 2z
         A.E. is m2 + 1 = 0            or         m = ± i
C.F. = C1 cos z + C2 sin z

P.I = 2
1 1 1sin 2 sin 2 sin 2

4 1 31
z z z

D
  
 

y = C.F. + P.I. = 1 2
1cos sin sin 2
3

C z C z z 

   = 2
1 2

1cos ( log ) sin ( log ) sin ( log )
3

C x C x x  Ans.

Example 66.  Solve: 
3 2

2 2
3 23 logd y d y dyx x x x

dxdx dx
   (Nagpur University, Summer 2003)

Solution. We have, 
3 2

3 2 3
3 23 logd y d y dyx x x x x

dxdx dx
  

Let x = ez so that z = log x, dD
dz



The equation becomes after substitution
[D (D – 1) (D – 2) + 3D (D – 1) + D ] y = z e3z  D3y = ze3z

Auxiliary equation is m3 = 0  m  = 0, 0, 0.
C.F. = C1 + C2 z + C3 z2 = C1 + C2 log x + C3 (log x)2

P.I. = 
3 3

3 3
1 1. . .

( 3)
z zz e e z

D D




      = 
3 3 3 3

3 1 1 (1 ) ( 1) (log 1)
27 3 27 27 27

z z
z D e e xe z D z z x


        
 

Complete solution is
3

2
1 2 3log (log ) (log 1)

27
xy C C x C x x     Ans.

3.29  LEGENDRE'S  HOMOGENEOUS  DIFFERENTIAL  EQUATIONS
A linear differential equation of the form

1
1

1 1( ) ( ) ...
n n

n n
nn n

d y d ya bx a a bx a y X
dx dx





      ... (1)

where a, b, a1, a2, .... an are constants and X is a function of x, is called Legendre's linear
equation.
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Equation (1) can be reduced to linear differential equation with constant coefficients by the
substitution.

a + bx = ez  z = log (a + bx)

so that    .dy dy dz
dx dz dx

  = .b dy
a bx dz

 ( ) dy dya bx b b Dy
dx dz

   ,
dD
dz

       (a + bx) 
dy
dx  = b Dy

where

Again          
2

2 .d y d dy d b dy
dx dx dx a bx dzdx

          

   = 
2 2

2 2. .
( )( )

b dy b d y dz
dz a bx dxa bx dz

 


   = 
2 2

2 2. .
( ) ( )( )

b dy b d y b
dz a bx a bxa bx dz

 
 


2 2

2 2 2
2 2( ) d y dy d ya bx b b

dzdx dz
   

   = 2
2

2 2 2
2 ( ) ( 1)d y dyb b D y D y b D D y

dzdz

 
      

 


2

2 2
2( ) ( 1)d ya bx b D D

dx
  

Similarly, 
3

3 3
3( ) ( 1) ( 2)d ya bx b D D D y

dx
   

......................................................................

( ) ( 1) ( 2) ..... ( 1)
n

n n
n

d ya bx b D D D D n y
dx

     

Substituting these values in equation (1), we get a linear differential equation with constant
coefficients, which can be solved by the method given in the previous section.

Example 67. Solve 
2

2
2(1 ) (1 ) sin 2 {log (1 )}d y dyx x y x

dxdx
     

Solution. We have, 
2

2
2(1 ) (1 ) sin 2 { log (1 ) }d y dyx x y x

dxdx
     

Put 1 + x = ez    or     log (1 + x) = z

(1 ) dyx Dy
dx

   and 
2

2
2(1 ) ( 1) ,d yx D D y

dx
    where 

dD
dz



Putting these values in the given differential equation, we get
D (D – 1) y + D y + y = sin 2z     or       (D2 – D + D + 1)y = sin 2z

       (D2 + 1)y = sin 2z
A.E. is m2 + 1 = 0  m = ± i

   C.F. = A cos z + B sin z

    P.I. = 2
1 1 1sin 2 sin 2 sin 2

4 1 31
z z z

D
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Now, complete solution is y = C.F. + P.I.

        
1cos sin sin 2
3

y A z B z z  

        
1cos {log (1 )} sin {log (1 )} sin 2 {log (1 )}
3

y A x B x x           Ans.

EXERCISE 3.26
Solve the following differential equations:

1.
2

2
2 4

424 6d y dyx x y
dxdx x

   Ans. 2 3
1 2 4

1C x C x
x

 

2. 2 2 2( 3 4) 2x D x D y x   Ans. 2 2 2
1 2( log ) (log )C C x x x x 

3.
2

2
2 logd y dyx x y x

dxdx
     (AMIETE, June 2010)       Ans. (C1 + C2 log x) x + log x + 2

4.
2

2 2
1 12 logd y dy x
x dxdx x

        Ans. 3
1 2 log 2 (log )C C x x 

5. 2 2 2( 3) logx D x D y x x   Ans.
2

31
2

2log
3 3

C xC x x
x

    
 

(A.M.I.E. Winter 2001, Summer 2001)

6.
2

2 2
2 2 2 sin (5 log )d y dyx x y x x

dxdx
   

Ans. 2 2
1 2

1log [ 15 cos (5 log ) 23 sin (5 log ) ]
754

c x c x x x x x   

7.
2

2
2

sin (log ) 13 logd y dy xx x y x
dx xdx


   (AMIETE, Dec. 2009)

Ans. 
2 3 2 3

1 2
1 382 54cos log

61 61
y C x C x x

x
     

sin (log x) + 6 log x cos (log x) +

5 log x sin (log x)] + 
1

6x

8.
2

2
2(1 ) (1 ) 2 sin log (1 )d y dyx x y x

dxdx
     

Ans. 1 2cos log (1 ) sin log (1 ) log (1 ) cos log (1 )y C x C x x x      

9. Which of the basis of solutions are for the differential equation 
2

2
2 0d y dyx x y

dxdx
  

(a) , ,nx x I x (b) , x
nI x e (c) 2

1 1, ,
x x

(d) 2
1 ,x

ne x I x
x

(A.M.I.E., Winter 2001) Ans. (a)

10. The general solution of 
2

2
2 5 9 0d y dyx x y

dxdx
   is

(a) (C1 + C2x) e3x (b) (C1 + C2n x) x3 (c) (C1 + C2x) x3 (d) (C1 + C2 ln x) 3xe
(AMIETE, Dec. 2009)  Ans. (b)

11. To transform 
2

2
1d y dyx

dx xdx
   into a linear differential equation with constant coefficients,

the required substitution is
(a)  x = sin t (b)  x = t2 + 1 (c) x = log t (d) x = et

(AMIETE, June 2010)  Ans. (d)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Differential Equations 193

3.30 METHOD OF VARIATION OF PARAMETERS

To find particular integral of  
2

2
d y dyb c y X

dxdx
   ... (1)

Let complementary function = Ay1 + By2, so that y1 and y2 satisfy
2

2 0d y dyb c y
dxdx

   ... (2)

Let us assume particular integral y = uy1 + vy2, ... (3)
where u and v are unknown function of x.
Differentiation (3) w.r.t. x, we have y' = uy1' + vy2' + u'y1 + v'y2 assuming that u,v satisfy the
equation

         u'y1 + v'y2 = 0 ... (4)
then          y' = uy1' + vy2' ... (5)
Differentiating (5) w.r.t.x, we have y'' = uy1'' + u'y1' + vy2'' + v'y2'
Substituting the values of y, y' and y'' in (1), we get

(uy1'' + u'y1' + vy2'' + v' y2') + b (uy1' + vy2') + c (uy1 + vy2) = X

 u (y1'' + by1'  + cy1) + v(ay2'' + by2' + cy2) + (u' y1' + v' y2') = X ... (6)
y1 and y2 will satisfy equation (1)

 y1'' + by1' + cy1 = 0 ... (7)
and y2'' + by2' + cy2 = 0 ... (8)
Putting the values of expressions from (7) and (8) in (6), we get

 u' y1' + v'y2' = X ... (9)
Solving (4) and (9), we get

2 1 2 2

2 1 2 1 2 1 2

0
'

' ' ' ' '
y y y y Xu

X y y y y y y y


  


1 1 2 1

1 1 2 1 2 1 2

0
'

' ' ' '
y y y y Xv
y X y y y y y y

  
 

         
2

1 2 1 2' '
y X

u dx
y y y y




    
1

1 2 1 2' '
y X

v dx
y y y y




General solution = complementary function + particular integral.
Working Rule
Step 1. Find out the C.F. i.e., A y1 + B y2     Step 2. Particular integral = u y1 + v y2
Step 3. Find u and v by the formulae

2

1 2 1 2
,

' '
y Xu dx

y y y y



 1

1 2 1 2' '
y Xv dx

y y y y




Example 68. Solve 
2

2 cosec .d y y x
dx

  (Nagpur University, Summer 2005)

Solution.         (D2 + 1) y = cosec x
A.E. is m2 + 1 = 0  m = ± i

C.F. = A cos x + B sin x
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Here y1 = cos x, y2 = sin x
P.I. = y1 u + y2 v

where
2

1 2 1 2

. cosec sin . cosec
. ' ' . cos (cos ) ( sin ) (sin )
y x dx x x dxu

y y y y x x x x
 

 
   

   
2 2

1sin .
sin

cos sin

x dx
x dx x

x x


    

 
1

1 2 1 2

. cos . cosec
. ' ' cos (cos ) ( sin ) (sin )
y X dx x x dxv

y y y y x x x x
 

   

   
2 2

1cos .
cotsin log sin

1cos sin

x
x dxx dx x

x x
  

 
          P.I. = uy1 + vy2 = – x cos x + sin x (log sin x)

General solution = C.F. + P.I.
y = A cos x + B sin x – x cos x + sin x .(log sin x) Ans.

Example 69. Apply the mehtod of variation of parameters to solve
2

2 tand y y x
dx

  (A. M. I. E. T. E., Dec. 2010, Winter 2001, Summer 2000)

Solution. We have,
2

2 tand y y x
dx

 

(D2 + 1)y = tan x
A.E. is m2 = – 1       or          m = ± i
C. F.   y = A cos x + B sin x

Here,   y1 = cos x,         y2 = sin x
            y1 . y'2 – y'1 . y2 = cos x (cos x) – (– sin x) sin x = cos2 x + sin2 x = 1

P. I. = u. y1 + v. y2 where

    
2

1 2 1 2

tan sin tan
. ' ' . 1

y x x xu dx dx
y y y y


  

 
2 2sin 1 cos

cos cos
x xdx dx
x x


    

      ( cos sec ) sin log ( sec tan )x x dx x x x    
    

1

1 2 1 2

tan
. ' ' .

y xv dx
y y y y


 cos tan sin cos

1
x x dx x dx x

    
P. I.  = u. y1 + v. y2

               = [ sin x – log (sec x + tan x) ] cos x – cos x sin x = – cos x log ( sec x + tan x)
Complete solution is

y = A cos x + B sin x – cos x log (sec x + tan x) Ans.
Example 70. Solve by method of variation of parameters:

2

2
2

1 x
d y y
dx e

 
 (Uttarakhand, II Semester, June 2007, A.M.I.E.T.E., Summer 2001)

(Nagpur University, Summer 2001)
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Solution.
2

2
2

1 x
d y y
dx e

 


A. E. is  (m2 – 1) = 0
        m2 = 1, m = ± 1
     C. F. = C1 ex + C2 e–x

        P.I. = uy1 + vy2

Here,         y1 = ex,        y2 = e–x

and   y1 . y'2 – y'1 . y2 = – ex . e–x – ex.e–x = – 2

        
2

1 2 1 2

2
. ' ' . 2 1

x

x
y X eu dx dx

y y y y e


   

   

= 1

x

x
e dx

e



  = 
1 1

(1 ) 1x x x x
dx dx

e e e e

 
     

 

          log ( 1)
1

x
x x x

x
ee dx dx e e

e


  


     

 

        
1

1 2 1 2

2
. ' ' . 2 1

x

x
y X ev dx dx

y y y y e
 

     = log (1 )
1

x
x

x
e dx e

e
   


       P.I. = 1 2. . [ log ( 1) ] log (1 )x x x x xu y v y e e e e e        

= 1 log ( 1) log ( 1)x x x xe e e e     

  Complete solution = 1 2 1 log ( 1) log ( 1)x x x x x xy C e C e e e e e         Ans.

EXERCISE 3.27
Solve the following equations by variation of parameters method.

1.
2

2
2 4 xd y y e

dx
  Ans.

2
2 2 2

1 2 4 16

x
x x xx ey C e C e e   

2.
2

2 sind y y x
dx

  Ans. 1 2
1cos sin cos sin

2 4
xy C x C x x x   

3.
2

2 3 2 sind y dy y x
dxdx

   Ans. 2
1 2

1 (3 cos sin )
10

x xy C e C e x x   

4.
2

2 sec tand y y x x
dx

  Ans. 1 2cos sin cos sin log sec siny C x C x x x x x x    

5.
3

2´́ 6 ´ 9
xey y y

x
    (AMIETE, June 2010, 2009)    Ans.  y = (C1 + x C2) e

3x – e3x log x

3.31  SIMULTANEOUS DIFFERENTIAL EQUATIONS
If two or more dependent variables are functions of a single independent variable, the equa-

tions involving their deriavatives are called simultaneous equations, e.g.

4dx y
dt

 = t            2dy x
dt

  = et

The method of solving these equations is based on the process of elimination, as we solve
algebraic simultaneous equations.
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Example 71. The equations of motions of a particle are given by

   0dx y
dt

                 dy x
dt

   = 0
Find the path of the particle and show that it is a circle.

(R.G.P.V. Bhopal, Feb. 2006, U.P. II Semester summer 2009)

Solution. On putting d
dt

 D in the equations, we have

Dx + y = 0 ...(1)
–x + Dy = 0 ...(2)

On multiplying (1) by w and (2) by D, we get
Dx + 2y = 0 ...(3)

–Dx + D2y = 0 ...(4)
On adding (3) and (4), we obtain

2 y + D2 y = 0  (D2 + 2) y = 0 ...(5)
Now, we have to solve (5) to get the value of y.
A.E. is m2 + 2 = 0  m2 = – 2  m = ± i

 y = A cos wt + B sin wt ...(6)
 Dy = – A  sin t + B cos wt
On putting the value of Dy in (2), we get – x – A sin t + B cos t = 0
 x = – A sin t + B cos t
 x = – A sin t + B cos t ...(7)
On squaring (6) and (7) and adding , we get

x2 + y2 = A2(cos2t + sin2t) + B2 (cos2t + sin2t)
 x2 + y2 = A2 + B2

This is the equation of circle. Proved.
Example 72. Solve the following differential equation

dx
dt

 = y + 1,
dy
dt

 = x + 1 (U.P. II Semester, 2009)

Solution.  Here, we have
Dx – y = 1 ... (1)

– x + Dy = 1 ...(2)
Multiplying (1) by D, we get

D2x – Dy = D.1 ...(3)
Adding (2) and (3), we get

(D2 –1) x = 1 + D.1
 (D2 –1) x = 1 or (D2 – 1)x = e0 [D. (1) = 0]
A.E. is m2 – 1 = 0   m = ± 1
 C.F. = c1e

t + c2 e– t

P.I. = 0 0
2
1 1. 1

0 11
e e

D
  


 x = C.F. + P.I. = c1e

t + c2 e– t – 1

From (1), y = 1dx
dt

  y = 1 2( 1) 1t td c e c e
dt

  

 y = c1e
t – c2 e– t – 1

and x = c1e
t + c2e

–t – 1 Ans.
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                                      (R.G.P.V., Bhopal, I Semester, April, 2010 June 2007)

Solution.  We have,

  
d x
d t

  +  y  =  sin t    ⇒   D x + y  = sin t                 ... (1)

  
d y
d t

  +  x  =  cos t    ⇒   Dy + x  =  cos t                 ... (2)

Multiplying (2) by D, we get

     D 2 y  +  Dx  =  D cos t

     D 2 y  +  Dx  =  – sin t                         ... (3)

Subtracting (1) from (3), we have

     D 2 y – y  =  – 2 sin 2t

 ⇒   (D 2 – 1) y  =  – 2 sin 2t

A.E.  is     m2 – 1  =  0             ⇒   m2  =  1   ⇒  m  =  ±  1

       C.F.  =  C1 e t  +  C2 e –t

   P.I.   =  
1

D 2 – 1
  (– 2 sin t)

⇒  P.I.  =  
1

– 1 – 1
  (– 2 sin t)  =  sin t

Complete solution = C.F. + P.I.

    y = C1 e t + C2 e –t + sin t                        ... (4)

Putting y  =  0  and  t  =  0 in (4), we get

   0  =  C1 + C2                  or          C2  =  – C1

On putting C2  =  – C1  in (4), we get

     y  =  C1 e t  –  C1 e –t  +  sin t

On putting the value of y in (2), we get

   D (C1 et – C1 e –t +  sin t)  +  x  =  cos t

         C1 e t  +  C1 e –t  +  cos t  +  x  =  cos t

      x  =  – C1 e t – C1 e –t               ... (5)

On putting x  =  2,  t  =  0  in (5), we get

       2  =  – C1 – C1         ⇒           C1  =  – 1

Putting the value of C1 in (5) and (4), we have

      x  =  e t + e –t

     y  =  – e t  +  e –t  +  sin t

Which is the required solution.                           Ans.

t
t

Example 2. Solve:

      
d x
d t

  +  y =  sin t

      
d y
d t

 +  x  = cos t

Example 73.

where y (0) = 0,   x (0) = 2

...(5)
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Example 74. Solve: 4 3dx x y
dt

   = t

2 5dy x y
dt

  = et [U.P. II Semester, 2006]

Solution. Here, we have
(D + 4)x + 3y = t ...(1)

2x + (D + 5)y = et ...(2) 
dD
dt

  
 

To eliminate y, operating (1) by (D + 5) and multiplying (2) by 3 then subtracting, we get
(D + 5) (D + 4) x + 3 (D + 5) y – 3 (2x) – 3 (D + 5) y = (D + 5)t – 3et

[(D + 4) (D + 5) – 6]x = (D + 5)t – 3et

(D2 + 9D + 14)x = 1 + 5t – 3et

Auxiliary equation is
m2 + 9m + 14 = 0   m = – 2, – 7

 C.F. = c1e
–2t + c2e

–7t

P.I. = 2
1 (1 5 3 )
9 14

tt e
D D

 
 

    = 0
2 2 2

1 1 15 3
9 14 9 14 9 14

t te t e
D D D D D D

 
     

= 0
2 22

1 1 15 . 3
0 9(0) 14 1 9(1) 14914 1

14 14

t te t e
D D

 
    
   

 

= 
121 5 9 1 1 5 9 11 1

14 14 14 14 8 14 14 14 14 8
t tD D D Dt e t e


      

                           


=
1 5 9 1 5 31 1

14 14 14 8 14 196 8
t tt e t e       

 

x = 2 7
1 2

5 31 1
14 196 8

t t tc e c e t e    

3y = 4dxt x
dt

  [From (1)]

= 2 7 2 7
1 2 1 2

5 31 1 5 31– 4
14 196 8 14 196 8

t
t t t t td et c e c e t e c e c e t

dt
                  

3y = 2 7 2 7
1 2 1 2

5 1 10 31 12 7 4 4
14 8 7 49 2

t t t t t tt c e c e e c e c e t e           

 y = 2 7
1 2

1 3 27 52 3 –
3 7 98 8

t t tc e c e t e       

Hence, x = 2 7
1 2

5 31 1
14 196 8

t t tc e c e t e    

y = 2 7
1 2

2 1 9 5–
3 7 98 24

t t tc e c e t e     Ans.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Differential Equations 199

Example 75. Solve 2dx y
dt

 , 2dy z
dt

 , 2dz x
dt

 (Uttarakhand, II Semester, June 2007)

Solution. Here, we have
dx
dt = 2y  Dx = 2y ...(1)

dy
dt

= 2z  Dy = 2z ...(2)

dz
dt = 2x  Dz = 2x ...(3)

From (1), we have
dx
dt = 2y


2

2
d x
dt

= 
2 dy
dt  = 2 (2z) = 4z Using (2), 2dy z

dt
   

3

3
d x
dt

= 4 dz
dt  = 4 (2x) = 8x Using (3), 2dz x

dt
   


3

3 8d x x
dt

 = 0  (D3 – 8) x = 0

A.E. is m3 – 8 = 0  (m – 2) (m2 + 2m + 4) = 0
 m – 2 = 0  m = 2

or m2 + 2m + 4 = 0  m = 
2 4 16

2
  

 = 
2 12

2
i 

 = 1 3i 

So the C.F. of x is
x = 2

1 ( cos 3 sin 3 )t tC e e A t B t  ...(4)

[A = C2 cos , B = C2 sin ] 1

tan

tan

B
A

B
A



   
 

        
x = 2

1 2 2[ cos cos 3 sin sin 3 ]t tC e e C t C t   

x = 2
1 2 cos ( 3 )t tC e e C t    = 2

1 2 cos ( 3 )t tC e C e t  

From (3), we have 
dz
dt

 = 2x


dz
dt

 = 2
1 22 2 cos ( 3 )t tC e C e t   [On putting the value of x]

z = 2
1 22 cos ( 3 )

1 3

t
t eC e C t



    
 2 2

cos cos ( )
ax

ax ee bx dx bx
a b

 
   
  


 z = 2
1 2

22 cos 3
31 3

t
t eC e C t

        

1 3 2tan
1 3

 
    

 z = 2
1 2

4cos 3
3

t tC e C e t      
 

...(5)
2 4
3 3
     

... (5)
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From (2), we have 
dy
dx

 = 2z


dy
dt  = 2

1 2
42 2 cos 3
3

t tC e C e t      
 

[On putting the value  of z]

 y = 2
1 2

42 2 cos 3
3

t tC e dt C e t dt      
  

1 3 2tan
1 3

 
     

y = 2
1 2

42 cos ( 3 )
31 3

x
t eC e C t

 
     



 y = 2
1 2

4 22 cos 3
3 31 3

t
t eC e C t

          

y = 2
1 2

2cos 3
3

t tC e C e t      
 

...(6)

Relations (4), (5) and (6) are the required solutions. Ans.
Example 76. Solve the following simultaneous equations :

2

2 3 4d x x y
dt

  = 0, 
2

2
d y x y
dt

   = 0 (U.P. II Semester, Summer 2005)

Solution. We have,
2

2 3 4d x x y
dt

  = 0

2

2
d y x y
dt

  = 0

(D2 – 3)x – 4y = 0 ...(1)
x + (D2 + 1) y = 0 ...(2)

Operating equation (2) by (D2 – 3), we get
(D2 – 3)x + (D2 – 3) (D2 + 1) y = 0 ...(3)

Subtracting (3) from (1), we get
– 4y – (D2 – 3) (D2 + 1) y = 0    – 4y – (D4 – 2D2 – 3) y = 0

 (D4 – 2D2 – 3 + 4) y = 0         (D4 – 2D2 + 1) y = 0
 (D2 – 1)2 y = 0
A.E. is (m2 – 1)2 = 0          (m2 – 1) = 0       m = ± 1

y = (c1 + c2t)e
t + (c3 + c4t)e

–t ...(4)
From (2), we have

x = – (D2 + 1)y  = – D2y – y
= – D2 [(c1 + c2t) e

t + (c3 + c4t)e
–t] – [(c1 + c2t)e

t + (c3 + c4t)e
–t]

= – D [{(c1 + c2t )e
t + c2e

t} + {(c3 + c4t) (–e–t) + c4e
–t}] – [(c1 + c2t)e

t + (c3 + c4t)e
–t]

= – [(c1 + c2t) e
t + c2e

t + c2e
t + (c3 + c4t) (e

–t) – c4e
–t – c4e

–t] – [(c1 + c2t) e
t + (c3 + c4t)e

–t]
= – [(c1 + c2t + 2c2 + c1 + c2t) e

t + (c3 + c4t – 2c4 + c3 + c4 t) e–t]
= – [(2c1 + 2c2 + 2c2t)e

t + (2c3 – 2c4 + 2c4t)e
–t] ...(5)

Relations (4) and (5) are the required solutions. Ans.
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EXERCISE 3.28
Solve the following simultaneous equations:

1. 2 3 0dx x y
dt

   ,  3 2 0dy x y
dt

   Ans. x = c1 et – c2 e–5t , y = c1 et + c2 e–5t

2.
2 2

2 2,d y d xx y
dt dt

  Ans. x = c1 et + c2 e– t + (c3 cos t + c4 sin t)

y = c1 et + c2 e– t – (c3 cos t + c4 sin t)

3. 5 2dx x y t
dt

   ,  2 0dy x y
dt

   Ans. x = 31 1(1 6 ) (1 3 )
27 27

tt e t   

So that x = y = 0 when t = 0 (AMIETE, June 2009, U.P., II Semester, June 2008)

Ans. y = 32 2(2 3 ) (2 3 )
27 27

tt e t   

4.
dx y t
dt

  ,  2dy t x
dt

                   Ans. x = c1 cos t + c2 sin t + t2 –1 ; y = –c1 sin t + c2 cos t + t

5. 2 sin 0dx y t
dt

  

2 cos 0dy x t
dt

                   Ans. x = c1 cos 2t + c2 sin 2t – cos t ; y = c1 sin 2t – c2 cos 2t – sin t

6. 4 3 sindx dy x t
dt dt

   ;    cosdx y t
dt

  Ans. x = c1 e–t + c2 e–3t, y = c1 e–t + 3 c2 e–3t + cos t

7. 2and tdy dxx y e
dx dt

   Ans. x = 2 2
1 2 1 2

2 1,
3 3

t t t t t tC e C e e y C e C e e     

8. , 2 3 1dx dyy t x y
dt dx

      Ans. x = 2 2
1 2 1 2

1 3 5 3,
2 2 4 2

t t t tc e c e t y c e c e t      

9. 0, 0dx dyt y t x
dt dx

    Ans. x = c1 t + c2 t –1, y = c2 t –1 – c1 t

given x(1) = 1 and y(–1) = 0

10. sin , cos ,dx dyy t x t
dt dt

    given that x = 2, y = 0 when t = 0 (U.P., II Semester, 2004)

Ans. x = et + e–t, y = sin t – et + e–t

11. (D – 1) x + Dy = 2t + 1;   (2D + 1) x + 2 Dy = t Ans.
22 4,

3 2 3
tx t y t C     

12.
2 ( ) 1,dx x y

dt t
   (U.P., II Semester, Summer (C.O.) 2005)

1 ( 5 )dy x y t
dt t

   Ans. x = 
2

4 3 3
15 10
t yAt Bt    ,  y = 

2
4 31 2

2 15 20
t tAt Bt    

13. (D2 – 1)x + 8Dy = 16et and Dx + 3(D2 +1)y = 0 (Q. Bank U.P.T.U. 2001)

Ans. y = 1 2 3 4cos sin cosh 3 sin 3 2
3 3

tt tc c c t c h t e   

x = 1 2 3 43 sin – 3 cos 3 3 sinh 3 3 3 cosh 3 6 3 .
3 3

tt tc c c t c t e t   

14.
2 ( ) 1,dx x y

dt t
   (U.P. II Semester, 2005)

1 ( 5 ) .dy x y t
dt t

   Ans. x = 
2

4 3 3 ,
15 10
t tAt Bt      y = 

2
4 31 2

2 15 20
t tAt Bt    
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3.32  EQUATION OF THE TYPE ( )
n

n
d y = f x
dx

This type of exact differential equations are solved by successive integration.

Example 77. Solve 
2

2
2

d y = x sin x.
dx

Solution. We have 
2

2
2 sind y x x

dx
 ...(1)

Integrating the differential equation (1), we get
dy
dx = x2(– cos x) – (2x) (– sin x) + (2) (cos x) + c1

dy
dx

= x2 cos x + 2x sin x + 2 cos x + c1

Integrating again, we have    y = [(– x2) (sin x) – (– 2x) (– cos x) + (– 2) (– sin x)]
+ [(2x) (– cos x) – 2(– sin x)] + 2 sin x + c1x + c2

= – x2 sin x – 4x cos x + 6 sin x + c1x + c2 Ans.

Example 78. Solve 
3

3 log .d y x x
dx

 

Solution. We have,
3

3 logd y x x
dx

  ...(1)

Integrating the differential equation (1), we get 
2

2
d y
dx

 = 
2

1
1(log ) ( ) –

2
x x x x dx c

x
  

2

2
d y
dx

= 
2

1log –
2
x x x x c  ...(2)

Again integrating (2), we have,

dy
dx = 

3 2 2 2

1 2
1(log ) – –

6 2 2 2
x x x xx dx c x c

x
 

     
 


dy
dx = 

3 2 2 2

1 2log – –
6 2 4 2
x x x xx c x c   ...(3)

Again integrating (3), we obtain

y = 
4 3 3 3 3 2

1 2 3
1(log ) – – –

24 6 6 12 6 2
x x x x x xx dx c c x c

x
   

 y = 
24 3 3 3 3

1
2 3log – – –

24 6 18 12 6 2
c xx x x x xx c x c   

 y = 
4 3 3 2

1 2 3
11log –

24 6 36 2
x x x xx c c x c    Ans.

EXERCISE 3.29
Solve the following differential equations:

1.
5

5
d y x
dx

 Ans. 
6 4 3 2

1 2 3
4 5720 24 6 2

x c x c x c xy c x c     

2.
2

2
xd y x e

dx
 Ans. y = (x – 2) ex + c1 x + c2

3.
4

–
4 – cosxd y x e x

dx
  Ans. 

5 3
–

1– cos
120 6

xx xy e x c  
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4.
2

2
2 logd yx x

dx
 Ans. 2

1 2
1– (log ) log –
2

y x x c x c  

5.
3

3 logd y x
dx

 Ans. 3 3 2
1 2 3

1 [6 log – 11 ]
36

y x x x c x c x c   

6.
3

2
3 sind y x

dx
 Ans. 

3 2
1

2 3
sin 2

12 16 2
x x c xy c x c    

3.33   EQUATION OF THE TYPE  ( )
n

n
d y = f y
dx

Multiplying by 2 ,dy
dx

we get 
2

22 2 ( )dy d y dyf y
dx dxdx

 ...(1)

Integrating (1), we have
2dy

dx
 
 
 

= 2 ( ) ( ) (say)f y dy c y  
dy
dx = ( )

( )
dyy dx

y
  


     

( )
dy

y   = x + c

Example 79. Solve 
2

2 ,d y y
dx

 under the condition 
21.
3

dyy
dx

  at x = 0

Solution. We have 
2

2
d y y
dx

 ...(1)

Multiplying (1) by 2 ,dy
dx

we get 
2

22 dy d y
dx dx

 = 2 dyy
dx ...(2)

Integrating (2), we get
2

3/ 2
1

4
3

dy y c
dx

    
 

...(3)

On putting y = 1 and 2 ,
3

dy
dx

 we have c1 = 0

Equation (3) becomes 
2

3/ 24
3

dy y
dx

   
 

or 3/ 42
3

dy y
dx

 or – 3/ 4 2
3

y dy dx

Again integrating 
11/ 4
4

2 2
2 24

1 3 3
4

y x c y x c     ...(4)

On putting x = 0, y = 1, we get c2 = 4

(4) becomes 4y1/4 = 
2 4
3

x  Ans.

Example 80. Solve 
2

2
2 sec tand y y y

dx
 under the condition y = 0 and 1dy

dx
 when x = 0.

Solution.                      
2

2
d y
dx

= sec2y tan y    
2

22 dy d y
dx dx

  = 22 sec tan dyy y
dx

2

22 dy d y
dx dx = 22 sec tan dyy y

dx
2dy

dx
 
 
 

= 2 2
1 1tan or tandyy c y c

dx
  

On putting y = 0, and 1,dy
dx

 we get c1 = 1
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Now,
dy
dx = 2tan 1 secy y 

 cos y dy = dx
On integrating we get sin y = x + c
On putting y = 0, x = 0, we have c = 0

sin y = x  y = sin–1 x Ans.

Example 81. Solve 
2

3
2 2( ),d y y y

dx
  under the condition 0, 1dyy

dx
  when x = 0.

(U.P., II Semester, Summer 2003)

Solution.
2

2
d y
dx

= 2(y3 + y) or 
2

3
22 4( )dy d y dyy y

dx dxdx
 

Integrating, we get
2dy

dx
 
 
 

=
4 2

4 2
1 14 2

4 2
y y c y y c

 
      

 
...(1)

On putting y = 0 and
dy
dx = 1 in (1), we get 1 = c1

Equation (1) becomes
2dy

dx
 
 
 

= y4 + 2y2 + 1 = (y2 + 1)2

dy
dx = y2 + 1 or 

21
dy dx

y



Again integraiting, we get tan–1 y = x + c2 ...(2)
On putting y = 0 and x = 0 in (2), we have 0 = c2
Equation (2) is reduced to tan–1 y = x  y = tan x Ans.

Example 82. A motion is governed by 
2

–2
2 36 ,d x x

dt
 given that at t = 0, x = 8 and 0,dx

dt
 find

the displacement at any time t.

Solution. We have
2

2
d x
dt

= 36x–2     
2

22 d x dx
dtdt

 = –22 36 dxx
dt

 ...(1)

Integrating (1), we hae 
2

–1
1– 72dx x c

dt
    
 

...(2)

Putting x = 8 and 0dx
dt

 in (2), we get 0 = 1 1
72– or 9
8

c c 

(2) becomes
2dx

dt
 
 
 

= 
272 – 72 9– 9 or dx x

x dt x
   

 
    

dx
dt  = 

( – 8)3 x
x

 – 8
x dx
x = 23 dt c     2 – 8

x dx

x x
   = 3t + c2

2

1 2 – 8 8
2 – 8

x dx
x x


 = 3t + c2

2

1 2 – 8
2 – 8

x dx
x x

 + 22 2

14 3
( – 4) – (4)

dx t c
x

 

2 – 8 4x x  cos –1
2

– 4 3
4

xh t c  ...(3)
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On putting x = 8 and t = 0 in (3), we get c2 = 0

(3) becomes 2 – 8 4x x  –1 – 4cos 3
4

xh t Ans.

EXERCISE 3.30

1.
2

3
2

d yy a
dx

     Ans. c1 y2 = (c1 x + c2)2              2.  
2

2
2 1y d ye

dx
    Ans. c1 ey = cosh (c1 x + c2)

3.
2

3
2sin cosd yy y

dx
 Ans. 1

2 1
1

1sin [( ) (1 )] cos 0cx c c y
c

 
    

 

4. A particle is acted upon by a force 
4

3
ax
x

 
   
 

per unit mass towards the origin where x is the distance

from the origin at time t. If it starts that it will arrive at the origin in time .
4



5. In the case of a stretched elastic string which has one end fixed and a particle of mass m attached to the

other end, the equation of motion is 
2

2 – ( – )d s mg s l
edt



where l is the natural length of the string and e its elongwith due to a weight mg. Find s and v determining
the constants, so that s = s0 at the time t = 0 and v = 0 when t = 0.

Ans. 
2 2 1/ 2

0 0– [( – ) – ( – ) ] , – ( – ) cos .g gv s l s l s l s l t
e e

               

3.34 EQUATIONS WHICH DO NOT CONTAIN ' ' DIRECTLYy

The equation which do not contain y directly, can be written
– 1

– 1, , ..... ,
n n

n n
d y d y dyf x

dxdx dx

 
  
 

= 0 ...(1)

On substituting 
2 3 2

2 3 2. ., ,dy d y dP d y d PP i e
dx dxdx dx dx

   etc. in (1), we get 
–1

– 1 , ....... ,
n P

n
df P x
dx

 
  
 

= 0

Example 83. Solve 
32

2 0d y dy dy
dx dxdx

    
 

Solution. On putting dy P
dx

 and 
2

2 ,d y dP
dxdx

 equation (1) becomes

3dP P P
dx

  = 0 or 2(1 ) 0dP P P
dx

  

dP
dx = 2

2– (1 ) or –
(1 )

dPP P dx
P P

 


      
2

1 –
1

P dP
P P

 
   

 = – dx

On integrating, we have 21log – log (1 )
2

P P  = – x + c1  or 12
log –

1

P x c
P

 


21

P

P = e– x + c1 or 
2

2 –2 2 2 2 – 2
2 (1 )

1
x xP a e P P a e

P
   



 P2(1 – a2 e–2x) = a2 e–2x 
– –

2 – 2 2 – 21 – 1 –

x x

x x

a e dy a eP
dxa e a e

  

dy = 
–

2 – 21 –

x

x

ae dx
a e

On integration, we get y = – sin–1 (a e– x) + b Ans.
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Example 84. Solve 
1/ 222

2 1 –d y dy
dxdx

     
   

(U.P. Second Sem., 2002)

Solution. We have, 
2

2
d y
dx

= 

1/ 22

1 – dy
dx

  
  

   
... (1)

Putting 
2

2
dy dP d yP
dx dx dx

   in (1), we get 
dP
dx  = 2

2
1 –

1 –

dPP dx
P

 

On integrating, we have
sin–1 P = x + c      P  = sin (x + c)

dy
dx = sin (x + c)

On integrating, we have y = – cos (x + c) + c1 Ans.

Example 85. Solve 
22

2 – 0d y dy dyx x
dx dxdx

   
 

(U.P. II Semester, 2010)

Solution. On putting dy P
dx

 and 
2

2
d y dP

dxdx
 in the given equation, we get

2 –dPx x P P
dx

 = 2
1 1 10 – – 1dP

dx P xP
  ...(1)

Again putting 
1 z
P
 so that 2

1– dP dz
dx dxP



Equation (1) becomes – – – 1 1dz z dz z
dx x dx x

   

I.F. = 
1

logdx xxe e x
 

Hence, solution is z x = 
2 2

1 1 1
1or or

2 2
x xx dx c z x c x c

P
    


2

12
2

x cx P
P


  = 2 2 2

1 1 1

2 2 2
2 2 2

x dy x xdy dx
dxx c x c x c

   
  

On integrating, we have y = log (x2 + 2c1) + c2 Ans.
EXERCISE 3.31

Solving the following differential equations:

1.
2

2
2(1 ) 0d y dyx x ax

dxdx
    Ans. 2

2 1– log [ (1 )]y c ax c x x   

2.
22

2
2(1 ) 1 0d y dyx

dxdx
     
 

Ans. 
2

2
1– log (1 )x ky kx a

k k


   

3.
4 3

4 3– cot 0d y d yx
dx dx

 Ans. y = c1 cos x + c2x2 + c3x + c4

4.
23 2 2

2
3 2 22 –d y d y d yx a

dx dx dx

 
   

  
Ans. 2 2 5/ 2

1 1 2 315 4( )c y c x a c x c   

5.
2 2

/ 2 3
2 –x d y dye x x

dxdx

 
 

  
Ans. 

2 2
– / 2

1 22
x xy e c c  
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3.35 EQUATIONS THAT DO NOT CONTAIN ' ' DIRECTLYx
The equations that do not contain x directly are of the form

– 1

– 1, , ...... , 0
n n

n n
d y d y dyf y

dxdx dx
 

  
 

...(1)

On substituting 
2

2,dy d y dP dP dy dPP P
dx dx dx dx dydx

     in the equation (1), we get

–1

– 1 ,..... ,
n

n
dP P y
dy

 
 
 

= 0 ...(2)

Equation (2) is solved for P. Let

P = 1 1
1

( ) ( ) or
( )

dy dyf y f y dx
dx f y

       
1( )
dy

f y  = x + c

Example 86. Solve 
22

2
d y dy dyy

dx dxdx
   
 

...(1)

Solution. Put 
2

2,dy d y dP dP dy dPP P
dx dx dy dx dydx

      in equation (1)

2dPyP P
dy

 = 1 –dPP y P
dy

 

 1 –
dp

P = 1– log (1 – ) log logdy P y c
y

  


1

1 – P = 1
1

1 1

– 111 – or c ydyc y P
c y dx c y

  

 1

1 – 1
c y dy

c y = 
1

11
– 1

dx dy dx
c y

 
   

 

1
1

1 log ( – 1)y c y
c

 = x + c1 Ans.

Example 87. Solve 
22

2
2

d y dyy y
dxdx

   
 

...(1)

Solution. Put 
2

2,dy d y dP dP dy dPP P
dx dx dy dx dydx

    in (1)

2dPyP P
dy

 = y2 or 
2dP PP y

dy y
  ...(2)

Put P2 = z or 2 dP dzP
dy dy

 in (2), 1 2or 2
2

dz z dz zy y
dy y dy y

   

I.F. = 
2

2
2 log log 2

dy
y yye e e y


  

Hence, the solution is z y2 = 22 . ( )y y dy c
 P2 y2 = 

4

2
y c

 2 P2 y2 = y4 + k or 42 y P y k  [Put 2c = k]
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 2 dyy
dx = 4

4
or 2 y dyy k dx

y k
 




2

1
2

dt

t k
= dx  [Put y2 = t, 2y dy = dt]    –11 sin

2
th
k

= x + c


2

–1sin yh
k

= 22 or sin ( 2 )x c y k h x c   Ans.

EXERCISE 3.32
Solve the following differential equations:

1.  
22

2 1d y dy
dxdx

   
 

  Ans. y2  = x2 + ax + b    2.  
22

2 – 2 0d y dy dyy
dx dxdx

    
 

  Ans. cy + 2 = d ecxa

3. 
22

2
22 – 3 – 4 0d y dyy y

dxdx
   
 

Ans. y = a sec2 (x + b) 4. 
32

2 0d y dy dyy
dx dxdx

    
 

  Ans. y = a – sin–1 (b e–x)

5.
22

2 1 – cos sind y dy dy dyy y y y
dx dx dxdx

          
Ans. x = c1 + c2 log y + sin y

6.
22

2
2 – logd y dyy y y

dxdx
   
 

Ans. log y = b. ex + a e– x

3.36 EQUATION WHOSE ONE SOLUTION IS KNOWN
If y = u is given solution belonging to the complementary function of the differential equation.
Let the other solution be y = v. Then y = u. v is complete solution of the differential equation.

Let 
2

2 ....(1),d y dyP Qy R
dxdx

   be the differential equation and u is the solution included in

the complementary function of (1)


2

2
d u duP Qu

dxdx
  = 0 ...(2)

y = u. v
dy
dx = 

du dvv u
dx dx



2

2
d y
dx

= 
2 2

2 22d u dv du d vv u
dx dxdx dx

 

Substituting the values of 
2

2, ,dy d yy
dx dx

in (1), we get

2 2

2 22 .d u dv du d v du dvv u P v u Qu v R
dx dx dx dxdx dx

       
 

On arranging


2

2
d u duv P Qu

dxdx
 

  
 

+ 
2

2 2d v dv du dvu P R
dx dx dxdx

 
    

 
The first bracket is zero by virtue of relation (2), and the remaining is divided by u.

2

2
2d v dv du dvP

dx u dx dxdx
  = 

R
u


2

2
2d v du dvP
u dx dxdx

    
= 

R
u

...(3)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Differential Equations 209

Let
dv
dx = z, so that 

2

2
d v dz

dxdx


Equation (3) becomes 
2dz du RP z

dx u dx u
     

This is the linear differential equation of first order and can be solved (z can be found), which
will contain one constant.

On integration ,dvz
dx

 we can get v.

Having found v, the solution is y = uv.
Note: Rule to find out the integral belonging to the complementary function

Rule Condition u

1 1 + P + Q = 0 ex

2 1 – P + Q = 0 e–x

3 21 P Q
a a

  = 0 eax

4 P + Qx = 0 x

5 2 + 2Px + Qx2 = 0 x2

6 n (n – 1) + Pnx + Qx2 = 0 xn

Example 88. Solve y – 4xy + (4x2 – 2)y = 0 given that y= ex2 is an integral included in the
complementary function. (U.P., II Semester, 2004)
Solution. y – 4xy + (4x2 – 2)y = 0 ...(1)
On putting y = v.ex2 in (1), the reduced equation as in the article 3.36

2

2
2d v du dvP
u dx dxdx

    
= 0 [P = – 4x, Q = 4x2 – 2, R = 0]


2

2

2

2
2– 4 (2 )x
x

d v dvx x e
dxdx e

 
  
 

= 0


2

2 [– 4 4 ]d v dvx x
dxdx

  = 0
2

1 22 0 ,d v dv c v c x c
dxdx

      

 y = uv
2

[ ]xu e

y = 
2

1 2( )xe c x c Ans.

Example 89. Solve 
2

2 – (2 – 1) ( 1) 0d y dyx x x y
dxdx

  

given that y = ex is an integral included in the complementary function.

Solution. 
2

2 – (2 – 1) ( – 1) 0d y dyx x x y
dxdx

 


2

2
2 – 1 – 1–d y x dy x y

x dx xdx
  = 0 [1 + P + Q = 0]                 ...(1)

By putting y = vex in (1),we get the reduced equation as in the article 3.36.
2

2
2d v du dvP
u dx dxdx

    
= 0 ...(2)
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Putting u = ex and 
dv z
dx

 in (2), we get 2 – 1 2– x
x

dz x e z
dx x e

    
 = 0


– 2 1 2dz x x z

dx x
 

 = 0 0dz z
dx x

  


dz
z

= 1– log – log logdx z x c
x
  

 z = 1 1
1 1 2or or logc cdv dxdv c v c x c

x dx x x
    

y = u. v = ex (c1 log x + c2) Ans.

Example 90. Solve 
2

2 3
2 – 2 [1 ] 2(1 )d y dyx x x x y x

dxdx
   

Solution. 
2

2 3
2 – 2 (1 ) 2(1 )d y dyx x x x y x

dxdx
   


2

2 2 2
2 (1 ) 2(1 )–d y x x dy x y

dxdx x x
 

 = x ...(1)

Here P + Qx = 2 2
2 (1 ) 2(1 )– 0x x x x

x x
 

 

Hence y = x is a solution of the C.F. and the other solution is v.
Putting y = vx in (1), we get the reduced equation as in article 3.36

2

2
2d v du duP
u dx dxdx

   
 

= 
x
u

2

2 2
– 2 (1 ) 2 (1)d v x x dv

x dxdx x
    

= 
x
x


2

2 – 2d v dv
dxdx

=1 – 2 1dz z
dx

 
dv z
dx
   

which is a linear differential equation of first order and I.F. = 
– 2– 2 xdx ee 

Its solution is z e–2x = –2
1

xe dx c

z e–2x = 
–2

2
1 1

– 1or
– 2 2

x
xe c z c e  


dv
dx = 2 2

1 1
1 1– or –
2 2

x xc e dv c e dx    
 

    v = 21
2

–
2 2

xcx e c 

y = 21
2

–
2 2

xcxuv x e c    
 

Ans.

Example 91. Verify that y = e2 x is a solution of (2x + 1) y´´ – 4 (x + 1) y´ + 4y = 0. Hence
             find the general solution.

Solution. We have 
2

2(2 1) 4 ( 1) 4 0d y dyx x y
dxdx

     ... (1)

         y = e2x,     y´ = 2e2x,    y´´ = 4e2x

Substiting the values of y, y´ and y´´ in (1), we get
(2x + 1) 4e2x – 4 (x + 1) 2e2x + 4e2x = 0

or [8x + 4 – 8x – 8 + 4] e2x = 0     0 = 0
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Thus y1 = e2x is a solution

Equation (1) in the standard form is 
4 ( 1) 4´́ ´
(2 1) (2 1)

xy y y
x x


 
 

= 0

So                           P (x) 
4 ( 1) .
(2 1)

x
x


 
       Then     (x) 2

1

1 P dxe
y

 

Now P dx
4 ( 1)
(2 1)


  


x dx
x

4 2 2
2 1 2 1
x dx
x x
     

= 2x + 1n (2x + 1)

Then  2 2
1

( )xe
 e2x + 1n (2x + 1) = 

2

2 2 . (2 1)
( )

x

x
e x
e



 (x) 2
2 1

x
x
e


       Now      v (x) =   (x) dx = 2
2 1

x
x dx
e




Integrating by parts v (x) = (2x + 1) 
2 2

2 .
2 4

x xe e 




The required second solution

           y2 (x) = y1 (x) v (x) = 
2

2 2
2 1 1 1 1.

2 2
x

x x
xe

e e
    

 = – x – 1 = – (x + 1)

Then the general solution is
y (x) = c1 y1 (x) + c2y2 (x) = c1e

2x – c2 (x + 1) Ans.
Example 92. Solve x2 y – (x2 + 2x)y + (x + 2)y = x3 ex given that y = x is a solution.
Solution. x2 y – (x2 + 2x)y + (x + 2)y = x3 ex


2

2 2
2 2– xx x xy y y x e

x x
     ...(1)

On putting y = vx in (1), the reduced equation as in the article 3.36.
2

2
2d v du dvP
u dx dxdx

   
 

= 
R
u   

2 2

2 2
2 2– (1)d v x x dv

x dxdx x

 
  
 

= 
xxe

x


2

2 –d v dv
dxdx

= –x xdze z e
dx

 
dvz
dx

  
 

which is a linear differential equation

   I.F. = 
– –dx xe e       z e–x  = –.x xe e dx c

z e–x = x + c or z = ex. x + c ex 
dv
dx  = ex. x + c ex

    v = x.ex – ex + c ex + c1  v = (x – 1) ex + c ex + c1
     y = vx = (x2 – x + cx) ex + c1x Ans.

Example 93. Solve 
2

2( 2) – (2 5) 2 ( 1) xd y dyx x y x e
dxdx

    

Here, 2 5 2 ( 1), ,
2 2 2

xx xP Q R e
x x x
 

  
  

Solution. 2
2 5 2 ( 1)–

2 2 2

xd y x dy y x e
x dx x xdx

  
 

   ...(1)

Here 21 P Q
a a

  = 0, Choosing a = 2
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2 5 21 –
2 4 4 8

x
x x



  = 0

Hence y = e2x is a part of C.F.
Putting y = e2xv in (1), the reduced equation as in the article 3.36.

2

2
2d v du dvP
u dx dxdx

    
= 

( 1)
( 2)

xx e
u x




2

2
2 2

2 5 2– 2
2

x
x

d v x dve
x dxdx e

 
   

= 2
( 1)

( 2)

x

x
x e

e x





2

2
2 5– 4

2
d v x dv

x dxdx
 

   
= 

–1
2

xx e
x




2 3

2
dz x
dx x





 z = 

–1
2

xx e
x



dv z
dx

  
 

which is a linear differential equation,

I.F. = 
12 3 22 –

22 2 – log( 2)

2

x xdxdx
xx x x ee e e

x

 
   


  


Its solution is
2

.
2

xez
x  = 

2
–1

2 2

x
xe x e dx c

x x



 

   = 2 2
( 1) 1 1–

2( 2) ( 2)

x
xe x dx c e dx c

xx x
 

     
   = 2–

2 ( 2)

x xe dx e dx c
x x


  

   = 2 2–
2 2( 2) ( 2)

x x x xe e dx e dx ec c
x xx x

   
   

 z = e– x + c (x + 2)e–2x  
dv
dx  = e–x + c(x + 2)e–2x

v = – –2
1( 2)x xe dx c x e dx c     = 

– 2 – 2
–

1
( 2)– –

– 2 4

x x
x x e ee c c

 
  

 

  = 
–2

–
1– [2 5]

4

x
x cee x c  

      y = u.v

      y =  
–2

2 –
1– (2 5)

4

x
x x c ee e x c
 

   
 

  y = 2
1– (2 5)

4
x xce x c e   Ans.

EXERCISE 3.33
Solve the following differential equations:

1.
2

2(3 – ) – (9 – 4 ) (6 – 3 ) 0,d y dyx x x y
dxdx

  given y = ex is a solution.

Ans. 3 3 21
2(4 – 42 150 – 183)

8
x xcy e x x x c e  

2.
2

2 –
2 – (1 – ) xd y dyx x y x e

dxdx
  given y = ex is an integral included in C.F..

Ans. – 2 –
2 1

1(2 1) – (2 2 1)
4

x x xy c e c x e x x e    

3.
2

2 2 3/2
2(1 – ) – (1 – ) ,d y dyx x y x x

dxdx
  given y = x is part of C.F..

Ans. 2 3/ 2 2 –1
1 2– (1 – ) – [ (1 – ) sin ] .

9
xy x c x x x c x  
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4.
2

2
2sin 2 ,d yx y

dx
 given that y = cot x is a solution Ans. cy = 1 + (c1 – x) cot x

5.
2

2
2 – ,d y dyx xy x

dxdx
  given y = x is a part of C.F.. Ans. 

3

31 22
11

x

y c x e dx c x
x

  

6.
2

2( sin cos ) – cos cos 0d y dyx x x x x y x
dxdx

   given y = x is solution.
Ans. y = c2x – c1 cos x

7.
2

2
2 – 0,d y dyx x y

dxdx
  given that 

1y x
x

  is one integral. Ans. 1
2

1 cy c x
x x

    
 

8.
2

2 3
2 2 – 12 logd y dyx x y x x

dxdx
  (U.P., II Semester 2004)

[Hint. (n (n – 1) + pnx + Qx2 = 0), n = 3, satisfies this equation. Put 3, ]dvy v x z
dx

 

Ans. 
3

3 2
1 4 log (7 log – 2)

98
c xy c x x x
x

    
 

3.37 NORMAL FORM (REMOVAL OF FIRST DERIVATIVE)

Consider the differential equation 
2

2
d y dyP Q y R

dxdx
   ...(1)

Put y = uv where v is not an integral solution of C.F.
d y
d x

= 
du duv u
dx dx



2

2
d y
d x

= 
2 2

2 22d v du dv d uu v
dx dxd x dx

 

On putting the values of 
2

2, ,dy d yy
dx dx

in (1) we get

2 2

2 22 .d v dv du d u du duu v P u v Q uv
dx dx dx dxdx dx

              
= R


2 2

2 22 .d u du dv d v dvv Pv u P Q v
dx dx dxdx dx

             
= R


2 2

2 2
2 .d u du dv u d v dvP P Q v

dx u dx v dxdx dx
             

= 
R
v

...(2)

Here in the last bracket on L.H.S. is not zero y =  v is not a part of C.F.
Here we shall remove the first derivative.

2 dvP
v dx

 = 0 or 1 – 1– or log
2 2

dv P dx v P dx
v
  

v = 
1–
2

P dx
e 

In (2) we have to find out the value of the last bracket i.e., 
2

2
d v dvP Qv

dxdx
 

dv
dx = 

1–
2 1– –

2 2
P dxP e Pv 

– 1/ 2 pdxv e    
2

2
d v
dx

= 
21 1 1 1 1– – – – – –

2 2 2 2 2 2 4
dP P dv dP P dPv v Pv v P v
dx dx dx dx
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2

2
d v dvP Qv

dxdx
  = 21 1 1– –

2 4 2
dP v P v P Pv Qv
dx

    
 

 = 
21 1– –

2 4
dPv Q P
dx

 
  

Equation (1) is transformed as
2 2

2
1– –
2 4

d u u dP Pv Q
v dxdx

    
  

= 
R
v


2 2

2
1– –
2 4

d u dP Pu Q
dxdx

    
  

=
1
2

P dx
R e 

2

12
d u Q u
dx

 = R1 where  
2

1
1– –
2 4

dP PQ Q
dx

 
  
 

,  
1
2

1 or
P dx RR R e

v


y = uv and
1–
2

P dx
v e  Ans.

Example 94. Solve 2 2cos cos . 0d dyx x y
dx dx

     

Solution. We have, 2 2cos cos . 0d dyx x y
dx dx

    
 


2

2 2
2 cos – 2 cos sin (cos )d y dyx x x x y

dxdx
 = 0    

2

2 – 2 tan .d y dyx y
dxdx

  = 0

Here, P = – 2 tan x, Q = 1, R = 0

Q1 = 
21– –

2 4
dP PQ
dx

 = 
2

21 4 tan1 – (– 2 sec ) –
2 4

xx

= 1 + sec2x – tan2x = 1 + 1 = 2

R1 = 
1
2 0

P dx
R e  

v = 1 1– – (– 2 tan ) tan log sec2 2 sec
P dx x dx x dx xe e e e x     

Normal equation is
2

12
d u Q u
dx

 = R1

2

2 2d u u
dx

 = 0    or    (D2 + 2) u = 0   2D i 

u = 1 2cos 2 sin 2c x c x
y = u.v

= 1 2[ cos 2 sin 2 ] secc x c x x Ans.

Example 95. Solve 
2

2 2 2
2 – 2( ) ( 2 2) 0d y dyx x x x x y

dxdx
    

Solution. We have, 
2 2 2

2 2 2
2( ) 2 2– 0d y x x dy x x y

dxdx x x
   

   
 

...(1)

Here p = 
2

2
1 2 2– 2 1 , , 0x xQ R
x x

     
 

In order to remove the first derivative, we put y = u.v in (1) to get the normal equation
2

12
d v Q v
dx

 = R1 ...(2)
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where 
1 11 – – 2 1– 22

dxpdx xv e e
  
   = 

11
log.

dx
x x xxe e e x e

  
 

 

Q1 = 
22 2

2 2
1 2 2 1 2 4 1– – – – 1
2 4 2 4

dp p x xQ
dx xx x

         
   

 = 2 2 2
2 2 1 1 21 – – 1 – –
x xx x x

 

R1 = 
1
2 0

pdx
Re 



On putting the values of Q1 and R1 in (2), we get 
2

2 0( )d u u
dx

  = 
2

20 0d u
dx

 

du
dx

= c1  u = c1x + c2

 y = u.v = (c1x + c2) x ex Ans.

Example 96. Solve 
2

2
2

2 – 4 (4 – 1) – 3 sin 2xd y dyx x y e x
dxdx

  (U.P. II Semester, (C.O.) 2004)

Solution. We have, 
2

2
2

2 4 (4 – 1) – 3 sin 2xd y dyx x y e x
dxdx

   ...(1)

Here p = – 4x, Q = 4x2 – 1, R = – 3ex2 sin 2x

In order to remove the first derivative, 
2

1 1– – – 4 22 2
pdx x dx x dx xv e e e e     

On putting y = uv, the normal equation is 
2

12
d u Q u
dx

  = R1 ...(2)

where  Q1 = 
2 2

21 1 16– – (4 – 1) – (– 4) –
2 4 2 4

dp p xQ x
dx

  = 4x2 – 1 + 2 – 4x2 = 1

           R1 = 
2

2

– 3 sin 2 – 3 sin 2
x

x
R e x x
v e
 

Equation (2) becomes 
2

2 – 3 sin 2d u u x
dx

 

(D2 + 1)u = – 3 sin 2x
A.E. is D2 + 1 = 0  D =  i  C.F. = c1 cos x + c2 sin x

P.I. = 
2

1 – 3 sin 2(– 3 sin 2 ) sin 2
1 – 4 1

xx x
D

 
 

u = c1 cos x + c2 sin x + sin 2x
y = u. v = (c1 cos x + c2 sin x + sin 2x)ex2 Ans.

EXERCISE 3.34
Solve the following differential equations:

1.
2

2 – 2tan . – 5 0d y x y y
dx

 Ans. y = (a e2x + e–3x)sec x

2. 22
2

2 – 4 (4 – 3) xd y dyx x y e
dxdx

  Ans. y = (c1ex + c2 e
–x – 1)

3.
212 ( 2 )2 2

2 – 2 ( 2)
x xd y dyx x y e

dxdx


   Ans. y = 

2
2

21 .
2 4

1 2( cos 3 sin 3 )

x
xx e e

c x c x e




4.
2

2
2 2

2– 2 0d y dyx n y
dxdx x

    
 

Ans. y = (c1 cos nx + c2 sin nx)x

5.
2

2
2

2 – 0d y dy n y
x dxdx

  Ans. –
1 2

1( )nx nxy c e c e
x
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6.
2

2 1 2/3 4/3 2
3

1 1 1 6– – 0
4

d y dy y
dxdx x x x

x

    
 

Ans. 

2
33–3 –2 4

1 2( )
x

y c x c x e 

7.
2

2 2
1– (– 8 ) 0

4
d y dy y x x

dxxdx x
    Ans. 2 –1

1 2( ) xy c x c x e 

3.38 METHOD OF SOLVING LINEAR DIFFERENTIAL EQUATIONS BY CHANGING
THE INDEPENDENT VARIABLE

Consider,
2

2
d y dyP Qy

dxdx
  = R ...(1)

Let us change the independent variable x to z and z = f (x)
dy
dx  = 

dy dz
dz dx        

2

2
d y
dx

 = 
22 2

2 2
d y dz dy d z

dx dzdz dx
   
 

Putting the values of 
dy
dx  and 

2

2
d y
dx

 in (1), we get

22 2 2

2 2 2
d y dz dy d z dy d zP Qy

dx dz dzdz dx dx

                  
 = R


22 2

2 2
d y dz dz d z dyP Qy

dx dx dzdz dx

            
 = R



2

22

2 2 2

dz d zP
dx dxd y dy Qy

dzdz dz dz
dx dx

 
  

  
   
   
   

 = 
2

R
dz
dx

 
 
 


2

1 12
d y dyP Q y

dzd z
   = R1 ...(2)

where P1 = 

2

2

2 ,

dz d zP
dx dx

dz
dx

 
  

 

 
 
 

Q1 = 2
Q

dz
dx

 
 
 

, R1 = 2
R

dz
dx

 
 
 

Equation (2) is solved either by taking P1 = 0  or  Q1 = a constant.
Equation (2) can be solved by by two methods, by taking
First Method, P1 = 0
Second Method, Q = constant

Working Rule

Step 1. Coefficient of 
2

2
d y
dx

 should be made as 1 if it is not so.

Step 2.  To get P, Q and R, compare the given differential equation with the standard form
y + P y + Qy = R.

Step 3. Find P1, Q1 and R1 by the following formulae.

P1 = 

2

2

2 ,

d y dzp
dxdx

dz
dx



 
 
 

  R1 = 2
R

dz
dx

 
 
 

Step 4. Find out the value of z by taking
First Method, P1 = 0          Second Method. Q1 = constant
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Step 5. We get a reduced equation 
2

1 12
d y dyP Q y

dzdz
   = R1

On solving this equation we can find out the value of y in terms of z.
        Then write down the solution in terms of x by replacing the value of z.

Example 97. Solve 
2

2
2 cot 4 cosecd y dyx y x

dxdx
  = 0

Solution. We have, 
2

2
2 cot 4 cosecd y dyx y x

dxdx
   = 0 ...(1)

Here, P = cot x, Q = 4 cosec2 x and R = 0
Changing the independent variable from x to z, the equation becomes

2

1 12
d y dyP Q y

dzdx
  = 0 ...(2)

where P1 = 

2

2

2 ,

dz d zP
dx dx

dz
dx



 
 
 

  Q1 = 
2

Q
dz
dx

 
 
 

Case I. Let us take P1 = 0
2

2

2

dz d zp
dx dx

dz
dx



 
 
 

= 0  or  
2

2
dz d zP
dx dx

  = 0    
2

2 cotd z dzx
dxdx

  = 0 ...(3)

Put dz
dx

= v,  
2

2
d z
dx

 = 
dv
dx

(3) becomes (cot )dv x v
dx

 = 0    
dv
v  = – cot x. dx

 log v = – log sin x + log c = log c log c cosec x  v = c cosec x

dz
dx =  c cosec x  dz  =  (c cosec x) dx  z = c log tan 

2
x

Q1 = 2
Q

dz
dx

 
 
 

 = 
2

2 2
4 cosec

cosec
x

c x
 = 2

4
c

 which is constant

Hence the equation (2) reduces to
2

2 2
40d y dy y

dzd z c
  = 0  or  

2

2 2
4d y y

d z c
  = 0 1 1 2

40,P Q
c

    


 2
2

4D y
c

  
 

= 0,            A.E. is     2
2
4m
c

  = 0     m = 2i
c



C.F. = c1 2
2 2cos sinz zc
c c
 log tan

2
xz c  

 

 y = c1 2cos 2 log tan sin 2 log tan
2 2
x xc      

   
Ans.
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Example 98. Solve 
2

6 5 2
2 3d y dyx x a y

dxdx
  = 

2
1
x

Solution. We have, 
2

2
2 6

3d y dy ya
x dxdx x

   = 8
1
x

...(1)

Here P = 
2

6
3 and aQ
x x



On changing the independent variable x to z, the equation (1) is reduced to
2

1 12
d y dyP Q y

dzdz
  = R1 ...(2)

Using Second Method

Let Q1 = a2 (constant) Q1 = 2
Q

dz
dx

 
 
 

 = 
2

2
6

a
dzx
dx

 
 
 

 = constant = a2 (say)


2

6 dzx
dx

 
 
 

= 1    3 dzx
dx

 
 
 

 = 1   dz
dx

 = 3
1
x

      dz  = 3
dx
x

    z = 
2

2
x c





On differentiating twice, we have 
2

2
d z
dx

 = 4
3

x


P1 = 

2

2

2

dz d zP
dx dx

dz
dx



 
 
 

 = 
3 4

2

3

3 1 3

1
x x x

x

    
 

 
 
 

 = 0     R1 = 2
R

dz
dx

 
 
 

 = 
8

6

1

1
x

x

 = 2
1
x

 = – 2z

On putting the values of P1, Q1 and R1 in (2), we get
2

2
2

d y a y
dz

  = – 2z  (D2 + a2) y = – 2 z

A.E. is m2 + a2 = 0,   m = ± i a,  C.F. = c1 cos az + c2 sin az

P.I. = 2 2
1 ( 2 )z

D a


 = 
12

2 2
1 1 ( 2 )D z
a a


 
  

 
 = 

2

2 2
1 1 ( 2 )D z
a a

 
  

 
 = 2

2z
a


 = 2 2
1

a x
y = C.F. + P.I.

y = c1 22 2 2 2
1cos sin

2 2
a ac
x x a x

  Ans.

Example 99. Solve 
2

2
2

1 4d y dy x y
x dxdx

  = x4 (U.P., I Semester Summer 2003, 2002)

Solution. We have, 
2

2
2

1 4d y dy x y
x dxdx

   = x4 ...(1)

Hence P = 
1 ,
x

 Q = 4x2,  R = x4

On changing the independent variable x to z, the equation (1) is transformed as
2

1 12
d y dyP Q y

dzdz
  = R1 ...(2)

Using Second Method
Let Q1 = 1   (constant)
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but Q1 = 2
Q

dz
dx

 
 
 

 = 
2

2
4x
dz
dx

 
 
 

 = constant = 4   (say)

2dz
dx

 
 
 

= x2    
dz
dx  = x

 dz = x dx   z = 
2

2
x

 + c    x2 = 2z – c ...(3)

P1 = 

2

2

2

dz d zP
dx dx

dz
dx

   
 

 
 
 

2

2

2

1 dz d z
x dx dx

dz
dx

 


 
 
 

 = 2

1 ( ) 1

( )

x
x

x

 
 = 0

R1 = 2
R

dz
dx

 
 
 

 = 
4

2
x
x

 = 2x  = 2 (z – c) [Using (3)]

On putting the value of P1, Q1 and R1 in (2), we get
2

2 (0) (4)d y dy y
dzdz

  = 2 (z – c) 
2

2 4d y y
dz

  = 2 (z – c)  (D2 + 4) y = 2 (z – c)

A.E.  is m2 + 4 = 0      m = ± 2i
C.F. = c1 cos 2z + c2 sin 2z

P.I. = 2
1 2 ( )

4
z c

D


 = 
1
4

12
1

4
D


 
  

 
 2 (z – c) = 

1
2

2
1

4
D 

  
 

 (z – c) = 
2

z c

Now complete solution = C.F. + P.I.

          y = 1 2cos 2 sin 2
2

z cc z c z 
     y = 

2
2 2

1 2cos sin
4
xc x c x  Ans.

EXERCISE 3.35
Solve the following differential equations:

1.
2

4 3 2
2 2 0d y dyx x a y

dxdx
   Ans. 1 2cos sina ay c c

x x
 

2.
2

3 5
2cos sin – 2 cos 2 cosd y dyx x y x x

dxdx
  Ans. 2 sin – 2 sin 2

1 2 sinx xy c e c e x  

3.
2

2
2 tan cos 0d y dyx y x

dxdx
   Ans. y = c1 cos (sin x) + c2 sin (sin x)

4.
2

3 2 2
2 – – 4 8 sind y dyx x y x x

dxdx
 Ans. 

2 cos – cos
1 2

1
6

x x xy c e c e e  

5.
2

2 – cos 2
2 (3sin – cot ) 2 sin sinxd y dyx x y x e x

dxdx
   Ans. 2cos cos – cos

1 2
1
6

x x xy c e c e e  

6.
2

2 4
2 (tan – 1) – ( – 1) sec 0d y dyx n n y x

dxdx
  Ans. y = C1 e–n tan x + C2 e(n – 1) tan x

7.
2

2 3
2 – cot – sin cos – cosd y dyx y x x x

dxdx
 Ans. y = C1 e

– cos x + C2 ecos x – cos x
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3.39 Applications of Differential Equations of Second Order
Example 100. The differential equation satisfied by a beam uniformly loaded (W kg/metre),
with one end fixed and the second end subjected to tensile force P, is given by

2

2. . d yE I
dx

= 21–
2

Py Wx

Show that the elastic curve for the beam with conditions

y = 0 at 0,dy x is given by
dx

 

y = 
2

2
2 (1 – cosh )

2
W Wx Pnx where n

P EIPn
 

Solution. We have,
2

2. . d yE I
dx

= 21– .
2

Py W x ...(1)


2

2 –
. .

d y P y
E Idx

= 2–
2 . .

W x
E I

 2 2– –
. . 2 . .
P WD y x

E I E I
   
 

A.E. is 2 2 2– 0
. . . .
P Pm m n m n

E I E I
      

2 Pn
EI

  
 

C.F. = c1 enx + c2 e– nx

P.I. = 2 2
2 22

1 1– – .
2 . . 2 . . ––

. .

W Wx xP E I E I D nD
E I

 
 

 

= 
– 12 2

2 2
2 2 2 21 – . 1 .

2 . . . 2 . .
W D W Dx x

n E I n n E I n

   
       

   
 = 2

2 2
2

2 . .
W x

n E I n
  
 

 y  = – 2
1 2 2 2

2
2 . .

nx nx Wc e c e x
n E I n

    
 

...(2)

Differentiating (2) w.r.t. x, we get
dy
dx = –

1 2 2– (2 )
2 . .

nx nx Wn c e n c e x
n E I

 ...(3)

Putting x = 0, 0dy
dx

 in (3), we get

0 = n c1 – n c2  c1 = c2Putting x = 0, y = 0 in (2), we get

0 = 1 2 1 22 2 4
2 0

2 . . . .
W Wc c c c

n E I n n E I
      ...(4)

Putting c1 = c2 in (4), we get 1 14 40 2 – ,
. . 2 . .

W Wc c
n E I n E I

   

Now, n2 = 2 . .
. .
P n E I P

E I
 

 c1 = 2 2–
2

Wc
n P



Putting the values of c1 and c2 in (2), we get

y = – 2
2 2

– 2( )
22

nx nxW We e x
Pn P n
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y = 2
2 2

– cosh
2

W W Wnx x
Pn P P n

        y = 
2

2 (1 – cosh )
2.

W W xnx
PP n

 Ans.

EXERCISE 3.36
1. A beam of length l and of uniform cross-section has the differential equation of its elastic curve as

2 2
2

2. . –
2 4

d y w lE I x
dx

 
   

 
where E is the modulus of elasticity, I is the moment of inertia of the cross-section, w is weight per unit
length and x is measured from the centre of span.

If at 0, 0dyx
dx

  . Prove that the equation of the elastic curve is

3 2 4 41 2 . 5 .–
2 . . 8 12 384 . .

l x x w ly
E I E I

 
    

 
2. A horizontal tie rod of length l is freely pinned at each end. It carries a uniform load w kg per unit length

and has a horizontal pull P. Find the central deflection and the maximum bending moment, taking the

origin at one of its ends. Ans. 2sec – 1 where
2

w al Ph a
a EI
   
 

3. A light horizontal strut AB is freely pinned at A and B. It is under the action of equal and opposite

compressive  forces P at its ends and  it carries a load  W at its centre. Then for 0 ,
2
lx 

2

2
1 0
2

d yEI Py Wx
dx

  

Also y = 0 at x = 0 and 0dy
dx

 at .
2
lx  Prove that 

sin – ,
2 cos

2

W axy xalP a

   
 
 

 where 2 Pa
EI



4. A horizontal tie-rod of length 2l with concentrated load W at its centre and ends freely hinged satisfies

the differential equation
2

2 – .
2

d y WEI Py x
dx

 With conditions x = 0, y = 0 and , 0.dyx l
dx

  Prove that

the deflection  and bending moment M at the centre (x = l) are given by ( – tan )
2
W nl nl
Pn

  and

– tan ,
2
WM h nl

n
  where n2 EI = P.

Example 101. The voltage V and the current i at a distance x from the sending end of the
transmission line satisfy the equations.

dV Ri
dx

  ,
di GV
dx

 

where R and G are constants. If V = V0 at the sending end (x = 0) and V = 0 at receiving end

(x = 1). Show that      0
sinh ( )

sinh
n l xV V

nl
   

 
       When   n2 = RG

Solution.
dV Ri
dx

      . . . (1)

di GV
dx

      . . . (2)
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            When x = 0, V = V0

                  When x = lV    = 0
Putting the value of i from (1) into (2), we get

1d dV GV
dx dx R
    
 


2

2

d V RGV
dx



 
2

2 ( ) 0d V RG V
dx

   (D2 – RG)V = 0 (RG = n2)

A. E. is        m2 – n2 = 0, m =  n
                       V = Ae nx + Be– nx     . . . (3)
Now, we have to find out the value of A and B with the help of given conditions.
On putting x = 0 and V = V0 in (3), we get V0 = A + B ... (4)
On putting x = 1 and V = 0 in (3), we get  0 = Ae nl + Be– nl

On solving (4) and (5), we have 0
21 nl

VA
e




,
2

0
21

nl

nl

V e
B

e





Substituting the values of A and B in (3), we have

    
2 2

0 0 0
2 2 2

[ ]
1 1 1

nx nl nx nx nl nx

nl nl nl

V e V e e V e e
V

e e e

 
  

  

) ( )
0

0
[ ] sinh ( )

sinh

nl nx nl nx

nl nl

V e e n l xV
nle e

   



     
  

Proved.

EXERCISE 3.37
1. An e.m.f. E sin pt is applied at t = 0 to a circuit containing a condenser C and inductance L in

series. The current x satisfies the equation
1 sindxL xdt E pt

dt C
 

If 2 1p
LC

 and initially the current x and the charge q are zero, show that the current in the

circuit at time t is given by 
2
E
l

t sin pt, where 
dqx
dt

  .

Fill in the blanks:

2. The integrating factor of 2cos tandyx y x
dx

   is ...............

3. The integrating factor of 2( 1) ( 2) (2 1)dyx x x y x x
dx

      is .............

4. Solution of ( 1) 1dyx y
dx

    is ............

5. Mdx + Ndy = 0 is an exact differential equation if .......
6. P. I. of (D2 + 4)y = sin 3x is ...........
7. P. I. of (D2 – 2D + 1)y = ex is ..........

8. On putting x = eZ, the transformed differential equation of 
2

2
2

d y xdyx y x
dxdx

    is .............

9. If the C.F. of ay+ by + cy + X is Ay1 + By2, then P. I. = uy1 + vy2 where u = ....... and v= .......

Ans. 2. etan x   3. 2

1x
x


4.  x + y + 2 = cey 5. 
M N
dy x
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4
DETERMINANTS AND MATRICES

4.1 INTRODUCTION
In Engineering Mathematics, solution of simultaneous equations is very important. In this

chapter we shall study the system of linear equations with emphasis on their solution by means of
determinants.
4.2 DETERMINANT

The notation of determinants arises from the process of elimination of the unknowns of
simultaneous linear equations.

Consider the two linear equations in x,
a1 x + b1 = 0 ... (1)
a2 x + b2 = 0 ... (2)

From (1)                         1

1

b
x

a
 

Substituting the value of x in (2); we get the eliminant

                   1
2 2

1
0ba b

a
 
   
 

or a1b2 – a2b1 = 0 ... (3)
From (1) and (2) by suppressing x, the eliminant is written as

                           1 1

2 2
0

a b
a b

 ... (4)

when the two rows of a1, b1 and a2, b2 are  enclosed by two vertical bars then it is called a
determinant of second order.

a1     
and

b1

a2 b2
 Column 1               Column 2

Row 1 b1

a2 b2Row 2
a1

Each quantity a1, b1, a2, b2 is called an element or a constituent of the determinant.
From (3) and (4), we know that both expressions are eliminant, so we equate them.

1 1
1 2 2 1

2 2

a b
a b a b

a b
           or     

b1

a2 b2

a1

=  –  a b a b1 2 2 1

223
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a1b2 – a2b1 is called the expansion of the determinant of  
1 1

2 2
.

a b
a b

Example 1.  Expand the determinant  .
3 2
6 7

Solution.     
2

6 7

3
= (3) × (7) – (2) × (6) = 21 – 12 = 9.

+ –

  Ans.

EXERCISE 4.1
Expand the following determinants :

1.
4 6
2 5       Ans.   8  2.

3 7
2 4


                               Ans.  – 26

3.
8 5
3 1       Ans.  – 7                           4.

5 2
4 3


                                Ans.   23

4.3. DETERMINANT AS ELIMINANT
Consider the following three equations having three unknowns, x, y and z.

a1 x + b1 y + c1 z = 0 ...(1)
a2 x + b2 y + c2 z = 0 ...(2)
a3 x + b3 y + c3 z = 0 ...(3)

From (2) and (3) by cross-multiplication, we get

                       2 3 3 2 3 2 2 3 2 3 3 2
(say)yx z k

b c b c a c a c a b a b
  

  

x = (b2 c3 – b3 c2) k
y = (a3 c2 – a2 c3) k

and z = (a2 b3 – a3 b2) k
Substituting the values of x, y and z in (1), we get the eliminant

a1 (b2c3 – b3c2) k + b1 (a3c2 – a2c3) k + c1 (a2b3 – a3b2) k = 0
or a1 (b2c3 – b3c2) – b1 (a2c3 – a3c2) + c1 (a2b3 – a3b2) = 0 ...(4)
From (1), (2) and (3) by suppressing x, y, z the remaining can be written in the determinant as

                     

1 1 1

2 2 2

3 3 3

0
a b c
a b c
a b c

 ...(5)

This is determinant of third order.
As (4) and (5) both are the eliminant of the same equations.

                 

1 1 1

2 2 2 1 2 3 3 2 1 2 3 3 2 1 2 3 3 2

3 3 3

( ) ( ) ( ) 0
a b c
a b c a b c b c b a c a c c a b a b
a b c

      

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Determinants and Matrices 225

or                 
1 1 1

2 2 2 2 2 2
2 2 2 1 1 1

3 3 3 3 3 3
3 3 3

a b c
b c a c a b

a b c a b c
b c a c a b

a b c
  

4.4. MINOR
The minor of an element is defined as a determinant obtained by deleting the row and column
containing the element.
Thus the minors a1, b1 and c1 are respectively.

                             
2 2

3 3
,

b c
b c               

2 2 2 2

3 3 3 3
and

a c a b
a c a b

Thus

                     

1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

= a1 (minor of a1) – b1 (minor of b1) + c1 (minor of c1).

4.5. COFACTOR
Cofactor = (– 1)r+c Minor
where r is the number of rows of the element and c is the number of columns of the element.
The cofactor of any element of jth row and ith column is

(– 1)i+j minor
Thus the cofactor of a1 = (– 1)1+1 (b2c3 – b3c2) = + (b2c3 – b3c2)
The cofactor of  b1 = (– 1)1+2 (a2c3 – a3c2) = – (a2c3 – a3c2)
The cofactor of  c1 = (– 1)1+3 (a2b3 – a3b2) = + (a2b3 – a3b2)
The determinant = a1 (cofactor of a1) + a2 (cofactor of a2) + a3 (cofactor of a3).
Example 2.  Write down the minors and cofactors of each element and also evaluate the

determinant.
–

–
1 3 2
4 5 6
3 5 2

Solution. M11 = Minor of element (1) 

1 3 2
4 5 6
3 5 2


 

                                                              
5 6

( 5) 2 6 5 10 30 40
5 2


          

Cofactor of element (1) = A11 = (– 1)1 + 1 M11 = (– 1)2 (– 40) = – 40
M12 = Minor of element (3)

                                           

1 3 2
4 6

4 5 6 4 2 3 6 8 18 10
3 2

3 5 2


          

   Cofactor of element (–2) = A12 = (– 1)1 + 2 (– 10) = 10
M13 = Minor of element (– 2)
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=

1 3 2
4 5

4 5 6 4 5 ( 5) 3 20 15 35
3 5

3 5 2




         

   Cofactor of element (– 2) = A13 = (– 1)1+3 M13 = (–1)4 35 = 35
M21 = Minor of element (4)

=

1 3 2
3 2

4 5 6 3 2 ( 2) 5 6 10 16
5 2

3 5 2




         

   Cofactor of element (4) = A21 = (– 1)2+1 M21 = (– 1)2+1 (16) = – 16
M22 = Minor of element (– 5)

=
1 3 2

1 2
4 5 6 1 2 ( 2) 3 2 6 8

3 2
3 5 2




         

   Cofactor of element (– 5) = A22 = (– 1)2+2 M22 = (– 1)2+2 (8) = 8
M23 = Minor of element (6)

=

1 3 2
1 3

4 5 6 1 5 3 3 5 9 4
3 5

3 5 2


         

   Cofactor of element (6) = A23 = (–1)2+3 M23 = (– 1)2+3 (– 4) = 4
M31 = Minor of element (3)

=

1 3 2
3 2

4 5 6 3 6 ( 2) ( 5) 18 10 8
5 6

3 5 2




          


   Cofactor of element (3) = A31 = (– 1)3+1 M31 = (– 1)3+1 8 = 8
M32 = Minor of element (5)

                                          =
1 3 2

1 2
4 5 6 1 6 ( 2) 4 6 8 14

4 6
3 5 2




         

   Cofactor of element (5) = A32 = (– 1)3+2 M32 = (– 1)3+2 14 = – 14
M33 = Minor of element (2)

=
1 3 2

1 3
4 5 6 1 ( 5) 4 3 5 12 17

4 5
3 5 2


           



Cofactor of element (2) = A33 = (– 1)3+3 M33 = (– 1)3+3 (– 17) = – 17.

                      
1 3 2
4 5 6
3 5 2


  = 1 × (cofactor of 1) + 3 × (cofactor of 3) + (– 2) × [cofactor of (– 2)].

= 1 × (– 40) + 3 × (10) + (– 2) × (35)
= – 40 + 30 – 70
= – 80 Ans.
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Example 3.  Find :
(i) Minors (ii) Cofactors of the elements of the first row of the determinant

2 3 5
4 1 0
6 2 7

Solution.
(i) The minor of the element (2) is

                         

2 3 5
1 0

4 1 0 (1) (7) (0) (2) 7 0 7
2 7

6 2 7
       

       The minor of the element (3) is

                          

2 3 5
4 0

4 1 0 (4) (7) (0) (6) 28 0 28
6 7

6 2 7
       

       The minor of the element (5) is

                         

2 3 5
4 1

4 1 0 (4) (2) (1) (6) 8 6 2
6 2

6 2 7
       

(ii)      The cofactor of (2) = (– 1)1+1 (7) = + 7
            The cofactor of (3) = (– 1)1+2 (28) = – 28 Ans.
            The cofactor of (5) = (– 1)1+3 (2) = + 2.

Example 4.  Expand the determinant  
6 2 3
2 3 5
4 2 1

Solution. 

6 2 3
2 3 5
4 2 1

 = 6 (cofactor of 6) + 2 (cofactor of 2) + 3 (cofactor of 3).

= 6 (3 × 1 – 5 × 2) – 2 (2 × 1 – 4 × 5) + 3 (2 × 2 – 3 × 4)
= 6 (3 – 10) – 2 (2 – 20) + 3 (4 – 12)
= 6 (– 7) – 2 (– 18) + 3 (– 8)
= – 42 + 36 – 24
= – 30. Ans.

Example 5.  Evaluate the determinant .
1 0 4
3 5 –1
0 1 2

(i) With the help of second row,    (ii) with the help of third column.
Solution.

(i)

1 0 4
3 5 1
0 1 2

  = 3 × (cofactor of 3) + 5 × (cofactor of 5) + (– 1) (cofactor of – 1).
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= 3 × (– 1)2+1
0 4
1 2  + 5 × (– 1)2+2

1 4
0 2  + (– 1) × (– 1)2+3

1 0
0 1

= – 3 × (0 – 4) + 5 (2 – 0) + (1 – 0)
= 12 + 10 + 1 = 23 Ans.

(ii)
1 0 4
3 5 1
0 1 2

  = 4 × (cofactor of 4) + (– 1) (cofactor of (– 1)) + 2 × (cofactor of 2)

= 4 × (– 1)1+3  
3 5
0 1  + (– 1) (– 1)2+3

1 0
0 1  + 2 × (– 1)3+3

1 0
3 5

= 4 × (3 – 0) + (1 – 0) + 2 (5 – 0)
= 12 + 1 + 10 = 23 Ans.

Example 6.  Expand the fourth order determinant   

0 1 2 3
1 0 2 0
2 0 1 3
1 2 1 0

Solution. Given determinant  = (0) (–1)1 + 1
1 2

0 2 0 1 2 0
0 1 3 1 (–1) 2 1 3
2 1 0 1 1 0



                                                                       + 2 (–1)1+ 3
1 4

1 0 0 1 0 2
2 0 3 3 (–1) 2 0 1
1 2 0 1 2 1



= 
1 2 0 1 0 0 1 0 2

0 2 1 3 2 2 0 3 3 2 0 1
1 1 0 1 2 0 1 2 1

  

Now

1 2 0
1(1 0 3 1) 2 (2 0 3 1) 0 (2 1 1 1)

2 1 3
3 6 0 3

1 1 0

           
   

1 0 0
1 (0 0 3 2) 0 (2 0 3 1) 0(2 2 0 1)

2 0 3
6

1 2 0

           


1 0 2
1 (0 1 1 2) 0(2 1 1 1) 2 (2 2 0 1)

2 0 1
2 – 0 8 6

1 2 1

           
  

Now

0 1 2 3
1 0 2 0 3 2( 6) 3(6)
2 0 1 3 3 – 12 18 33
1 2 1 0

    
    Ans.
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EXERCISE 4.2
Write the minors and co factors of each element of the following determinants and also evalutate
the determinant in each case :

1.
2 3
4 9




2.
cos sin
sin cos

  
 

3.
42 1 6
28 7 4
14 3 2

4.
1
1
1

a bc
b ca
c ab

Expand the following determinants :

5.
2 3 4
5 1 6
7 8 9




 
6.

5 0 7
8 6 4
2 3 9

  7.
a h g
h b f
g f c

         Ans. | A | = 5 Ans. | A | = 42  Ans. | A | = abc + 2fgh – af 2 – bg2 – ch2

Expand the following determinants by two methods :
(i) along the-third row.

(ii) along the-third column.

8.
1 3 2
4 1 2
3 5 2


 9.

3 2 4
1 2 1
0 1 1




10.

2 3 2
1 2 3
2 1 3



 

Ans. | A | = 40 Ans. | A | = – 7 Ans. | A | = – 37

11. 3 4

3 4

log 512 log 3
log 8 log 9 Ans. | A | = 15

2

12.  If a, b, c are all positive and are the pth, qth, rth
terms of a G.P. respectively; then prove that

                       

log 1
log 1 0
log 1

a p
b q
c r



M11  =  – 9,  M12 = 4,  M21 = 3,  M22 = – 2
     A11  = – 9,  A12 = – 4,  A21 = – 3,  A22 = – 2     | A | = 6  Ans.

M11 = cos ,  M12 = sin   M21 = – sin , M22 = cos 
    A11 =   cos , A12 = – sin , A21 = sin ,  A22 = cos     | A | = 1      Ans.

M11  =  2,  M12 = 0,  M13 = – 14,  M21 = – 16,  M22 = 0
M23  = 112,  M31 = – 38, M32 = 0,  M33 = 266
A11   = 2,  A12 = 0,  A13 = – 14,  A21 = 16,  A22 = 0
A23   = – 112,  A31 = – 38,  A32 = 0,  A33 = 266,     | A | = 0  Ans.

M11 =  (ab2 – ac2),  M12 = (ab – ac),  M13 = (c – b),  M21 = a2b – bc2

M22 = (ab – bc),  M23 = (c – a),  M31 = (ca2 – cb2),  M32 = ca – bc, M33 = (b – a),
A11  = (ab2 – ac2),  A12 = (ac – ab), A13 = (c – b), A21 = bc2 – a2b
A22  = (ab – bc),   A23 = (a – c), A31 =  (ca2 – cb2),  A32 = (bc – ca), A33 = (b – a)
| A |  = (a – b) (b – c) (c – a).                                                         Ans.

13.

3 2 5 7
1 4 3 0
6 4 2 1
2 1 0 3

  



      Ans. 96

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



230 Determinants and Matrices

4.6 RULES OF SARRUS(For third order determinants only).
After writing the determinant, repeat the first two columns as below

    

                                     = (a1b2c3 + b1c2a3 + c1a2b3) + (– c1b2a3 – a1c2b3 – b1a2c3)
Example 7.  Expand the determinant

                                          .
2 3 4
1 5 3 by Rule of Sarrus
3 0 5



Solution.                     

=(2) × (5) × (5) + (3) × (3) × (3) + (4) × (1) × (0) – (4) × (5) × (3) – (2) × (3) × (0) – (3) × (1) × (5)
= 50 + 27 + 0 – 60 – 0 – 15 = 2 Ans.

EXERCISE 4.3
Expand the following determinants by Rule of Sarrus.

1.

3 2 4
5 1 1
2 6 7





2.

1 4 2
2 5 3
3 6 4

3.
6 3 7

32 13 37
10 4 11

4.
9 25 6
7 13 5
9 23 6

 Ans. – 155                      Ans.   0                  Ans.   10                           Ans.   6

5. If a + b + c = 0,  solve the equation 0
a x c b
c b x a
b a c x


 



                                                                Ans. 2 2 2( )x a b c ab bc ca       , x = 0
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4.7 PROPERTIES OF DETERMINANTS
Property (i) The value of a determinant remains unaltered, if the rows are interchanged into columns

(or the columns into rows).
Consider the determinant.

                                                  

1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

 

= a1 (b2c3 – b3c2) – b1 (a2c3 – a3c2) + c1 (a2b3 – a3b2)
= a1b2c3 – a1b3c2 – a2b1c3 + a3b1c2 + a2b3c1 – a3b2c1
= (a1b2c3 – a1b3c2) – (a2b1c3 – a2b3c1) + (a3b1c2 – a3b2c1)
= a1 (b2c3 – b3c2) – a2 (b1c3 – b3c1) + a3 (b1c2 – b2c1)

                                                     

1 2 3

1 2 3

1 2 3

a a a
b b b
c c c

 Proved.

Property (ii) If two rows (or two columns) of a determinant are interchanged, the sign of the value
of the determinant changes.
Interchanging the first two rows of , we get

                                                 

2 2 2

1 1 1

3 3 3

'
a b c
a b c
a b c

 

= a2 (b1c3 – b3c1) – b2 (a1c3 – a3c1) + c2 (a1b3 – a3b1)
= a2b1c3 – a2b3c1 – a1b2c3 + a3b2c1 + a1b3c2 – a3b1c2

= – [(a1b2c3 – a1b3c2) – (a2b1c3 – a3b1c2) + (a2b3c1 – a3b2c1)]
= – [(a1 (b2c3 – b3c2) – b1 (a2c3 – a3c2) + c1 (a2b3 – a3b2)]

                                                      = 
1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

   Proved.

Property (iii) If two rows (or columns) of a determinant are identical, the value of the determinant
is zero.

Let                    
1 1 1

1 1 1

3 3 3

,
a b c
a b c
a b c

   so that the first two rows are identical.

By interchanging the first two rows, we get the same determinant .
By property (ii), on interchanging the rows, the sign of the determinant changes.
or  = –         or        2  = 0       or       = 0 Proved.

Property (iv) If the elements of any row (or column) of a determinant be each multiplied by the
same number, the determinant is multiplied by that number.

                                                 

1 1 1

2 2 2

3 3 3

ka kb kc
a b c
a b c
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= ka1 (b2c3 – b3c2) – kb1 (a2c3 – a3c2) + kc1 (a2b3 – a3b2)
= k [a1 (b2c3 – b3c2) – b1 (a2c3 – a3c2) + c1 (a2b3 – a3b2)]

                            

1 1 1

2 2 2

3 3 3

.
a b c

k a b c k
a b c

  

Example 8.  Prove that

                                              
2 2 2

3 3 3

1 1 12

2

2

a a bc

b b ca a b c

c c ab a b c

 

Solution.                   

2

2

2

a a bc

b b ca

c c ab

By multiplying R1, R2, R3 by a, b and c respectively we get

1

3 2

3 2

3 2

a a abc

b b abc
abc

c c abc


   

3 2

3 2

3 2

a a 1
abc b b 1
abc

c c 1



3 2

3 2

3 2

a a 1

b b 1

c c 1


  

2 3

2 3

2 3

1

1

1

a a

b b

c c

 

2 2 2

3 3 3

1 1 1

a b c

a b c

     By changing rows into columns

Proved
Example 9.  Without expanding and or evaluating, show that

2 3 2

2 3 2

2 3 2

2 3 2

1 1

1 1

1 1

1 1

a a bcd a a a

b b cda b b b

c c dab c c c

d d abc d d d



Solution

             

2

2

2

2

1

1

1

1

a a bcd

b b cda

c c dab

d d abc

        

3 2

1 13 2

2 23 2

3 3
3 2

4 4

1

a a a abcd
R aR

b b b abcd
R bR

abcd c c c abcd R cR
d d d abcd R dR
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3 2

3 2

3 2
4 4

3 2

1

1
1

1

1

a a a

b b babcd
abcd C Cc c c abcd

d d d


      

3 2

3 2

3 2

3 2

1

1

1

1

a a a

b b b

c c c

d d d


Proved

Example 10.  Prove that    

2

2

2

1 1
1 1

11

a a a bc
b b b ca

c abc c

  (Try yourself)

Property (v) The value of the determinant remains unaltered if to the elements of one row (or
column) be added any constant multiple of the corresponding elements of any other
row (or column) respectively.

Let                   
1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

 

On multiplying the second column by l and the third column by m and adding to the
first column we get

                                                 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

'
a lb mc b c

a lb mc b c
a lb mc b c

 
   

 

                                                      

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

a b c b b c c b c
a b c l b b c m c b c
a b c b b c c b c

  

= + 0 + 0 (Since columns are identical)
=  Proved

Example 11.  Evaluate, using the properties of determinant
9 9 12
1 3 – 4
1 9 12

Solution.  Let                 
9 9 12
1 3 4
1 9 12

  

Applying : 1 1 2 3 3 2R R 3R and R R 3R    , we get

                                       

12 18 0 2 3 0
1 3 4 6 2 1 3 4
4 18 0 2 9 0

     

Expand by C3             = 6 × 2 × 4 
2 3
2 9

= 48 (2 × 9 – 2 × 3) = 48 × 12 = 576. Ans.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



234 Determinants and Matrices

Example 12.  Without expanding evaluate the determinant

265 240 219
240 225 198
219 198 181



Solution.  Applying 1 1 3 2 2 3and , we getC C C C C C   

                                       

46 21 219
42 27 198
38 17 181

 

Applying 1 1 2 3 3 22 and 10C C C C C C    , we get

                                       

4 21 9
12 27 72
4 17 11

   

Applying 1 1 3 2 2 3and 3R R R R R R   

0 4 2 0 2 1
0 78 39 2(39) 0 2 1
4 17 11 4 17 11

 
     [Taking 2 common from R1 and 39 common from R2]

      = 78 × 0 = 0 (Since R1 and R2 are identical) Ans.

Example 13. Show that 
b c c a a b
c a a b b c
a b b c c a

  
    

  
= 0

Solution.  Let                
b c c a a b
c a a b b c
a b b c c a

  
    

  

Applying 1 1 2 3, we getC C C C  

                                       

0
0 0
0

c a a b
a b b c
b c c a

 
    

 
[C1 consists of all zeros.]

Example 14.  Without expanding, evaluate the determinant
sin cos sin( + )
sin cos sin( + )
sin cos sin( + )

   
   
   

.

Solution.  Let                

sin cos sin ( )
sin cos sin ( )
sin cos sin ( )

  
      

    

                                  

sin cos sin cos cos sin
sin cos sin cos cos sin
sin cos sin cos cos sin

      
        

      
[ sin (A + B) = sin A cos B + cos A sin B]
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sin cos 0
sin cos 0
sin cos 0

 
   

 
[Applying 3 3 1 2cos . sin . ]C C C C    

  = 0                                             [ C3 consists of all zeros]    Ans.

Example 15.  Solve the determinantal equation 
–

2x – 1 x + 7 x + 4
x 6 2 0

x 1 x + 1 3


Solution.  Given equation 

2 1 7 4
6 2 0

1 1 3

  


 

x x x
x

x x

By applying R1  R1 – (R2 + R3), we get   

0 0 1
6 2 0

1 1 3

x
x

x x




 
On expanding by first row, we get

(x – 1) (x2 + x – 6x + 6) = 0       (x – 1) (x – 2) (x – 3) = 0       x = 1, 2, 3 Ans.
Example 16.  Using the properties of determinants, show that

                                              
3

x + y x x
5x + 4y 4x 2x = x .

10x + 8y 8x 3x

Solution.  Let                5 4 4 2
10 8 8 3

x y x x
x y x x
x y x x


  


Operate : 2 2 1 3 3 12 ; 3R R R R R R   

                                       3 2 2 0
7 5 5 0

x y x x
x y x
x y x


  


     Expand by C3     

3 2 2
7 5 5

x y x
x

x y x


 


= x [5x (3x + 2y) – 2x (7x + 5y)]
= x [15x2 + 10 xy – (14x2 + 10 xy)] = x3. Proved.

Example 17.  Using the properties of determinants, evaluate the following :

  

2 2

2 2

2 2

0 ab ac

a b 0 bc

a c cb 0

Solution.  Let 

2 2

2 2

2 2

0

0

0

ab ac

a b bc

a c cb

 

Take a2, b2 and c2 common from C1, C2 and C3 respectively,           2 2 2
0

0
0

a a
a b c b b

c c
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Operate : 2 2 3C C C  ,     
2 2 2

0 0

0

a
a b c b b b

c c
  

Expand by R1,                         
2 2 2 3 2 2 3 3 3. ( ) 2 .

b b
a b c a a b c bc bc a b c

c c


     Ans.

Example 18.  Using properties of determinants, prove that

  2 2 2

3 3 3

x y z

x y z = x y z(x – y)(y – z) (z – x).

x y z

Solution.  Let                2 2 2

3 3 3 2 2 2

1 1 1x y z

x y z xyz x y z

x y z x y z

  

Operate : 1 1 2 2 2 3;C C C C C C    ,               
2 2 2 2 2

0 0 1
xyz x y y z z

x y y z z

   

 

On expanding by R1,  2 2 2 2

x y y z
xyz

x y y z

 


 
    

1 1
( ) ( )xyz x y y z

x y y z
  

 

= xyz (x – y) (y – z) (z – x). Proved.
Example 19.  Using the properties of determinants, show that

  
2

a + x y z
x a + y z = a (a + x + y + z).
x y a + z

Solution.  Let                        
a x y z

x a y z
x y a z


  



Operate : 1 1 2R R R  ,      
0a a

x a y z
x y a z


  



Operate : 2 2 1C C C  ,     
0 0a

x a y x z
x y x a z

   
 

On expanding by R1              
a y x z

a
y x a z
 

 
    = a [(a + y + x) (a + z) – (y + x) z]

= a [a2 + az + (y + x) a + (y + x) z – (y + x) z]
= a2 (a + x + y + z). Proved.
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Example 20. If is the one of the imaginary cube roots of unity, find the value of the determinant






  

  

  

Solution.  The given determinant 

2

2

2

1

1

1

 

  

 

By 1 1 2 3,R R R R    we get

               

2 2 2

2

2

1 1 1

1

1

           

  

 

2

2

0 0 0

1

1

  

 
[1 + + 2 = 0]

               = 0 (Since each entry in R1 is zero)  Ans.

Example 21.  Without expanding the determinant, show that (a + b + c) is a factor of
a b c
b c a .
c a b

Solution.  Let                                 
a b c
b c a
c a b

 

Operate : 1 1 2 3C C C C   ,     
a b c b c
a b c c a
a b c a b

 
   

 

1
( ) 1

1

b c
a b c c a

a b
  

    (a + b + c) is a factor of . Proved.
Example 22.  Using properties of determinants, prove that :

( )
x + 4 x x

x x + 4 x = 16 3x + 4
x x x + 4

Solution.  Let           

4
4

4

x x x
x x x
x x x


  



Operate : 1 1 2 3C C C C   ,      

3 4
3 4 4
3 4 4

x x x
x x x
x x x


   

 

1
(3 4) 1 4

1 4

x x
x x x

x x
  


    2 1

3 1

1
(3 4) 0 4 0

0 0 4

x x
x R R

R R
  


    

4 0
(3 4)

0 4
x 

16(3 4)x  Proved.
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Example 23.  Without expanding the determinant, prove that   
1 a b + c
1 b c + a = 0.
1 c a +b

Solution.  Let                              
1
1
1

a b c
b c a
c a b


  



Operate : 3 3 2,C C C              
1
1
1

a a b c
b a b c
c a b c

 
   

 

1 1
( ) 1 1

1 1

a
a b c b

c
  

                                                         = 0 (  C1 and C3 are identical).   Proved.

Example 24.  Without expanding the determinant, prove that 

2

2

2

1 a bc
a
1 b ca = 0
b
1 c ab
c

Solution.  Let                

2

2

2

1

1

1

a bc
a

b ca
b

c ab
c

 

Multiply R1 by a, R2 by b and R3 by c.

                                       

3

3

3

1
1 1

1

a abc

b abc
abc

c abc

 

3

3

3

1 1
1 . 1 1 1 0 0.

1 1

a

abc b
abc

c

   

(Since C1 and C3 are identical)   Proved.

Example 25.  Evaluate 

2

2

2

1 a a

1 b b

1 c c

Solution.  Let  be the given determinant. Applying 2 2 1 3 3 1and ,R R R R R R     we
get,

2

2 2

2 2

1

0

0

a a

b a b a

c a c a

   

 

21
( ) ( ) 0 1

0 1

a a
b a c a b a

c a
   



    = (b – a) (c – a) 

21
0 1
0 0




a a
b a
c b

3 3 2[Applying ]R R R 

[Taking out (b – a) common
from R2 and (c – a) from R3]
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    = (b – a) (c – a) 
1
0




b a
c b

[Expanding along C1]

    = (b – a) (c – a) (c – b). Ans.
Example 26.  Using properties of determinants, prove that :

                       

3

3

3

1 a a

1 b b = (a – b)(b – c)(c – a)(a + b + c)

1 c c

Solution.  Let      

3

3

3

1

1

1



a a

= b b

c c

Operate : 1 1 2 2 2 3;R R R R R R    ,  

3 3

3 3

3

0

0

1

a b a b

b c b c

c c

 

   
3 3

3 3
1.

a b a b

b c b c

 


 

                                               
2 2

2 2

1
( ) ( )

1

a ab b
a b b c

b bc c

 
  

 
                

(Expanding by C1)

Operate : 1 1 2R R R  ,  
2 2

2 2

0 ( ) ( )
( ) ( )

1

a c ab bc
a b b c

b bc c

  
   

 
  =  (a – b) . (b – c) . (– 1) [(a2 – c2) + b (a – c)]
  =  (a – b) . (b – c) (c – a) (a + b + c). Proved.

Example 27.  Evaluate  
a – b – c 2a 2a

2b b – c – a 2b
2c 2c c – a – b

Solution.  By  R1   R1 + R2 + R3, we get  2 2
2 2

a b c a b c a b c
b b c a b
c c c a b

     
 

 

1 1 1
( ) 2 2

2 2
a b c b b c a b

c c c a b
    

 

2 1

3 1

1 0 0
( ) 2 ( ) 0

2 0 ( )
a b c b a b c C C

c a b c C C
      

   

On expanding by first row   = (a + b + c) (a + b + c)2 = (a + b + c)3. Ans.

Example 28.  Show, without expanding –
2 2 2

1 1 1
x y z = (x – y)(y – z)(z x)

x y z
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Solution.  By C1 – C2, C2 – C3, we get 
2 2 2 2 2

0 0 1
x y y z z

x y y z z

  

 

2 2 2 2

x y y z

x y y z

 


 

On expanding by first row, we get
1 1

( ) ( )x y y z
x y y z

  
   =  (x – y) (y – z) (y + z – x – y) = (x – y) (y – z) (z – x).

Proved.

Example 29.  Prove that  
  

  

                 
        

Solution.  Let                2 2 2 .

  

    
        

                                       2 2 2

  

    
              

Applying 3 1 3R R R 

                                  2 2 2= ( + + )
1 1 1

  

      [Taking out (+  + ) common from R3]

                                  
2 2 2 2 2 2 2 1

3 3 1

Applying
( )

1 0 0

C C C
C C C

      
 

            
 

                                 
2

1 1

( ) ( ) ( )
1 0 0



                  

                                 
1 1

( ) ( ) ( ).1           
      [Expanding along R3]

                                  = (+ + ) (– ) (– ) (+ – – )
                                 = (+ + ) (– ) (– ) (– ) Proved.

Example 30.  Prove that   

2

2 2 2 2

2

– a ab ac

ba – b bc = 4 a b c

ac bc – c

Solution.  Let                

2

2

2

a ab ac

ba b bc

ac bc c
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Taking a, b, c common from R1, R2 and R3 respectively, we get    

a a a
abc b b b

c c c


 



              
2 2 2

1 1 1
1 1 1
1 1 1

a b c


 


[Taking a, b, c common from C1, C2 and C3 respectively]

              
2 2 2

1 0 0
1 0 2
1 2 0

a b c


 [Applying 2 2 1 3 3 1,C C C C C C    ]

               = a2b2c2 (– 1) 
0 2
2 0 [Expanding along R1]

               = a2b2c2 (– 1) (0 – 4) = 4a2 b2 c2 Proved.

Example 31.  Show that  
3a – a + b – a + c

– b + a 3b – b + c = 3(a + b + c) (ab + bc + ca)
– c + a – c + b 3c

Solution.  Let                
3

3
3

a a b a c
b a b b c
c a c b c

   
     

   

Applying 1 1 2 3, we getC C C C              3
3

a b c a b a c
a b c b b c
a b c c b c

     
     

   

                    

1
( ) 1 3

1 3

a b a c
a b c b b c

c b c

   
    

 
[Taking (a + b + c) common from C1]

                    = 2 2 1 3 3 1

1
( ) 0 2 [Applying , ]

0 2

   
        

  

a b a c
a b c b a b a R R R R R R

c a c a

                    
2

( )
2

b a b a
a b c

c a c a
  

  
   [Expanding along C1]

                     = (a + b + c) [(2b + a) (2c + a) – (– b + a) (– c + a)]
                     = (a + b + c) {(4bc + 2ab + 2ca + a2 – (bc – ab – ac + a2)}
                     = (a + b + c) (3bc + 3ab + 3ca)
                     = 3 (a + b + c) (ab + bc + ca) Proved.

Property (vi) If each element of a row (or column) of a determinant consists of the algebraic sum of
n terms, the determinant can be expressed as the sum of n determinants,

Let                   
1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

.
a p q b c

a p q b c
a p q b c
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= (a1 + p1 + q1) (b2c3 – b3c2) – (a2 + p2 + q2) (b1c3 – b3c1)  + (a3 + p3 + q3) (b1c2 – b2c1)

            = a1 (b2c3 – b3c2) – a2 (b1c3 – b3c1) + a3 (b1c2 – b2c1)
                                              +  p1  (b2c3 – b3c2) – p2 (b1c3 – b3c1) + p3 (b1c2 – b2c1)

                                   +  q1  (b2c3 – b3c2) – q2 (b1c3 – b3c1) + q3 (b1c2 – b2c1)

                                           

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

a b c p b c q b c
a b c p b c q b c
a b c p b c q b c

   Proved.

Example 32.  If  
–2 3

2 3

2 3

a a a 1

b b b – 1 = 0,

c c c – 1

  prove that abc = 1.

Solution.       

2 3 2 3 2

2 3 2 3 2

2 3 2 3 2

1 1

1 0 1 0

1 1

a a a a a a a a

b b b b b b b b

c c c c c c c c

 

     

 

                               

2 2

2 2

2 2

1 1

1 1 0

1 1

a a a a

abc b b b b

c c c c

 

(Taking out common a, b, c from R1, R2 and R3 from 1st determinant)

                               

2 2

2 2

2 2

1 1

1 1 0

1 1

a a a a

abc b b b b

c c c c

 
(Interchanging C2 and C3)

                                

2 2

2 2

2 2

1 1

1 1 0

1 1

a a a a

abc b b b b

c c c c

 
              (Interchanging C1 and C2 )

                               

2

2

2

1

( 1) 1 0

1

a a

a b c b b

c c

 

1 0
1

abc
abc

  
  Proved.

Example 33.  Show that  

b + c c + a a + b a b c
q + r r + p p + q = 2 p q r
y + z z + x x + y x y z

Solution.  The above determinant can be expressed as the sum of 8 determinants as given below:

  

b c c a a b b c a b a a b c b
q r r p p q q r p q p p q r q
y z z x x y y z x y x x y z y

  
      
  

b a b
q p q
y x y
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c c a c a a c c b
r r p r p p r r q
z z x z x x z z y

   +

c a b
r p q
z x y

                        0 0 0 0 0 0       
b c a c a b
q r p r p q
y z x z x y

                         = 
2 2( 1) ( 1) 2

a b c a b c a b c
p q r p q r p q r
x y z x y z x y z

   

Example 34.  Prove that            0
      

      
      

Solution.  Given determinant  

        
         

        
The above determinant can be expressed as the sum of 8 determinants.
Each of the 8 determinants has either two identical columns or identical rows.
Each of the resulting determinant is zero. Hence the result. Proved.

Example 35.  Prove that ( ) ( ) ( )

x l m 1
x n 1

x x x
x 1

1

   




  

 
 

Solution.   

x l m 1
x n 1

x 1
1


 
  

1
0 1
0 1
0 1

x l m
x n

x

 



 

 (C1   C1 – C4)

                          

1
( ) 1

1

x n
x x  

 

1
( ) 0 1

0 1

x n
x x

 
 


  (C1   C1 – C3)

              ( ) ( ) ( )x x x                    [On expanding by first column]               Proved.
Example 36.  Show that x = – (a + b + c) is one root of the equation:

x + a b c
b x + c a = 0
c a x + b

and solve the equation completely..

Solution.  By  C1  C1 + C2 + C3, we get  0
x a b c b c
x a b c x c a
x a b c a x b

  
    
   

Proved.

[On expanding by first column we get]
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1
( ) 1 0

1

b c
x a b c x c a

a x b
    



                        2 2 1 3 3 1

1
( ) 0 0, ;

0

b c
x a b c x b c a c R R R R R R

a b x b c
          

  

On expanding by first column, we get
(x + a + b + c) [(x – b + c) (x + b – c) – (a – b) (a – c)] = 0

 (x + a + b + c) [x2 – (b – c)2 – (a2 – ac – ab + bc)] = 0

 (x + a + b + c) (x2 – b2 – c2 + 2bc – a2 + ac + ab – bc] = 0

 (x + a + b + c) (x2 – a2 – b2 – c2 + ab + bc + ca) = 0

Either x + a + b + c = 0       x = – (a + b + c)
or                                    x2 – a2 – b2 – c2 + ab + bc + ca = 0
                                     x = 2 2 2a b c ab bc ca     

Hence, x = – (a + b + c) is one root of the given equation. Proved.

Example 37.  Find the value of  

2 2 2

2 2 2

2 2 2

(b + c) a a

b (c + a) b

c c (a + b)

Solution.  By C1 – C3, C2 – C3, we get   

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

( )

( )

( ) ( ) ( )

b c a a a a

b b c a b b

c a b c a b a b

  

  

    

                                           

2

2

2

( ) ( ) 0

0 ( ) ( )

( ) ( ) ( ) ( ) ( )

a b c b c a a

a b c c a b b

a b c c a b a b c c a b a b

   

    

        

On taking out (a + b + c) as common from 1st and 2nd column, we get

                                           

2

2 2

2

0

( ) 0

( )

b c a a

a b c c a b b

c a b c a b a b

 

    

    

                                           

2

2 2
3 3 1 2

0

( ) 0 ( )
2 2 2

  

       
 

a b c a

a b c a b c b R R R R
b a ab
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2

2 2

0

2( ) 0

a b c a

a b c a b c b
b a ab

  

     


On expanding by first row, we get
            =  – 2 (a + b + c)2 [(– a + b + c) {– ab (a – b + c) – ab2}  + a2 {0 – b (a – b + c)}]

=  – 2 (a + b + c)2 [(– a + b + c) (– a2b – abc) – a2b (a – b + c)]
=  – 2ab (a + b + c)2 [(– a + b + c) (– a – c) – a (a – b + c)]
=  – 2ab (a + b + c)2 (a2 + ac – ab – bc – ac – c2 – a2 + ab – ac]
=  – 2ab (a + b + c)2 (– bc – ac – c2)
=  2abc (a + b + c)2 (b + a + c)
=  2abc (a + b + c)3. Ans.

Example 38.  Using properties of determinants, solve for x :
–

a + x a – x a – x
a – x a + x a – x = 0
a – x a x a + x

Solution.  Given that   0
a x a x a x
a x a x a x
a x a x a x

  
   
  

Applying 
1 1 2 3C C C C      

3
3 0
3

a x a x a x
a x a x a x
a x a x a x

  
   
  

                                    
1

(3 ) 1 0
1

a x a x
a x a x a x

a x a x

 
    

 

Now, 2 2 1 3 3 1and ,R R R R R R              

1
(3 ) 0 2 0 0

0 0 2

a x a x
a x x

x

 
  

Expanding by C1, we get   2(3 ) (4 0) 0a x x  

                                           24 (3 ) 0  x a x                   2If 4 0, then 0x x  
                                           If 3 0, then 3a x x a   

Hence,       x = 0      or    3a Ans.
Example 39.  Using properties of determinants, prove the following

 
1 + a 1 1

1 1 11 1 + b 1 = abc + + + 1
a b c

1 1 1 + c

Solution.   Let               
1 1 1

1 1 1
1 1 1

a
b

c
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1 1 1

11 1

11 1

a
a a a

babc
b b b

c
c c c







       

1 1 11

1 1 11

1 1 11

a a a

abc
b b b

c c c



 



        Operate : 1 1 2 3R R R R   ,   

1 1 1 1 1 1 1 1 11 1 1

1 1 11

1 1 11

a b c a b c a b c

abc
b b b

c c c

        

 



Taking  1 1 11
a b c

    common from R1, we get

                                       
 

1 1 1
1 1 1 1 1 11 1

1 1 11

abc
a b c b b b

c c c

     



Operate : 2 2 1 3 3 1;C C C C C C    ,      
1 0 0

1 1 1 11 1 0

1 0 1

abc
a b c b

c

    

                                           1 1 1 1abc
a b c

     (On expanding by R1) Proved.

Example 40.  Prove that :  –

2

2

2

a a bc

b b ac = (a – b)(b – c)(c a)(ab + bc + ac).

c c ab

Solution.  Let                

2

2

2

a a bc

b b ac

c c ab

    

2 3 2 3

2 3 2 3

2 3 2 3

1
1 1 . 1

1

a a abc a a

b b abc abc b b
abc abc

c c abc c c

 

Operate : 1 1 2 2 2 3; ,R R R R R R       

2 2 3 3

2 2 3 3

2 3

0

0

1

a b a b

b c b c

c c

 

   

                                           

2 2

2 2

2 3

0

( ) ( ) 0

1

a b a ab b

a b b c b c b bc c

c c

  

     

Expand by C3                 
2 2

2 2
( ) ( ). 1

a b a ab b
a b b c

b c b bc c
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Operate : 2 2 1R R R    
2 2

2 2
( ) ( )

( ) ( )

a b a ab b
a b b c

c a b c a c a

  
   

   

                                           
2 2

( ) ( ) ( )
1

a b a ab ba b b c c a
b c a

     
 

= (a – b) (b – c) (c – a) [(a + b) (a + b + c) – 1 . (a2 + ab + b2)]
= (a – b) (b – c) (c – a) (ab + bc + ac). Proved.

EXERCISE 4.4
Expand the following determinants, using properties of the determinants :

1.

1 3 7
4 9 1
2 7 6

  Ans. 51.                  2.  Prove that 
2( 2 ) ( ) .

x a a
a x a x a x a
a a x

  

3. Solve the equation  

3 3 2

3 3 2

3 3 2

0, , 0

x a x x

b a b b b c bc

c a c c



   



Ans. 
3

, ,ax x b x c
bc

  

4. Show that zero is one of the roots of the equation   

0
0 0

0

x a x b
x a x c
x b x c

 
  
 

5. Without expanding the determinant, prove that   

1

1 0

1

a bc
a

b ca
b

c ab
c



6. Without expanding the determinant, prove that : 0.
1 1 1

x y y z z x
z x y
  



7. Using properties of determinant prove that :  
2

4 2 2
2 4 2 (5 4) (4 )
2 2 4

x x x
x x x x x
x x x


   



8. 3
2

2 2( )
2

a b c a b
c b c a b a b c
c a c a b

 
    

 

9.

2 2

2 2

2 2

1

1 ( ) ( ) ( ).

1

x y x y

y z y z x y y z z x

z x z x
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10.

2 2

2 2

2 2

0

b c bc b c

c a ca c a

a b ab a b



 


11.

2

2

2

1

1 0.

1

a a bc

b b ca

c c ab



 



12.
32 3 2 4 3 2 .

3 6 3 10 6 3

a a b a b c
a a b a b c a
a a b a b c

  
   
  

      13.   

1 1 1
( ) ( ) ( ).            

  

14.

2

2

2

1 1
1 1

11

a a a bc
b b b ca

c abc c


15.

2 2

2 2 2 2 2

2 2

4

a bc ac c

a ab b ac a b c

ab b bc c



 



16. 2( ) ( ) ( ).
a b c c b

c a b c a a b b c c a
b a a b c

   
       
   

4.8 FACTOR THEOREM
If the elements of a determinant are polynomials in a variable x and if the substitution x = a

makes two rows (or columns) identical, then (x – a) is a factor of the determinant.
When two rows are identical, the value of the determinant is zero. The expansion of a determinant

being polynomial in x vanishes on putting x = a, then x – a is its factor by the Remainder theorem.

Example 41.  Show that  
2 2 2

1 1 1
x y z = (x – y)(y – z)(z – x)

x y z
Solution.  If we put x = y, y = z, z = x then in each case two columns become identical and the

determinant vanishes.
 (x – y), (y – z),    (z – x) are the factors.
Since the determinant is of third degree, the other factor can be numerical only k (say).

2 2 2

1 1 1
( ) ( ) ( )x y z k x y y z z x

x y z

    ... (1)

This leading term (product of the elements of the diagonal elements) in the given determinant
is yz2 and in the expansion

k (x – y) (y – z) (z – x) we get kyz2

Equating the coefficient of yz2 on both sides of (1),  we have
k = 1

Hence the expansion = (x – y) (y – z) (z – x). Proved.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Determinants and Matrices 249

Example 42.  Factorize  2 2 2

3 3 3

1 1 1

= a b c

a b c
Solution.  Putting a = b, C1 = C2 and hence = 0.
a – b is a factor of .                  Similarly b – c, c – a are also factors of .
(a – b) (b – c) (c – a) is a third degree factor of which itself is of the fifth degree as is

judged from the leading term b2c3.
The remaining factor must be of the second degree. As  is symmetrical in a, b, c the

remaining factor must, therefore, be of the form  k (a2 + b2 + c2) + l (ab + bc + ca)
  = (a – b) (b – c) (c – a) {k (a2 + b2 + c2) + l (ab + bc + ca)}
If k   0, we shall get terms like a4b, b4c etc. which do not occur in . Hence, k must be zero.
  = (a – b) (b – c) (c – a) {0 + l (ab + bc + ca)}
or  = l (a – b) (b – c) (c – a) (ab + bc + ca)
       The leading term in  = b2c3.   The corresponding term on R.H.S = l b2c3

 l = 1
Hence,  = (a – b) (b – c) (c – a) (ab + bc + ca). Ans.

Example 43. Show that  

2 3

2 3

2 3

( ) ( ) ( ).

x x x

y y y xyz x y y z z x

z z z

   

Solution.   

2 3 2

2 3 2

2 3 2

1

1

1

x x x x x

y y y xyz y y

z z z z z

 = xyz (x – y ) (y – z)  (z – x)   (see example 42).

  Proved.

Example 44. Show that  

3 2

3 2

3 2

3 2

1

1
( ) ( ) ( ) ( ) ( ) ( )

1

1

x x x

x x x
  

       
  

  
Solution. If we put x = ; x = ; x = ; = , =  ;   then two rows become identical and

the determinant vanishes.
    (x –  ) ; (x – ; (x –  ; –  ; (–   ; –  are the factors.
Since the determinant is of six degree the other factor can be numerical only say k.

3 2

3 2

3 2

3 2

1

1
( ) ( )( ) ( ) ( ) ( )

1

1

x x x

k x x x
  

       
  

  

The leading term is x3 .    And in the expansion it is kx3 (– 2 ).

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



250 Determinants and Matrices

       k = –1   Hence the expansion  = – (x –  )   (x –  (x –   –   (–     –  
Proved.

EXERCISE 4.5

1. Evaluate, without expanding  

2 3

2 3

2 3

1

1

1

a a a

b b b

c c c






  Ans. (a – b) (b – c) (c – a) (1 + abc)

2. Without expanding, show that

                            

2 2 2

2 2 2

2 2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

a x a y a z

b x b y b z

c x c y c z

  

    

  
= 2 (a – b) (b – c) (c – a) (x – y) (y – z) (z – x).

3. Show (without expanding) that

        

2 2

2 2

2 2

bc a a bc ab ca
b ca b ab ca bc

ca bc abc c ab

   2 2 21 ( )[( ) ( ) ( ) ]
2

ab bc ca ab bc bc ca ca ab        

4.9 PIVOTAL CONDENSATION METHOD
The condensation process of reducing nth order determinant to (n – 1)th order determinant is

shown below :

Consider nth order determinant 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

n n n n

a b c d
a b c d
a b c d
a b c dD

a b c d



 
 
 
 

     
     

 
Add such a multiple of first column in the other columns so that at the places of b1, c1, d1 ......., we

get zero. Hence subtracting 
1 1 1

1 1 1
, , , ...,b c d

a a a times the first column from the 2nd, 3rd, 4th...

columns respectively, we get
1

1 1 1
2 2 2 2 2 2 2

1 1 1

1 1 1
3 3 3 3 3 3 3

1 1 1

1 1 1
4 4 4 4 4 4 4

1 1 1

1 1 1

1 1 1

0 0 0

. .

. .

. .

. . .n n n n n n n

a
b c d

a b a c a d a
a a a

b c da b a c a d a
a a a

D b c da b a c a d a
a a a

b c d
a b a c a d a

a a a
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1 1 1
2 2 2 2 2 2

1 1 1

1 1 1
3 3 3 3 3 3

1 1 1

1 1 1
4 4 4 4 4 41

1 1 1

1 1 1

1 1 1

. .

. .

. .

. . .n n n n n n

b c db a c a d a
a a a
b c d

b a c a d a
a a a
b c d

b a c a d aD a
a a a

b c db a c a d a
a a a

  

  

  

  

 





  
  

 

1 2 1 2 1 2 1 2 1 2 1 2

1 1 1

1 3 1 3 1 3 1 3 1 3 1 3

1 1 1

1 4 1 4 1 4 1 4 1 4 1 4
1

1 1 1

1 1 1 1 1 1

1 1 1

n n n n n n

a b b a a c c a a d d a
a a a

a b b a a c c a a d d a
a a a

a b b a a c c a a d d a
D a

a a a

a b b a a c c a a d d a
a a a

  

  

  


  

 





  
 



1 2 1 2 1 2 1 2 1 2 1 2

1 3 1 3 1 3 1 3 1 3 1 3

1 4 1 4 1 4 1 4 1 4 1 4
1 1

1

1 1 1 1 1 1

1.
( )n

n n n n n n

a b b a a c c a a d d a
a b b a a c c a a d d a
a b b a a c c a a d d a

D a
a

a b b a a c c a a d d a



  
  
  



  

 
 
 

    
    

 

as the determinant is of (n – 1)th order and 
1

1
a  is common in every row (or column)

1 1 1 1 1 1

2 2 2 2 2 2

1 1 1 1 1 1

3 3 3 3 3 3

1 1 1 1 1 1
2

4 4 4 4 4 41

1 1 1 1 1 1

1
( )n

n n n n n n

a b a c a d
a b a c a d
a b a c a d
a b a c a d

a b a c a d
a b a c a da

a b a c a d
a b a c a d





 

 

   
   

 

Which is a determinant of (n – 1)th order. Now,

On expanding along 
the first row
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Thus, the nth order determinant is condensed to (n – 1)th order determinant. Repeated application
of this method ultimately results in a determinant of 2nd order which can be evaluated.

It is obvious that the leading element a1 behaves like a pivot in the condensation process
(i.e., reduction from n to (n – 1) and hence the method is pivotal condensation.

If the leading element is zero, it can be made non-zero by interchanging the columns.

Example 45. Condense the following determinants to second order and hence evaluate them:

(i)   
10 2 3
5 12 15
7 6 4




                              (ii)      

2 1 3 5
4 2 7 6
8 3 1 0

5 7 2 6

D







Solution. (i)  Using the leading element as pivot, we get

   3 2

120 10 150 151
60 14 40 21(10)

D 

 


  
   order = 3

   D =  
1

10
110 165 2 355

74 61 74 6110


   =  11 122 222
2

  = 
11 344 11 172 .
2
   1892    Ans.

(ii)  4 2

4 4 14 12 12 20
1 6 8 2 24 0 40

(2) 14 5 4 15 12 25


   
  
   

  as the order is 4.

    =

8 2 8 4 1 4
1 2 214 26 40 7 13 20
4 4

9 11 37 9 11 37

   



   

3 2

52 7 80 281
44 9 148 36( 4) 

   


 

    = 
59 521

35 1844
 

       = 
59 524 59 46 13 35 .
35 464

     2259                                     Ans.

Example 46.  Condense and hence evaluate the determinant ,  

0 4 1 2
5 3 7 8
4 1 2 3
1 2 5 5

Solution. As the leading element is zero, hence interchanging the 1st and second columns, we get
0 4 1 2
5 3 7 8
4 1 2 3
1 2 5 5

= 

4 0 1 2
3 5 7 8
1 4 2 3
2 1 5 5

 2

20 0 28 3 32 6
1 16 0 8 1 12 2
4 4 0 20 2 20 4

  
    

  
   

20 25 26
1 16 7 10

16
4 18 16

 

5 25 13
4 2 4 7 5
16

1 18 8


  35 100 25 521 1.

90 25 40 132 5
 

 
 

65 27 65 271 1 0.
65 27 65 2710 10
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Example 47. By condensing the given determinant evaluate x,

1 7 9 3
1 0 2 5

0.
2 2 6 8 3

2 1 1 0

x

x







Solution.   

1 7 9 3
1 0 2 5

2 2 6 8 3
2 1 1 0

x

D
x







       

7 1 9 3
0 1 2 5
6 2 2 8 3
1 2 1 0

x

x



 



2

7 14 35
1 14 14 6 6 56 54 21 18

7 14 1 7 9 0 3
x x

x
      

    
   2

1 2 5
1 7 8 20 2 3

7 13 2 3
x
x

   
   

1 1 5
2 8 20 1 3
7

13 1 3
x
x

  


     
1 8 20 3 40 1002
1 13 3 5 657

x x
x x

   


   

8 19 40 972
12 5 627

x x
x x

   


       2 8 19 (5 62) (40 97) ( 12)
7

x x x x       

             2 22 40 95 496 1178 40 97 480 1164
7

x x x x x x                 
2 [14 14] 4 4
7

x x   

Thus 4x + 4 = 0                x + 1 = 0                    x = –1                      Ans.

EXERCISE 4.6
Using the leading element as pivots, condense the following determinants to second order and hence
evaluate them.

1.

1 3 7
4 9 1
2 7 6

                2.

2 0 2
3 7 4
2 5 1 

          3.  

5 2 7
9 1 10
2 3 4

  4.

1 2 1 3
3 4 2 5
6 1 7 1
4 3 9 2

   Ans. 51                          Ans. 52                       Ans. – 39                        Ans. 75

5.

4 2 3 0
1 0 2 7
5 1 6 1
2 3 5 4






  Ans.  –1334               6.    

1 2 3 4 5
3 7 2 1 1
9 4 1 2 3
8 1 3 7 2
4 2 0 3 1

   Ans. –2276

7. Condense the following determinant and hence evaluate x,
3 2 1 5
4 7 6 2

0.
2 1 1 4
5 3 4 1

x


  Ans. x = 4

4.10 CONJUGATE ELEMENTS
Two equidistant elements lying on a line perpendicular to the leading diagonal are said to be
conjugate.
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In the determinant 

1 1 1

2 2 2 2 1 3 1 3 2

3 3 3

, , ; , ; , ;are pairs of conjugateelements.
a b c
a b c a b a c b c
a b c

4.11 SPECIAL TYPES OF DETERMINANTS
(i)  Orthosymmetric Determinant.  If every element of the leading diagonal is the same and

the conjugate elements are equal, then the determinant is said to be orthosymmetric determinant.

a h g
h a f
g f a

(ii)  Skew-Symmetric Determinant.  If the elements of the leading diagonal are all zero and
every other element is equal to its conjugate with sign changed, the determinant is said to be Skew-
symmetric.

0
0

0

a b
a c
b c

 


Property 1. A Skew-symmetric determinant of odd order vanishes.

Example 48.  Prove that 
0 – a –b

Δ = a 0 – c = 0
b c 0

Solution.  Taking out (– 1) common from each of the three columns

                                       
3

0
( 1) 0

0

a b
a c
b c

   
 

Changing rows into columns  3 3
0

( 1) 0 ( 1)
0

a b
a c
b c

 
         

or 2 = 0    or     = 0 Proved.
Property 2. A skew-symmetric determinant of even order is a perfect square.

Example 49. Prove that   
2

0
0

( )
0

0

x y z
x c b

ax by cz
y c a
z b a


  

 
  

Solution. Multiplying column 2 by a  the given determinant is 

0
01

0
0

ax y z
x c b
y ac aa
z ab a




 
  On expanding by column 2, we get

( ) 0
0

x c b
ax by cz y a

a
z a


  

 
 

  
( ) 0

0

x c b
ax by cz y a

a
z a
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( ) 0
0

ax ac ab
ax by cz y a

a a
z a

 





2
( ) 0

0

ax by cz ac ac ab ab
ax by cz y a

a z a

   
 




2

0 0
( ) 0

0

ax by cz
ax by cz y a

a z a

 
 




   2
2

( ) ( ) ( )ax by cz ax by cz a
a

 
  

= (ax – by + cz)2 Proved.
4.12 LAPLACE METHOD FOR THE EXPANSION OF A DETERMINANT IN TERMS

OF FIRST TWO ROWS

(i) Make all possible determinants from first two rows by taking any two columns.
(ii) Multiply each of them by corresponding determinant which is left by suppressing the rows and

columns intersecting at them.
(iii) Add them with proper signs.

Here we count the number of movements of columns of the determinant by shifting to the
place of the first determinant. If the number of movement is odd then negative sign, if even then
positive sign.

    Example 50.  Expand the determinant 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

a b c d
a b c d
a b c d
a b c d

by Laplace method.

    Solution . 1 1 3 3 1 1 3 3

2 2 4 4 2 2 4 4

a b c d a c b d
a b c d a c b d

     1 1 3 3 1 1 3 3

2 2 4 4 2 2 4 4

a d b c b c a d
a d b c b c a d

 

1 1 3 3 1 1 3 3

2 2 4 4 2 2 4 4

b d a c c d a b
b d a c c d a b

             Explanation : 
1 1

2 2

a c
a c

Now the c column being 3rd can be made 2nd by one movement of column; “a” column is in the
position of first column so that the total number of movements is one i.e. odd; hence the sign will be
–ve.
                                                                                                                                                          Ans.

Example 51. Expand the following determinant by Laplace method : 

1 1

2 2

3 3 3 3

4 4 4 4

0 0
0 0

a b
a b
a b c d
a b c d

Solution . 
1 1 3 3 1 3 3

2 2 4 4 2 4 4

0
0

a b c d a b d
a b c d a b d

  

1 3 3 1 3 3

2 4 4 2 4 4

0 0
0 0

a b c b a d
a b c b a d

  1 3 3 3 3

2 4 4 4 4

0 0 0
0 0 0

b a c a b
b a c a b

 

1 1 3 3
1 2 2 1 3 4 4 3

2 2 4 4
( ) ( )

a b c d
a b b c d c d

a b c d
    Ans.

 1 1 2 3R R bR cR  
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4.13 APPLICATION OF DETERMINANTS
Area of triangle.  We know that the area of a triangle, whose vertices are (x1, y1), (x2, y2) and

(x3, y3) is given by

       1 2 3 2 1 3 3 1 2
1 ( ) ( ) ( )
2

x y y x y y x y y        

         
2 1 1

1 2 3
3 3 2

1 1 11
2 1 1 1

y y y
x x x

y y y
 

   
 

  

1 1

2 2

3 3

1
1 1
2

1

x y
x y
x y



Note. Since area is always a positive quantity, therefore we always take the absolute value of
the determinant for the area.

Condition of collinearity of three points. Let A (x1, y1), B (x2, y2) and C (x3, y3) be three
points. Then,

A, B, C are collinear               area of triangle 0ABC 

1 1 1 1

2 2 2 2

3 3 3 3

1 1
1 1 0 1 0
2

1 1

x y x y
x y x y
x y x y

    Proved.

Example 52.  Using determinants, find the area of the triangle with vertices (– 3, 5), (3, – 6)
and (7, 2).

Solution.  The area of the given triangle 
3 5 1

1 3 6 1
2

7 2 1


 

Operate : 1 1 2 2 2 3;R R R R R R      
6 11 0

1 4 8 0
2

7 2 1


  

Expand by C3  
6 111 1.1. (48 44) 46 sq. units

2 24 8


   
  Ans.

Example 53.  Using determinants, show that the points (11, 7), (5, 5) and (– 1, 3) are collinear.

Solution.  The area of the triangle formed by the given points  
11 7 1

1 5 5 1
2

1 3 1



Operate : 1 1 2 2 2 3;R R R R R R   

                                           

6 2 0
1 16 2 0 .0 0.
2 2

1 3 1
  


(  R1 and R2 are identical)

  The three given points are collinear. Proved.
Example 54.  Using determinants, find the area of the triangle whose vertices are (1, 4) (2, 3)

and (– 5, – 3). Are the given points collinear?

Solution.  Area of the required triangle       
1 4 1

1 2 3 1
2

5 3 1
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    1 [1(3 3) 4 (2 5) 1( 6 15)]
2

       1 13(6 28 9) 0
2 2

    

Hence, the given points are not collinear. Ans.

EXERCISE 4.7
Using determinants, find the area of the triangle with vertices:

1. (2,– 7), (1, 3), (10, 8).   Ans. 95Area
2

      2. (– 2, 4), (2, – 6) and  (5, 4).    Ans. Area

= 35
3. (– 1, – 3), (2, 4) and (3, – 1).  Ans. Area = 11  4. (1, – 1), (2, 4) and (– 3, 5).   Ans. Area =

13
5. Using determinants, show that the points (3, 8), (– 4, 2) and (10, 14) are collinear.
6. Find the value of , so that the points (1, – 5), (– 4, 5) and (, 7) are collinear.

Ans. = –5
7. Find the value of x, if the area of is 35 square cms with vertices (x, 4), (2, – 6),  (5, 4).

Ans. x = – 2, 12
8. Using determinants find the value of k, so that the points (k, 2 – 2k), (– k + 1, 2k) and

(– 4 – k, 6 – 2 k) may be collinear. Ans. k = –1,
1
2

9. If the points (x, – 2), (5, 2) and (8, 8) are collinear, find x using determinants. Ans.x = 3
10. If the points (3, – 2), (x, 2) and (8, 8) are collinear, find x using determinants.       Ans. x = 1

4.14. SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS BY DETERMINANTS
(CRAMER’S RULE)

Let us solve the following equations.
a1 x + b1 y + c1 z = d1

a2 x + b2 y + c2 z = d2

a3 x + b3 y + c3 z = d3

Let                                 

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

or
a b c a x b c

D a b c x D a x b c
a b c a x b c

 

Multiplying the 2nd column by y and 3rd column by z and adding to the 1st column, we get

                                   

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

a x b y c z b c
x D a x b y c z b c

a x b y c z b c

 
  

 
       

1 1 1

2 2 2

3 3 3

d b c
x D d b c

d b c


                                    

1 1 1

2 2 2

3 1 3 1

1 1 1

2 2 2

3 3 3

 

d b c
d b c
d b c D

x
Da b c

a b c
a b c

    Similarly,   

1 1 1

2 2 2

3 3 32

1 1 1

2 2 2

3 3 3

 

a d c
a d c
a d cDy

D a b c
a b c
a b c
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1 1 1

2 2 2

3 3 33

1 1 1

2 2 2

3 3 3

 

a b d
a b d
a b dD

z
D a b c

a b c
a b c

                                        31 2, ,
DD D

x y z
D D D

   Ans.

Example 55.  Solve the following system of equations using Cramer’s rule :
5x – 7y + z = 11

6x – 8y – z = 15
3x + 2y – 6z = 7

Solution.  The given equations are

                    

5 7 11
6 8 15

3 2 6 7

x y z
x y z

x y z

  
  
  

Here,           
5 7 1
6 8 1
3 2 6

D


  


    =  5 (48 + 2) + 7 (– 36 + 3) + 1 (12 + 24) = 55 ( 0)

                  1

11 7 1
15 8 1
7 2 6

D


  


   =  11 (48 + 2) + 7 (– 90 + 7) + 1 (30 + 56) = 55

                  2

5 11 1
6 15 1
3 7 6

D  


     =  5 (– 90 + 7) – 11 (– 36 + 3) + 1 (42 – 45) = – 55

                  3

5 7 11
6 8 15
3 2 7

D


       =  5 (– 56 – 30) + 7 (42 – 45) + 11 (12 + 24) = – 55

By Cramer’s Rule  1 55 1
55

D
x

D
   ,     2 55 1

55
Dy
D

    ,        3 55 1
55

D
z

D
   

Hence,   x = 1,           y = – 1,          z = – 1 Ans.
Example 56.  Solve, by determinants, the following set of simultaneous equations :

5x – 6y + 4z = 15
7x + 4y – 3z = 19
2x + y + 6z = 46

Solution.                       
5 6 4
7 4 3 419
2 1 6

D
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    1

15 6 4
19 4 3 1257
46 1 6

D


   ,    2

5 15 4
7 19 3 1676
2 46 6

D    ,   3

5 6 15
7 4 19 2514
2 1 46

D


 

By Cramer’s Rule: 1 1257 3
419

D
x

D
   ,      2 1676 4

419
D

y
D

   ,         3 2514 6.
419

D
z

D
  

Hence,   x = 3,         y = 4,       z = 6  Ans.
Example 57.  Solve the following system of equations using Cramer’s Rule :

2x – 3y + 4z = – 9
– 3x + 4y + 2z = –12

4x – 2y – 3z = – 3

Solution.  The given equations are

                

2 3 4 9
3 4 2 12
4 2 3 3

x y z
x y z
x y z

   
    

   

Here       
2 3 4
3 4 2
4 2 3

D


 
 

   =2 (– 12 + 4) + 3 (9 – 8) + 4 (6 – 16) = – 53

             1

9 3 4
12 4 2

3 2 3
D

 
 

  
  =– 9 (– 12 + 4) + 3 (36 + 6) + 4 (24 + 12) = – 342

            2

2 9 4
3 12 2
4 3 3

D


  
 

  =2 (36 + 6) + 9 (9 – 8) + 4 (9 + 48) = – 321

            3

2 3 9
3 4 12
4 2 3

D
 

  
 

 =2 (– 12 – 24) + 3 (9 + 48) – 9 (6 – 16) = – 189

By Cramer’s Rule,

1 342 342 ,
53 53


  


D

x
D

      2 321 321
53 53

D
y

D


  


,      3 189 189
53 53

D
z

D


  


Hence,   342 321 189, ,
53 53 53

x y z   Ans.

Example 58.  Solve the following system of equations by using determinants :

2 2 2 2

x + y + z = 1
ax + by + cz = k

a x + b y + c z = k

Solution.  We have 
2 2 2

1 1 1
D a b c

a b c
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2 2 2 2 2

1 0 0
a b a c a

a b a c a

  

 

[Applying 2 2 1 3 3 1and ]C C C C C C   

                       
2

1 0 0
( ) ( ) 1 1b a c a a

a b a c a

  

 

                        
1 1

( ) ( ).1.b a c a
b a c a

  
  [Expanding along R1]

                         = (b – a) (c – a) (c + a – b – a)
                         = (b – c) (c – a) (a – b) ...(1)

                          1
2 2 2

1 1 1
( ) ( ) ( )D k b c b c c k k b

k b c

     [Replacing a by k in (1)]

                         2
2 2 2

1 1 1
( ) ( ) ( )D a k c k c c a a k

a k c

     [Replacing b by k in (1)]

and                   3
2 2 2

1 1 1
( ) ( ) ( )D a b k a b b k k a

a b k

     [Replacing c by k in (1)]

                       1 2( ) ( ) ( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ) ( ) ( )

D Db c c k k b k c c a a kx y
D b c c a a b D b c c a a b

     
   

     

and                       3 ( ) ( ) ( )
( ) ( ) ( )

D a b b k k az
D a b b c c a

  
 

  

Hence,                 
( ) ( ) ( ) ( ) ( ) ( ), and
( ) ( ) ( ) ( ) ( ) ( )
c k k b k c a k b k k ax y z
c a a b b c a b b c c a
       
      Ans.

Example 59.  The sum of three numbers is 6. If we multiply the third number by 2 and add the
first number to the result, we get 7. By adding second and third numbers to three times the first
number we get 12. Use determinants to find the numbers.

Solution.  Let the three numbers be x, y and z. Then, from the given conditions, we have

  

6 6
2 7 or 0. 2 7

3 12 3 12

      
      
       

x y z x y z
x z x y z

x y z x y z

Here,            
1 1 1
1 0 2 1(0 2) 1(1 6) 1(1 0)
3 1 1

D        2 5 1 4    

                    1

6 1 1
7 0 2 6(0 2) 1(7 24) (7 0)

12 1 1
D         =  – 12 + 17 + 7 = 12
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         2

1 6 1
1 7 2 1(7 24) 6 (1 6) 1(12 21)
3 12 1

D        =   – 17 + 30 – 9 = 4

and    3

1 1 6
1 0 7 1(0 7) 1(12 21) 6(1 0)
3 1 12

      D = – 7 + 9 + 6 = 8

        31 212 4 83, 1, and 2
4 4 4

DD Dx y z
D D D

        

Thus, the three numbers are 3, 1 and 2. Ans.

EXERCISE 4.8
Using Cramer’s Rule, solve the following system of equations :
1. 2x – 3y = 7 2. 2x + y = 1 3. 2x + 3y = 10

7x – 3y = 10 x – 2y = 8 x + 6y = 4.

Ans. 3 29,
5 15

x y   Ans. 2, 3x y   Ans. 16 2,
3 9

x y  

4. 5x + 2y = 3 5. 7x – 2y = – 7 6. x – 2y = 4
3x + 2y = 5. 2x – y = 1. – 3x + 5y = – 7
Ans.  x = – 1,  y = 4 Ans. x = – 3, y = – 7 Ans. x = – 6,  y = – 5

7. x – 4y – z = 11 8. x + 3y – 2z = 5 9. x + 2y + 5z = 23
2x – 5y + 2z = 39 2x + y + 4z = 8 3x + y + 4z = 26
– 3x + 2y + z = 1. 6x + y – 3z = 5. 6x + y + 7z = 47
Ans. x = – 1,  y = – 5,  z = 8 Ans. x = 1,  y = 2,  z = 1 Ans. x = 4,  y = 2,  z = 3

10. x + y + z = 1 11. 2y – z = 0 12. x + y + z = – 1
3x + 5y + 6z = 4 x + 3y = – 4 x + 2y + 3z = – 4
9x + 2y – 36x = 17 3x + 4y = 3 x + 3y + 4z = – 6

Ans. 1 1, 1,
3 3

x y z    Ans. x = 5, y = – 3, z = – 6 Ans. x = 1,  y = – 1,  z = – 1

13. x + y + z = 1
x + 2y + 3z = k

12x + 22y + 32z = k2    Ans.
(2 ) (3 ) (1 )(3 ) (1 ) (2 ), ,

2 1 2
       


k k k k k kx y z

14. Show that there are three real values of for which the equations:
(a – ) x + by + cz = 0
bx + (c – ) y + az = 0
cx + ay + (b – ) z = 0

are simultaneously true, and that the product of these values of is 

a b c
b c a
c a b

15. Solve the following system of equations by using the Cramer’s Rule

x1 + x2 = 1;   x2 + x3 = 0;  x3 + x4 = 0; x4 + x5 = 0; x5 + x1 = 0  (A.M.I.E.T.E., Summer 2005)

Ans.   1 2 3 4 5
1 1 1 1 1, , , ,
2 2 2 2 2

x x x x x      
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4.15 RULE FOR MULTIPLICATION OF TWO DETERMINANTS
Multiply the elements of the first row of 1 with the corresponding elements of the first, the

second and the third row of 2 respectively.
Their respective sums form the elements of the first row of 12. Similarly multiply the

elements of the second row of 1 with the corresponding elements of first, second and third row of 2
to form the second row of 12 and so on.

Example 60.  Find the product  

a b c
a b c
a b c

     

     

     

  
   

  

Solution.  Product of the given determinants

                 

1 1 1 1 1 1 1 2 1 2 1 2 1 3 1 3 1 3

2 1 2 1 2 1 2 2 2 2 2 2 2 3 2 3 2 3

3 1 3 1 3 1 3 2 3 2 3 2 3 3 3 3 3 3

a b c a b c a b c
a b c a b c a b c
a b c a b c a b c

              
               

              
Ans.

Example 61. Show that  
a b c – a c b
b c a × –b a c
c a b – c b a

                                           

2 2 2

2 2 2 3 3 3 2

2 2 2

2

2 ( 3 )

2

bc a c b

c ca b a a b c abc

b a ab c



     



Solution.  Product of the given determinants

a b c a c b
b c a b a c
c a b c b a


 


2 2 2

2 2 2

2 2 2

a bc bc ab ab c ac b ac

ab c ab b ac ac bc bc a

ca ca b bc a bc c ab ab

        

         

        

                                           

2 2 2

2 2 2

2 2 2

2

2

2

bc a c b

c ca b a

b a ab c



 



... (1)

Now,              
2( 1)

a c b a b c
b a c b c a
c b a c a b


  


= a (bc – a2) – b (b2 – ac) + c (ab – c2) = – (a3 + b3 + c3 – 3abc)

    




a b c a c b
b c a b a c
c a b c b a

 = (a3 + b3 + c3 – 3abc)2 ... (2)

From (1) and (2), we get the required result. Proved.
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Example 62.  Prove that the determinant

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

2b + c c + 3a 2a + 3b
2b + c c + 3a 2a + 3b
2b + c c + 3a 2a + 3b

is a multiple of the determinant

1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

   and find the other factor..

Solution.

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

2 3 2 3
2 3 2 3
2 3 2 3

b c c a a b
b c c a a b
b c c a a b

  
  
  

                                           

1 1 1

2 2 2

3 3 3

0 2 1
3 0 1
2 3 0

 
a b c
a b c
a b c

Ans.

Example 63.  Prove that  

cos cos
cos cos
cos cos

      
        
      

Solution.

cos sin 0 cos sin 0
cos sin 0 cos sin 0 0
cos sin 0 cos sin 0

   
     
   

or              

2 2

2 2

2 2

cos sin cos cos sin sin cos cos sin sin

cos cos sin sin cos sin cos cos sin sin 0

cos cos sin sin cos cos sin sin cos sin

            

             

            

or

1 cos( ) cos( )
cos ( ) 1 cos( ) 0
cos( ) cos ( ) 1

     
      
     

Proved.

Example 64.  If A1, A2, A3, B1, B2, B3, C1, C2, C3 are cofactors of the elements a1, a2, a3, b1, b2,

b3, c1, c2, c3 respectively of the determinant 

1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

, show that

2
1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

A B C a b c
A B C = a b c
A B C a b c

(Try Yourself)

4.16 CONDITION FOR CONSISTENCY OF A SYSTEM OF SIMULTANEOUS
HOMOGENEOUS EQUATIONS
Case I  For a system of homogeneous equations.
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11 12 13

21 22 23

31 32 33

0
0
0

a x a y a z
a x a y a z
a x a y a z

  

  

  
  ,           

11 12 13

21 22 23

31 32 33

a a a
D a a a

a a a


1. If 0,D   then the system of equations are consistent with infinite solutions.
2. If 0,D   then the system of equations is consistent with trivial solution.

Example 65.  Find values of , for which the following system of equations is consistent and
has nontrivial solutions:

(– 1) x + (3 + 1) y + 2  z  =  0
(– 1) x + (4 – 2) y + (+ 3) z  =  0

2x + (3 + 1) y + 3 (– 1) z  =  0
Solution. (– 1) x + (3+ 1) y + 2  z = 0

(– 1) x + (4 – 2) y + (+ 3) z = 0
2x + (3  + 1) y + 3 (– 1) z = 0

This is a system of homogeneous equations.
For infinite solutions,

                                      

1 3 1 2
1 4 2 3 0

2 3 1 3 3
D

    
       

   

                                       

0 3 3
1 4 2 3 0

2 3 1 3 3

   
      

   
1 1 2[ ]R R R 

                                           

0 0 3
1 5 1 3 0

2 6 2 3 3

 
      

   
[C2  C2 + C3)

                   (– 3) [(– 1) (6  – 2) – 2 (5  + 1)]  = 0    [6 2 – 8  + 2 – 10  – 2] = 0
 6 2 – 18 = 0     6 (– 3) = 0  = 3,  0   Ans.

4.17 FOR A SYSTEM OF THREE SIMULTANEOUS LINEAR EQUATIONS WITH
THREE UNKNOWNS
(i) If D  0, then the given system of equations is consistent and has a unique solution given

by 31 2, , and
DD Dx y z

D D D
   .

(ii) If D = 0 and D1 = D2 = D3 = 0, then the given system of equations is consistent, and it has
infinitely many solutions.

(iii) If D = 0 and at least one of the determinants D1, D2, D3 is non zero, then the given system
of equations is inconsistent.
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D  0
Consistent with unique 

solution

 D = 0

Equations with three unknowns

D D D1 2 3 =  =  = 0
Consistent with infinitely 

many solutions

D D D1 2 3  or  or 
 Inconsistent

 0

Example 66. Test the consistency of the following equations and solve them if possible:
3x + 3y + 2z = 1,  x + 2y = 4,  10y + 3z = – 2

Solution.  The system of equations is
3x + 3y + 2z = 1
x + 2y + 0z = 4

0x + 10y + 3z = – 2

Therefore                      
3 3 2
1 2 0
0 10 3

D 

= 3 (6 – 0) – 3 (3 – 0) + 2 (10 – 0)
= 18 – 9 + 20 = 29  0

Since D  0, so the system of simultaneous equations is consistent with unique solution. Now
let us solve the system of equation.

                                     1

1 3 2
4 2 0 1(6 0) 3(12 0) 2(40 4)
2 10 3 6 36 88 58

D       
    

                                     2

3 1 2
1 4 0 3(12 0) 1(3 0) 2 ( 2 0)
0 2 3 36 3 4 29

D        
    

                                     3

3 3 1
1 2 4 3( 4 40) 3( 2 0) 1 (10 0)
0 10 2 132 6 10 116

D         
      

By Cramer’s Rule

                                       31 2 11658 292, 1, 4
29 29 29

DD D
x y z

D D D
         

Hence   x = 2,  y = 1,  z = – 4. Ans.
Example 67.  Show that the system of equations

    2x + 6y = – 11, 6x + 20y – 6z = – 3, 6y – 18z = –1 is not consistent.
Solution. 2x + 6y + 0z = – 11

6x + 20y – 6z = – 3
0x + 6y – 18z = – 1
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2 6 0
6 20 6
0 6 18

D  


    =2 (– 360 + 36) – 6 (– 108) = – 648 + 648 = 0

            1

11 6 0
3 20 6
1 6 18

D


  
 

  = – 11 (– 360 + 36) – 6 (54 – 6) = 3564 – 288 = 3276

Here  D = 0 and 1 0D 

Hence the system of equations is not consistent. Proved

EXERCISE 4.9
Find, whether the following system of equations is consistent or inconsistent. If consistent solve
them.

1.  Find the value of k, for which the following system of equations

3x1 – 2x2 + 2x3 = 3,  x1 + kx2 – 3x3 = 0,  4x1 + x2 + 2x3 = 7 is consistent. Ans. 1 ,
4

k 

2. Find the value of , for which the system of equations
x + y + 4z = 1,  x + 2y – 2z = 1,  x + y + z = 1 will have a unique solution. Ans. 7

10
 

3. For what values of and , the following system of equations
2x + 3y + 5z = 9,  7x + 3y – 2z = 8,  2x + 3y + z = will have

(i)  unique solution;     (ii)  no solution. Ans. (i) 5    (ii) 5, 9   

4. Determine the values of a and b for which the system  

3 2 1
5 8 9 3
2 1 1

x b
y

a z

     
           
          

(i)  has a unique solution,    (ii)  has no solution and  (iii)  has infinitely many solutions.

Ans. (i) 3a     (ii) 13,
3

a b     (iii) 13,
3

a b  

5. Find the condition on for which the system of equations
3x – y + 4z = 3,  x + 2y – 3z = – 2,  6x + 5y + z = – 3

has a unique solution. Find the solution for = – 5.

Ans. 5 4 13 95, , ,
7 7 7 7
k kx y z k        

EXERCISE OF OBJECTIVE QUESTIONS

Choose the Correct Answers :

1. The value of 

2 3 4

3 4 5

4 6 7

5 5 5

5 5 5

5 5 5

 is

(a) 52 (b) 0 (c) 513 (d) 59     Ans.  (b)
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2. If 
1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

 = 5 then the value of 
  
  
  

2 3 3 2 3 2 2 3 2 3 3 2

3 1 1 3 1 3 3 1 1 1 1 3

1 2 2 1 2 1 1 2 1 2 2 1

b c b c a c a c a b a b
b c b c a c a c a b a b
b c b c a c a c a b a b

 is

(a) 5 (b) 25 (c) 125 (d) 0  Ans. (b)

3. If 1 1 1

2 2 2

1 1 1
1 1 1
1 1 1

ax bx cx
a x b x c x
a x b x c x

  
  
  

 = 0 1 2 2 3 3A A x A x A x   , then A1 is equal to

(a) abc (b) 0 (c) 1       (d)  none of these             Ans. (b)

4. If 1, 2,   are the cube roots of unity, then 

2

2

2

1

1

1

n n

n n

n n

 

   

 

is equal to

(a) 0 (b) 1 (c)  (d) 2               Ans. (a)

5. The determinant 
0

xp y x y
yp z y z

xp y yp z




 
 = 0 if

(a) x, y, z are in A.P. (b) x, y, z are in G.P.
(c) x, y, z are in H.P. (d) xy, yz, zx are in A.P.             Ans. (b)

6. If the determinant
2 3
2 3 0,

2 3 2 3 0

a b a b
b c b c

a b b c

 
  

   
 then

(a) a, b, c are in H.P.             (b)   is root of 24 12 9 0ax bx c    or a, b, c are in G.P.
(c) a, b, c are in G.P. only     (d)  a, b, c are in A.P.                                     Ans. (a)

7. If l, m, n are the pth, qth and rth term of a G.P. all positive, then 
log 1
log 1
log 1

l p
m q
n r

 equals

(a) 3 (b) 2 (c) 1 (d) zero              Ans. (d)
8. If the system of linear equations

2 0x ay az  

3 0x by bz  
4 0x cy cz  

has a non-zero solution, then a, b, c
(a) are in A.P. (b) are in G.P. (c) are in H.P. (d) satisfy 2 3 0a b c  

Ans. (c)

9. If ,   and   are the roots of the equation 3 0x px q   , then the value of the
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determinant 
  
  
  

 is

(a) q (b) 0 (c) p (d) 2 2p q .       Ans. (a)

10. The number of values of k for which the system of equations
                  ( 1) 8 4k x y k     ,         ( 3) 3 1kx k y k   
has infinitely many solutions is
(a) 0 (b) 1 (c) 2 (d) infinite

Ans. (b) [Hint : Here 0   for k = 3,   1,   0x   for k = 2,   1,   0y   for k = 1.
Hence k = 1. Alternatively, for infinitely many solutions the two equations become
identical

      1 8 4
3 3 1

k k
k k k


 
 

           k = 1]

11. The system 0x y  , 0y z  , 0z x   has infinitely many solutions when
(a) 1  (b) 1   (c) 0  (d) no real value of 

Ans. (b) [Hint :
1 0
0 1 0

0 1


 



. Solve for  .]

12. If the system of equations 0x ky z   , 0kx y z   , 0x y z    has a non-zero
solution, then the possible values of k are
(a) – 1, 2 (b) 1, 2 (c) 0, 1 (d) – 1, 1

Ans. (d)
13. The value of   for which the system of equations 2 2 2x y z   , 2 4x y z    ,

4x y z    has no solution is
(a) 3 (b) – 3 (c) 2 (d) – 2

Ans. (b) [Hint : The Coefficient determinant = 

2 1 2
1 2 1
1 1

 



3 9    .

For no solution the necessary condition is –3 – 9 = 0
  = –3
For  = – 3, there is no solution for the given system of equations].

14. If the system of equations 2 3 1x y z   , ( 3) 3z  , (2 1) 0x z     is inconsistent,
then the value of   is equal to

(a)
1
2

 (b) – 3 (c) 2 (d) 0               Ans. (b)

15.
0 1

1
1

a
A c b

d b
 , 

1 1
0
a

B c d
f g h

, 
f

U g
h

  , 

2

0
0

a
V  . If there is a vector matrix X such that

AX = U has infinitely many solutions, then prove that BX = V cannot have a unique solution. If
0a f d  , prove that BX = V has no solution.
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4.18 MATRICES
Let us consider a set of simultaneous equations,

x + 2 y + 3 z + 5 t = 0
4 x + 2 y + 5 z + 7 t = 0
3 x + 4 y + 2 z + 6 t = 0.

Now we write down the coefficients of x, y, z, t of the above equations and enclose them within
brackets and then we get

A = 
1 2 3 5
4 2 5 7
3 4 2 6

 
 
 
  

The above system of numbers, arranged in a rectangular array in rows and columns and bounded
by the brackets, is called a matrix.

It has got 3 rows and 4 columns and in all 3 × 4 = 12 elements. It is termed as 3 × 4 matrix,
to be read as [3 by 4 matrix]. In the double subscripts of an element, the first subscript determines
the row and the second subscript determines the column in which the element lies, aij lies in the ith
row and jth column.

4.19 VARIOUS TYPES OF MATRICES
(a) Row Matrix. If a matrix has only one row and any number of columns, it is called a Row

matrix, e.g.,
[2 7 3 9]

(b) Column Matrix. A matrix, having one column and any number of rows, is called a Column

matrix, e.g., 

1
2
3

 
 
 
  

(c) Null Matrix or Zero Matrix. Any matrix, in which all the elements are zeros, is called a
Zero matrix or Null matrix e.g.,

0 0 0 0
0 0 0 0
 
 
 

(d) Square Matrix. A matrix, in which the number of rows is equal to the number of columns,
is called a square matrix e.g.,

2 5
1 4
 
 
 

(e) Diagonal Matrix. A square matrix is called a diagonal matrix, if all its non-diagonal elements
are zero e.g.,

1 0 0
0 3 0
0 0 4

 
 
 
  

(f ) Scalar matrix. A diagonal matrix in which all the diagonal elements are equal to a scalar,
say (k) is called a scalar matrix.
For example;

6 0 0 0
2 0 0

0 6 0 0
0 2 0 ,

0 0 6 0
0 0 2

0 0 0 6
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i.e., A = [aij]n × n is a scalar matrix if aij = 
0, when

, when


 

i j
k i j

(g) Unit or Identity Matrix. A square matrix is called a unit matrix if all the diagonal elements
are unity and non-diagonal elements are zero e.g.,

1 0 0
1 0

0 1 0 ,
0 1

0 0 1

 
  
      

(h) Symmetric Matrix. A square matrix will be called symmetric, if for all values of i and j,
aij = aji i.e., A = A

e.g.,

 
 
 
  

a h g
h b f
g f c

(i) Skew Symmetric Matrix. A square matrix is called skew symmetric matrix, if
(1) aij = – aji for all values of i and j,   or A = –A
(2) All diagonal elements are zero, e.g.,

0
0

0

  
  
  

h g
h f
g f

(j) Triangular Matrix. (Echelon form) A square matrix, all of whose elements below the
leading diagonal are zero, is called an upper triangular matrix. A square matrix, all of
whose elements above the leading diagonal are zero, is called a lower triangular matrix
e.g.,

        

1 3 2
0 4 1
0 0 6

 
 
 
  

2 0 0
4 1 0
5 6 7

 
 
 
  

Upper triangular matrix Lower triangular matrix
(k) Transpose of a Matrix. If in a given matrix A, we interchange the rows and the

corresponding columns, the new matrix obtained is called the transpose of the matrix A and
is denoted by A or AT e.g.,

A = 
2 3 4 2 1 6
1 0 5 , 3 0 7
6 7 8 4 5 8

   
      
      

A

(l) Orthogonal Matrix. A square matrix A is called an orthogonal matrix if the product of the
matrix A and the transpose matrix A’ is an identity matrix e.g.,

A. A = I
if | A | = 1, matrix A is proper.

(m) Conjugate of a Matrix

Let A = 
1 2 3 4

7 2 3 2
  

    

i i
i i i

Conjugate of matrix A is A

A = 
1 2 3 4

7 2 3 2
  

   

i i
i i i

(n)  Matrix A. Transpose of the conjugate of a matrix A is denoted by A.
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Let A = 
1 2 3 4

7 2 3 2
  

    

i i
i i i

A = 
1 2 3 4

7 2 3 2
  

    

i i
i i i

( )A = 

1 7 2
2 3

4 3 2

  
  
  

i i
i i

i

A = 

1 7 2
2 3

4 3 2

  
  
  

i i
i i

i
(o) Unitary Matrix. A square matrix A is said to be unitary if

A A = I

e.g. A = 

1 1 1 1
2 2 2 2, ,

1 1 1 1
2 2 2 2

 

       
   

     
       

      

i i i i

A A A I
i i i i

(p) Hermitian Matrix. A square matrix A = (aij) is called Hermitian matrix, if every i-jth
element of A is equal to conjugate complex j-ith element of A.

In other words, aij = jia

e.g.

1 2 3 3
2 3 2 1 2
3 1 2 5

  
   
   

i i
i i

i i
Necessary and sufficient condition for a matrix A to be Hermitian is that A = A i.e. conjugate
transpose of A

 A = ( ) .A
(q) Skew Hermitian Matrix. A square matrix A = (aij) will be called a Skew Hermitian matrix

if every i-jth element of A is equal to negative conjugate complex of j-ith element of A.

In other words, aij =  j ia

All the elements in the principal diagonal will be of the form
aii =  iia or 0 ii iia a

If aii = a + ib then  iia a ib
(a + ib) + (a – ib) = 0  2 a = 0  a = 0

So, aii is pure imaginary    aii = 0.
Hence, all the diagonal elements of a Skew Hermitian Matrix are either zeros or pure imaginary.

e.g.

2 3 4 5
(2 3 ) 0 2
(4 5 ) 2 3

  
   
    

i i i
i i
i i i

The necessary and sufficient condition for a matrix A to be Skew Hermitian is that
A = – A

( )A = – A
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(r) Idempotent Matrix. A matrix, such that A2 = A is called Idempotent Matrix.

e.g. A = 2
2 2 4 2 2 4 2 2 4 2 2 4
1 3 4 , 1 3 4 1 3 4 1 3 4
1 2 3 1 2 3 1 2 3 1 2 3

A A
              

                    
                     

(s) Periodic Matrix. A matrix A will be called a Periodic Matrix, if
Ak+1 = A

where k is a +ve integer. If k is the least + ve integer, for which Ak+1 = A, then k is said to
be the period of A. If we choose k = 1, we get A2 = A and we call it to be idempotent
matrix.

(t) Nilpotent Matrix. A matrix will be called a Nilpotent matrix, if Ak = 0 (null matrix) where
k is a +ve integer ; if however k is the least +ve integer for which Ak = 0, then k is the index
of the nilpotent matrix.

e.g., A = 
2 2 2

2
2 2 2

0 0
, 0

0 0

       
         

                 

ab b ab b ab b
A

a ab a ab a ab
A is nilpotent matrix whose index is 2.
(u) Involuntary Matrix. A matrix A will be called an Involuntary matrix, if A2 = I (unit

matrix). Since I2 = I always      Unit matrix is involuntary.
(v) Equal Matrices. Two matrices are said to be equal if

(i) They are of the same order.
(ii) The elements in the corresponding positions are equal.

Thus if A = 
2 3 2 3

,
1 4 1 4
   

   
   

B

Here A = B
(w) Singular Matrix. If the determinant of the matrix is zero, then the matrix is known as

singular matrix e.g. A = 1 2
3 6
 
 
 

 is singular matrix, because |A| = 6 – 6 = 0.

Example 1. Find the values of x, y, z and ‘a’ which satisfy the matrix equation.

x 3 2 y x 0 7
z 1 4 a 6 3 2a
     

       
Solution. As the given matrices are equal, so their corresponding elements are equal.

x + 3 = 0  x = – 3 ...(1)
2y + x = – 7 ...(2)

z – 1 = 3  z = 4                                                               ...(3)
4 a – 6 = 2 a  a = 3 ...(4)

Putting the value of x = – 3 from (1) into (2), we have
2y – 3 = – 7  y = – 2

Hence, x = – 3,   y = – 2,   z = 4,   a = 3 Ans.

4.20  ADDITION OF MATRICES
If A and B be two matrices of the same order, then their sum, A + B is defined as the matrix,

each element of which is the sum of the corresponding elements of A and B.

Thus if A = 
4 2 5 1 0 2

,
1 3 6 3 1 4
   

      
B
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then A + B = 
4 1 2 0 5 2 5 2 7
1 3 3 1 6 4 4 4 2
     

          
If A = [aij],  B = [bij]    then   A + B = [aij + bij]
Example 2. Show that any square matrix can be expressed as the sum of two matrices, one
symmetric and the other anti-symmetric.
Solution. Let A be a given square matrix.

Then A = 
1 1

( ) ( )
2 2

   A A A A

Now, (A + A) = A + A = A + A.
 A + A is a symmetric matrix.
Also, (A – A) = A – A = –(A – A)

 A – A or 
1
2

 (A – AA ) is an anti-symmetric matrix.

 A A A A A1 1= ( + ) + ( – )
2 2

Square matrix = Symmetric matrix + Anti-symmetric matrix Proved.
Example 3. Write matrix A given below as the sum of a symmetric and a skew symmetric
matrix.

A = 
 
 
 
 

1 2 4
2 5 3
1 6 3

Solution.  A = 
1 2 4
2 5 3
1 6 3

 
  
  

 On transposing, we get A = 
1 2 1
2 5 6
4 3 3

  
 
 
  

On adding A and A, we have

A + A = 
1 2 4 1 2 1 2 0 3
2 5 3 2 5 6 0 10 9
1 6 3 4 3 3 3 9 6

      
            
          

...(1)

On subtracting A from A, we get

A – A = 

1 2 4 1 2 1 0 4 5
2 5 3 2 5 6 4 0 3
1 6 3 4 3 3 5 3 0

      
              
           

...(2)

On adding (1) and (2), we have

2 A = 
2 0 3 0 4 5
0 10 9 4 0 3
3 9 6 5 3 0

   
        
      

A = 

3 51 0 0 2
2 2
9 30 5 2 0
2 2

3 9 5 33 0
2 2 2 2

   
   
   
        
      
      

A = [Symmetric matrix] + [Skew symmetric matrix.] Ans.
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4.21 PROPERTIES OF MATRIX ADDITION
Only matrices of the same order can be added or subtracted.
(i) Commutative Law. A + B = B + A.
(ii) Associative law. A + (B + C) = (A + B) + C.

4.22 SUBTRACTION OF MATRICES
The difference of two matrices is a matrix, each element of which is obtained by subtracting

the elements of the second matrix from the corresponding element of the first.
A – B = [aij – bij]

Thus     
8 6 4 3 5 1
1 2 0 7 6 2
   

   
   

 = 
8 3 6 5 4 1 5 1 3
1 7 2 6 0 2 6 4 2
     

           
Ans.

4.23 SCALAR MULTIPLE OF A MATRIX
If a matrix is multiplied by a scalar quantity k, then each element is multiplied by k, i.e.

A = 
2 3 4
4 5 6
6 7 9

 
 
 
  

3 A = 
2 3 4 3 2 3 3 3 4 6 9 12

3 4 5 6 3 4 3 5 3 6 12 15 18
6 7 9 3 6 3 7 3 9 18 21 27

       
              
            

EXERCISE 4.10

1. (i) If A = 
1 7 1
2 3 4 , represent it as A = B + C where B is a symmetric
5 0 5 and C is a skew-symmetric matrix.

 
 
 
  

(b) Express 
1 2 0
3 7 1
5 9 3

 
 
 
  

 as a sum of symmetric and skew-symmetric matrix.

Ans. (i) 

9 5 5 5 1 51 3 0 2 1 0
2 2 2 2 2 2

9 5 5 13 2 0 2 ( ) 7 5 0 4
2 2 2 2
3 2 5 2 2 0 5 55 3 4 0

2 2

A b A

                 
       

                  
                 

      
2. Matrices A and B are such that

 3 A – 2 B = 
2 1
2 1

 
   

 and – 4 A + B = 
1 2
4 3
 

  

Find A and B. Ans. 
0 1 1 2

,
2 1 4 1

     
        

A B

3. Given 
6 4

3
1 2 3

     
            

x y x x y
z w w z w

Find x, y, z and w. Ans. x = 2,  y = 4,  z = 1,  w = 3

4. If 
0 2 0 1 2 1
1 0 3 , 2 1 0
1 1 2 0 0 3

   
       
      

A B Ans.
3 10 3 4 2 4

( ) 8 3 6 , ( ) 5 4 9
2 2 13 3 3 6

     
         
      

i ii

Find (i) 2 A + 3 B   (ii) 3 A – 4 B.
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4.24 MULTIPLICATION
The product of two matrices A and B is only possible if the number of columns in A is equal
to the number of rows in B.
Let A = [aij] be an m × n matrix and B = [bij] be an n × p matrix. Then the product AB of these
matrices is an m × p matrix C = [cij] where

cij = ai1 b1j + ai2 b2j + ai3 b3j + .... + ain bnj

4.25 (AB) = BA
If A and B are two matrices conformal for product AB, then show that (AB) = BA, where
dash represents transpose of a matrix.
Solution. Let A = (aij) be an m × n matrix and B = (bij) be n × p matrix.
Since AB is m × p matrix,  (AB) is a p × m matrix.
Further B is p × n matrix and A an n × m matrix and therefore B A is a p × m matrix.
Then (AB) and B A are matrices of the same order.

Now the (j, i)th element of (AB) = (i, j)th element of (AB) = 
1


n

ik kj
k

a b ...(1)

Also the jth row of B is b1j, b2j .... bnj, and ith column of A is ai1, ai2, ai3.... ain.

 (j, i)th element of BA = 
1


n

kj ik
k

b a ...(2)

From (1) and (2), we have (j, i)th element of (AB) = (j, i) th element of BA.
As the matrices (AB) and BA are of the same order and their corresponding elements are
equal, we have (AB) = BA. Proved.

4.26 PROPERTIES OF MATRIX MULTIPLICATION
1. Multiplication of matrices is not commutative. AB  BA
2. Matrix multiplication is associative, if conformability is assured. A (BC) = (AB) C
3. Matrix multiplication is distributive with respect to addition. A (B + C) = AB + AC
4. Multiplication of matrix A by unit matrix. AI = IA = A
5. Multiplicative inverse of a matrix exists if |A|  0. A . A–1 = A–1 . A = I
6. If A is a square then A × A = A2, A × A × A = A3.
7. A0 = I
8. In = I, where n is positive integer.

Example 4. If A = 
–

–
   
      
      

0 1 2 1 2
1 2 3 and B 1 0
2 3 4 2 1

obtain the product AB and explain why BA is not defined.
Solution.  The number of columns in A is 3 and the number of rows in B is also 3, therefore
the product AB is defined.

                            C1    C2

AB = 

1 1 1 1 2

2 2 1 2 2

3 3 1 3 2

0 1 2 1 2
1 2 3 1 0
2 3 4 2 1

R R C R C
R R C R C
R R C R C
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R1, R2, R3 are rows of A and C1, C2 are columns of B.

= 

1 2
0 1 2 1 0 1 2 0

2 1

1 2
1 2 3 1 1 2 3 0

2 1

1 2
2 3 4 1 2 3 4 0

2 1

 
 

 
 
 
 
 

 
  
  
 
 

  
For convenience of multiplication, we write the columns in horizontal rectangles.

= 

0 1 2 0 1 2

1 1 2 2 0 1

1 1 3 1 2 3

1 1 2 2 0 1

2 3 4 2 3 4

1 1 2 2 0 1

 
 
   
 
 
 
   
 
 
 
     

 = 
0 1 1 ( 1) 2 2 0 ( 2) 1 0 2 ( 1)
1 1 2 ( 1) 3 2 1 ( 2) 2 0 3 ( 1)
2 1 3 ( 1) 4 2 2 ( 2) 3 0 4 ( 1)

             
              
              

= 

0 1 4 0 0 2 3 2
1 2 6 2 0 3 5 5
2 3 8 4 0 4 7 8

       
            
           

Ans.

Since, the number of columns of B is (2)  the number of rows of A is 3, BA is not defined.

Example 5. If A = 

1 2 3 1 0 2
2 3 1 and B = 0 1 2
3 1 2 1 2 0

   
      
      

from the products AB and BA, and show that AB  BA.
Solution.  Here,

AB = 

1 2 3 1 0 2
2 3 1 0 1 2
3 1 2 1 2 0

   
      
      

 = 

1 0 3 0 2 6 2 4 0 4 4 2
2 0 1 0 3 2 4 6 0 1 1 10
3 0 2 0 1 4 6 2 0 1 5 4

         
            
               

    BA = 

1 0 2 1 2 3
0 1 2 2 3 1
1 2 0 3 1 2

   
      
      

 = 

1 0 6 2 0 2 3 0 4 5 0 7
0 2 6 0 3 2 0 1 4 4 5 3
1 4 0 2 6 0 3 2 0 5 4 1

          
             
            

AB  BA Proved.

Example 6. If A = 
–

,
–
     

      
     

1 2 2 1 3 1
B and C

2 3 2 3 2 0
Verify that (AB) C = A (BC) and A (B + C) = AB + AC.
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Solution.  We have,

     AB =  
1 2 2 1
2 3 2 3

   
      

 = 
(1) (2) (2) (2) (1) (1) (2) (3) 6 7

( 2) (2) (3) (2) ( 2) (1) (3) (3) 2 7
    

         

BC = 
2 1 3 1 6 2 2 0 4 2
2 3 2 0 6 6 2 0 0 2

           
                  

AC = 
1 2 3 1 3 4 1 0 1 1
2 3 2 0 6 6 2 0 12 2

          
                    

B + C = 
2 ( 3) 1 1 1 2
2 2 3 0 4 3
      

       

(i) (AB) C = 
6 7 3 1 18 14 6 0 4 6
2 7 2 0 6 14 2 0 8 2

           
                  

...(1)

and A (BC) = 
1 2 4 2 4 0 2 4 4 6
2 3 0 2 8 0 4 6 8 2

           
                  

...(2)

Thus from (1) and (2), we get
(AB) C = A (BC)

(ii) A (B + C)  = 
1 2 1 2
2 3 4 3

   
      

= 
1 8 2 6 7 8

2 12 4 9 14 5
     

        
...(3)

AB + AC = 
6 1 7 1 7 8

2 12 7 2 14 5
    

       
...(4)

Thus  from (3) and (4), we get
A (B + C) = AB + AC Verified.

Example 7. If A =  
 
 
 
 

1 2 2
2 1 2
2 2 1

 show that AA2 – 4 A – 5 I = 0 where I, 0 are the unit matrix and

the null matrix of order 3 respectively. Use this result to find A–1. (A.M.I.E., Summer 2004)

Solution. Here, we have A = 

1 2 2
2 1 2
2 2 1

 
 
 
  

A2 = 

1 2 2 1 2 2 9 8 8
2 1 2 2 1 2 8 9 8
2 2 1 2 2 1 8 8 9

     
          
          

A2 – 4 A – 5 I = 

9 8 8 1 2 2 1 0 0
8 9 8 4 2 1 2 5 0 1 0
8 8 9 2 2 1 0 0 1

     
           
          

A2 – 4 A – 5 I = 

9 4 5 8 8 0 8 8 0 0 0 0
8 8 0 9 4 5 8 8 0 0 0 0
8 8 0 8 8 0 9 4 5 0 0 0

        
            
           

A2 – 4 A – 5 I = 0      5 I = A2 – 4 A
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Multiplying by A–1, we get
5 A–1 = A – 4 I

= 

1 2 2 1 0 0 3 2 2
2 1 2 4 0 1 0 2 3 2
2 2 1 0 0 1 2 2 3

     
            
          

A–1 = 
3 2 2

1 2 3 2
5

2 2 3

 
  
  

Ans.

Example 8. Show by means of an example that in matrices AB = 0 does not necessarily mean
that either A = 0 or B = 0, where 0 stands for the null matrix.

Solution. Let A = 
1 1 1 1 2 3
3 2 1 , 2 4 6
2 1 0 1 2 3

   
        
      

B

AB = 
1 2 1 2 4 2 3 6 3 0 0 0
3 4 1 6 8 2 9 12 3 0 0 0
2 2 0 4 4 0 6 6 0 0 0 0

        
               
              

AB = 0.
But here neither A = 0 nor B = 0. Proved.
Example 9. If AB = AC, it is not necessarily true that B = C i.e. like ordinary algebra, the

equal matrices in the identity cannot be cancelled.

Solution. Let  AB = 

1 3 2 1 4 1 0 3 3 0 1
2 1 3 2 1 1 1 1 15 0 5
4 3 1 1 2 1 2 3 15 0 5

       
            
              

              AC = 

1 3 2 2 1 1 2 3 3 0 1
2 1 3 3 2 1 1 1 15 0 5
4 3 1 2 5 1 0 3 15 0 5

         
               
               

         Proved.

Here, AB = AC. But B  C.
Example 10. Represent each of the transformations

x1 = 3y1 + 2y2,     y1= z1 + 2z2    and    x2 = – y1 + 4y2 ,  y2 = 3z1
by the use of matrices and find the composite transformation which expresses x1, x2 in
terms of z1, z2.

Solution. The equations in the matrix form are

1

2

x
x
 
 
 

= 
1

2

3 2
1 4

y
y
  
     

...(1)

1

2

 
 
 

y
y = 

1

2

1 2
3 0

  
  

   

z
z ...(2)

Substituting the values of y1, y2 in (1), we get

1

2

 
 
 

x
x = 

1 1 1 2

2 2 1 2

9 63 2 1 2 9 6
11 21 4 3 0 11 2

          
                       

z z z z
z z z z

x1 = 9z1 + 6z2,    x2 = 11z1 – 2z2 Ans.
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Example 11. Prove that the product of two matrices
2 2

2 2

cos cos sin cos cos sin
and

cos sin sin cos sin sin

     
   

        

  

  

is zero when  and  differ by an odd multiple of .
2

Solution. = 
2 2

2 2

cos cos sin cos cos sin
×

cos sin sin cos sin sin

        
   

           

= 
2 2 2 2

2 2 2 2

cos cos cos sin cos sin cos cos sin cos sin sin

cos sin cos sin cos sin cos sin cos sin sin sin

              
 

               

= 
cos cos (cos cos sin sin ) cos sin (cos cos sin sin )
sin cos (cos cos sin sin ) sin sin (cos cos sin sin )

              
               

= 
cos cos cos ( ) cos sin cos ( )
sin cos cos ( ) sin sin cos ( )

          
           

Given  –  = (2 n + 1) 
2


cos ( – ) = cos (2n + 1) 
2


 = 0

 The product = 
0 0

0.
0 0
 

 
 

Proved.

Example 12. Verify that

A = 
1 – .
3

– –

 
 
 
  

1 2 2
2 1 2 is orthogonal
2 2 1

Solution. A = 
1 2 2 1 2 2

1 12 1 2 2 1 2
3 3

2 2 1 2 2 1

   
        
         

A

AA = 
1 2 2 1 2 2

1 2 1 2 2 1 2
9

2 2 1 2 2 1

   
      
         

 = 
9 0 0 1 0 0

1 0 9 0 0 1 0
9

0 0 9 0 0 1

   
       
      

I

Hence, A is an orthogonal matrix. Verified.
Example 13.  Determine the values of , ,  when

  
     
    

0 2

 is orthogonal.

Solution. Let A = 

0 2   
     
    

On transposing A, we have
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A = 
0

2
  

    
     

If A is orthogonal, then AA = I
0 2 0 1 0 0

2 0 1 0
0 0 1

        
                 
                



2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

4 2 2 1 0 0
2 0 1 0

0 0 12

                                                   
Equating the corresponding elements, we have

2 2

2 2

4 1

2 0

    


    


1 1
,

6 3
     

But 2 + 2 + 2 = 1 as 
1 1 1

, ,
6 3 2

         Ans.

Example 14. Prove that
(AB)n = An . Bn,  if A . B = B . A

Solution. (AB)1 = AB = (A) . (B)
(AB)2 = (AB) . (AB) = (ABA) . B = { A (AB) } . B

= (A2B) . B = A2 (B . B) = A2.B2

Suppose that
(AB)n = An . Bn

(AB)n+1 = (AB)n . (AB) = (An . Bn) . (AB) = An . (BnA) . B
= An . (Bn–1 . BA) . B = An . (Bn–1 . AB) . B
= An . (Bn–2 . B . AB) . B = An . (Bn–2 . AB . B) . B
= An . (Bn–2 . AB2) . B, continuing the process n times.
= An . (A . Bn) . B = An . (A . Bn+1) = An+1 . Bn+1

Hence, taking the above to be true for n = n, we have shown that it is true for n = n + 1 and
also it was true for n = 1, 2, .... so it is universally true. Proved.

EXERCISE 4.11
1. Compute AB, if

A = 
1 2 3
4 5 6
 
 
 

 and B = 

2 5 3
3 6 4
4 7 5

 
 
 
  

Ans.
20 38 26
47 92 62
 
 
 

2. If A = 

1 3 0
1 2 1
0 0 2

 
  
  

, B = 

2 3 4
1 2 3
1 1 2

 
 
 
  

. From the product AB and BA. Show that AB  BA.

3. If A = 

0 1 0
0 0 1
0 0 0

 
 
 
  

, B = 

0 0 0
1 0 0
0 1 0

 
 
 
  

(i) Calculate AB and BA. Hence evaluate A2 B + B2 A
(ii) Show that for any number k, (A + kB2)3 = KI, where I is the unit matrix.
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4. If A = 
0 1
1 0

 
  

 choose  and  so that ( I +  A)2 = A Ans.  =  = 1
2



5. If A =  2
. 1 1 0

0
B 
  

 
and  

3 0
2 1
0 1

C
 
   
  

      verify that   ,T T T TABC C B A where T denotes the transpose.
6. Write the following transformation in matrix form :

x1 = 1 2
3 1

2 2
y y  ; x2 = 1 2

1 3
2 2

 y y

Hence, find the transformation in matrix form which expresses y1, y2 in terms of x1, x2.

Ans. y1 = 1 2
3 1

2 2
x x , y2 = 1 2

1 3
2 2

x x

7. The linear transformation 
1 1

2 2

0 0
0 1

y x
y x

    
    
    

,represents

(a) reflection about 1x -axis   (b) reflection about 2x -axis  (c)clockwise rotation through angle
2


(d) orthogonal projection on to x2 axis. (A.M.IE.T.E., Summer 2005) Ans. (d)

8. If A = 
0 tan

2

tan 0
2

  
 

 
  

 and I is a unit matrix, show that I + A = 
cos sin

( )
sin cos

I A
   

    

9. If f (x) = x3 – 20 x + 8, find f (A) where A = 
1 1 3
1 3 3
2 4 4

 
  
    

Ans. 0

10. Show that 
cos sin
sin cos

   
   

 = 

1
1 tan 1 tan

2 2

tan 1 tan 1
2 2

       
   

          

11. If A = 
3 3 4
2 3 4
0 1 1

 
  
  

 then show that A3 = A–1.

12. Verify whether the matrix A = 

2 2 1
1 2 1 2
3

1 2 2

 
  
  

 is orthogonal.

13. Verify that 

1 2 2
1 2 1 2
3

2 2 1

 
  
    

 is an orthogonal matrix.

14. Show that 

cos 0 sin
sin sin cos sin cos
cos sin sin cos cos

  
       
       

 is an orthogonal matrix.

15. Show that A = 

cos 0 sin
0 1 0

sin 0 cos

  
 
 
    

 is an orthogonal matrix. (A.M.I.E., Summer 2004)

16. If A and B are square matrices of the same order, explain in general
(i) (A + B)2  A2 + 2 AB + B2    (ii)  (A – B)2  A2 – 2 AB + B2   (iii) (A + B) (A – B)  A2 – B2
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17. Let  A and B be any two matrices such that AB = 0 and A is non- singular.
then (a) B = 0;     (b) B is also non-singular;     (c) B = A;      (d) B is singular.

Ans.   (d)
18. If 2A = AA then matrix A is called
       (a) Idempotent Matrix  (b) Null Matrix  (c) Transpose Matrix    (d) Identity Matrix

                                                                                   (A.M,I.E.T.E.,Dec.,2006)   Ans.   (a)
4.27 MATHEMATICAL INDUCTION

By mathematical induction we can prove results for all positive integers. If the result to be
proved for the positive integer n then we apply the following method.

Working Rule:
Step 1. Verify the result for n = 1
Step 2. Assume the result to be true for n = k and then prove that it is true for n = k + 1.
Explanation. By step 1, the result is true for n = k = 1
By step 2, the result is true for n = k + 1 = 1 + 1 = 2 (k = 1)
Again, the result is also true for n = k + 1 = 2 + 1 = 3 (k = 2)
Similarly, the result is also true for n = k + 1 = 3 + 1 = 4 (k = 3)
Hence, in this way the result is true for all positive integer n.
Example 15. By mathematical induction,

if A = 
cos sin

,
– sin cos

  
   

show that AAn =  
cos sin

– sin cos
n n
n n
  

   
Where n is a positive integer.

Solution. We prove the result by mathematical induction :

An = 
cos sin

– sin cos
n n
n n
  

   
Let us verify the result for n = 1.

A1 = 
cos1 sin1 cos sin

– sin1 cos1 – sin cos
A

      
          

[Given]

The result is true when n = 1.
Let us assume that the result is true for any positive integer k.

Ak = 
cos sin

– sin cos
k k
k k
  

   

Now, Ak+ 1 = Ak. A = 
cos sin cos sin
– sin cos – sin cos

k k
k k
      

         

= 
cos cos – sin sin cos sin sin cos

– sin cos – cos sin – sin sin cos cos
k k k k
k k k k
         

          

= 
cos( ) sin( )

– sin( ) cos( )
k k
k k
      

       
 = 

cos( 1) sin( 1)
– sin( 1) cos( 1)

k k
k k
    

     
The result is true for n = k + 1.
Hence, by mathematical induction the result is true for all positive integer n. Proved.
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4.28 ADJOINT OF A SQUARE MATRIX
Let the determinant of the square matrix A be | A |.

If A = 

1 2 3

1 2 3

1 2 3

,
a a a
b b b
c c c

 
 
 
  

Than | A | = 

1 2 3

1 2 3

1 2 3

.
a a a
b b b
c c c

 
 
 
  

The matrix formed by the co-factors of the elements in

| A | is 

1 2 3

1 2 3

1 2 3

.
AA A

B B B
C C C

 
 
 
  

where 2 3
1 2 3 3 2

2 3
,

b b
A b c b c

c c
   1 3

2 1 3 3 1
1 3

b b
A b c b c

c c
    

1 2
3 1 2 2 1

1 2
,

b b
A b c b c

c c
   2 3

1 2 3 3 2
2 3

a a
B a c a c

c c
    

1 3
2 1 3 3 1

1 3
,

a a
B a c a c

c c
   1 2

3 1 2 2 1
1 2

a a
B a c a c

c c
    

2 3
1 2 3 3 2

2 3
,

a a
C a b a b

b b
   1 3

2 1 3 3 1
1 3

a a
C a b a b

b b
    

C3 = 
1 2

1 2 2 1
1 2

a a
a b a b

b b
 

Then the transpose of the matrix of co-factors

1 1 1

2 2 2

3 3 3

A B C
A B C
A B C

 
 
 
  

is called the adjoint of the matrix A and is written as adj A.

4.29 PROPERTY OF ADJOINT MATRIX
The product of a matrix A and its adjoint is equal to unit matrix multiplied by the determinant A.
Proof.  If A be a square matrix, then (Adjoint A) . A = A . (Adjoint A) = |A| . I

Let A =
1 2 3

1 2 3

1 2 3

a a a
b b b
c c c

 
 
 
  

and adj . A = 
1 1 1

2 2 2

3 3 3

A B C
A B C
A B C

 
 
 
  

A . (adj. A) = 
1 2 3 1 1 1

1 2 3 2 2 2

1 2 3 3 3 3

a a a A B C
b b b A B C
c c c A B C

   
      
      

= 

1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3

a A a A a A a B a B a B a C a C a C
b A b A b A b B b B b B b C b C b C

c A c A c A c B c B c B c C c C c C

      
 

      
       

= 

| | 0 0
0 | | 0
0 0 | |

A
A

A

 
 
 
  

 = 

1 0 0
| | 0 1 0

0 0 1
A

 
 
 
  

 = | A A | I (A.M.I.E., Summer 2004)
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4.30 INVERSE OF A MATRIX
If A and B are two square matrices of the same order, such that

AB = BA = I (I = unit matrix)
then B is called the inverse of A i.e. B = A–1 and A is the inverse of B.

Condition for a square matrix A to possess an inverse is that matrix A is non-singular,
i.e., | A |  0

If A is a square matrix and B be its inverse, then AB = I
Taking determinant of both sides, we get | AB | = | I | or | A | | B | = I
From this relation it is clear that | A |  0
i.e. the matrix A is non-singular.
To find the inverse matrix with the help of adjoint matrix
We know that A . (Adj. A) = | A | I


1 ( . )

| |
A A dj A

A
 = I [Provided | A |  0] ...(1)

       and A . A–1 = I ...(2)
From (1) and (2), we have

      
–1 1 ( )A = Adj. A

| A |

Example 16.   If A = 
1, .

3 – 3 4
2 – 3 4 find A
0 – 1 1


 
 
 
  

(A.M.I.E. Summer 2004)

Solution.  A = 

3 –3 4
2 – 3 4
0 – 1 1

 
 
 
  

| A | = 3 (– 3 + 4) + 3 (2 – 0) + 4 (– 2 – 0) = 3 + 6 – 8 = 1
The co-factors of elements of various rows of | A | are

( 3 4) ( 2 0) ( 2 0)
(3 4) (3 0) (3 0)
( 12 12) ( 12 8) ( 9 6)

      
    
       

Therefore, the matrix formed by the co-factors of | A | is

1 2 2
1 3 3 , .
0 4 3

Adj
  

  
   

A = 

1 1 0
2 3 4
2 3 3

 
   
   


1 1 .

| |
A Adj A

A
  = 

1 1 0 1 1 0
1 2 3 4 2 3 4
1

2 3 3 2 3 3

    
          
         

Ans.

Example 17. If A = 

–

–

8 1 4
1 4 4 7
9

1 8 4

 
 
 
  

, prove that AA–1 = A, A being the transpose of A.

(A.M.I.E., Winter 2000)
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Solution.  We have, A = 
1

8 1 4 8 4 1
14 4 7 , 1 4 8

9 9
1 8 4 4 7 4

A
    
        
      

AA = 

– 8 1 4 8 4 1
1 14 4 7 1 4 8
9 9

1 –8 4 4 7 4

   
       
      

= 

64 1 16 32 4 28 8 8 16
1 32 4 28 16 16 49 4 32 28
81

8 8 16 4 32 28 1 64 16

        
        
        

= 

81 0 0 1 0 0
1 0 81 0 0 1 0 or
81

0 0 81 0 0 1
AA I

   
        
      

A = A–1 Proved.
Example 18. If  a matrix  A satisfies a relation 2 0A A I   proved that 1A exists and that

A –1= I + A, I being an identity matrix.                                                (A M I E Winter 2003)
Solution. Here 2 0A A I         or      2A AI I     or         A A I I 

                     A A I I 

                                       0A  and so A–1exists.
Again              2 0A A I       or     2A A I     ...(1)
Multiplying  (1) by  1A ,we get

 1 2 1A A A A I        or  1A I A 
 A–1 = I + A                                                                             Proved.

Example 19. If A and B are non-singular matrices of the same order then,
(AB)–1 = B–1 . A–1

Hence prove that (A–1)m = (Am)–1 for any positive integer m.
Solution. We know that,

(AB) . (B–1 A–1) = [(AB) B–1] . A–1 = [A (BB–1] . A–1

= [AI] A–1 = A . A–1 = I
Also, B–1 A–1 . (AB) = B–1[A–1 . (AB)] = B–1 [(A–1 A) . B]

= B–1 [I . B] = B–1 . B = I
By definition of the inverse of a matrix, B–1 A–1 is inverse of AB.
 B–1 A–1 = (AB)–1 Proved.

(Am)–1 = [A . Am–1]–1 = (Am–1)–1 A–1

= (A . Am–2)–1 . A–1 = [(Am–2)–1 . A–1] . A–1 = (Am–2)–1 (A–1)2

= (A . Am–3)–1 . (A–1)2 = [(Am–3)–1 . A–1] (A–1)2 = (Am–3)–1 (A–1)3

= A–1 (A–1)m–1 = (A–1)m Proved.
Example 20. Find A satisfying the Matrix equation.

–
–

2 1 3 2
A

3 2 5 3
   
   
   

= 
–

–
2 4
3 1

 
 
 

Solution.
2 1 3 2
3 2 5 3

A
   

      
= 

2 4
3 1
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Both sides of the equation are pre-multiplied by the inverse of 
2 1 2 1

. .,
3 2 3 2

i e
   

      
2 1 2 1 3 2
3 2 3 2 5 3

A
      

           
= 

2 1 2 4
3 2 3 1

    
       

1 0 3 2
0 1 5 3

A
   

      
= 

7 9
12 14
 
  

3 2
5 3

A
 
  

= 
7 9

12 14
 
  

Again both sides are post-multiplied by the inverse of 
3 2 3 2

. .
5 3 5 3

i e
   
      

3 2 3 2
5 3 5 3

A
   
      

= 
7 9 3 2

12 14 5 3
   
      

1 0
0 1

A  
 
 

= 
24 13
34 18

 
   

   A = 
24 13
34 18

 
   

Ans.

EXERCISE 4.12
Find the adjoint and inverse of the following matrices: (1 - 3)

1.

2 5 3
3 1 2
1 2 1

 
 
 
  

Ans. 
3 1 7

1 1 1 5
4

5 1 13

 
   
  

2.

1 1 2
1 9 3
1 4 2

 
 
 
  

Ans. 
6 6 15

1 1 0 1
3

5 3 8

 
   
   

3.
1 0 1
3 4 5
0 6 7

 
 
 
   

Ans. 

2 6 4
1 21 7 8
20

18 6 4

 
   
  

4. If
3 4
1 1

A
 

   
, then show that 

1 2 4
1 2

n n n
A

n n
  

   

5. If A = 

1 1 2 1 1 3
1 2 1 , 0 3 2 ,
0 1 1 1 1 1

P
   

       
      

 show that P–1 AP = 

1 0 0
0 2 0
0 0 1

 
 
 
  

6. If A = 
1 1 1 2 5 3
1 2 3 , 3 1 2 ,
1 4 9 1 2 1

   
      
      

B  show that (AB)–1 = B–1 A–1.

7. Given the matrix A = 
3 2 2
1 3 1
5 3 4

 
 
 
  

 compute det (A), AA–1 and the matrix B such that AB = 
3 4 2
1 6 1
5 6 4

 
 
 
  

Also compute BA. Is AB = BA ?

Ans.
9 2 4 1 0 0

15, 1 2 1 . 0 2 0 ,
5

12 1 7 0 0 1
B AB BA

    
        
      

8. Find the condition of k such that the matrix

A = 
1 3 4
3 6
1 5 1

k
 
 
 
  

has an inverse. Obtain A–1 for k = 1. Ans. 1
29 17 14

3 1, 9 5 6
5 8

16 8 8
k A
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9. Prove that (A–1)T = (AT)–1.

10. If 
0 1 2 1
2 1 1 0

A    
       

 where 
a b

A
c d
 

  
 

, then A is

(a) 
2 1
0 0
 
 
 

       (b) 
0 1
2 1
 
  

      (c)  
2 1
1 0

 
  

     (d)  
2 1
1 1
2 2

 
 
  
  

  (AMIETE, June 2010)  Ans. (d)

11. For what values of x, the matrix  

3 2 2
2 4 1
2 4 1

x
x

x

 
  
     

 is singular ? (A.M.I.E.T .E . Summer 2004)   Ans. 0,3

12. Prove that (A–1)T  = (AT)–1

13. Let I be the unit matrix of order n and adj. (2I) = 2k I. Then k equals
(a)  1                           (b)     2               (c) n – 1         (d)  n. Ans  (c)

14.  Let T be a linear transformation defined by

T

1 1 1 1
1 1 0 0 0 1 0 0

2 , 2 , 2 , 2 ,
1 1 1 1 1 1 0 1

3 3 3 3
T T T

       
                                                                           

Find 
4 5

.
3 8

T
  
  
  

                                                                                                                                  (AMIETE Dec. 2005)
4.31 ELEMENTARY TRANSFORMATIONS

Any one of the following operations on a matrix is called an elementary transformation.
1. Interchanging any two rows (or columns). This transformation is indicated by Rij, if the ith

and jth rows are interchanged.
2. Multiplication of the elements of any row Ri (or column) by a non-zero scalar quantity k is

denoted by (k.Ri).
3. Addition of constant multiplication of the elements of any row Rj to the corresponding

elements of any other row Rj is denoted by (Ri + kRj).
If a matrix B is obtained from a matrix A by one or more E-operations, then B is said to be

equivalent to A. The symbol ~ is used for equivalence.
i.e., A ~ B.

Example 21. Reduce the following matrix to upper triangular form (Echelon form) :
 
 
 
  

1 2 3
2 5 7
3 1 2

Solution. Upper triangular matrix. If in a square matrix, all the elements below the principal
diagonal are zero, the matrix is called an upper triangular matrix.

2 2 1

3 3 23 3 1

1 2 3 1 2 3 1 2 3
22 5 7 ~ 0 1 1 ~ 0 1 1

533 1 2 0 5 7 0 0 2

R R R
R R RR R R

     
      

                    
Ans.

Example 22. Transform 
 
 
 
  

1 3 3
2 4 10
3 8 4

 into a unit matrix. (Q. Bank U.P., 2001)
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Solution. 2 2 1

3 3 1

1 3 3 1 3 3
2 4 10 ~ 0 2 4 2
3 8 4 0 1 5 3

R R R
R R R

   
        
         

1 1 2

2 2

3 3 2

1 3 3 1 0 9 3
1~ 0 1 2 ~ 0 1 2
2

0 1 5 0 0 7

R R R
R R

R R R

    
         
          

1 1 3

2 2 3

3 3

1 0 9 1 0 0 9
~ 0 1 2 ~ 0 1 0 21

0 0 1 0 0 17

R R R
R R R

R R

    
        

      

4.32 ELEMENTARY MATRICES
A matrix obtained from a unit matrix by a single elementary transformation is called elementary

matrix.

I = 

1 0 0
0 1 0
0 0 1

 
 
 
  

Consider the matrix obtained by R2 + 3 R1
1 0 0
3 1 0
0 0 1

 
 
 
  

 is called the elementary matrix.

4.33 THEOREM
Every elementary row transformation of a matrix can be affected by pre-multiplication with

the corresponding elementary matrix.

Consider the matrix A = 
2 3 4
5 6 7
3 5 9

 
 
 
  

Let us apply row transformation R3 + 4 R1 and we get a matrix B.

B = 

2 3 4
5 6 7

11 17 25

 
 
 
  

Now we shall show that pre-multiplication of A by corresponding elementary matrix R3 + 4 R1
will give us B.

Now, if I = 

1 0 0
0 1 0
0 0 1

 
 
 
  

 then, Elementary matrix = 
( 4 )3 1

1 0 0
0 1 0
4 0 1



 
 
 
   R R

 Elementary matrix × A = 
1 0 0 2 3 4
0 1 0 5 6 7
4 0 1 3 5 9

   
      
      

 = 
2 3 4
5 6 7

11 17 25

 
 
 
  

 = B

Similarly, we can show that every elementary column transformation of a matrix can be affected
by post-multiplication with the corresponding elementary matrix.
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4.34 TO COMPUTE THE INVERSE OF A MATRIX FROM ELEMENTARY
MATRICES (Gauss-jordan Method)
If A is reduced to I by elementary transformation then

PA = I where P = PnPn–1 ... P2 P1
 P = A–1 = Elementary matrix.
Working rule. Write A = IA. Perform elementary row transformation on A of the left side and

on I of the right hand side so that A is reduced to I and I of right hand side is reduced to P getting
I = PA.

Then P is the inverse of A.

4.35 THE INVERSE OF A SYMMETRIC MATRIX
The elementary transformations are to be transformed so that the property of being symmetric

is preserved. This requires that the transformations occur in pairs, a row transformation must be
followed immediately by the same column transformation.

Example 24. Find the inverse of the following matrix employing elementary transformations:
 

  
  

3 3 4
2 3 4
0 1 1

(U.P., I Semester, Compartment 2002)

Solution. The given matrix is A = 

3 3 4
2 3 4
0 1 1

 
  
  

3 3 4
2 3 4
0 1 1

 
  
  

= 

1 0 0
0 1 0
0 0 1

 
 
 
  

A   

41 1
3

2 3 4
0 1 1

  
 

 
 
 
  

 = 

1
1

1 0 0
33

0 1 0
0 0 1

RR

A

   
 
 
 
 
  



41 1
3
40 1
3

0 1 1

  
 
  
  
  

= 

2 2 1

1 0 0
3
2 1 0
3

20 0 1

A
R R R

 
 
 
  
   
 
  



41 1
3
40 1
3

0 1 1

  
 
  
  
  

 = 
2 2

1 0 0
3
2 1 0
3
0 0 1

A
R R

 
 
 
  

  
 
  



41 1
3
40 1
3
10 0
3

  
 
  
 
 
  

 = 

3 3 2

1 0 0
3
2 1 0
3
2 1 1
3

A

R R R

 
 
 
  
 
   
  

  

41 1
3
40 1
3

0 0 1

  
 
  
 
 
  

 = 

3 3

1 0 0
3
2 1 0
3

32 3 3

A

R R

 
 
 
  
    
  


1 1 0
0 1 0
0 0 1

 
 
 
  

= 
1 1 3

2 2 3

43 4 4
32 3 4 4

2 3 3 3

R R R
A

R R R
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1 0 0
0 1 0
0 0 1

 
 
 
  

= 
1 1 21 1 0

2 3 4
2 3 3

R R R
A

   
   
   

 Hence,  AA–1 = 
1 1 0
2 3 4
2 3 3

 
   
   

Ans.

Example 23. Find the inverse of the matrix M by applying elementary transformations

0 2 1 3
1 1 –1 –2

.
1 2 0 1

–1 1 2 6

 
 
 
 
 
 

[U.P.T.U.(C.O.) 2003]

Solution. Here, we have A = 

0 2 1 3
1 1 –1 –2
1 2 0 1

–1 1 2 6

 
 
 
 
 
 

Let          

0 2 1 3 1 0 0 0
1 1 –1 –2 0 1 0 0

~
1 2 0 1 0 0 1 0

–1 1 2 6 0 0 0 1

A

   
   
   
   
   
   

         

1 21 1 –1 –2 0 1 0 0
0 2 1 3 1 0 0 0

~
1 2 0 1 0 0 1 0

–1 1 2 6 0 0 0 1

R R

A

   
   
   
   
   
      

                  3 3 1

4 4 1

1 1 –1 –2 0 1 0 0
0 2 1 3 1 0 0 0

~
–0 1 1 3 0 –1 1 0
+0 2 1 4 0 1 0 1

A
R R R
R R R

   
   
   
    
          

1 1 –1 –2
0 1 1 3
0 2 1 3
0 2 1 4

 
 
 
 
 
 

= 
3 2

0 1 0 0
0 –1 1 0
1 0 0 0
0 1 0 1

A
R R

 
 
 
  
 
 

1 1 –1 –2
0 1 1 3
0 0 –1 –3
0 0 –1 –2

 
 
 
 
 
 

= 
3 3 2

4 4 2

0 1 0 0
0 –1 1 0

–21 2 –2 0
– 20 3 –2 1

A

R R R
R R R

 
 
 
  
    

1 1 –1 –2
0 1 1 3
0 0 –1 –3
0 0 0 1

 
 
 
 
 
 

= 

4 4 3

0 1 0 0
0 –1 1 0
1 2 –2 0

–1 1 0 1 –

A

R R R
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1 1 –1 –2
0 1 1 3
0 0 1 3
0 0 0 1

 
 
 
 
 
 

= 
3 3

0 1 0 0
0 –1 1 0

––1 –2 2 0
–1 1 0 1

A
R R

 
 
 
  
 
 

1 1 –1 0
0 1 1 0
0 0 1 0
0 0 0 1

 
 
 
 
 
 

= 

1 1 4

2 2 4

3 3 4

–2 3 0 2 2
3 –4 1 –3 – 3
2 –5 2 –3 – 3

–1 1 0 1

R R R
R R R
R R R
A

  
   
  
 
  

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
 
 
 
 
  

= 

1 1 3

2 2 3

0 –2 2 –1
1 1 –1 0
2 –5 2 –3

–1 1 0 1

R R R
R R R
A

  
    
 
 
  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
 
 
 
 
  

= 

1 1 2–1 –3 3 –1 –
1 1 –1 0
2 –5 2 –3

–1 1 0 1

R R R

A

 
 
 
 
 
 

I = A–1 A

Hence, A–1 = 

–1 –3 3 –1
1 1 –1 0
2 –5 2 –3

–1 1 0 1

 
 
 
 
 
 

Ans.

EXERCISE 4.13
Reduce the matrices to triangular form:

1.   A = 
1 2 3
2 5 7
3 1 2

 
 
 
  

Ans. 
1 2 3
0 1 1
0 0 –2

 
 
 
  

2.
3 1 4
1 2 5
0 1 5

 
  
  

Ans. 
0 1 4
0 5 –19
0 0 22

 
 
 
  

Find the inverse of the following matrices:

3.   

1 3 3
1 4 3
1 3 4

 
 
 
  

Ans. 
7 – 3 – 3

– 1 1 0
– 1 0 1

 
 
 
  

        4.  
1 – 1 1
4 1 0
8 1 1

 
 
 
  

Ans. 
1 2 – 1

– 4 – 7 4
– 4 – 9 5

 
 
 
  

5. Use elementary row operations to find inverse of 
1 1 3
1 3 3
2 4 4

A
 
   
    

      Ans. 
12 4 6

1 5 1 3
4

1 1 1

 
    
    

  (AMIETE, June 2010)

6.

2 1 – 1 2
1 3 2 – 3

– 1 2 1 – 1
2 – 3 – 1 4

 
 
 
 
 
  

Ans. 

2 5 – 7 1
5 – 1 5 21

– 7 5 11 1018
1 – 2 10 5
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7.

1 2 3 1
1 3 3 2
2 4 3 3
1 1 1 1

 
 
 
 
 
  

 (Q. Bank U.P. II Semester 2001) Ans.

1 –2 1 0
1 –2 2 –3
0 1 –1 1

–2 3 –2 3

 
 
 
 
 
  

8.

2 1 –1 2
1 3 2 –3

–1 2 1 –1
2 –3 –1 4

 
 
 
 
 
  

Ans.

2 5 –7 1
5 –1 5 –21

–7 5 11 1018
1 –2 10 5

 
 
 
 
 
  

     9. 

2 –6 –2 –3
5 –13 –4 –7

–1 4 1 2
0 1 0 1

 
 
 
 
 
  

 Ans.

–2 1 0 1
1 0 2 –1

–4 1 –3 1
–1 0 –2 2

 
 
 
 
 
  

10.

1 3 3 2 1
1 4 3 3 – 1
1 3 4 1 1
1 1 1 1 – 1
1 – 2 – 1 2 2

 
 
 
 
 
 
  

Ans. 

30 – 20 – 15 25 – 5
30 – 11 – 18 7 – 8

1
– 30 12 21 – 9 6

15
– 15 12 6 – 9 6

15 – 7 – 6 – 1 – 1

 
 
 
 
 
 
  

11. If X, Y are non-singular matrices and B = 
X O
O Y
 
 
 

, show that B –1 = 
–1

–1

X O

O Y

 
 
  

 where O is a null

matrix.

4.36 RANK OF A MATRIX
The rank of a matrix is said to be r if
(a) It has at least one non-zero minor of order r.
(b) Every minor of A of order higher than r is zero.

Note: (i) Non-zero row is that row in which all the elements are not zero.
(ii) The rank of the product matrix AB of two matrices A and B is less than the rank of either

of the matrices A and B.
(iii) Corresponding to every matrix A of rank r, there exist non-singular matrices P and Q such

that PAQ =  
0

0 0
rI 

 
 

4.37  NORMAL FORM (CANONICAL FORM)
By performing elementary transformation, any non-zero matrix A can be reduced to one of the

following four forms, called the Normal form of A :

(i) Ir (ii) [Ir  0] (iii) 
0
 
 
 

rI
(iv) 

0
0 0

 
 
 

rI

The number r so obtained is called the rank of A and we write (A) = r. The form 
0

0 0
 
 
 

rI
is

called first canonical form of A. Since both row and column transformations may be used here, the
element 1 of the first row obtained can be moved in the first column. Then both the first row and
first column can be cleared of other non-zero elements. Similarly, the element 1 of the second row
can be brought into the second column, and so on.

Example 24. Reduce to normal form the following matrix

1 2 3 4
A 2 1 4 3

3 0 5 10

 
   
  

  R3 – 2R2, R3 – 3R1
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Solution.

1 2 3 4 1 2 3 4
2 1 4 3 0 3 2 5
3 0 5 10 0 6 4 22

A
   
         
         



                         2 1 3 1 4 1 2 3
1 12 , 3 , 4 , ,
3 6

C C C C C C R R          R3 R2

1 0 0 0 1 0 0 01 0 0 0
2 5 2 50 3 2 5 0 1 0 1
3 3 3 3

0 6 4 22 2 11 0 0 0 20 1
3 3

 
   

     
            
        

  
  

  

                3 2 4 2 3 4
2 5,
3 3

C C C C C C       1
2 3C

1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 2 0 0 2 0 0 0 1 0

     
     
     
          

  

= [I3 0] is the normal form of A. Ans.
Example 25. Find the rank of the following matrix by reducing it to normal form –

A = 

 
 
 
 
 
  

1 2 – 1 3
4 1 2 1
3 – 1 1 2
1 2 0 1

(U.P. I Sem., Com. 2002, Winter 2001)

Solution.

1 2 – 1 3
4 1 2 1
3 – 1 1 2
1 2 0 1

 
 
 
 
 
  

~ 2 2 1

3 3 1

4 4 1

1 2 – 1 3
0 – 7 6 – 11 – 4
0 – 7 4 – 7 – 3
0 0 1 – 2 –

R R R
R R R
R R R

 
   
  
 

  

1 0 0 0
0 – 7 6 – 11
0 – 7 4 – 7
0 0 1 – 2

 
 
 
 
 
  

 ~ 
3 3 2

1 0 0 0
0 – 7 6 – 11

–0 0 – 2 4
0 0 1 – 2

R R R

 
 
 

 
 
  

C2  C2 – 2 C1, C3  C3 + C1, C4  C4 – 3C1

1 0 0 0
0 – 7 0 0
0 0 – 2 4
0 0 1 – 2

 
 
 
 
 
  

 ~ 

4 4 3

1 0 0 0
0 – 7 0 0
0 0 – 2 4

1
0 0 0 0

2
R R R

 
 
 
 
     

C3  C3 + 
6
7

C2, C4  C4 – 11
7

C2,

C4  C4 + 2C3

1 0 0 0
0 – 7 0 0
0 0 – 2 0
0 0 0 0

 
 
 
 
 
  

  ~ 
2 2

3 3

1 0 0 0
– 1/ 70 1 0 0
– 1/ 20 0 1 0

0 0 0 0

 
   
  
 
  

R R
R R

Rank of A = 3 Ans.
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Example 26. Reduce the matrix A to its normal form, when

A = 

 
 
 
 
 
  

1 2 – 1 4
2 4 3 4
1 2 3 4

– 1 – 2 6 – 7
Hence, find the rank of A. (U.P., I Semester, Dec. 2004, Winter 2001)

Solution. The given matrix is A = 

1 2 – 1 4
2 4 3 4
1 2 3 4

– 1 – 2 6 – 7

 
 
 
 
 
  

2 2 1

3 3 1

4 4 1

1 2 – 1 4
– 20 0 5 – 4
–0 0 4 0

0 0 5 – 3

R R R
R R R
R R R

 
  
 

 
    


2 2 1

3 3 1

4 4 1

1 0 0 0
– 2

0 0 5 – 4
0 0 4 0

– 4
0 0 5 – 3

 
 

   
 

 
  


C C C
C C C
C C C

3 2

1 0 0 0
0 5 0 – 4
0 4 0 0
0 5 0 – 3

 
 
  
 
 
  

 C C
3 3 2

4 4 2

1 0 0 0
0 5 0 – 4

16 40 0 0 –
5 5

0 0 0 1 –

R R R

R R R

 
 
 
 

 
 

  



4 3

1 0 0 0
0 5 – 4 0

160 0 0
5

0 0 1 0

C C

 
 
 

 
 
 
  


2 2 3

4 4 3

1 0 0 0
50 5 0 0
4

160 0 0
5 5–0 0 0 0 16

R R R

R R R

 
    
 
 
 

  



2 2

3 3

1 0 0 0
1/ 50 1 0 0
5 /160 0 1 0

0 0 0 0

 
   
  
 
  


R R
R R

3 0
0 0

 
 
 


I

Which is the required normal form.
And since, the non-zero rows are 3 hence, the rank of the given matrix is 3. Ans.
Example 27. Find non-singular matrices P, Q so that PAQ is a normal form where

A = 
 
 
 
  

2 1 – 3 – 6
3 – 3 1 2
1 1 1 2

(R.G.P.V., Bhopal, April, 2010, U.P., I Sem. Winter 2002)

and hence find its rank.
Solution. Order of A is 3 × 4
Total number of rows in A = 3;  Consider unit matrix I3.
Total number of columns in A = 4
Hence, consider unit matrix I4,

 A3 × 4 = I3 A I4
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2 1 – 3 – 6
3 – 3 1 2
1 1 1 2

 
 
 
  

= 

1 0 0 0
1 0 0

0 1 0 0
0 1 0

0 0 1 0
0 0 1

0 0 0 1

 
   
   
   
       

A

1 1 1 2
3 – 3 1 2
2 1 – 3 – 6

 
 
 
  

= 1 3

1 0 0 0
0 0 1

0 1 0 0
0 1 0

0 0 1 0
1 0 0

0 0 0 1

 
   
       
       

A R R

1 1 1 2
0 – 6 – 2 – 4
0 – 1 – 5 – 10

 
 
 
  

= 2 2 1

3 3 1

1 0 0 0
0 0 1

– 30 1 0 0
0 1 – 3

– 20 0 1 0
1 0 – 2

0 0 0 1

 
       
    
       

R R R
A

R R R

C2  C2 – C1, C3  C3 – C1, C4  C4 – 2 C1

1 0 0 0
0 – 6 – 2 – 4
0 – 1 – 5 – 10

 
 
 
  

= 

1 1 1 2
0 0 1

0 1 0 0
0 1 – 3

0 0 1 0
1 0 – 2

0 0 0 1

A

   
   
   
   
       

1 0 0 0
0 6 2 4
0 1 5 10

 
 
 
  

= 
2 2

3 3

1 – 1 – 1 – 2
0 0 1

0 1 0 0 ( 1)
0 1 3

0 0 1 0 ( 1)
1 0 2

0 0 0 1

R R
A

R R

 
             
    

 

1 0 0 0
0 1 5 10
0 6 2 4

 
 
 
  

= 
2 3

1 – 1 – 1 – 2
0 0 1

0 1 0 0
– 1 0 2

0 0 1 0
0 – 1 3

0 0 0 1

R R
A

 
       
   
    

 

1 0 0 0
0 1 5 10
0 0 – 28 – 56

 
 
 
  

= 3 3 2

1 – 1 – 1 – 2
0 0 1

0 1 0 0
– 1 0 2 – 6

0 0 1 0
6 – 1 – 9

0 0 0 1

 
   
       
       

A R R R

          C3 C3 – 5 C2,          C4  C4 – 10 C2

1 0 0 0
0 1 0 0
0 0 – 28 – 56

 
 
 
  

= 

1 – 1 4 8
0 0 1

0 1 – 5 – 10
– 1 0 2

0 0 1 0
6 – 1 – 9

0 0 0 1

 
   
   
   
       

A

1 0 0 0
0 1 0 0
0 0 1 2

 
 
 
  

= 3 3

1 – 1 4 8
0 0 1

0 1 – 5 – 10 1– 1 0 2 –
0 0 1 0 28

6 1 9– 0 0 0 128 28 28

                      

A R R
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1 0 0 0
0 1 0 0
0 0 1 0

 
 
 
  

= 4 4 3

1 – 1 4 0
0 0 1

0 1 – 5 0
– 1 0 2 – 2

0 0 1 – 2
6 1 9– 0 0 0 128 28 28

                      

A C C C

N = PAQ

P = 

1 – 1 4 0
0 0 1

0 1 – 5 0
– 1 0 2 ,

0 0 1 – 2
3 1 9– 0 0 0 114 28 28

                     

Q Ans.

Note. P and Q are not unique.

Normal form of the given matrix is 
1 0 0 0
0 1 0 0
0 0 1 0

 
 
 
  

The number of non zero rows in the normal matrix = 3
Hence Rank = 3 Ans.

Example 28. If A = 
 
 
 
  

3 – 3 4
2 – 3 4
0 – 1 1

, Find two non singular matrices P and Q such that

PAQ = I. Hence find A–1.
Solution. A3 × 3 = I3 A I3

3 – 3 4
2 – 3 4
0 – 1 1

 
 
 
  

= 
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

   
   
   
      

A

1 0 0
2 – 3 4
0 – 1 1

 
 
 
  

= 1 1 2

1 – 1 0 1 0 0
0 1 0 0 1 0 –
0 0 1 0 0 1

   
       
      

A R R R

1 0 0
0 – 3 4
0 – 1 1

 
 
 
  

= 3 2 1

1 – 1 0 1 0 0
– 2 3 0 0 1 0 – 2

0 0 1 0 0 1

   
       
      

A R R R

1 0 0
0 3 4
0 1 1

 
 
 
  

= 2 2

1 – 1 0 1 0 0
– 2 3 0 0 – 1 0 –

0 0 1 0 0 1

   
       
      

A C C

1 0 0
0 1 1
0 3 4

 
 
 
  

= 2 3

1 – 1 0 1 0 0
0 0 1 0 – 1 0

– 2 3 0 0 0 1

   
       
      

A R R

1 0 0
0 1 1
0 0 1

 
 
 
  

= 3 3 2

1 – 1 0 1 0 0
0 0 1 0 – 1 0 – 3

– 2 3 3 0 0 1
A R R R
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1 0 0
0 1 0
0 0 1

 
 
 
  

= 3 3 2

1 – 1 0 1 0 0
0 0 1 0 – 1 1 –

– 2 3 – 3 0 0 1

   
       
      

A C C C

I3 = PAQ

A–1 = QP, A–1 = 
1 0 0 1 – 1 0
0 – 1 1 0 0 1
0 0 1 – 2 3 – 3

   
   
   
      

–1

–1 –1

–1 –1 –1 –1

–1

( )





 
 

 

I P A Q

P A Q

P Q A

P Q A

QP A

 A–1 = 

1 – 1 0
– 2 3 – 4
– 2 3 – 3

 
 
 
  

Ans.

Exercise 4.14
Find non singular matrices P and Q such that PAQ is normal form

1.    1 2 3
3 1 2
 
 
 

Ans.

2 11
5 5

1 0 1 7, 0
3 1 5 5

0 0 1

p Q

 
 
 

           
 
  

2.     
1 1 2
1 2 3
0 1 1

 
 
 
   

                                                                         Ans.
1 0 0 1 1 1
1 1 0 , 0 1 1
1 1 1 0 0 1

p Q
    

         
      

3.     

1 2 3 2
2 2 1 3
3 0 4 1

 
  
  

Ans.

1 4 11
3 15 21
1 1 11 0 0 0
6 6 62 1 0 ,

10 0 01 1 1
5

10 0 0
7

P Q

 
 
 
          
      
 
 
 

4.38  RANK OF MATRIX BY TRIANGULAR FORM

Rank = Number of non-zero row in upper triangular matrix.

Note. Non-zero row is that row which does not contain all the elements as zero.

Example 29. Find the rank of the matrix

 
 
 
  

1 2 3 2
2 3 5 1
1 3 4 5

(U.P., I Semester, Winter 2003, 2000)
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Solution. 2 2 1

3 3 1

1 2 3 2 1 2 3 2
2 3 5 1 0 – 1 1 – 3 – 2
1 3 4 5 0 1 1 3 –

R R R
R R R

   
       
       



3 3 2

1 2 3 2
0 – 1 – 1 – 3
0 0 0 0 R R R

 
 
 
    



Rank = Number of non zero rows = 2. Ans.

Example 30.  Find the rank of the matrix 

 
 
 
 
 
  

– 1 2 3 – 2
2 – 5 1 2
3 – 8 5 2
5 – 12 – 1 6

Solution.

– 1 2 3 – 2
2 – 5 1 2
3 – 8 5 2
5 – 12 – 1 6

 
 
 
 
 
  

~ 
2 2 1

3 3 1

4 4 1

– 1 2 3 – 2
20 – 1 7 – 2
30 – 2 14 – 4
50 – 2 14 – 4

R R R
R R R
R R R

 
    

  
    

~ 3 3 2

4 4 2

– 1 2 3 – 2
– 20 – 1 7 – 2

20 0 0 0
0 0 0 0

R R R
R R R

 
   
   
 
 

Here the 4th order and 3rd order minors are zero. But a minor of second order

3 – 2
– 6 14

7 – 2
  = 8  0

Rank = Number of non-zero rows = 2. Ans.
Example 31. Find the rank of matrix

2 3 – 2 4
3 – 2 1 2
3 2 3 4

– 2 4 0 5

 
 
 
 
 
  

(U.P., I Semester, Dec., 2006)

Solution. Multiplying R1 by 1 ,
2

we get 1 as pivotal element

31 – 1 2
2

3 – 2 1 2
3 2 3 4

– 2 4 0 5
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2 2

2 2 1
2 2 1

3 3 1 3 3 1

4 4 1
4 4 1

3 21 0 0 01 – 1 2 –2 138 813 0 1 –– 3 30 – 4 – 4 13 13 –2 255 0 – 6 – 2– 30 – 6 – 2 22
– 20 7 – 2 90 7 – 2 9 2

R R

R R R C C C

R R R C C C
C C CR R R

                                   

 

3 3 23 3 2

4 4 2
4 4 2

1 0 0 0 1 0 0 0
8 8 0 1 0 00 1 –

13 13
58 6 8558 6 0 0 –0 0 – 13 13 13213 13
30 61 830 61 0 0 –0 0 13 13 13– 713 13

C C CR R R

C C C
R R R

                              

 

3 3

4 4 3

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0

133 30 0 1 – 0 0 1 –5829 29
3030 61 143 –0 0 0 0 0
1313 13 29

R R

R R R

   
   
   
      
   
          

 

4 4

4 4 3

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 29143 0 0 0 130 0 0 14329 29

R R
C C C

                      

 

 I4

Hence, the rank of the given matrix = 4 Ans.

Example 32. Use elementary transformation to reduce the following matrix A to triangular
from and hence find the rank of A.

 A= 

2 3 – 1 1
1 – 1 – 2 – 4
3 1 3 – 2
6 3 0 – 7

 
 
 
 
 
 

(R.G.P.V., Bhopal, June 2007, Winter 2003, U.P., I Semester, Dec. 2005)

Solution. We have,

A = 1 2

2 3 – 1 1 1 – 1 – 2 – 4
1 – 1 – 2 – 4 2 3 – 1 – 1
3 1 3 – 2 3 1 3 – 2
6 3 0 – 7 6 3 0 – 7

R R
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2 2 1

3 3 23 3 1

4 4 24 4 1

1 – 1 – 2 – 4 1 – 1 – 2 – 4
0 5 3 7 0 5 3 7– 2
0 4 9 10 0 0 33 /5 22 / 5 – 4 / 53
0 9 12 17 0 0 33 / 5 22 / 5 – 9 / 5– 6

R R R
R R RR R R
R R RR R R

   
      
     
   

      



4 4 3

1 – 1 – 2 – 4
0 5 3 7
0 0 33/ 5 22 / 5
0 0 0 0 –

 
 
 
 
 

   R R R

R(A) = Number of non-zero rows.

 R(A) = 3 Ans.

EXERCISE 4.15
Find the rank of the following matrices:

1.
1 2 3
2 4 7
3 6 10

 
 
 
  

Ans. 2 2.
1 2 1

– 1 0 2
2 1 – 3

 
 
 
  

Ans. 3

3.
0 1 2 – 2
4 0 2 6
2 1 3 1

 
 
 
  

Ans. 2 4.

2 4 3 – 2
– 3 – 2 – 1 4

6 – 1 7 2

 
 
 
  

Ans. 3

5.

3 4 1 1
2 4 3 6

– 1 – 2 6 4
1 – 1 2 – 3

 
 
 
 
 
  

Ans. 4 6.

1 4 3 – 2 1
– 2 – 3 – 1 4 3
– 1 6 7 2 9
– 3 3 6 6 12

 
 
 
 
 
  

Ans. 2

Reduce the following matrices to Echelon form and find out the rank:

7.
1 1 2
1 2 2
2 2 3

 
 
 
  

         Ans. 
1 0 0
0 1 0
0 0 1

 
 
 
  

, Rank = 3  8.

1 2 3 0
2 4 3 2
3 2 1 3
6 8 7 5

 
 
 
 
 
  

Ans. 3 0
, Rank = 3

0 0
 
 
 

I

9.
3 2 5 7 12
1 1 2 3 5
3 3 6 9 15

 
 
 
  

Ans. 
2 0

, Rank = 2
0 0

 
 
 

I
10.

2 – 4 3 1 0
1 – 2 1 – 4 2
0 1 – 1 3 1
4 – 7 4 – 4 5

 
 
 
 
 
  

Ans. 3 0
, Rank = 3

0 0
 
 
 

I

Using elementary transformations, reduce the following matrices to the canonical form (or row-reduced
Echelon form):

11.  

0 0 0 0 0
0 1 2 3 4
0 2 3 4 1
0 3 4 1 2

 
 
 
 
 
  

A   Ans.
1 0 0 0
0 1 0 0
0 0 1 0

 
 
 
  

12.

0 4 – 12 8 9
0 2 – 6 2 5
0 1 – 3 6 4
0 – 8 24 3 1

 
 
 
 
 
  

A Ans.
1 0 0 0
0 1 0 0
0 0 1 0

 
 
 
  

Using elementary transformations, reduce the following matrices to the normal form:

13.  
1 2 0 – 1
3 4 1 2

– 2 3 2 5

 
   
  

A Ans.
1 0 0 0
0 1 0 0
0 0 1 0

 
 
 
  

14.
1 2 3 4
3 4 1 2
4 3 1 2

 
   
  

A Ans.
1 0 0 0
0 1 0 0
0 0 1 0

 
 
 
  

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Determinants and Matrices 301

Obtain a matrix N in the normal form equivalent to

15.

0 0 0 0 0
0 4 5 0 0
0 9 1 – 1 2
0 10 0 1 11

 
 
 
 
 
  

A

Hence find non-singular matrices P and Q such that PAQ = N.

16.
1 – 3 1 2
0 1 2 3
3 4 1 – 2

 
 
 
  

Find the rank of the following matrix by reducing it into normal form:

17.

1 3 2 5 1
2 2 – 1 6 3
1 1 2 3 – 1
0 2 5 2 – 3

 
 
 
 
 
  

A   Ans. 3                  18. 

1 2 3 1
1 3 3 2
2 4 3 3
1 1 1 1

 
 
 
 
 
  

A     Ans. 4

19. Rank of matrix 
1 2 3
1 4 2
2 6 5

A
 
   
  

 is

(a)  0 (b) 1                  (c)  3               (d)  2 (AMIETE, June 2009)  Ans. (d)

20. For which value of ‘b’ the rank of the matrix 
1 5 4
0 3 2

13 10
A

b

 
   
  

 is

(a)  1 (b) 2                  (c)  3               (d)  0 (AMIETE, Dec. 2009)  Ans. (b)

4.39 SOLUTION OF SIMULTANEOUS EQUATIONS
The matrix of the coefficients of x, y, z is reduced into Echelon form by elementary row

transformations. At the end of the row transformation the value of z is calculated from the last
equation and value of y and the value of x are calculated by the backward substitution.

Example 33. Solve the following equations
x – y + 2z = 3,  x + 2y + 3z = 5,   3x – 4y – 5z = – 13

Solution. In the matrix form, the equations are written in the following form.

1 1 2
1 2 3
3 4 5

x
y
z

   
   
   
       

= 
3
5

13

 
 
 
  

 or 2 2 1

3 3 1

1 1 2 3
0 3 1 2

30 1 11 22

x
R R Ry
R R Rz

     
            

             

1 1 2
0 3 1

320 0
3

x
y
z

 
   
   
   
     
  

= 3 3 2

3
12
3

64
3

R R R

 
 
 

  
 
 
  

x – y + 2 z = 3 ...(1)
3 y + z = 2 ...(2)

32
3

z


= 
64
3


 z = 2

Putting the value of z in (2), we get 3y + 2 = 2  y = 0
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Putting the value of y, z in (1), we get x – 0 + 4  = 3  x = – 1
x = – 1, y = 0, z = 2 Ans.

Example 34. Find all the solutions of the system of equations
x1 + 2x2 – x3 = 1, 3x1 – 2x2 + 2x3 = 2, 7x1 – 2x2 + 3x3 = 5

Solution.
1

2

3

1 2 1
3 2 2
7 2 3

x
x
x

   
     
     

= 

1
2
5

 
 
 
  

R2 R2 – 3R1, R3  R3 – 7R1

1

2

3

1 2 1
0 8 5
0 16 10

x
x
x

   
     
     

=
1

2

3

1 1 2 1
1 , 0 8 5
2 0 0 0

x
x
x

     
          
         

 = 3 3 2

1
1 2
0

R R R
 
    
  

x1 + 2 x2 – x3 = 1 ...(1)
– 8x2 + 5x3 = – 1 ...(2)

Let x3 = k

Putting x3 = k in (2), we get – 8x2 + 5k = – 1   x2 = 
1

(5 1)
8

k 

Substituting the values of x3, x1 in (1), we get 1
1 (5 1)
4

x k k    = 1

 x1 = 
5 11
4 4
kk   = 

3
4 4
k

 

 x1 = 
3

4 4
k

  , x2 = 3
5 1

,
8 8
k

x k 

The equations have infinite solution. Ans.
4.40  Gauss - Jordan Method (R.G.P.V., Bhopal, III Semester, Dec. 2007)

This is modification of the Gaussian elimination method.
By this method we eliminate unknowns not only from the equations below but also from the
equations above. In this way the system is reduced to a diagonal matrix.
Finally each equation consists of only one unknown and thus, we get the solution. Here, the
labour of backward substitution for finding the unknowns is saved
Gauss-Jordan method is modification of Gaussian elimination method.
Example 35. Express the following system of equations in matrix form and solve them by the
elimination method ( Gauss Jordan Method)

2x1 + x2 + 2x3 + x4 = 6
6x1 – 6x2 + 6x3 + 12x4 = 36
4x1 + 3x2 + 3x3 – 3x4 = – 1
2 x1 + 2 x2 – x3 + x4 = 10

Solution. The equations are expressed in matrix form as

1

2

3

4

2 1 2 1
6 6 6 12
4 3 3 3
2 2 1 1

x
x
x
x

  
     
  
        

 = 

6
36

1
10
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1

2

3

4

2 1 2 1
0 9 0 9
0 1 1 5
0 1 3 0

x
x
x
x

  
     
   
        

= 
2 2 1

3 3 1

4 4 1

6
3

18
2

13
4

R R R
R R R
R R R

 
  

   
 

  
 

1

2

3

4

2 1 2 1
0 1 0 1
0 1 1 5
0 1 3 0

x
x
x
x

  
     
   
        

= 
2

2

6
2

13 9
4

R
R

 
   
  
 
  

1

2

3

4

2 1 2 1
0 1 0 1
0 0 1 4
0 0 3 1

x
x
x
x

  
     
   
        

= 
3 3 2

4 4 2

6
2

11
6

R R R

R R R

 
    
 
     

1

2

3

4

2 1 2 1
0 1 0 1
0 0 1 4
0 0 0 13

x
x
x
x

  
     
   
  

      

= 

6
2

11
39

 
  
 
 
  

4 4 33R R R 

2 x1 + x2 + 2 x3 + x4 = 6 ...(1)
x2 – x4 = – 2 ...(2)

– x3 – 4 x4 = – 11 ...(3)
13 x4 = 39   x4 = 3

Putting the value of x4 in (3), we get
– x3 – 12 = – 11    x3 = – 1

Putting the value of x4 in (2), we get
x2 – 3 = – 2      x2 = 1

Substituting the values of x4, x3 and x2 in (1), we get
2 x1 + 1 – 2 + 3 = 6 or 2 x1 = 4  x1 = 2

 x1 = 2, x2 = 1, x3 = – 1, x4 = 3 Ans.
Example 36.  Find the general solution of the system of equations:

3x1 + 2x3 + 2x4 = 0
– x1 + 7x2 + 4x3 + 9x4 = 0

7 x1 – 7x2 – 5x4 = 0
Solution. The system of equations in the matrix form is expressed as

1

2

3

4

3 0 2 2
1 7 4 9
7 7 0 5

x
x
x
x

 
   
      
        

= 

0
0
0

 
 
 
  

1

2

3

4

1 7 4 9
3 0 2 2
7 7 0 5

x
x
x
x

 
   
   
   
        

= 1 2

0
0
0

R R
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1

2

3

4

1 7 4 9
0 21 14 29
0 42 28 58

x
x
x
x

 
   
   
   
       

= 
2 2 1

3 3 1

0
3

0
7

0

R R R
R R R

 
  

   
  

1

2

3

4

1 7 4 9
0 21 14 29
0 0 0 0

x
x
x
x

 
   
   
   
       

= 3 3 2

0
0 2
0

R R R
 
    
  

– x1 + 7 x2 + 4 x3 + 9 x4 = 0 ...(1)
21 x2 + 14 x3 + 29 x4 = 0 ...(2)

Let x4 = a, x3 = b

From (2), 21 x2 + 14 b + 29 a = 0 or x2 = 
2 29
3 21
b a

 

From (1), 1
2 29

7 4 9
3 21
b a

x b a          = 0

x1 = 
2 2
3 3
a b

 

x1 = 
2 ( )
3

a b  , x2 = 
1 (29 14 )
21

a b 

x3 = b, x4 = a Ans.
4.41 TYPES OF LINEAR EQUATIONS

(1) Consistent. A system of equations is said to be consistent, if they have one or more
solution i.e.

x + 2y = 4 x + 2y = 4
3x + 2y = 2 3x + 6y = 12

Unique solution Infinite solution
(2) Inconsistent. If a system of equation has no solution, it is said to be inconsistent i.e.

x +2 y = 4
3x + 6y = 5

4.42 CONSISTENCY OF A SYSTEM OF LINEAR EQUATIONS
a11 x1 + a12 x2 + . . . a1n xn = b1
a21 x1 + a22 x2 + . . . a2n xn = b2

        ..........................................................................
am1 x1 + am2 x2 + ... amn xn= bm



11 12 1
1

21 22 2
2

1 2

..........
..........

..............................
...

..........

n

n

m m mn
m

a a a
x

a a a
x

a a a
x

 
  
  
  
  
       

=

1

2

....

m

b
b

b

 
 
 
 
 
  

 AX = B
is called the augmented matrix.

[ : ]A B C

and  C= [A, B] = 

11 12 1 1

21 22 2 2

1 2

..........
..........

.....................................
..........

n

n

m m mn m

a a a b
a a a b

a a a b
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(a) Consistent equations. If Rank A = Rank C
(i) Unique solution: Rank A = Rank C = n where n = number of unknown.
(ii) Infinite solution: Rank A = Rank C = r, r < n

(b) Inconsistent equations. If Rank A  Rank C.
In Brief :

A system of non-homogeneous linear equations
 = AX B

Find  ( ) and  ( )R A R C

Solution exists, system 
is consistent

No solution, system
is inconsistent

Infinite no. of
solutions

Unique
solution

R A R C ( )   ( )R A R C ( ) =  ( )

R A R C n ( ) =  ( ) <  (no. of unknowns)
R A R C

n
 ( ) =  ( ) 

=  (no. of unknowns)

Example 37. Show that the equations
2x + 6y = – 11, 6x + 20y – 6z = – 3, 6y – 18z = – 1
are not consistent.

Solution. Augmented matrix C = [A, B]

= 2 2 1

2 6 0 : 11 2 6 0 : 11
6 20 6 : 3 ~ 0 2 6 : 30 3
0 6 18 : 1 0 6 18 : 1

R R R
    

          
         

2 6 0 : 11
0 2 6 : 30
0 0 0 : 91

 
  
  

 R3  R3 – 3 R2

The rank of C is 3 and the rank of A is 2.
Rank of A  Rank of C.       The equations are not consistent. Ans.
Example 38. Test the consistency and hence solve the following set of equation.

x1 + 2x2 + x3 = 2
3x1 + x2 – 2x3 = 1
4x1 – 3x2 – x3 = 3

2x1 + 4x2 + 2x3 = 4 (U.P., I Semester, Compartment 2002)
Solution. The given set of equations is written in the matrix form:

1

2

3

1 2 1
3 1 2
4 3 1
2 4 2

 
     
   
      

x
x
x

= 

2
1
3
4

 
 
 
 
 
  

AX = B

Here, we have augmented matrix C = 

1 2 1 2
3 1 2 1

[ , ] ~
4 3 1 3
2 4 2 4

 
  
  
 
  

A B
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2 2 1

3 3 1

4 4 1

1 2 1 2
30 5 5 5

~
40 11 5 5
20 0 0 0

R R R
R R R
R R R

 
      

    
     

2 2

1 2 1 2
10 1 1 1

~ 50 11 5 5
0 0 0 0

R R
 
    
   
 
  

3 3 2

1 2 1 2
0 1 1 1

~
110 0 6 6

0 0 0 0
R R R

 
 
 
   
 
  

3 3

1 2 1 2
0 1 1 1

~ 10 0 1 1
6

0 0 0 0
R R

 
 
 
  
 
  

Number of non-zero rows = Rank of matrix.
 R(C) = R(A) = 3

Hence, the given system is consistent and possesses a unique solution. In matrix form the
system reduces to

1

2

3

1 2 1
0 1 1
0 0 1
0 0 0

 
  
  
  
      

x
x
x

=

2
1
1
0

 
 
 
 
 
  

x1 + 2x2 + x3 = 2 ...(1)
x2 + x3 = 1 ...(2)

x3 = 1
From (2), x2 + 1 = 1  x2 = 0
From (1), x1 + 0 + 1 = 2  x1 = 1
Hence, x1 = 1, x2 = 0 and x3 = 1 Ans.
Example 39. Test for consistency and solve :

5x + 3y + 7z = 4, 3x + 26y + 2z = 9, 7x + 2y + 10 z = 5
Solution. The augmented matrix C = [A, B] (R.G. P.V. Bhopal I. Sem. April 2009-08-03)

3 7 41 :5 3 7 : 4 5 5 5
3 26 2 : 9 3 26 2 : 9
7 2 10 : 5 7 2 10 : 5

 
  
  
  
     
  

 1 1
1
5

R R

2 2 1

3 3 1

3 7 4 3 7 41 : 1 :
5 5 5 5 5 5

121 11 33 121 11 3330 : 0 :
5 5 5 5 5 5
11 1 3 0 0 0 : 070 :
5 5 5

R R R

R R R

   
   
   
        
   

     
      

 

3 3 2
1
11

R R R 

Rank of A = 2 = Rank of C
Hence, the equations are consistent. But the rank is less than 3 i.e. number of unknows. So its

solutions are infinite.
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3 71
5 5

121 11
0

5 5
0 0 0

x
y
z

 
 

  
     
    

 
  

= 

4
5

33
5
0

 
 
 
 
 
 
 
  

3 7
5 5

x y z  = 
4
5

121 11
5 5

zy  = 
33
5  or 111y – z = 3

Let z = k then 11y – k = 3 or y = 
3

11 11
k



3 3 7
5 11 11 5

kx k     
= 

4
5  or x = 

16 7
11 11

k  Ans.

Example 40. Discuss the consistency of the following system of equations
2x + 3y + 4z = 11,  x + 5y + 7z = 15,  3x + 11y + 13z = 25.
If found consistent, solve it. (A.M.I.E.T.E., Winter 2001)

Solution. The augmented matrix C = [A, B]

1 2

2 3 4 11 1 5 7 15
1 5 7 15 ~ 2 3 4 11
3 11 13 25 3 11 13 25

R R
   
       
      

R2  R2 – 2R1, R3  R3 – 3R1, 2 2 3 3
1 1, ,
7 4

R R R R   R3  R3 – R2

1 5 7 15
0 7 10 19
0 4 8 20

 
    
    

   ~   

1 5 7 15
10 190 1
7 7

0 1 2 5

 
 
 
 
 
 

   ~    

1 5 7 15
10 190 1
7 7
4 160 0
7 7

 
 
 
 
 
 
 
  

Rank of C = 3 = Rank of A
Hence, the system of equations is consistent with unique solution.

Now,

1 5 7
100 1
7
40 0
7

x
y
z

 
 

  
  
  
    

 
  

= 

15
19
7

16
7

 
 
 
 
 
 
 
  

 x + 5y + 7z = 15 ...(1)

10
7

zy  = 
19
7 ...(2)

4
7
z

= 
16
7  z = 4
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From (2), 10 4
7

y   = 
19
7  y = – 3

From (1), x + 5 (– 3) + 7 (4) = 15  x = 2
x = 2, y = – 3, z = 4 Ans.

Example 41. Find for what values of  and  the system of linear equations:
x + y + z = 6

x + 2y + 5z = 10
2x + 3y + z = 

has   (i) a unique solution    (ii) no solution
(iii) infinite solutions. Also find the solution for  = 2 and  = 8.

(Uttarakhand, 1st semester, Dec. 2006)

Solution.
1 1 1
1 2 5
2 3

x
y
z

   
   
   
      

= 
6

10
 
 
 
  

AX = B

C = (A, B) = 

1 1 1 : 6
1 2 5 : 10
2 3 :

 
 
 
   

 ~ 2 2 1

3 3 1

1 1 1 : 6
0 1 4 : 4
0 1 2 : 12 2

R R R
R R R

 
    
       

~ 

3 3 2

1 1 1 : 6
0 1 4 : 4
0 0 6 : 16 R R R

 
 
 
       

...(1)

(i) A unique solution
If R (A) = R (C) = 3
then  – 6  0   6 and  – 16  0     16

(ii) No solutions
If R (A)  R (C),   then   R (A) = 2 and  R (C) = 3
 – 6 = 0  = 6  and  – 16  0      16

(iii) Infinite solutions
If R (A) = R (C) = 2
then  – 6 = 0 and  – 16 = 0
  = 6 and  = 16

(iv) Putting  = 2 and  = 8 in (1), we get
1 1 1 : 6
0 1 4 : 4
0 0 4 : 8

 
 
 
   



1 1 1 6
0 1 4 4
0 0 4 8

x
y
z

     
          
           

x + y + z = 6
y + 4z = 4

– 4z = – 8  z = 2
Putting z = 2 in (3), we get

y + 8 = 4  y = – 4
Putting y = – 4,  z = 2 in (2), we get

x – 4 + 2 = 6  x = 8
Hence, x = 8,   y = – 4,  z = 2 Ans.
Example 42. Find for what values of k the set of equations

2x – 3y + 6z – 5t = 3,  y – 4z + t = 1,  4x – 5y + 8z – 9t = k
has (i) no solution (ii) infinite number of solutions. (A.M.I.E.T.E., Summer 2004)
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Solution. The augmented matrix C = [A, B]
R3  R3 – 2 R1

. .2 3 6 5 3 2 3 6 5 3

. .0 1 4 1 1 ~ 0 1 4 1 1

. .4 5 8 9 0 1 4 1 6k k

      
       
         

3 3 2

.2 3 6 5 3

.~ 0 1 4 1 1

.0 0 0 0 7 R R Rk

  
  

   
(i) There is no solution if R (A)  R (C)

k – 7  0 or k  7, R (A) = 2 and R (C) = 3.
(ii) There are infinite solutions if R (A) = R (C) = 2

k – 7 = 0     k = 7 Ans.

2 3 6 5
0 1 4 1

x
y
z
t

 
         
 
  

= 
3
1
 
 
 

2x – 3y + 6z – 5t = 3 ...(1)
y – 4z + t = 1 ...(2)

Let t = k1   and   z = k2.
From (2), y – 4k2 + k1 = 1 or y = 1 + 4k2 – k1

From (l), 2x – 3 – 12k2 + 3k1 + 6k2 – 5k1 = 3
 2x = 6 + 6k2 + 2k1     x = 3 + 3k2 + k1

y = 1 + 4k2 – k1       z = k2,  t = k1 Ans.
4.43. HOMOGENEOUS EQUATIONS

For a system of homogeneous linear equations AX = O
(i) X = O is always a solution. This solution in which each unknown has the value zero is

called the Null Solution or the Trivial solution. Thus a homogeneous system is always
consistent.
A system of homogeneous linear equations has either the trivial solution or an infinite
number of solutions.

(ii) If R (A) = number of unknowns, the system has only the trivial solution.
(iii) If R (A) < number of unknowns, the system has an infinite number of non-trivial solutions.

A system of homogeneous linear equations
 = OAX

Always has a 
solution

Infinite no. of non-trivial
solutions

Unique or trivial
solution

(each unknown equal to zero)

Find  ( )R A

R A n ( ) =  (no. of unknowns) R A n ( ) <  (no. of unknowns)
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Example 43. Determine ‘b’ such that the system of homogeneous equations
2x + y +2z = 0 ;

   x + y +3z = 0 ;
4x +3y + bz = 0

has (i) Trivial solution
(ii) Non-Trivial solution . Find the Non-Trivial solution using matrix method.

(U.P., I Sem Dec 2008)
Solution. Here, we have

2x + y + 2z = 0
x + y + 3z = 0

4x + 3y + bz = 0
(i) For trivial solution: We know that x = 0, y = 0 and z = 0. So, b can have any value.
(ii) For non-trivial solution: The given equations are written in the matrix form as :

2 1 2
1 1 3
4 3 b

x
y
z

   
   
   
      

= 
0
0
0

 
 
 
  

A X = B
R1  R2, R2  R2 – 2R1, R3  R3 – 4R1, R3  R3 – R2

C = 

2 1 2 : 0 1 1 3 : 0 1 1 3 : 0 1 1 3 : 0
1 1 3 : 0 ~ 2 1 2 : 0 ~ 0 1 4 : 0 ~ 0 1 4 : 0
4 3 : 0 4 3 : 0 0 1 12 : 0 0 0 8 : 0b b b b

       
                 
                

For non trivial solution or infinite solutions R (C) = R (A) = 2 < Number of unknowns
b – 8 = 0,    b = 8 Ans.

Example 44. Find the values of k such that the system of equations
x + ky + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0
has non-trivial solution.

Solution. The set of equations is written in the form of matrices

1 3
4 3
2 1 2

k x
k y

z

   
   
   
      

 = 

0
0
0

 
 
 
  

, AX = B,  C = [A : B] = 

1 3 : 0
4 3 : 0
2 1 2 : 0

k
k

 
 
 
  

On interchanging first and third rows, we have

      

2 1 2 : 0
4 3 : 0
1 3 : 0

k
k

 
 
 
  

         R2  R2 – 2 R1,  3 3 1
1
2

R R R         3 3 2
1
2

R R k R    
 

2 1 2 : 0 2 1 2 : 0
~ 0 1 4 : 0 ~ 0 1 4 : 0

1 10 2 : 0 0 0 2 ( 4) : 0
2 2

k k

k k k
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For a non-trivial solution or for infinite solution, R (A) = R (C) = 2

so
12 ( 4)
2

k k    
 

 = 0   22 4 2
2
kk k     = 0

 2 9
2

k k   = 0  
9
2

k k   
 

 = 0    k = 
9
2

, k = 0 Ans.

4.44 CRAMER’S RULE
Example 45. Find values of  for which the following system of equations is consistent and
has non-trivial solutions. Solve equations for all such values of .

( – 1) x + (3 + 1) y + 2z = 0
( – 1) x + (4 – 2) y + ( + 3) z = 0

2x + (3 + 1) y + 3 ( – 1) z = 0 (A.M.I.E.T.E., Summer 2010, 2001)

Solution.
( 1) (3 1) 2
( 1) (4 2) ( 3)

2 (3 1) (3 3)

x
y
z

       
           
         

= 
0
0
0

 
 
 
  

...(1)

AX = 0
For infinite solutions, | A | = 0

        
1 3 1 2
1 4 2 3

2 3 1 3 3

    
     

   
 = 0, 

0 3 3
1 4 2 3

2 3 1 3 3

    
     

   
 = 0,

        
0 0 3

1 5 1 3
2 6 2 3 3

 
     

   

 = 0,

( – 3) [( – 1) (6 – 2) – 2 (5 + 1)] = 0
[62 – 8 + 2 – 10 – 2] = 0  or  62 – 18 = 0  or 6 ( – 3) = 0,  = 3

On putting  = 3 in (1), we get

2 10 6
2 10 6
2 10 6

x
y
z

   
   
   
      

= 

0 2 10 6 0
0 0 0 0 0
0 0 0 0 0

x
y
z

       
               
              

2x + 10y + 6z = 0  x + 5y + 3z = 0

Let x = k1, y = k2, 3z = – k1 – 5 k2  z = 1 25
3 3
k k

 Ans.

EXERCISE 4.16

Test the consistency of the following equations and solve them if possible.
1. 3x + 3y + 2z = 1,   x + 2y = 4,   10y + 3z = – 2,   2x – 3y – z = 5

Ans. Consistent, x = 2,  y = 1,  z = – 4 (R.G.P.V. Bhopal 1st Sem 2001)

2. x1 – x2 + x3 – x4 + x5 = 1, 2x1 – x2 + 3x3 + 4x5 = 2,

3x1 – 2x2 + 2x3 + x4 + x5 = 1, x1 + x3 + 2x4 + x5 = 0 (A.M.I.E.T.E., Winter 2003)

Ans. x1 = – 3k1 + k2 – 1, x2 = –3k1 – 1, x3 = k1 – 2k2 + 1, x4 = k1, x4 = k1, x5 = k21
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3. Find the value of k for which the following system of equations is consistent.

3x1 – 2x2 + 2x3 = 3,  x1 + kx2 – 3x3 = 0,  4x1 + x2 + 2x3 = 7 Ans. k = 
1
4

4. Find the value of  for which the system of equations
x + y + 4z = 1, x + 2y – 2z = 1,  x + y + z = 1

will have a unique solution.  (A.M.I.E., Winter 2000)  Ans. 
7

10

5. Determine the values of a and b for which the system 
3 2 1
5 8 9 3
2 1 1

x b
y

a z

     
           
          

(i) has a unique solution, (ii) has no solution and,  (iii) has infinitely many solutions.

Ans. (i) a  –3, (ii) a = –3, b 
1
3 , (iii) a = –3, b = 

1
3

6. Choose  that makes the following system of linear equations consistent and find the general solution of
the system for that .

x + y – z + t = 2, 2y + 4z + 2t  = 3, x + 2y + z + 2t = 

Ans.  = 
7
2

 , x = 2
1

3
2

k , y = 2 1
3

2
2

k k  , z = k2, t = k1

7. Show that the equations
3x + 4y + 5z = a, 4x + 5y + 6z = b, 5x + 6y + 7z = c

don’t have a solution unless a + c = 2b.
Solve the equations when a = b = c = – 1 Ans. x = k + 1, y = – 2 k – 1,z = k

8. Find the values of k, such that the system of equations
4 x1 + 9x2 + x3 = 0 ,  kx1 + 3x2 + kx3 = 0, x1 + 4x2 + 2x3 = 0

has non-trivial solution. Hence, find the solution of the system.
Ans. k = 1, x1 = 2 , x2 = –, x3 = 

9. Find values of  for which the following system of equations has a non-trivial solution.
3x1 + x2 – x3 = 0, 2x1 + 4x2 + x3 = 0, 8x1 – 4x2 – 6x3 = 0 Ans.  = 1

10. Find value of  so that the following system of homogeneous equations have exactly two linearly
independent solutions

x1 – x2 – x3 = 0,   – x1 + x2 – x3 = 0,  – x1 – x2 + x3 = 0, Ans.   = – l
11. Find the values of k for which the following system of equations has a non-trivial solution.

(3k – 8) x + 3y + 3z = 0, 3x + (3k – 8) y + 3z = 0,  3x + 3y + (3k – 8) z = 0 (AMIETE, June 2010)

Ans. k = 
2 11,
3 3

12. Solve the homogeneous system of equations :
4x + 3y – z = 0, 3x + 4y + z = 0, x – y – 2z = 0, 5x + y – 4z = 0 Ans. x = k, y = – k, z = k

13. If A = 
1 2 1
3 1 2
0 1

 
  
  

Ans. (i)   1, (ii) – 1

find the values of  for which equation AX = 0 has (i) a unique solution, (ii) more than one solution.
14. Show that the following system of equations:

x + 2y – 2u = 0,   2x – y – u = 0,   x + 2z – u = 0,   4x – y + 3z – u = 0
do not have a non-trivial solution.

15. Determine the values of  and  such that the following system has (i) no solution (ii) a unique solution
(iii) infinite number of solutions:

2x – 5y + 2z = 8,     2x + 4y + 6z = 5,     x + 2y + z = 
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Ans. (i)  = 3, 
5
2

  (ii)   3,  (iii)  = 3,  = 
5
2

16. Test the following system of equations for consistency. If possible, solve for non-trivial solutions.
3x + 4y – z – 6t = 0,  2x + 3y + 2z – 3t = 0,   2x + y – 14z – 9t = 0,  x + 3y + 13z + 3t = 0

(A.M.I.E.T.E., Winter 2000)  Ans. x = 11k1 + 6k2, y = –8k1 – 3k2, z = k1  t = k2
17. Given the following system of equations

2x – 2y + 5z + 3w = 0,  4x – y + z + w = 0,   3x – 2y + 3z + 4w = 0, x – 3y + 7z + 6w = 0
Reduce the coefficient matrix A into Echelon form and find the rank utilising the property of rank, test the

given system of equation for consistency and if possible find the solution of the given system.
(A.M.I.E.T.E., Summer 2001)    Ans. x = 5k, y = 36k, z = 7k, w = 9k

18. Find the values of  for which the equations
(2 – ) x + 2y + 3 = 0,     2x + (4 – ) y + 7 = 0,      2x + 5y + (6 – ) = 0

are consistent and find the values of x and y corresponding to each of these values of .
(R.G.P.V, Bhopal I sem. 2003, 2001) Ans.  = 1, – 1, 12.

4.45 LINEAR DEPENDENCE AND INDEPENDENCE OF VECTORS
Vectors (matrices) X1, X2, .... Xn are said to be dependent if
(1) all the vectors (row or column matrices) are of the same order.
(2) n scalars 1, 2, ... n (not all zero) exist such that

1 X1 + 2 X2 + 3 X3 + ..... + n Xn = 0
Otherwise they are linearly independent.
Remember: If in a set of vectors, any vector of the set is the combination of the remaining

vectors, then the vectors are called dependent vectors.
Example 46. Examine the following vectors for linear dependence and find the relation if it

exists.
X1 = (1, 2, 4), X2 = (2, –1, 3), X3 = (0, 1, 2), X4 = (–3, 7, 2) (U.P., I Sem. Winter 2002)
Solution. Consider the matrix equation
1 X1 + 2 X2 + 3 X3 + 4 X4 = 0
 1 (1, 2, 4) + 2 (2, –1, 3) + 3 (0, 1, 2) + 4 (– 3, 7, 2) = 0

1 + 22 + 03 – 34 = 0
21 – 2 + 3 + 74 = 0

41 + 32 + 23 + 24 = 0
This is the homogeneous system

1

2

3

4

1 2 0 3
2 1 1 7
4 3 2 2

 
         

       

= 

0
0
0

 
 
 
  

 or A = 0

1

2

3

4

1 2 0 3
0 5 1 13
0 5 2 14

 
         

       

= 2 2 1

3 3 1

0
0 2
0 4

 
    
    

R R R
R R R

1

2

3

4

1 2 0 3
0 5 1 13
0 0 1 1

 
         

       

= 

3 3 2

0
0
0

 
 
 

    R R R
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1 + 2 2 – 3 4 = 0
–5 2 + 3 + 13 4 = 0

3 + 4 = 0
Let 4 = t, 3 + t = 0, 3 = – t

– 52 – t + 3 t = 0, 2 = 
12

5
t

1
24 3

5
t t    = 0 or 1 = 

9
5

t

Hence, the given vectors are linearly dependent.
Substituting the values of  in (1), we get

– 1
2 3 4

9 12
5 5
t X t

X t X t X    = 0  1 2
3 4

9 12
5 5
X X X X     = 0

 9 X1 – 12 X2 + 5 X3 – 5 X4 = 0 Ans.
Example 47. Define linear dependence and independence of vectors.
Examine for linear dependence [1, 0, 2, 1],  [3, 1, 2, 1], [4, 6, 2, –4], [–6, 0, –3, –4] and find
the relation between them, if possible.
Solution. Consider the matrix equation
1 X1 + 2 X2 + 3 X3 + 4 X4 = 0 ...(1)
1 (1, 0, 2, 1) + 2 (3, 1, 2, 1) + 3 (4, 6, 2, – 4) + 4 (– 6, 0, – 3, – 4) = 0

1 + 3 2 + 4 3 – 6 4 = 0
0 1 + 2 + 6 3 + 0 4 = 0

2 1 + 2 2 + 2 3 – 3 4 = 0
1 + 2 – 4 3 – 4 4 = 0

1

2

3

4

1 3 4 6
0 1 6 0
2 2 2 3
1 1 4 4

   
     
   
       

= 

0
0
0
0

 
 
 
 
 
  

1

2

3

4

1 3 4 6
0 1 6 0
0 4 6 9
0 2 8 2

   
     
    
          

= 
3 3 1

4 4 1

0
0

20
0

R R R
R R R

 
 
 
   
    

1

2

3

4

1 3 4 6
0 1 6 0
0 0 18 9
0 0 4 2

   
     
   
         

= 
3 3 2

4 4 2

0
0

40
20

R R R
R R R

 
 
 
   
    

1

2

3

4

1 3 4 6
0 1 6 0
0 0 18 9
0 0 0 0

   
     
   
         

= 

4 4 3

0
0
0

20
9

R R R
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1 + 3 2 + 4 3 – 6 4 = 0
2 + 6 3 = 0

 18 3 + 9 4 = 0

Let 4 = t, 18 3 + 9 t = 0 or 3 = 
2
t

2 – 3 t = 0 or 2 = 3 t
1 + 9 t – 2t – 6t = 0

1 = – t
Substituting the values of 1, 2, 3 and 4 in (1), we get

– t X1 + 3 t X2 2
t

 X3 + t X4 = 0 or 2 X1 – 6 X2 + X3 – 2 X4 = 0 Ans.

4.46 LINEARLY DEPENDENCE AND INDEPENDENCE OF VECTORS BY RANK
METHOD

1. If the rank of the matrix of the given vectors is equal to number of vectors, then the vectors
are linearly independent.

2. If the rank of the matrix of the given vectors is less than the number of vectors, then the
vectors are linearly dependent.

Example 48.  Is the system of vector

     1 2 32, 2,1 , 1,3,1 , 1, 2, 2T T TX X X  
linearly dependent .

Solution . Here  1 2 3

2 1 1
2 , 3 2
1 1 2

X X X
     
            
          

     (T  stands for transposition )

Consider the matrix equation
       1 1 2 2 3 3 0X X X                                                                               ...(1)

  1 2 3

2 1 1 0
2 3 2 0
1 1 2 0

       
                   
              

    1 2 32 0     

1 2 32 3 2 0     

    1 2 32 0     
which is the homogeneous equation.

1 3,R R

1

2

3

2 1 1 0
2 3 2 0
1 1 2 0

    
         
        

       or      

1

2

3

1 1 2 0
2 3 2 0
2 1 1 0

    
         
        

R2 – 2R1, R3 – 2R1                 R3 + R2

1 1

2 2

3 3

1 1 2 0 1 1 2 0
0 1 2 0 or 0 1 2 0
0 1 3 0 0 0 5 0
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1 + 2 + 23 = 0
2 – 23 = 0
             –53 = 0  3 = 0

 2 = 0 and 1 = 0
Thus non-zero values of 1, 2, 3 do not exist which can satisfy (1). Hence by definition,

the given system of vectors is not linearly dependent. Ans.
Example 49. Show using a matrix that the set of vectors

X = [1, 2,– 3, 4], Y = [3, – 1, 2, 1] , Z = [1, –5, 8, –7] is linearly dependent.
Solution.  Here, we have

X = [1, 2, –3, 4],   Y = [3, –1, 2, 1],    Z = [1, –5, 8, –7]
Let us form a matrix of the above vectors

2 2 1

3 3 1

1 2 3 4 1 2 3 4
3 1 2 1 0 7 11 11 3
1 5 8 7 0 7 11 11

R R R
R R R

    
          
           



3 3 2

1 2 3 4
0 7 11 11
0 0 0 0 R R R

 
   
    



Here the rank of the matrix = 2 < Number of vectors
Hence, vectors are linearly dependent. Proved.
Example 50. Show using a matrix that the set of vectors : [2, 5, 2, –3], [3, 6, 5, 2],
[4, 5, 14, 14], [5, 10, 8, 4] is linearly independent.
Solution. Here, the given vectors are

[2, 5, 2, –3], [3, 6, 5, 2], [4, 5, 14, 14], [5, 10, 8, 4]
Let us form a matrix of the above vectors :

2 2 1

3 3 2

4 4 3

2 5 2 3 2 5 2 3
3 6 5 2 1 1 3 5
4 5 14 14 1 1 9 12
5 10 8 4 1 5 6 10

R R R
R R R
R R R

    
        
     
            



1 2

2 1

1 1 3 5
2 5 2 3
1 1 9 12
1 5 6 10

R R
R R

 
   
 
   

 2 2 1

3 3 1

4 4 1

1 1 3 5
20 3 4 13

0 2 6 7
0 4 9 15

R R R
R R R
R R R

 
     
   
 

    



3 3 2

4 4 2

1 1 3 5
0 3 4 13

10 5 20 0
3 3 3
11 7 40 0
3 3 3

R R R

R R R

 
   
 

  
 

     



4 4 3

1 1 3 5
0 3 4 13

10 50 0
3 3

1110 0 0
102

R R R

 
   
 
 
 
   
  



Here, the rank of the matrix = 4 = Number of vectors
Hence, the vectors are linearly independent. Proved.

EXERCISE 4.17
Examine the following system of vectors for linear dependence. If dependent, find the relation between them.
1. X1 = (1, –1, 1), X2 = (2, 1, 1), X3 = (3, 0, 2). Ans. Dependent, X1 + X2 – X3 = 0
2. X1 = (1, 2, 3), X2 = (2, – 2, 6). Ans. Independent
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3. X1 = (3, 1, – 4), X2 = (2, 2, – 3), X3 = (0, – 4, 1). Ans. Dependent, 2 X1 – 3 X2 – X3 = 0

4. X1 = (1, 1, 1, 3), X2 = (1, 2, 3, 4), X3 = (2, 3, 4, 7). Ans. Dependent,  X1 + X2 – X3 = 0

5. X1 = (1, 1, –1, 1), X2 = (1, –1, 2, –1), X3 = (3, 1, 0, 1). Ans. Dependent, 2 X1 + X2 – X3 = 0

6. X1 = (1, –1, 2, 0), X2 = (2, 1, 1, 1), X3 = (3, –l, 2, –l),  X4 = (3, 0, 3, 1).
Ans. Dependent, X1 + X2 – X4 = 0

7. Show that the column vectors of following matrix A are linearly independent:

A = 
1 0 0
6 2 1
4 3 2

 
 
 
  

8. Show that the vectors x1 = (2, 3, 1, –1), x2 = (2, 3, 1, –2), x3 = (4, 6, 2, 1) are linearly dependent. Express
one of the vectors as linear combination of the others.

9. Find whether or not the following set of vectors are linearly dependent or independent:

(i) (1, –2), (2, 1), (3, 2) (ii) (1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1).
Ans. (i) Dependent  (ii) Independent

10. Show that the vectors x1 = (a1, b1), x2 = (a2, b2) are linearly dependent if a1 b2 – a2 b1 = 0.
4.47 ANOTHER METHOD (ADJOINT METHOD) TO SOLVE LINEAR EQUATIONS

Let the equations be
a1 x + a2 y + a3 z = d1

b1 x + b2 y + b3 z = d2
c1 x + c2 y + c3 z = d3

We write the above equations in the matrix form

1 2 3

1 2 3

1 2 3

  
   
   

a x a y a z
b x b y b z
c x c y c z

= 
1

2

3

 
 
 
  

d
d
d

 or 
1 2 3

1 2 3

1 2 3

   
   
   
     

a a a x
b b b y
c c c z

 = 
1

2

3

 
 
 
  

d
d
d

AX = B ...(1)

where A = 
1 2 3

1 2 3

1 2 3

,
 
 
 
  

a a a
b b b X
c c c

= 
 
 
 
  

x
y
z

 and B = 
1

2

3

 
 
 
  

d
d
d

Multiplying (1) by A– 1.
A– 1 AX = A– 1 B or IX = A–1 B or X = A–1 B.

Example 51. Solve, with the help of matrices, the simultaneous equations
x + y + z = 3,  x + 2y + 3z = 4,  x + 4y + 9z = 6 (A.M.I.E., Summer 2004, 2003)

Solution. The given equations in the matrix form are written as below:
1 1 1
1 2 3
1 4 9

x
y
z

   
   
   
      

= 
3
4
6

 
 
 
  

AX = B

where A = 

1 1 1
1 2 3 ,
1 4 9

 
 
 
  

X  = 
 
 
 
  

x
y
z

, B = 
3
4
6

 
 
 
  

Now we have to find out the A– 1.
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| A | = l × 6 + l × (– 6) + l × 2 = 6 – 6 + 2 = 2

Matrix of co-factors = 
6 6 2
5 8 3
1 2 1

 
   
  

, Adjoint A = 
6 5 1
6 8 2
2 3 1

 
   
  

A– 1 = 1
| |A

Adjoint A = 
6 5 1

1 6 8 2
2

2 3 1

 
   
  

X = A–1 B = 
6 5 1 3

1 6 8 2 4
2

2 3 1 6

   
       
      


 
 
 
  

x
y
z

= 
18 20 6 4 2

1 118 32 12 2 1
2 2

6 12 6 0 0

      
              
           

x = 2, y = 1, z = 0 Ans.
Example 52. Given the matrices

A 

1 2 3 x 1
3 –1 1 , X y and C 2
4 2 1 z 3

     
           
          

Write down the linear equations given by AX = C and solve for x, y, z by the matrix method.
Solution. AX = C

1 2 3
3 –1 1
4 2 1

x
y
z

   
   
   
      

= 
1
2
3

 
 
 
  

X  = A–1 . C

x
y
z

 
 
 
  

= 

11 2 3 1
3 –1 1 2
4 2 1 3


   
   
   
      

Matrix of co-factors of A = 

3 1 10
4 11 6
5 8 7

 
  
  

| A | = 1 (–3) + 2 (1) + 3 (10) = –3 + 2 + 30 = 29

Adj. A  = 

3 4 5
1 11 8

10 6 7

 
  
  

A–1 = 
1 .

| A |
Adj A  = 

3 4 5
1 1 11 8
29

10 6 7

 
  
  

X = A–1 C
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x
y
z

= 

3 4 5 1
1 1 11 8 2
29

10 6 7 3

   
      
      

 
 
 
  

x
y
z

= 

3 8 15
1 1 22 24
29

10 12 21

   
   
   

 = 

20
1 3
29

1

 
 
 
  

 = 

20
29
3

29
1
29

 
 
 
 
 
 
 
  

Hence, x  = 
20
29

 , y = 
3

29
 , z = 

1
29

Ans.

Example 53. Let 1 1 2 3 2 1 2 3 3 1 2 35 3 3 , 3 2 2 , 2 2y x x x y x x x y x x x        

be a linear transformation from  1 2 3, ,x x x to  1 2 3, ,y y y and

1 1 3 2 2 3 3 34 2 , 4 , 5z x x z x x z x    

be a linear transformation  from  1 2 3, ,x x x to  1 2 3, ,z z z .Find the linear transformation

from  1 2 3, ,z z z to  1 2 3, ,y y y by inverting appropriate matrix and matrix multiplication.
                              (A.M.I.E.T.E.,Dec. 2004)

Solution: Hence 

1 1

2 2

3 3

5 3 3
3 2 2
2 1 2

y x
y x
y x

    
         
        

 ...(1)

and  

1 1

2 2

3 3

4 0 2
0 1 4
0 0 5

z x
z x
z x

    
        
        

1
1 1 1

2 2 2

3 3 3

4 0 2 5 0 2
10 1 4 0 20 16
20

0 0 5 0 0 4

x z z
x z z
x z z

         
                   
                

...(2)

Putting the value of 

1

2

3

x
x
x

 
 
 
  

from (2) in (1) , we get

1 1 1

2 2 2

3 3 3

5 3 3 5 0 2 25 60 46
1 13 2 2 0 20 16 15 40 46
20 20

2 1 2 0 0 4 10 20 20

y z z
y z z
y z z

           
                         
                     

      Ans.

EXERCISE 4.18
Solve the following equations
1. 3x + y + 2z = 3, 2x – 3y – z = – 3, x + 2y + z = 4 (A.M.I.E. Winter 2001)

Ans. x = 1,   y = 2, z = – 1

2. x + 2y + 3z = 1, 2x + 3y + 8z = 2, x + y + z = 3 Ans.
9 1

, 1,
2 2

x y z    
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3. 4x + 2y – z = 9, x – y + 3z = – 4, 2x + z = 1 Ans. x =1, y = 2, z = – 1
4. 5x + 3y + 3z = 48, 2x + 6y – 3z = 18, 8x – 3y + 2z = 21 Ans. x = 3, y = 5, z = 6
5. x + y + z = 6, x – y + 2z = 5, 3x + y + z = 8 Ans. x = 1, y = 2, z = 3

6. x + 2y + 3z = 1, 3x – 2y + z = 2, 4x + 2y + z = 3 Ans. 
7 3 1, ,

10 40 20
x y z  

7. 9x + 4y + 3z = – 1, 5x + y + 2z = 1, 7x + 3y + 4z = 1 Ans. x = 0, y = – 1, z = 1

8. x + y + z = 8, x – y + 2z = 6, 9x + 5y – 7z = 14 Ans. x = 5, y = 
5 ,
3 z = 

4
3

9. 3x + 2y + 4z = 7, 2x + y + z = 4, x + 3y + 5z = 2 Ans. 
9 9 5, ,
4 8 8

x y z   

10. Represent each of the transformations

x1 = 3 y1 + 2 y2, x2 = – y1 + 4 y2    and     y1 = z1 + 2z2, y2 = – 3 z1

by the use of matrices, find the composite transformation which expresses x1, x2 in terms
of z1, z2. Ans. x1 = – 3z1 + 6 z2, x2 = – 13z1 – 2z2

4.48  PARTITIONING OF MATRICES
Sub matrix. A matrix obtained by deleting some of the rows and columns of a matrix A is said

to be sub matrix.

For example,   A = 
4 1 0
5 2 1 ,
6 3 4

 
 
 
  

then 4 1 5 2 1 0
, ,

5 2 6 3 2 1
     
     
     

 are the sub matrices.

Partitioning: A matrix may be subdivided into sub matrices by drawing lines parallel to its
rows and columns. These sub matrices may be considered as the elements of the original
matrix.

For example, A = 

2 1 : 0 4 1
1 0 : 2 3 4

.... .... : .... .... ....
4 5 : 1 6 5

 
 
 
 
 
  

A11 = 
2 1

,
1 0
 
 
 

A12 = 
0 4 1
2 3 4
 
 
 

A21 = [4  5], A22 = [1  6  5]

Then we may write A = 
11 12

21 22

A A
A A
 
 
 

So, the matrix is partitioned. The dotted lines divide the matrix into sub-matrices. A11, A12, A21,
A22 are the sub-matrices but behave like elements of the original matrix A. The matrix A can be
partitioned in several ways.

Addition by submatrices: Let A and B be two matrices of the same order and are partitioned
identically.

For example;

A = 

2 3 4 5
0 1 2 3

3 4 5 6

4 5 0 1

 
 
 
 
 
 
 
 
  




    


    


3 1 4 6
2 1 0 4

4 5 1 2

1 3 4 5

B
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A = 
11 12 11 12

21 22 21 22

31 32 31 32

,
A A B B
A A B B B
A A B B

   
      
      

A + B = 

11 11 12 12

21 21 22 22

31 31 32 32

A B A B
A B A B
A B A B

  
   
   

4.49 MULTIPLICATION BY SUB-MATRICES
Two matrices A and B, which are conformable to the product AB are partitioned in such a way

that the columns of A partitioned in the same way as the rows of B are partitioned. But the rows of
A and columns of B can be partitioned in any way.

For example, Here A is a 3 × 4 matrix and B is 4 × 3 matrix.

A = 

4 5 6
1 2 3 4 3 2 1
0 1 2 3 and 1 0 4
1 4 1 2

2 5 3

B

 
              
  



   

The partitioning of the columns of A is the same as the partitioning of the rows of B. Here, A
is partitioned after third column, B has been partitioned after third row.

Example 54. If C and D are two non-singular matrices, show that if

A = 
1

1
1

0 0
,

0 0

C C
then A

D D






  
   

    

Solution. Let A–1 = 
E F
G H
 
 
 

...(1)

Then AA–1 = 
0 0 0

0 0 0
C E F CE G CF H

D G H E DG F DH
      

           

So that
0 0

0 0
CE G CF H
E DG F DH

  
   

= 
0

0
I

I
 
 
 

CE + 0G = I   CE = I
CF + 0H = 0 CF = 0
0E + DG = 0  DG = 0
OF + DH = I   DH = I

Since, C is non singular and  CF = 0,  F = 0
CE = I  E = C–1

Similarly, D is non singular and DG = 0   G = 0 and DH = I H = D–1

Putting these values in (1), we get

A–1 = 
1

1

0

0

C

D





 
 
  

Proved.

4.50    Inverse By Partitioning: Let the matrix B be the inverse of the matrix A. Matrices A and B
are partitioned as

A = 
11 12 11 12

21 22 21 22
,

A A B B
B

A A B B
   

   
   

Since, AB =  BA = I
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11 12 11 12

21 22 21 22

A A B B
A A B B
   
   
   

= 
11 12 11 12

21 22 21 22

0
0

B B A A I
B B A A I
     

     
    

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

A B A B A B A B
A B A B A B A B

  
   

= 
11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

0
0

B A B A B A B A I
B A B A B A B A I

    
       

Let us solve the equations for B11, B12, B21 and B22.
Let, B22 = M –1

From (2), B12 = 1 1 1
11 22 22 11 22( ) ( )A A B A A M    

From (3), B21 = 1 1 1
22 21 11 21 11( ) ( )B A A M A A    

From (1), B11 = 1 1 1 1
11 11 12 21 11 11 12 21( ) ( )A A A B A A A B     

= 1 1 1 1
11 11 12 21 11( ) ( )A A A M A A   

Here M = A22 – A21
1

11 22( )A A

Note: A is usually taken of order n – 1.
Example 55. Find the inverse of the following matrix by partitioning

1 3 3
1 4 3
1 3 4

 
 
 
  

Solution. Let the matrix be partitioned into four submatrices as follows:

Let A = 
1 3 3
1 4 3
1 3 4

 
 
 
  

A11 = 12
1 3 3

;
1 4 3

A   
   

   

A21 = [1    3];  A22 = [4]

We have to find A–1 = 11 12

21 22

B B
B B
 
 
 

 where

B11 =    11 1 1
11 11 12 21 11( ) ( ) ( )A A A M A A

B21 = 1 1
21 11( )M A A 

B12 = 1 1
11 12
 A A M  ; B22 = M –1

and M = 1
22 21 11 12( )A A A A

Now

1
11
A = 

4 3
1 1

 
  

; 1
11 12
A A  = 

4 3 3
1 1 3

   
      

 = 
3
0
 
 
 

1
21 11

A A =   4 3
1 3

1 1
 

  
 =  1 0
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M = 
3

[4] [1 3]
0
 

   
 

 = [4] – [3] = [1]

M–1 = [3]

 B11 = 
4 3 3

[1 0]
1 1 0

   
      

 = 
4 3 3 0
1 1 0 0

   
      

    B111  = 
7 3
1 1

 
  

B21 = [1] [1 0]  = [1 0]  

B12 = 
3
0
 

  
 

B22 = [1]

A–1 = 
11 12

21 22

 
 
 

B B
B B  = 

7 3 3
1 1 0
1 0 1

  
  
  

 Ans.

Example 56. Find the inverse of A = 

1 2 3 1
1 3 3 2
2 4 3 3
1 1 1 1

 
 
 
 
 
  

 by partitioning.

Solution. (a) Take G3 = 

1 2 3
1 3 3
2 4 3

 
 
 
  

 and partition so that

A11 = 
1 2
1 3
 
 
 

, A12 = 
3
3
 
 
 

, A21 =  2 4 , and A22 = [3]

Now, 1
11
A = 

3 2
1 1

 
  

, 1
11 12A A  = 

3 2 3
1 1 3

   
      

 = 
3

,
0
 
 
 

1
21 11A A =   3 2

2 4
1 1

 
  

 =  2 0

M = 1
22 21 11 12( )A A A A = 

3
[3] [2 4]

0
 

  
 

 = [–3], And M–1 = [ 1 3]

Then

B11 = 1 1 1 1
11 11 12 21 11( ) ( )A A A M A A     = 

3 2 3 1 [2 0]
1 1 0 3

                
 = 

3 2 2 0
1 1 0 0

   
      

= 
3 61
3 33

 
  

B12 = 1 1
11 12( )A A M   = 

31
03
 
 
 

B21 = 1 1
21 11( )M A A   = 

1 [2 0]
3
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B22 = M–1 = 
1
3

   

and 1
3
G = 

11 12

21 22

B B
B B
 
 
 

 = 

3 6 3
1 3 3 0
3

2 0 1

 
  
  

(b) Partition A so that A11 = 

1 2 3
1 3 3
2 4 3

 
 
 
  

, A12 = 

1
2
3

 
 
 
  

, A21 =  1 1 1 , and A22 = [1].

Now, 1
11A  = 

3 6 3
1 3 3 0
3

2 0 1

 
  
  

, 1
11A  AA12 = 

0
1 3
3

1

 
 
 
  

, A21
1

11A =  1 2 3 2
3



M = 

0
1[1] [1 1 1] 3
3

1

 
           

 = 
1 .
3
 
  

 and M–1 = [3]

Then B11  = 

3 6 3 0
1 1 13 3 0 3 [3] [2 3 2]
3 3 3

2 0 1 1

   
        
       

= 
3 6 3 0 0 0 1 2 1

1 13 3 0 6 9 6 1 2 2
3 3

2 0 1 2 3 2 0 1 1

      
              
             

B12 = 

0
3 ,
1

 
  
  

  B21 = [– 2   3   – 2],  B22 = [3]

A–1 = 11 12

21 22

1 2 1 0
1 2 2 3
0 1 1 1
2 3 2 3

B B
B B

 
         
    

Ans.

EXERCISE 4.19
1. Compute A + B using partitioning              2.  Compute AB using partitioning

A = 

4 1 0 5 3 2 1 1
6 7 8 1 1 0 1 1

,
0 2 1 1 2 1 2 1
1 2 0 1 0 1 2 3

B

   
   
   
   
   
      

     AA =

2 3 1
1 2 0 1

0 1 4
4 1 3 2 ,

4 1 2
2 1 3 0

2 1 2

B

 
   
      
       

  Ans. 

4 6 11
24 18 18
16 10 12

 
 
 
  

3. Find the inverse of 0
A B
C
 
 
 

where B, C are non-singular. Ans.
1

1 1 1

0 C

B B AC
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Find the inverse of the following metrices by partitioning:

4.
2 1 1
1 3 2
1 2 1

 
 
 
  

        Ans. 
1 3 5

1 3 1 5
10

5 5 5

 
  
   

      5.   
1 2 1
1 1 2
2 1 1

 
  
  

  Ans. 
3 1 5

1 5 3 1
14

1 5 3

 
  
  

6.

2 3 4
4 3 1
1 2 4

 
 
 
  

       Ans. 
10 4 9

1 15 4 14
5

5 1 6

 
   
  

       7.   

1 2 3
2 4 5
3 5 6

 
 
 
  

      Ans. 

1 3 2
3 3 1
2 1 0

 
   
  

8.

3 4 2 7
2 3 3 2

52 7 3 9
2 3 2 3

 
 
 
 
 
  

Ans. 

1 11 7 26
1 7 3 161
1 1 1 02
1 1 1 2

  
    
 
 

   
Choose the correct answer:

9. If 3x + 2y + z = 0, x + 4y + z = 0, 2x + y + 4z = 0, be a system of equations then

(i) System is inconsistent         (ii)  it has only trivial solution

(iii) it can be reduced to a single equation thus solution does not exist

(iv) Determinant of the coefficient matrix is zero. (AMIETE, June 2010)  Ans. (ii)
4.51 EIGEN VALUES

Let

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

1 2 3

n

n

n

n n n nn n

a a a a x
a a a a x
a a a a x

a a a a x

   
   
   
   
   
   
      





     


 = 

1

2

3

n

y
y
y

y

 
 
 
 
 
 
  



AX = Y ...(1)
Where A is the matrix , X is the column vector and Y is also column vector.
Here column vector X is transformed into the column vector Y by means of the square

matrix A.
Let X be a such vector which transforms intoX by means of the transformation (1). Suppose

the linear transformation Y = AX transforms X into a scalar multiple of itself i.e. X.
AX = Y =  X

AX –  IX = 0
(A – I) X = 0 ...(2)

Thus the unknown scalar  is known as an eigen value of the matrix A and the corresponding
non zero vector X as eigen vector.

The eigen values are also called characteristic values or proper values or latent values.

Let
2 2 1
1 3 1
1 2 2

A
 
   
  

2 2 1 1 0 0 2 2 1
1 3 1 0 1 0 1 3 1
1 2 2 0 0 1 1 2 2

A I
      

                 
          

     characteristic matrix
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(b) Characteristic Polynomial: The determinant | A – I | when expanded will give a
polynomial, which we call as characteristic polynomial of matrix A.

     For example; 

2 2 1
1 3 1
1 2 2

 
 



= ( 2 – ) (6 – 5  + 2 – 2) – 2 (2 –  – 1) + 1( 2 – 3 + )
= – 3 + 7 2 – 11  + 5

(c) Characteristic Equation: The equation | A – I | = 0 is called the characteristic equation
of the matrix A e.g.

3 – 72 + 11  – 5 = 0
(d) Characteristic Roots or Eigen Values: The roots of characteristic equation | A – I | = 0

are called characteristic roots of matrix A. e.g.
3 – 7 2 + 11  – 5 = 0

    ( – 1) ( – 1) ( – 5) = 0   = 1, 1, 5
     Characteristic roots are 1, 1, 5.

Some Important Properties of Eigen Values (AMIETE, Dec. 2009)
(1) Any square matrix A and its transpose A have the same eigen values.
Note. The sum of the elements on the principal diagonal of a matrix is called the trace of the

matrix.
(2) The sum of the eigen values of a matrix is equal to the trace of the matrix.
(3) The product of the eigen values of a matrix A is equal to the determinant of A.
(4) If 1, 2, ... n are the eigen values of A, then the eigen values of

(i) k A are k1,   k 2,   .....,   kn (ii) Am are 1 2, ,.......,m m m
n  

(iii) A–1 are
1 2

1 1, , ...., .
n


  

Example 57. Find the characteristic roots of the matrix 
6 2 2
2 3 1
2 1 3

 
   
  

Solution. The characteristic equation of the given matrix is

    

6 2 2
2 3 1 0
2 1 3

  
   

  
 (6 – ) (9 – 6 + 2 – 1) + 2 (–6 + 2 + 2) + 2(2 – 6 + 2) = 0
         –3 + l2 2 – 36 + 32 = 0

By trial,  = 2 is a root of this equation.
 ( – 2) (2 – 10 + 16) = 0     – 2) ( – 2) ( – 8) = 0
  = 2, 2, 8 are the characteristic roots or Eigen values. Ans.

Example 58. The matrix A is defined as 
1 2 3
0 3 2
0 0 2

A
 

   
  

Find the eigen values of 3 A3 + 5 A2 – 6A + 2I.
Solution. | A – I | = 0
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1 2 3
0 3 2 0
0 0 2

  
  

 
 (1 – ) (3 – ) (–2 – ) = 0  or   = 1, 3, – 2
Eigen values of A3 = 1, 27, –8; Eigen values of A2 = 1, 9, 4
Eigen values of A = 1, 3, –2; Eigen values of I = 1, 1, 1
  Eigen values of 3 A3 + 5A2 – 6A + 2I
First eigen value = 3 (1)3 + 5 (1)2 – 6 (1) + 2(1)   = 4
Second eigen value = 3 (27) + 5 (9) – 6 (3) + 2(1)   = 110
Third eigen value = 3 (–8) + 5 (4) – 6 (–2) + 2 (1) = 10
Required eigen values are 4, 110, 10 Ans.
Example 59. If 1, 2, .... n are the eigen values of A, find the eigen values of the

 martrix (A – I)2.
Solution. (A – I)2 = A2 – 2 AI + 2 I2 = A2 – 2 A + 2 I

Eigen values of A2 are 2 2 3 2
1 2 3, , ... n   

Eigen values of 2 A are 2 1,      2 2,       2 3 ... 2 n.
Eigen values of 2 I are 2.
  Eigen values of A2 – 2 A + 2 I

2 2 2 2 2 2
1 1 2 2 3 32 , 2 , 2 ...             .....

      2 2 2 2
1 2 3, , , ... ( )n            Ans.

Example 60. Prove that a matrix A and its transpose A have the same characteristic roots.
Solution. Characteristic equation of matrix A is

          | A – I | = 0 ... (1)
Characteristic equation of matrix A is

        | A –  I | = 0 ...(2)
Clearly both (1) and (2) are same, as we know that

     | A | = | A |
i.e., a determinant remains unchanged when rows be changed into columns and columns into
rows. Proved.
Example 61. If A and P be square matrices of the same type and if P be invertible, show that
the matrices A and P–1 AP have the same characteristic roots.
Solution. Let us put B = P–1 AP and we will show that characteristic equations for both A and
B are the same and hence they have the same characteristic roots.

   B –I = P– 1 AP – I = P–1 AP – P–1 lP = P–1 (A – I) P
    | B – I | = |P–1 (A – I) P | = | P –1 | |A – I| | P |

= |A – I | | P–1 | | P | = |A – I| | P–1P|
= |A –I | | I | = | A – I| as | I | = 1

Thus the matrices A and B have the same characteristic equations and hence the same
characteristic roots. Proved.
Example 62. If A and B be two square invertible matrices, then prove that AB and BA have
the same characteristic roots.
Solution. Now AB = IAB = B–1 B (AB) = B –1 (BA) B ...(1)
But by Ex. 8, matrices BA and B–1 (BA) B have same characteristic roots or matrices BA and
AB by (1) have same characteristic roots. Proved.
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Example 63. If A and B be n rowed square matrices and if A be invertible, show that the
matrices A–1 B and BA–1 have the same characteristics roots.
Solution. A–1 B = A–1 BI = A–1 B (A–1A) = A–1 (BA–1) A. ...(1)
But by Ex. 8, matrices BA–1 and A–1 (BA–1)A have same characteristic roots or matrices
BA–1 and A–1 B by (1) have same characteristic roots. Proved.
Example 64. Show that 0 is a characteristic root of a matrix, if and only if, the matrix is
singular.
Solution. Characteristic equation of matrix A is given by

          | A – I | = 0
If  = 0, then from above it follows that | A | = 0 i.e. Matrix A is singular.
Again if Matrix A is singular i.e., | A | = 0 then

| A – I | =  0    | A | –  | I | = 0, 0 –  · 1 = 0   = 0. Proved.
Example 65. Show that characteristic roots of a triangular matrix are just the diagonal
elements of the matrix.
Solution. Let us consider the triangular matrix.

11

21 22

31 32 33

41 42 43 44

0 0 0
0 0

0

a
a a

A
a a a
a a a a

 
 
 
 
 
  

Characteristic equation is |A – I| = 0

or         

11

21 22

31 32 33

41 42 43 44

0 0 0
0 0

0
0

a
a a
a a a
a a a a

 



 



On expansion it gives  (a11 – ) (a22 – ) (a33 – ) 44( – )a  = 0
  = a11,    a22,    a33,    a44
which are diagonal elements of matrix A. Proved.

Example 66. If  is an eigen value of an orthogonal matrix, then 
1


 is also eigen value.

[Hint: AA  = I if  is the eigen value of A, then 11,   


]

Example 67. Find the eigen values of the orthogonal matrix.

       –
–

1 2 2
1B =  2 1 2
3

2 2 1

 
 
 
  

Solution. The characteristic equation of

1 2 2
2 1 2
2 2 1

A
 
   
  

    is   
1 2 2
2 1 2 0
2 2 1


   

  

         1 1 1 4 2 2 1 4 2 4 2 1 0                         
 (1–) (1 – 2 + 2 – 4) – 2 (2 – 2 + 4) + 2 (– 4 – 2 + 2) = 0
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                                                   3 23 9 27 0      
                                                          23 3 0    

The eigen values of A are 3, 3, –3, so the eigen values of 1
3

B A  are 1, 1, –1.

Note. If  = 1 is an eigen value of B then its reciprocal 1 1 1
1

 


 is also an eigen value of B.  Ans.

EXERCISE 4.20
Show that, for any square matrix A.

1. If  be an eigen value of a non singular matrix A, show that 
| |A
  is an eigen value of the matrix

adj A.
2. There are infinitely many eigen vectors corresponding to a single eigen value.

3. Find the product of the eigen values of the matrix 
3 3 3
2 1 1
1 5 6

 
 
 
  

Ans. 18

4. Find the sum of the eigen values of the matrix 
3 2 1
1 3 2
4 1 5

 
 
 
  

Ans. 11

5. Find the eigen value of the inverse of the matrix 
4 6 6
1 3 2
1 4 3

 
 
 
    

Ans.  –1, 1, 
1
4

6. Find the eigen values of the square of the matrix 
1 0 1
1 2 1
2 2 3

 
 
 
  

Ans. 1, 4, 9

7. Find the eigen values of the matrix 

33 1 4
0 2 6
0 0 5

 
 
 
  

Ans. 8, 27, 125

8. The sum and product of the eigen values of the matrix 
2 2 1
1 3 1
1 2 2

A
 
   
  

 are respectively

(a) 7 and 7 (b) 7 and 5 (c) 7 and 6      (d) 7 and 8    (AMIETE, June 2010)  Ans. (b)

4.52 CAYLEY-HAMILTON THEOREM
Satement. Every square matrix satisfies its own characteristic equation.

If    1 2
1 2| | 1 n n n n

nA I a a a             be the characteristic polynomial of n  n
matrix A = (aij), then the matrix equation

1 2
1 2 0n n n

nX a X a X a I       is satisfied by X = A i.e.,
1 2

1 2 0n n n
nA a A a A a I     

Proof. Since the elements of the matrix A –  I are at most of the first degree in , the
elements of adj. (A – I) are at most degree (n –1) in . Thus, adj. (A – I) may be written as
a matrix polynomial in , given by
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  1 2
0 1 1

n n
nAdj A I B B B 
      

where 0 1 1, , , nB B B   are n n  matrices, their elements being polynomial in .
We know that

               | |A I Adj A I A I I   

               1 –2 1
0 1 1 1.... 1 ...nn n n n

n nA I B B B a a I 
             

Equating coefficient of like power of  on both sides, we get

         

 
 
 

 

0

0 1 1

1 2 2

1

1

1

1
.................................

1

n

n

n

n
n n

IB I

AB IB a I

AB IB a I

AB a I

  

  

  

 

On multiplying the equation by 1, ,...,n nA A I  respectively and adding, we obtain

          1
10 1 ...n n n

nA a A a I      
Thus       1

1 ... 0n n
nA a A a I   

for example, Let A be square matrix and if
        3 22 3 4 0       ...(1)

be its characteristic equation, then according to Cayley Hamilton Theorem (1) is satisfied
by A.

         3 22 3 4 0A A A I    ...(2)

We can find out 1A from (2). On premultiplying (2) by 1A , we get
2 1– 2 3 4 0A A I A  

1 21 2 3
4

A A A I     
Example 68. Find the characteristic equation of the symmetric matrix

  

2 1 1
A 1 2 1

1 1 2

 
    
  

and verify that it is satisfied by A and hence obtain A–1.

Express A6 – 6A5 + 9A4 – 2A3 – 12A2 + 23A – 9I in linear polynomial in A.
         (A.M.I.E.T.E., Summer 2000)

Solution. Characteristic equation is |A – I| = 0

2 1 1
01 2 1

1 1 2

   
      
    

(2 – ) [(2 – )2 – 1] + 1 [–2 +  + 1] + 1 [1 – 2 + ] = 0
or (2 – )3 –  (2 – ) +  – 1 + – 1 = 0
or (2 – )3 –  2 +  +  – 1 + – 1 = 0 or  (2 – )3 +  3 – 4 = 0
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or 8 – 3 –  12  + 2  + 3– 4 = 0
or – 3 + 2  – 9+ 4 = 0 or  3 – 2  + 9– 4 = 0

By Cayley-Hamilton Theorem A3 – 6A2 + 9A – 4I = 0 ... (1)
Verification:

2

2 1 1 2 1 1
1 2 1 1 2 1
1 1 2 1 1 2

A
    

          
       

      

4 1 1 2 2 1 2 1 2 6 5 5
2 2 1 1 4 1 1 2 2 5 6 5

2 1 2 1 2 2 1 1 4 5 5 6

          
              
   

          

3

6 5 5 2 1 1
5 6 5 1 2 1
5 5 6 1 1 2

A
    

       
   

    

       = 

12 5 5 6 10 5 6 5 10 22 21 21
10 6 5 5 12 5 5 6 10 21 22 21
10 5 6 5 10 6 5 5 12 21 21 22

          
             
   

          

A3 – 6A2 + 9A – 4I

= 

22 21 21 6 5 5 2 1 1 1 0 0
21 22 21 6 5 6 5 9 1 2 1 4 0 1 0
21 21 22 5 5 6 1 1 2 0 0 1

         
               
       

         

= 

22 36 18 4 21 30 9 0 21 30 9 0 0 0 0
021 30 9 0 22 36 18 4 21 30 9 0 0 0 0

21 30 9 0 21 30 9 0 22 36 18 4 0 0 0

            
                 
               

So it is verified that the characteristic equation (1) is satisfied by A.
Inverse of Matrix A,

A3 – 6A2 + 9A – 4I = 0
On multiplying by A–1, we get

A2 – 6A + 9I – 4A–1 = 0 or 4A–1 = A2 – 6A + 9I

or
1

6 5 5 2 1 1 1 0 0
4 5 6 5 6 1 2 1 9 0 1 0

5 5 6 1 1 2 0 0 1
A

      
           
     

      

1

6 12 9 5 6 0 5 6 0 3 1 1
15 6 0 6 12 9 5 6 0 , 1 3 1
4

5 6 0 5 6 0 6 12 9 1 1 3
A

          
            
   

          
        Ans.

A6 – 6A5 + 9A4 – 2A3 – 12A2 + 23A – 9I
= A3 (A3 – 6A2  + 9A – 4I) + 2(A3 – 6A2 + 9A – 4I) + 5A – I
= 5A – I          Ans.
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Example 69. Find the characteristic equation of the matrix 
2 1 1
0 1 0
1 1 2

A
 
   
  

Verify Cayley Hamilton Theorem and hence prove that :

    8 7 6 5 4 3 25 7 3 5 8 2       A A A A A A A A I
8 5 5
0 3 0
5 5 8

 
   
  

(Gujarat, II Semester, June 2009)
Solution. Characteristic equation of the matrix A is

        

2 1 1
0 1 0 0
1 1 2

 
 

 

         2 [ 1 2 ] 1 0 1 0 1 0                3 25 7 3 0      
According to Cayley-Hamilton Theorem

        3 25 7 3 0A A A I    ...(1)
We have to verify the equation  (1).

2
2 1 1 2 1 1 5 4 4
0 1 0 0 1 0 0 1 0
1 1 2 1 1 2 4 4 5

A
     
           
          

3 2
2 1 1 5 4 4 14 13 13

. 0 1 0 0 1 0 0 1 0
1 1 2 4 4 5 13 13 14

A A A
     
            
          

3 2
14 13 13 5 4 4 2 1 1 1 0 0

5 7 3 0 1 0 5 0 1 0 7 0 1 0 3 0 1 0
13 13 14 4 4 5 1 1 2 0 0 1

A A A I
       
                    
              

14 25 14 3 13 20 7 0 13 20 7 0 0 0 0
0 0 0 0 1 5 7 3 0 0 0 0 0 0 0 0

13 20 7 0 13 20 7 0 14 25 14 3 0 0 0

           
                 
              

Hence Cayley Hamilton Theorem is verified.

Now, 8 7 6 5 4 3 25 7 3 5 8 2       A A A A A A A A I

      =    5 3 2 3 2 25 7 3 5 7 3         A A A A I A A A A I A A I

     5 2      A O A O A A I 2  A A I

     

5 4 4 2 1 1 1 0 0
0 1 0 0 1 0 0 1 0
4 4 5 1 1 2 0 0 1

     
            
          

     

5 2 1 4 1 0 4 1 0 8 5 5
0 0 0 1 1 1 0 0 0 0 3 0
4 1 0 4 1 0 5 2 1 5 5 8

        
             
           

Proved.
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4.53 POWER OF MATRIX (by Cayley Hamilton Theorem)
Any positive integral power Am of matrix A is linearly expressible in terms of those of lower
degree, where m is a positive integer and n is the degree of characteristic equation such that

.m n
Example 70. Find A4 with the help of Cayley Hamilton Theorem, if

       

1 0 1
1 2 1
2 2 3

A
 

   
  

Solution.  Here, we have        1 0 1
1 2 1
2 2 3

A
 

   
  

Characteristic equation of the matrix A is
1 0 1
1 2 1 0
2 2 3

  
  

 
   

3 26 11 6 0
1 2 3 0

       
       

Eigen values of A are 1, 2, 3.

Let      4 3 2 26 11 6 0Q a b c               ...(1)

(where Q () is quotient)
Put  = 1 in (1), (1)4 = a + b + c          a + b + c = 1 ...(2)
Put  = 2 in (1), (2)4 = 4a + 2b + c       4a + 2b + c = 16 ... (3)
Put  = 3 in (1), (3)4 = 9a + 3b + c       9a + 3b + c = 81 ... (4)
Solving (2), (3) and (4), we get
a = 25, b = –60, c = 36
Replacing  by matrix A in (1), we get

     4 3 2 26 11 6A A A A Q A aA bA c      

     = O + aA2 + bA + cI

      
1 0 1 1 0 1 1 0 –1 1 0 0

25 1 2 1 1 2 1 60 1 2 1 36 0 1 0
2 2 3 2 2 3 2 2 3 0 0 1

        
                 
              

     

25 50 100 60 0 60 36 0 0
125 150 100 60 120 60 0 36 0
250 250 225 120 120 180 0 0 36

        
               
            

     

25 60 36 50 0 0 100 60 0
125 60 0 150 120 36 100 60 0

250 120 0 250 120 0 225 180 36

         
        
       

49 50 40
65 66 40

130 130 81

   
   
  

(It is also solved by diagonalization method on page 496 Example 38.)
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EXERCISE 4.21
1. Find the characteristic polynomial of the matrix

A = 

3 1 1
1 5 1
1 1 3

 
   
  

Verify Cayley-Hamilton Theorem for this matrix. Hence find A–1. Ans. 1
7 2 3

1 1 4 1
20

2 2 8
A

  
   
  

2. Use Cayley-Hamilton Theorem to find the inverse of the matrix

cos sin
sin cos

  
    

Ans.
cos sin
sin cos

   
   

3. Using Cayley-Hamilton Theorem, find A–1, given that

A = 

2 1 3
1 0 2
4 2 1

 
 
 
  

Ans.
4 5 2

1 7 10 1
5

2 0 1

  
    
  

4. Using  Cayley-Hamilton Theorem, find the inverse of the matrix
5 1 5
0 2 0
5 3 15

 
 
 
   

      Ans. 
3 0 1

1 0 5 0
10

1 1 1

 
 
 
   5. Find the characteristic equation of the matrix

  

1 3 7
4 2 3
1 2 1

A
 
   
  

(R.G.P.V., Bhopal, Summer 2004)

and show that the equation is also satisfied by A. Ans. 3 2– 4 – 20 – 35 0   
6. Find the eigenvalues of the matrix

2 3 1
3 1 3
5 2 4

 
 
 
   

      Ans. Eigenvalues are 0,  +1, –2

7. Using, Cayley-Hamilton Theorem obtain the inverse of the matrix

    

1 1 3
1 3 3
2 4 4

 
  
    

  (R.G.P.V. Bhopal, I Sem., 2003) Ans.  
24 8 12

1 10 2 6
8

2 2 2

 
    
    

8. Show that the matrix 
1 2 2
1 2 3
0 1 2

A
 

   
  

Ans.
7 2 10

1 2 2 1
9

1 1 4

 
   
  

satisfies its characteristic equation. Hence find A–1.
9. Use Cayley Hamilton Theorem to find the inverse of

1 2 4
1 0 3
3 1 2

A
 
   
  

Ans. 1

3 8 6
1 7 14 7
7

1 5 2
A
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10. Verify Cayley-Hamilton Theorem for the matrix

A = 

1 1 2
3 1 1
2 3 1

 
 
 
  

Hence evaluate A–1. Ans.

2 5 1
1 1 3 5

11
7 1 2

  
   
   

11. If 
1 4
2 3

A  
  
 

, then express A5 – 4A4 – 7A3 + 111A2 – A –10I in terms of A.

  (A.M.I.E.T.E., Winter 2001)         Ans. A + 5 I
12. If 1, 2 and 3 are the eigenvalues of the matrix

2 9 5
5 10 7
9 21 14

  
   
   

 then 1 + 2 + 3 is equal to

(i) –16 (ii) 2 (iii) –6 (iv) –14 Ans. (ii)

13. The matrix 
1 0
2 4

A  
  
 

is given. The eivenvalues of 4A–1 + 3A + 2l are

(A) 6, 15; (B) 9, 12 (C) 9, 15; (D) 7, 15 Ans. (C)
14. A(3 × 3) real matrix has an eigenvalue i, then its other two eigenvalues can be

(A) 0, 1 (B) –1, i (C) 2i, –2i (D) 0, –i   (A.M.I.E.T.E, Dec. 2004)
15. Verify Cayley-Hamilton theorem for the matrix

  A = 

1 2 3
2 4 2
1 1 2

 
  
  

16. Find adj. A by using Cayley-Hamilton thmeorem where A is given by

  A = 

1 2 1
0 1 1
3 1 1

 
  
  

 (R.G.P.V., Bhopal, April 2010) Ans. 

0 3 3
3 2 1
3 7 1

  
   
  

17. If a matrix 
1 0 0
0 1 0 ,
1 0 1

A
 
   
  

 find the matrix A32, using Cayley Hamilton Theorem. Ans. 
1 0 0
0 1 0

32 0 1

 
 
 
  

4.54 CHARACTERISTIC VECTORS OR EIGEN VECTORS
As we have discussed in Art 21.2,
A column vector X is transformed into column vector Y by means of a square matrix A.
Now we want to multiply the column vector X by a scalar quantity  so that we can find the
same transformed column vector Y.
i.e., AX = X
X is known as eigen vector.
Example 71. Show that the vector (1, 1, 2) is an eigen vector of the matrix

  
3 1 1
2 2 1
2 2 0

A
 

   
  

 corresponding to the eigen value 2.
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Solution. Let X = (1, 1, 2).

Now,       
3 1 1 1 3 1 2 2 1
2 2 1 1 2 2 2 2 2 1 2
2 2 0 2 2 2 0 4 2

AX X
           

                         
                   

Corresponding to each characteristic root , we have a corresponding non-zero vector X
which satisfies the equation [ ] 0.A I X   The non-zero vector X is called characteristic
vector or Eigen vector.

4.55 PROPERTIES OF EIGEN VECTORS
1. The eigen vector X of a matrix A is not unique.

2. If 1 2, , .... , n    be distinct eigen values of an n × n matrix then corresponding eigen
vectors X1, X2, ......., Xn form a linearly independent set.

3. If two or more eigen values are equal it may or may not be possible to get linearly
independent eigen vectors corresponding to the equal roots.

4. Two eigen vectors X1 and X2 are called orthogonal vectors if 1 2 0.X X 
5. Eigen vectors of a symmetric matrix corresponding to different eigen values are orthogonal.

Normalised form of vectors. To find normalised form of 
a
b
c

 
 
 
  

, we divide each element by

2 2 2 .a b c 

For example, normalised form of 
1 1/ 3
2 is 2 / 3
2 2 / 3

   
   
   
      

2 2 21 2 2 3     

4.56 NON-SYMMETRIC MATRICES WITH NON-REPEATED EIGEN VALUES

Example 72. Find the eigen values and eigen vectors of matrix 
3 1 4
0 2 6
0 0 5

A
 
   
  

Solution. 
3 1 4

| | 0 2 6 (3 ) (2 ) (5 )
0 0 5

A I


         
 

Hence the characteristic equation of matrix A is given by

| | 0A I   (3 ) (2 ) (5 ) 0    

         2, 3, 5. 

Thus the eigen values of matrix A are 2, 3, 5.
The eigen vectors of the matrix A corresponding to the eigen value   is given by the non-

zero solution of the equation ( ) 0A I X 

or      
1

2

3

3 1 4 0
0 2 6 0
0 0 5 0

x
x
x

      
          
        

... (1)

When 2,   the corresponding eigen vector is given by
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1

2

3

3 2 1 4 0
0 2 2 6 0
0 0 5 2 0

x
x
x

     
         
        


1

2

3

1 1 4 0
0 0 6 0
0 0 3 0

x
x
x

    
        
        

             
1 2 3

1 2 3

4 0
0 0 6 0

x x x
x x x

  
  

  31 2

6 0 0 6 0 0
  

  
xx x k        31 2

1 1 0
xx x k  


     1 2 3, , 0x k x k x   

Hence X1

1
1  can be taken as an eigen vector of A corresponding  to the eigen

0 0 value  2

   
         
        

k
k k

When 3,   substituting in (1), the corresponding eigen vector is given by

      
1

2

3

3 3 1 4 0
0 2 3 6 0
0 0 5 3 0

x
x
x

     
         
        


1

2

3

0 1 4 0
0 1 6 0
0 0 2 0

x
x
x

    
         
        

0x1 + x2 + 4x3 = 0
 0x1 – x2 + 6x3 = 0

31 2

6 4 0 0 0 0
 

  
xx x

   31 2

10 0 0 10
  

xx x k

x1 = k, x2 = 0,  x3 = 0

Hence, 2

1
0 0
0 0

k
X k

   
       
      

 can be taken as an eigen vector of A corresponding to the

eigen value  = 3.
When 5. 
Again, when 5,  substituting in (1), the corresponding eigen vector is given by

3 – 5 1 4
0 2 – 5 6
0 0 5 – 5

 
 
 
  

1

2

3

0
0
0

x
x
x

   
      
      

        

–2 1 4
0 –3 6
0 0 0

 
 
 
  

1

2

3

x
x
x

 
 
 
  

 = 

0
0
0

 
 
 
  

1 2 3–2 4 0x x x  

     2 3–3 6 0x x 
By cross-multiplication method, we have

31 2

6 12 0 12 6 – 0
xx x

 
 

         31 2

18 12 6
xx x

           31 2

3 2 1
xx x

   = k

x1 = 3k,   x2 = 2k,   x3 = k
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Hence, 3

3 3
2 2

1

k
X k k

k

   
       
      

 can be taken as an eigen vector of A corresponding to the eigen

value 5.  Ans.
EXERCISE 4.22

Non-symmetric matrix with different eigen values:
Find the eigen values and the corresponding eigen vectors for the following matrices:

1.
1 1 2
1 2 1
0 1 1

 
  
  

(A.M.I.E.T., June 2006)            Ans. 
1 3 1

1, 1, 2, 0 , 2 , 3
1 1 1

     
           
          

2.
4 2 2
5 3 2
2 4 1

 
  
  

  Ans.
2 1 0

1, 2, 5; 1 , 1 , 1
4 2 0

     
     
     
          

2.
2 2 3
1 1 1
1 3 1

 
 
 
  

     Ans.
11 1 1

2,1, 3; 1 , 1 , 1
14 1 1

     
           
          

3.

9 2 6
5 0 3

16 4 11

 
  
  

  Ans.
2 1 2

1,1, 2; 1 , 1 , 1
3 2 4

     
             
          

4.
4 6 6
1 3 2
1 4 3

 
 
 
    

Ans.
6 0 3

1,1, 4; 2 , 1 , 1
7 1 1

     
           
           

4.

1 1 1
1 2 1
3 2 3

 
 
 
  

Ans.

0 1 4
0,1,5; 1 , 0 , 5

1 1 11

     
          
          

5.

2 1 1
11 4 5

1 1 0

 
  
  

  Ans.
0 1 2

–1, 1, 2; 1 , 2 , 3
1 1 1

     
          
          

8. Show that the matrices A and AT have the same eigenvalues. Further if l, m are two distinct
eigenvalues, then show that the eigenvector corresponding to l for A is orthogonal to eigen-
vector corresponding to m for AT.

4.57 NON-SYMMETRIC MATRIX WITH REPEATED EIGEN VALUES
Example 73. Find all the Eigen values and Eigen vectors of the matrix

       

2 2 3
2 1 6
1 2 0

  
   
   

A (AMIETE, Dec. 2009)

Solution. Characteristic equation of A is

    

2 2 3
2 1 6 0
1 2 0

  
  

   

 2( 2 ) [ 12] 2( 2 6) 3 ( 4 1 ) 0             
3 2 – 21 – 45 0     .... (1)

By trial: If 3, then 27 9 63 45 0,         so ( 3)   is one factor of (1).
The remaining factors are obtained on dividing (1) by 3. 

–3 1   1 –21 –45
–3   6 45

1 –2 –15    0
2 2 15 0      ( 5) ( 3) 0    

 ( 3) ( 3) ( 5) 0        5, 3, 3   
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To find the eigen vectors for corresponding eigen values, we will consider the matrix equation

      ( ) 0A I X        i.e.,     
2 2 3 0
2 1 6 0
1 2 0 0

x
y
z

        
            
             

... (2)

On putting 5   in eq. (2), it becomes 
7 2 3 0

2 4 6 0
1 2 5 0

x
y
z

      
            
            

We have      – 7x + 2y – 3z = 0,
                    2x – 4y – 6z = 0

12 12 6 42 28 4
x y z

 
     or 24 48 24

x y z
 

  or
1 2 1
x y z k  


x = k,    y = 2k,    z = – k

Hence, the eigen vector 1

1
2 = 2

1

   
       
       

k
X k k

k

Put 3    in eq. (2), it becomes 
1 2 3 0
2 4 6 0
1 2 3 0

     
           
           

x
y
z

We have x + 2y – 3z = 0,
              2x + 4y – 6z = 0,
             – x – 2y + 3z = 0
Here first, second and third equations are the same.

Let x = k1, y = k2 then 1 2
1 ( 2 )
3

z k k 

Hence, the eigen vector is 
1

2

1 2
1 ( 2 )
3

k
k

k k

 
 
 
 

  

Let 1 20, 3,k k   Hence 2

0
3
2

X
 
   
  

Since the matrix is non-symmetric, the corresponding eigen vectors X2 and X3 must be
linearly independent. This can be done by choosing

  k1 = 3,  k2 = 0, and  Hence 3

3
0
1

X
 
   
  

1

1
Hence, 2 ,

1
X

 
   
  

    2 3

0 3
3 , 0 .
2 1

   
       
      

X X
Ans.
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EXERCISE 4.23
Non-symmetric matrices with repeated eigen values
Find the eigen values and eigen vectors of the following matrices:

1.
2 2 2
1 1 1
1 3 1

 
 
 
  

  Ans. –2, 2, 2; 

4 0
1 , 1
7 1

   
      
      

         2.  
2 2 1
1 3 1
1 2 2

 
 
 
  

     Ans. 1, 1, 5; 

1 1
2 , 1
5 1

   
   
   
      

3.
2 1 1
2 3 2
3 3 4

 
 
 
  

    Ans.

0 1 1
1, 1, 7; 1 , 0 , 2

1 1 3

     
     
     
           

        4.

9 4 4
8 3 4

16 8 7

 
  
  

  Ans.

0 1 1
1, 1, 3; 1 , 1 , 1

1 1 2

     
            
          

5.

1 1 0
0 1 0
0 0 1

 
 
 
  

   (AMIETE, Dec. 2010)    Ans. , 1, 1,

1
1 0

1

 
 
 
  

4.58 SYMMETRIC MATRICES WITH NON REPEATED EIGEN VALUES
Example 74. Find the eigen values and the corresponding eigen vectors of the matrix

2 5 4
5 7 5
4 5 2

 
 
 
  

Solution. | | 0A I 

  
2 5 4
5 7 5 0
4 5 2

  
  

 

 3 23 90 216 0      

By trial:    Take   3,    then – 27 – 27 + 270 – 216 = 0

By synthetic division
–3 1 –3 –90 –216

–3  18   216
1 –6 –72      0

      2 6 72 0         ( 12) ( 6) 0         3, 6, 12   

Matrix equation for eigen vectors [ ] 0A I X 

  

2 5 4 0
5 7 5 0
4 5 2 0

x
y
z

      
            
           

...(1)

Eigen Vector
On putting 3    in (1), it will become

1 5 4 0
5 10 5 0
4 5 1 0

x
y
z

     
          
          


5 4 0

5 10 5 0
x y z
x y z
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25 40 20 5 10 25
x y z

 
  

or
1 1 1
x y z
 


Eigen vector 1

1
1 .
1

X
 
   
  

Eigen vector corresponding to eigen value – 6. 
Equation (1) becomes

     

4 5 4 0
5 13 5 0
4 5 4 0

     
          
          

x
y
z

  or
4 5 4 0

5 13 5 0
  

   

x y z
x y z

25 52 20 20 52 25
 

  
x y z

or 1 0 1
 


x y z

eigen vector  2

1
0
1

 
   
  

X

Eigen vector corresponding to eigen value  = 12.
Equation (1) becomes

     
14 5 4 0

5 5 5 0
4 5 14 0

     
           
          

x
y
z

  or
14 5 4 0

5 5 5 0
x y z
x y z

   
   

25 20 20 70 70 25
x y z

 
  

or
1 2 1
x y z
 

Eigen vector 3

1
2
1

X
 
   
  

Ans.

EXERCISE 4.24
Symmetric matrices with non-repeated eigen values
Find the eigen values and eigen vectors of the following matrices:

1.

5 0 1
0 2 0
1 0 5

 
  
  

     Ans.
0 1 1

2, 4, 6; 1 , 0 , 0
0 1 1

     
           
          

          2.  
3 1 1
1 5 1
1 1 3

 
   
  

  Ans.
1 1 1

2, 3, 6; 0 , 1 , 2
1 1 1

     
          
          

3.
8 6 2
6 7 4
2 4 3

 
   
  

           (U.P., I Semester, Jan 20111) Ans.
1 2 2

0, 3,15; 2 , 1 , 2
2 2 1

     
          
          

4.
2 4 6
4 2 6
6 6 15

 
  
    

  Ans. –2, 9, –18; 
1 2 1
1 , 2 , 1
0 1 4

     
          
          

   5.
1 1 3
1 5 1
3 1 1

 
 
 
  

  Ans.
1 1 1

2, 3, 6; 0 , 1 , 2
1 1 1
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4.59 SYMMETRIC MATRICES WITH REPEATED EIGEN VALUES
Example 75. Find all the eigen values and eigen vectors of the matrix

2 1 1
1 2 1
1 1 2

 
   
  

Solution. The characteristic equation is 

2 1 1
1 2 1 0

1 1 2

  
    

  

 2(2 )[(2 ) 1] 1[ 2 1] 1[1 2 ] 0         

          2(2 ) (4 4 1) ( 1) 1 0          
    2 2 38 8 2 2 4 4 2 2 0               
      3 26 9 4 0      
        3 26 9 4 0       ... (1)
On putting 1   in (1), the equation (1) is satisfied. So 1   is one factor of the equation (1).

The other factor 2( 5 4)     is got on dividing (1) by 1. 

 2( 1) ( 5 4) 0        or ( 1) ( 1) ( 4) 0               = 1, 1, 4
The eigen values are 1, 1, 4.

When 4    
1

2

3

2 4 1 1 0
1 2 4 1 0
1 1 2 4 0

x
x
x

      
           

          

   

1

2

3

2 1 1 0
1 2 1 0
1 1 2 0

x
x
x

      
           

         

1 2 32 0x x x   

  1 2 32 0x x x  

 31 2

2 1 1 4 2 1
xx x

 
  

 31 2

1 1 1
xx x k  



1 2 3, ,x k x k x k   

      1 1

1 1
1 or 1
1 1

k
X k k X

k

     
               
          

When 1 

1

2

3

2 1 1 1
1 2 1 1 0
1 1 2 1

x
x
x

    
       

       

         
1

2

3

1 1 1
1 1 1 0
1 1 1

x
x
x

   
      

    


1

2 2 2 1

3 3 13

1 1 1
0 0 0 0,
0 0 0

x
x R R R

R R Rx

   
       

        

     1 2 3 0x x x  
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Let x1 = k1 and x2 = k2

     k1 – k2 + x3 = 0        or         x3 = k2 – k1

1
1

2 2 2
2

2 1

1
1

1
1

0

k
k

X k X
k

k k

   
                   

Let 3

l
X m

n

 
   
  

As X3 is orthogonal to X1 since the given matrix is symmetric

    [1, 1, 1] 0
l
m
n

 
   
  

    or l – m + n = 0 ... (2)

As X3 is orthogonal to X2 since the given matrix is symmetric

     [1,1, 0] 0
l
m
n

 
   
  

    or l + m + 0 = 0 ... (3)

Solving (2) and (3), we get     0 1 1 0 1 1 1 1 2
l m n l m n

    
   

      3

1
1
2

X
 
   
  

Ans.

EXERCISE 4.25
Symmetric matrices with repeated eigen values
Find the eigen values and the corresponding eigen vectors of the following matrices:

1.
1 2 3
2 4 6
3 6 9

 
 
 
  

 Ans.
2 3 1

0, 0,14; 1 , 6 , 2
0 5 3

     
     
     
          

    2.
2 0 1
0 3 0
1 0 2

 
 
 
  

 Ans.
1 1 1

1, 3, 3; 0 , 1 , 2
1 1 1

     
          
          

3.
6 2 2
2 3 1
2 1 3

 
   
  

    Ans.
2 1 1

8, 2, 2; 1 , 0 , 2
1 2 0

     
          
          

          4.
6 3 3
3 6 3
3 3 6

 
   
  

     Ans. 3, 3, 12

4. Choose the correct or the best of the answers given in the following Parts;
(i) Two of the eigenvalues of a 3 × 3  matrix, whose determinant equals, 4, are –1 and +2 the

third eigen value of the matrix is equal to
(a) –2 (b) –1 (c) 1 (d) 2

(ii) If a square matrix A has an eigenvalue , then an eigenvalue of the matrix (kA)T where,  k 
0,is a scalar is
(a) k (b) k / (c) k  (d) None of these

(iii) An eigenvalue of a square matrix A is  Then
(a) | A |  (b) A is symmetric       (c) A is singular;
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(d) A is skew-symmetric; (e) A is an even order matrix;  (f) A is an odd order matrix.

(iv) The matrix A  is defined as A =

1 0 0
2 3 0
1 4 2

 
  
  

.The eigenvalues of AA2 are

(a) –1, –9, –4,  (b)1, 9, 4 (c) –1, –3, 2, (d) 1, 3, –2.

(v) If the matrix is  A=
1 2 3
0 3 5
0 0 2

 
 
 
  

 then the eigenvalues of  A3 + 5A + 8 I, are

(a)  –1, 27,  –8; (b) –1, 3, –2; (c) 2, 50, –10, (d)  2, 50, 10.
(vi) The matrix  A  has eigen values i  0 .Then  A–1  – 2I  + A  has eigenvalues

 (a) 1 + 2 i  +i 
2 (b)

1 2 i
i



  (c) 1–2i +i 

2 (d) 2

2 11
i i 

 

(viii) The eigen values of a matrix  A are 1,–2, 3. The eigen of  3I–2A + A2 are
 (a) 2, 11, 6  (b) 3, 11, 18 (c) 2, 3, 6  (d) 6, 3, 11

Ans. (i)(b), (ii)(c), (iii)(c), (iv)(b), (v)(c), (vi)(b), (vii)(a)

4.60 DIAGONALISATION OF A MATRIX
Diagonalisation of a matrix A is the process of reduction of A to a diagonal form ‘D’. If A is

related to D by a similarity transformation such that D = P–1 AP then A is reduced to the diagonal
matrix D through modal matrix P. D is also called spectral matrix of A.
4.61 THEOREM ON DIAGONALIZATION OF A MATRIX
Theorem. If a square matrix A of order n has n linearly independent eigen vectors, then a matrix

P can be found such that P–1 AP is a diagonal matrix.
Proof. We shall prove the theorem for a matrix of order 3. The proof can be easily extended to

matrices of higher order.

Let        

1 1 1

2 2 2

3 3 3

a b c
A a b c

a b c

 
   
  

and let 1, 2 , 3  be its eigen values and X1, X2, X3 the corresponding eigen vectors, where

1

1 1

1

,
x

X y
z

 
   
  

      

2

2 2

2

,
x

X y
z

 
   
  

3

3 3

3

x
X y

z

 
   
  

For the eigen value 1,  the eigen vector is given by

        
1 1 1 1 1 1 1

2 1 2 1 1 2 1

3 1 3 1 3 1 1

( ) 0
( ) 0

( ) 0

a x b y c z
a x b y c z
a x b y c z

     
     
     

...(1)

 We have

1 1 1 1 1 1 1 1

2 1 2 1 2 1 1 1

3 1 3 1 3 1 1 1

a x b y c z x
a x b y c z y
a x b y c z z





   
   
   

...(2)
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Similarly for 2  and 3  we have

1 2 1 2 1 2 2 2

2 2 2 2 2 2 2 2

3 2 3 2 3 2 2 2

a x b y c z x
a x b y c z y
a x b y c z z





   
   
   

         ...(3)

and
1 3 1 3 1 3 3 3

2 3 2 3 2 3 3 3

3 3 3 3 3 3 3 3

λ
λ
λ

a x b y c z x
a x b y c z y
a x b y c z z

   
   
   

...(4)

We consider the matrix P = 

1 2 3

1 2 3

1 2 3

x x x
y y y
z z z

 
 
 
  

Whose columns are the eigenvectors of A.

Then A P = 

1 1 1 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

a b c x x x
a b c y y y
a b c z z z

   
   
   
      

     

1 1 1 1 1 1 1 2 1 2 1 2 1 3 1 3 1 3

2 1 2 1 2 1 2 2 2 2 2 2 2 3 2 3 2 3

3 1 3 1 3 1 3 2 3 2 3 2 3 3 3 3 3 3

a x b y c z a x b y c z a x b y c z
a x b y c z a x b y c z a x b y c z
a x b y c z a x b y c z a x b y c z

      
        
       

     
1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

x x x
y y y
z z z

   
     
    

[Using results (2), (3) and (4)]

     

1 2 3 1

1 2 3 2

1 2 3 3

0 0
0 0
0 0

x x x
y y y PD
z z z

   
        
      

where D is the Diagonal matrix 
1

2

3

0 0
0 0
0 0

 
   
  

  AP = PD
   P–1 AP = P–1 PD = D

Notes 1. The square matrix P, which diagonalises A, is found by grouping the eigen vectors of A
into square-matrix and the resulting diagonal matrix has the eigen values of A as its
diagonal elements.

2. The transformation of a matrix A to P–1 AP is known as a similarity transformation.
3. The reduction of A to a diagonal matrix is, obviously, a particular case of similarity

transformation.
4. The matrix P which diagonalises A is called the modal matrix of A and the resulting

diagonal matrix D is known as the spectra matrix of A.

Example 76. Let
6 2 2
2 3 1
2 1 3

A
 

    
  

Find matrix P such that P–1 AP is diagonal matrix.

Solution. The characteristic equation of the matrix A is
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6 2 2
2 3 1 0

2 1 3

  
    

 

 2(6 )[9 6 1] 2 [ 6 2 2] 2 [2 6 2 ] 0              

       2(6 )( 6 8) 8 4 8 4 0         

 2 3 26 36 48 6 8 16 8 0            

 3 212 36 32 0                  3 212 36 32 0      

          2( 2) ( 8) 0              = 2, 2, 8
Eigen vector for   = 2

       
1

2

3

4 2 2 0
2 1 1 0

2 1 1 0

x
x
x

     
            
          

 or 
1

2 1 2
2

3 2 3
3

2 1 1 0
2 1 1 0
2 1 1 0

x
R R R

x
R R R

x

     
               

          

1

2

3

2 1 1 0
0 0 0 0
0 0 0 0

x
x
x

     
          
          

  or  2x1 – x2 + x3 = 0

This equation is satisfied by x1 = 0, x2 = 1, x3 = 1

      1

0
1
1

X
 
   
  

and again                    x1 = 1, x2 = 3, x3 = 1.

      2

1
3
1

X
 
   
  

Eigen vector for   = 8

       

1

2

3

2 2 2 0
2 5 1 0
2 1 5 0

x
x
x

      
             
           

1 2 32 2 2 0x x x   

1 2 32 5 0x x x   

  31 2

2 10 4 2 10 4
xx x

 
     31 2

12 6 6
xx x

 


 31 2

2 1 1
xx x

 


     3

2
1
1

X
 
   
  

   

0 1 2
1 3 1 ,
1 1 1

P
 
   
  

   1
4 1 7

1 2 2 2
6

2 1 1
P
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Now    1
4 1 7 6 2 2 0 1 2

1 2 2 2 2 3 1 1 3 1
6

2 1 1 2 1 3 1 1 1
P AP

      
                
            

2 0 0
0 2 0
0 0 8

 
   
  

Ans.

Example 77. The matrix
a h

A
h b
 

  
 

is transformed to the diagonal form D = T–1ATT, where

  
cos sin
sin cos

T
  

     
Find the value of   which gives this diagonal transformation.

Solution.
cos sin
sin cos

T
  

     
 1 cos sin

sin cos
T     

    

Now 1 cos sin cos sin
sin cos sin cos

a h
T AT

h b
          

               
cos sin cos sin cos sin
sin cos sin cos sin cos

a h h b
a h h b

        
               

2 2 2 2

2 2 2 2

cos 2 sin cos sin ( )sin cos sin cos

( )sin cos cos sin sin 2 sin cos cos

a h b a b h h

a b h h a h b

         
  

           
2 2

2 2

cos sin 2 sin ( ) sin cos cos 2

( )sin cos cos 2 sin sin 2 cos

a h b a b h

a b h a h b

         
  

         
1

2

0
0
d

d
 

  
 

 being diagonal matrix

     ( )sin cos cos 2 0a b h    

      sin 2 cos 2 0
2

a b h
    sin 2 cos 2

2
a b h

   

        2tan 2 h
b a

 


            11 2tan
2

h
b a

 


Ans.

EXERCISE 4.26
1. Find the matrix B which transforms the matrix

8 8 2
4 3 2
3 4 1

A
  

    
  

 to a diagonal matrix. Ans.
4 3 2
3 2 1
2 1 1

B
 
   
  

2. For the matrix 
4 1 0
1 4 1 ,
0 1 4

A
 
   
  

 determine a matrix P such that P–1AP is diagonal matrix.

Ans.

1 1 1

0 2 2
1 1 1

P

 
 

  
 
 

3. Determine the eigen values and the corresponding eigen vectors of the matrix 
5 7 5
0 4 1
2 8 3

A
 

   
  

Hence find the matrix P such that P–1AP is diagonal matrix.     Ans.
2 1 1
1 1 1
3 2 1

P
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4. Reduce the following matrix A into a diagonal matrix

       

8 6 2
6 7 4
2 4 3

A
 

    
  

Ans.
0 0 0
0 3 0
0 0 15

 
 
 
  

5. Prove that similar matrices have the same eigenvalues. Also give the relationship between
the eigenvectors of two similar matrices.         (A.M.I.E.T.E, June  2005)

6. Let a 4 × 4 matrix A have eigenvalues 1, –1, 2, –2   and matrix  B = 2A  + A–1 – I  Find
(i) determinant of matrix B. (ii) trace of matrix B. (A.M.I.E.T.E, June  2005)

4.62 POWERS OF A MATRIX (By diagonalisation)
We can obtain powers of a matrix by using diagonalisation.
We know that         D = P–1 AP
Where A is the square matrix and P is a non-singular matrix.

  D2 = (P–1 AP) (P–1 AP) = P–1 A (P P–1) AP = P–1 A2 P
Similarly   D3 = P–1 A3 P
In general   Dn = P–1 An P ...(1)
Pre-multiply (1) by P and post-multiply by P–1

P Dn P–1 = P (P–1 An P) P–1

= (P P–1) An (P P–1)
= An

Procedure:(1) Find eigen values for a square matrix A.
(2) Find eigen vectors to get the modal matrix P.
(3) Find the diagonal matrix D, by the formula D = P–1 AP
(4) Obtain An by the formula An = P Dn P–1.

Example 78. Find a matrix P which transform the matrix
1 0 1
1 2 1
2 2 3

A
 

   
  

to diagonal

form. Hence A4.

Solution. Characteristic equation of the matrix A is

   

1 0 1
1 2 1 0
2 2 3

 
  



3 2or 6 11 6 0
or ( 1) ( 2) ( 3) 0

1, 2, 3

      
      

  
For 1,   eigen vector is given by

    

1

2

3

1 1 0 1 0
1 2 1 1 0
2 2 3 1 0

x
x
x

      
           
          


1

2

3

0 0 1 0
1 1 1 0
2 2 2 0

x
x
x

     
          
          

1 2 3

1 2 3

0 0 0

0

x x x

x x x

   


   
 31 2

0 1 1 0 0
xx x

 
  

 or x1 = 1, x2 = –1, x3 = 0

Eigen vector is [1, –1, 0].
For   = 2, eigen vector is given by

          
1

2

3

1 2 0 1 0
1 2 2 1 0
2 2 3 2 0

x
x
x

      
           
          

      
1

2

3

1 0 1 0
1 0 1 0
2 2 1 0

x
x
x
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1

2

3

0 0 0 0
1 0 1 0
2 2 1 0

x
x
x

     
          
          

R1  R1 + R2

  
1 2 3

1 2 3

0 0
2 2 0
x x x
x x x
   

   

    31 2

0 2 2 1 2 0
xx x

 
  

    x1 = – 2,     x2 = 1,    x3 = 2

Eigen vector is [–2, 1, 2].
For   = 3, eigen vector is given by

1

2

3

1 3 0 1 0
1 2 3 1 0
2 2 3 3 0

x
x
x

      
           
          

         

1

2

3

2 0 1 0
1 1 1 0
2 2 0 0

x
x
x

      
           
          

  
1 2 3

1 2 3

2 0 0
0

x x x
x x x

    
   

     31 2

0 1 1 2 2 0
xx x

 
   

 x1 = – 1,    x2 = 1,    x3 = 2

Eigen vector is [–1, 1, 2].

Modal matrix 
1 2 1
1 1 1
0 2 2

P
  

   
  

 and  1
0 2 1

1 2 2 0
2

2 2 1
P

 
    
    

Now    1

10 1 1 0 1 1 2 1 1 0 02
1 1 0 1 2 1 1 1 1 0 2 0

1 2 2 3 0 2 2 0 0 31 1
2

P AP D

          
                   
             
  

  4 4 1

10 11 2 1 1 0 0 49 50 402
1 1 1 0 16 0 1 1 0 65 66 40
0 2 2 0 0 81 1 130 130 811 1

2

A PD P

           
                 
            
  

Ans.

EXERCISE 4.27
Find a matrix P which transforms the following matrices to diagonal form. Hence calculate the power

matrix.

1. If A = 
1 1 3
1 5 1 ,
3 1 1

 
 
 
  

 calculate A4. Ans.
251 405 235
405 891 405
235 405 251

 
 
 
  

2. If  
3 1 1
1 5 1 ,
1 1 3

A
 

    
  

 calculate A4. Ans.
251 405 235
405 891 405
235 405 251

 
   
  

3. If 
2 1 1
1 2 1 ,
1 1 2

A
 

    
  

 calculate AA6. Ans.
1366 1365 1365
1365 1366 1365
1365 1365 1366
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4. If 
1 1 1
0 2 1 ,
4 4 3

A
 
   
  

 calculate A8. Ans.
12099 12355 6305
12100 12356 6305
13120 13120 6561

 
  
  

5. Show that the matrix A is diagonalisable 
3 1 1
2 1 2
0 1 2

A
 

   
  

. If so obtain the matrix P such that

P–1 AP is a diagonal matrix.                (AMIETE, June 2010)

4.63 SYLVESTER THEOREM

Let      P(A) = C0 An + C1 An–1 + C2 An–2 + … + Cn–1 A + Cn I

and    | | ( )I A f     and Adjoint matrix of [ ] [ ( )]I A f   

     
[ ( )] Adjoint matrix of [  ]( )

( ) ( )
f I Az
f f
  

  
  

Then according to Sylvester’s theorem

   1 1 2 2 3 3( ) ( ). ( ) ( ). ( ) ( ). ( )P A P Z P Z P Z         

    
1

( ). ( )
n

r r
r

P Z


  

Example 79. If
2 0

,
0 1

A  
  
 

find A100.

Solution.
0 2 0 2 0

( ) | | 0
0 0 1 0 1

f I A
  

       
  

     ( ) ( 2) ( 1) 0f         or 1 1,  2 2 

    2( ) 3 2,f       ( ) 2 3f     
    f  (2) = 4 – 3 = 1, f  (1) = 2 – 3 = – 1

[ ( )]f   = Adjoint matrix of the matrix 
1 0

[ ]
0 2

I A
  

      

  1
0 0 0 0[ (1)] 1( ) (1)
0 1 0 1(1) 1

fZ Z
f

   
            

  2
1 0[ (2)] 1( ) (2)
0 0(2) 1

fZ Z
f

 
       

By Sylvester theorem 1 1 2 2( ) ( ). ( ) ( ). ( )P A P Z P Z     

    100
1 1 2 2( ) ( ) ( ) ( )A P Z P Z     

     
100 100 100 100
1 2

0 0 1 0 0 0 1 0
1 2

0 1 0 0 0 1 0 0
       

            
       

     
100 1000 0 2 0 2 0

0 1 0 0 0 1

    
      
     

Ans.
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EXERCISE 4.28

1. Verify Sylvesters theorem for A3, where 
1 4
3 2

A  
  
 

Use sylvesters theorem in solving the following:

2. Given 1 0
,

0 3
A  
  
 

 find A256. Ans. 256

1 0

0 3

 
 
  

3. Given 1

2

0
,

0
A

 
   

 show that 
1

2

0
.

0
A e

e
e





 
  
  

4. Given 1 3
,

1 1
A

 
  
 

 show that 2 sin A = | sin 2 | A.

5. Prove that 3 tan A = A tan (3) where 1 4
2 1

A
 

  
 

6. Prove that sin2A + cos2 A = 1, where 
1 2
1 4

A  
   

7. Given 
1 2 3
0 2 0 ,
0 0 3

A
  

   
  

 find A–1. Ans.

1 1 1
10 0
2

10 0
3

 
 

 
 
 
 
 
  

8. Given 
1 20 0
1 7 1 ,
3 0 2

A
 
   
  

 find tan A.

Ans.
18 60 20 20 80 20 20 100 20

tan1 tan 2 tan30 0 0 1 4 1 2 10 2
2 1 2

18 60 20 15 60 15 12 60 12

       
             
            

4.64 QUADRATIC FORMS
The quadratic forms are defined as a homogeneous polynomial of second degree in any
number of variables.
For example
1. Two variables ax2 + 2hxy + by2 = Q (x, y)
2. Three variables ax2 + 2hxy + by2 + cz2 + 2hxy + 2gyz + 2fzx = Q (x, y, z)
3. Four variables

ax2 + by2 + cz2 + dw2 + 2hxy + 2gyz + 2fzx + 2lxw + 2myw + 2nzw = Q (x, y, z, w)
4. n variables = Q (x1, x2, ........xn.)

4.65 QUADRATIC FORM EXPRESSED IN MATRICES
Quadratic form can be expressed as a product of matrices.
Quadratic form = Q (x) = X AX

where 
1

2

3

x
X x

x

 
   
  

 and 
11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
   
  

X is the transpose of X.

   
11 12 13 1

1 2 3 21 22 23 2

31 32 33 3

a a a x
X AX x x x a a a x

a a a x
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1

11 1 21 2 31 3 12 1 22 2 32 3 13 1 23 2 33 3 2

3

x
a x a x a x a x a x a x a x a x a x x

x

 
         
  

2 2 2
11 1 21 1 2 31 1 3 12 1 2 22 2 32 2 3 13 1 3 23 2 3 33 3a x a x x a x x a x x a x a x x a x x a x x a x        

2 2 2
11 1 22 2 33 3 12 21 1 2 23 32 2 3 31 13 1 3( ) ( ) ( )a x a x a x a a x x a a x x a a x x        

a12 and a21 are the coefficients of x1x2 it means (a12 + a21) are the coefficient of x1x2. In
general aij and aji are the both coefficients of xi,xj ( ).i j

So (a ij + a ji) are the coefficient of xi xj
Let us have new coefficients of xi xj.

  cij = cji = 
1
2

 (aij + aji)

We know 
1 ( )
2

A A  = symmetric matrix C
Thus, the coefficient matrix in quadratic form is always symmetric matrix without loss of
generality.
Then 2 2 2

11 1 22 2 33 12 1 2 23 2 3 31 1 32 2 2X AX c x c x c x c x x c x x c x x      
Matrix A is known as the coefficient matrix or matrix of quadratic form and (R) is the
discriminant of the quadratic form.
Example 80. Write down the quadratic form corresponding to the matrix

       

1 2 5
2 0 3
5 3 4

A
 
   
  

Solution. Quadratic form = X AX
1

1 2 3 2

3

1 2 5
[ ] 2 0 3

5 3 4

x
x x x x

x

   
       
      

 = 
1

1 2 3 1 3 1 2 3 2

3

[ 2 5 , 2 3 , 5 3 4 ]
x

x x x x x x x x x
x

 
       
  

2 2
1 1 2 3 1 1 2 2 3 1 3 2 3 32 5 2 3 5 3 4x x x x x x x x x x x x x x       
2 2
1 3 1 2 1 3 2 34 4 10 6x x x x x x x x     Ans.

Example 81. Find a real symmetric matrix C of the quadratic form:
2 2 2

1 2 3 1 2 3 1 2 2 3 1 3( , , ) 4 6 2 3Q x x x x x x x x x x x x     

Solution. On Comparing the coefficients in the given quadratic form, with the standard
quadratic form, we get

Here 11 22 33 12 21 23 32 13 311, 4, 6, 2, 0, 1, 0, 3, 0a a a a a a a a a        

1

1 2 3 1 2 3 2

3

1 2 3
( , , ) [ ] 0 4 1

0 0 6

x
Q x x x x x x x

x

  
     
     

 
1

1 1 2 1 2 3 2

3

2 4 3 6
x

x x x x x x x

x

 
 

     
 
 

   2 2 2
1 1 2 2 1 3 2 3 32 4 3 6x x x x x x x x x     

1 2 3 1 0 0 2 2 3
1 1 1( ) 0 4 1 2 4 0 2 8 1
2 2 2

0 0 6 3 1 6 3 1 12
C A A

     
              
          

31 1
2
11 4
2

3 1 6
2 2

 
 
 
   
 
 
  

Ans.
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4.66 LINEAR TRANSFORMATION OF QUADRATIC FORM
(Diagonalisation of the matrix)
Let the given quadratic form be XAX where A is a symmetric matrix.
Consider the linear transformation X = PY
Then   X = (PY) = Y P
     XAX = (Y P) A (PY) = Y(P AP) Y = Y BY
where    B = PAP (Transformed quadratic form)
Now   B = (PAP) = PAP = B
       Rank (B) = Rank (A)
Therefore, A and B are congruent matrices and the transformation X = PY is known as

congruent transformation.
4.67 CANONICAL FORM OF SUM OF THE SQUARES FORM USING LINEAR

TRANSFORMATION
When a quadratic form is linearly transformed then the transformed quadratic of new variable
is called canonical form of the given quadratic form.
When  XAX is linearly transformed then the transformed quadratic YBY is called the canonical
form of the given quadratic X AX.

If B = PAP = Diag 1 2 3( , , ....... )n     than  XAX = YBY = 
2

1

n

i i
i

Y



Remarks. (1) i  (eigen values) can be positive or negative or zero.

(2) If Rank (A) = r, then the quadratic form XAX will contain only r terms.

4.68 CANONICAL FORM OF SUM OF THE SQUARES FORM USING
ORTHOGONAL TRANSFORMATION
Real symmetric matrix A can be reduced to a diagonal form MAM = D ...(1)
where M is the normalised orthogonal modal matrix of A and D is its spectoral matrix.
Let the orthogonal transformation be

        X = MY
        Q = XAX = (MY) A (MY) = (YM) A (MY) = Y (MAM) Y

= YDY [  MAM = D]

=Y Diag. 1 2( )n Y  

 
1 1

2 2
1 2

0.....0
0 .....0

.....

0 0 .....

n

n n

y
y

y y y

y

   
      
   
         

   
 

1

2
1 1 2 2 ..... n n

n

y
y

y y y

y

 
 
    
 
 
  



2 2 2
1 1 2 2 ..... ,n ny y y     which is called canonical form.

Now, we have seen that quadratic form XAX can be reduced to the sum of the squares by the
transformation X = PI where P is the normalised modal matrix of A.
Canonical form. B is a diagonal matrix, then the transformed quadratic is a sum of square
terms, known as canonical form.
Index. The number of positive terms in canonical form of a quadratic form is known as index
(s) of the form.
Rank of form. Rank (r) of matrix B (or A) is called the rank of the form.
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Signature of quadratic form. The difference of positive terms (s) and negative terms (r–s)
is known as the signature of quadratic form.
       Signature = s – (r – s) = s – r + s = 2s – r

4.69 CLASSIFICATION OF DEFINITENESS OF A QUADRATIC FORM A
Let Q be XAX and variables (x1, x2, x3 … xn),

Rank (A) = r,
    Index = s

1. Positive definite
If rank and index are equal i.e., r = n, s = n or if all the eigen values of A are positive.

2. Negative definite
If index = 0, i.e., r = n, s = 0 or if all the eigen values of A are negative.

3. Positive semi-definite
If rank and index are equal but less than n, i.e.,    s = r < n    [ | A | = 0]
or all eigen values of A are positive at least one eigen value is zero.

4. Negative semi-definite
If index is zero,  i.e.,    s = 0,        r < n    [ | A | = 0]
or all eigen values of A are negative and at least one eigen value is zero.

5. Indefinite
If some eigen values are positive and some eigen values are negative.

6. Notes :
(1) If Q is negative definite (semi-definite) then – Q is positive definite (semi-definite).
(2) The classification of the definiteness of a quadratic form depends upon the location

of eigen values of A.
Example 82. Reduce to diagonal form the following symmetric matrix by congruent
transformation and interpret the result in terms of  quadratic form

       

3 2 1
2 2 3
1 3 1

A
 

   
  

Solution.
3 2 1
2 2 3
1 3 1

A
 

   
  

Let us reduce A into diagonal matrix.
     I A I  =  A

        
1 0 0 1 0 0 3 2 1
0 1 0 0 1 0 2 2 3
0 0 1 0 0 1 1 3 1

A
     

          
          

| | 0A 

R    S
Row transformation carried out on R.H.S. will be applied on R prefactor matrix.
Column transformation applied on R.H.S. will be applied on S post factor matrix.

     

1 0 0 3 2 11 0 0
2 2 111 0 0 1 0 0
3 3 3

0 0 11 11 20 1 0
3 3 3

A

   
   

    
         
     

   
      

2 1

1
3

2 ,
3

3

R R

RR
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2 11 0 0 3 0 01
3 32 2 111 0 0

0 1 03 3 3
1 11 20 0 10 1 0
3 3 3

A

                                    

2 1
2 ,
3

C C 3 1
1
3

C C

2 111 0 0 3 0 0
3 3

2 2 111 0 00 1 03 3 3
11 391004 1 0 0
2 2

A

                                     

    

3 2
11
2

R R

21 – 41 0 0 3 0 0
3

2 211– 1 0 0 00 1 –3 32
11 390 0 14 – 1 0 0 –
2 2

A

    
    
    
        
    
    

        

3 2
11–
2

C C

Thus the matrix A is reduced to the diagonal form B.

   

3 0 0
20 0
3

390 0
2

P AP

 
 
 
  
 
 
 
  

  where 

21 4
3

110 1
2

0 0 1

P

  
 
   
 
 
  

The canonical form (sum of the squares) is

  

1

1 2 3 2

3

3 0 0
2[ ] 0 0
3

390 0
2

y
Q Y BY y y y y

y

 
 

  
      
    

 
  

2 2 2
1 2 3

2 393
3 2

y y y  

   X = PY      i.e.    
1 1

2 2

3 3

21 4
3

110 1
2

0 0 1

x y
x y
x y

 
 

    
        
       

 
  

  1 1 2 3
2 4 ,
3

x y y y        2 2 3
11 ,
2

x y y       x3 = y3

The rank of A (r) = 3
The index of quadratic form (s) = 2
The signature of quadratic form [r – (r – P)] = 2 – (3 – 2) = 1 Ans.
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Example 83. Reduce the quadratic form 2 2 2
1 2 3 1 2 2 3 3 16 3 3 4 2 4x x x x x x x x x    

to the sum of square, by Lagrange Reduction Method

Solution.   2 2
1 2 1 2 1 3 2 36 3 4 4 2Q x x x x x x x x    

     
2 2 2
1 1 2 3 2 3 2 3

26 ( ) 3 3 2
3

x x x x x x x x        

     
2

2 2 2
1 2 3 2 3 2 3 2 3

1 26 ( ) 3 3 2 ( )
3 3

x x x x x x x x x          

     
2

2 2
1 2 3 2 2 3 3

1 1 7 2 76
3 3 3 3 3

x x x x x x x       
 

     
2

2 2
1 2 3 2 2 3 3

1 1 7 2 76
3 3 3 7 3

x x x x x x x           
   

     
2 2

2 2
1 2 3 2 3 3 3

1 1 7 1 7 7 16
3 3 3 7 3 3 49

x x x x x x x             
   

     
2 2

2 2 2 2
1 2 3 2 3 3 1 2 3

1 1 7 1 16 7 166 6
3 3 3 7 7 3 7

x x x x x x y y y              
   

where 1 1 2 3
3 3

2 2 3 2 2 3

3 3
1 1 2 3

1 1
3 3
1 1
7 7

1 2
3 7

y x x x x y

y x x x y y

y x x y y y

    

    
    


EXERCISE 4.29

1. Express the quadratic form 2 2 2
1 2 3 1 2 2 32 2 2 2x x x x x x x   

as product of matrices. Ans.  
1

1 2 3 2

3

1 1 0
1 2 1

0 1 2

x
x x x x

x

   
       
      

2. Write down the matrix of the quadratic form

2 2 2 2
1 2 3 4 1 2 1 3 3 42 7 4 8 6x x x x x x x x x x        Ans.

1 2 4 0
2 2 0 0

4 0 7 3
0 0 3 1

 
  
  
 

  
3. Find the transformation that will transform 10x2 + 2 y2 + 5 z2 + 6 yz – 10 zx – 4 x y

into a sum of square and find its reduced form.

Ans. 2 2
1 2

810 ,
5

Q y y 

1 11
5 4

50 1
4

0 0 1

P
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4. Find the transformation which will transform the following form into a sum of squares and
find the reduced form :

        Q = 4x2 + 3y2 + z2 – 8 xy – 6 yz + 4 xz           Ans. 2 2 2
1 2 34 ,Q y y y  

31 1
2

0 1 1
0 0 1

P

 
 

 
   

 
  

5. Reduce to sum to squares

          2 2 2
1 2 3 1 2 1 32 7 4 8Q x x x x x x x                      Ans. 2 2 2

1 2 32 9 ,Q y y y    P =
1 2 4
0 1 4
0 0 1

 
 
 
  

6. Express the following quadratic form as “sum of squares” by congruent transformation and
write down the corresponding linear transformation

2 2 2
1 2 3 1 2 2 3 3 110 6 2Q x x x x x x x x x     

Ans. 2 2
1 2

110 ,
10

y y 1 1 2
3 ,

10
x y y  x2 = y2 + y3, x3 = y3

7. Reduce to the diagonal matrix by rational congruent transformation and interpret the result
in terms of quadratic form.

        

1 2 1
2 1 3
1 3 1

A
 

   
  

     Ans. 2 2 2
1 2 3 1 2 2 3 3 14 6 2Q x x x x x x x x x      ; 2 2 2

1 2 3
254
4

Q y y y  

Determine the definiteness of the quadratic forms.

8. 2 2 2
1 2 3 2 3 3 1 1 22 3 2 2 2Q x x x x x x x x x      Ans. Indefinite.

9. 2 2 2
1 2 3 1 24 15 4 .Q x x x x x    Ans. Positive semi-definite

10. 2 2 2
1 2 3 2 3 3 1 1 25 26 10 4 14 6Q x x x x x x x x x      Ans. Positive semi-definite

11. 2 2 2
1 2 3 1 2 2 3 3 15 2 2 6 .Q x x x x x x x x x      Ans. Indefinite

12. 2 2 2
1 2 3 1 2 2 3 3 28 7 3 12 8 4Q x x x x x x x x x      Ans. Positive semi-definite

13. 2 2 2
1 2 3 1 2 2 3 3 1– 4 – 2 –13 4 8 – 4 .Q x x x x x x x x x   Ans. Negative definite

14. Find the eigenvalues and corresponding eigen vector of 
3 2 4
2 2 6

4 6 1
A

 
    
  

Verify that the eigen vectors are orthogonal and write down an orthogonal matrix M such
that MAM = D, where D is diagonal matrix.

Ans. – 9, 6, 3, [12 – 2],  [212],   [–2 2 1], ,
3
PM   where P is modal matrix

4.70 DIFFERENTIATION AND INTEGRATION OF MATRICES
If the elements of a matrix A are function of scalar variable t, the matrix is called a matrix

function of t.
               A = A(t) = [aij(t)]
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The differential coefficient of A w.r.t. “t” is defined as

          ij
d d aA
dt dt

    

Hence the elements of the differentiated matrix 
dA
dt  are the derivatives of the corresponding

elements of A.

 

111 12

221 22

1 2

...

...

...

n

n

n n nn

dada da
dt dt dt

d dada daA t
dt dt dt dt

da da da
dt dt dt

 
 
 
   
 
 
  

It is easy to prove that

    .d dB daA BA Bdt dt dt
 

The integral of the matrix A is defined as

 ijaAdt dt    
Thus the integral of A is obtained by integrating each element of A.
Power series.  Let A be a square matrix with all eigenvalues less than 1 in absolute value,

           then a0I  + aaA + a2A
2 + ... is convergent.

           The following series are also convergent

    
21 ....

1 2
A Ae I A   

2 41 1cos 1 ....
2 4

A A A   

3 51 1sin ....
3 5

A A A A   

      1 21 ....1 A AA     

Example 84. Prove that    ( ) 3tA t A 2t Ad t A 1 1Ae if e 1 t A ....t Aedt 1 2 3
     

Solution.   2 2 3 31 11 ....
1 2 3

t A
t Ad d t A t Aedt dt

      
 

    3 32 2 11
.....1 32

d d d t At At A
dt dt dt

        
   

2 2 31 10 ....
1 2

A t A t A    

2 21 11 ....
1 2

tAt A t AA Ae     
 

      Ans.

Example 85. Solve
2

2 4 12 0.d x dx x
dtdt

  

   ; .x 0 x 8by Matrix Method0 0  ...(1)
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Solution. Let 1
1 2and dxx x x

dt
  ...(2)

(1) becomes

11
14 12

dxd dx x
dt dtdt
     
 

...(3)

or            2
1 212 4

dx x x
dt

 

(2) and (3) are written in matrix form.

     
1 1

2 2

0 1
12 4

x xd
x xdt
    

        
From R.H.S. we have to find eigenvector.

Characteristic equation is
0 1

0
12 4
 

   
or   2λ 12 0 or 4 12 04        
or    0 2, 62 6        

For  = 2 and  = –6, eigenvectors are
1
2
 
 
 

and
1
6

 
  

Matrix of eigen vectors = P = 11 1 6 11,
2 6 2 18

P   
       

Now
2

λ 1
6

1 1 6 10 1
2 6 2 180

t
t

t

e
Pe P

e




    
          

=
2 6 2 6 2 6

2 6 2 6 2 6

6 1 6 21 1
2 18 82 6 12 12 2 6

t t t t t t

t t t t t t

e e e e e e
e e e e e e

  

  

     
          

By initial conditions x (0) = 0 ,   x(0) = 8

      
2 6 2 6 2 6

1
2 6 2 6 2 6

2

06 21
88 12 12 2 6 2 6

t t t t t t

t t t t t t

x e e e e e e
x e e e e e e

  

  

        
               

2 6 2 6
1 2, 2 6t t t tdxx x e e x e e

dt
       Ans.

Example 86. Solve by matrix method.
2

2 5 6 0, (0) 1. '(0) 2.d x dx x x x
dtdt

    

Solution. 
2

2 5 6 0d x dx x
dtdt

   ...(1)

Let   x = x1  and 1
2

dx x
dt

 ...(2)

On substitution (1) becomes

2 2
2 1 1 25 6 or 6 5dx dxx x x x

dt dt
     ...(3)

Equations (2) and (3) are written in a single matrix equation
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1 1

2 2

0 1
6 5

x xd
x xdt
    

        
From R.H.S we have to find eigen vector.

Characteristic equation is 0 λ 1
0

6 5 λ
 

   
–( 5 – )  + 6 = 0   or  –  5+ 6  = 0   = 2, 3

Eigen vectors for  and  = 3  are 
1 1

and
2 3
   
   
   

Matrix of eigen vectors  = P = 11 1 3 1
,

2 3 2 1
P    

      

         
2

λ 1
3

1 1 3 10
2 3 2 10

t
t

t

e
Pe P

e
     
         

         =
2 3 2 3 2 3

2 3 2 3 2 3

3 1 3 2
2 12 3 6 6 2 3

t t t t t t

t t t t t t

e e e e e e
e e e e e e

      
           

By initial conditions  x (0)  = 1  and  x(0) = 2

               
2 3 2 3

1
2 3 2 3

2

13 2
26 6 2 3

t t t t

t t t t

x e e e e
x e e e e

      
            

      =
2 3 2 3 2

2 3 2 3 2

3 2 2 2
6 6 4 6 2

t t t t t

t t t t t

e e e e e
e e e e e

     
        

 x1  = x  = e2t

2
2 2 tdxx e

dt
  Ans.

Example 87. Use matrices to solve the differential equation
2

2 4 0, (0) 1, (0) 0d y y y y'
dx

   

Solution. Let y = y1,
1

2
dy y
dx

 ...(1)
2

1 2
1 12 4 0, or 4 0 or 4

dy dyd y dy y y
dx dx dxdx

       
 

...(2)

Differential equations (1) and (2) are written in matrix form

   
1 1

2 2

0 1
4 0

y yd
y ydx
    

        

The characteristic equation of  
0 1
4 0

 
  

 is

    
20 λ 1

0 λ 4 0 λ = ± 2
4 0 λ

i
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Eigenvector for= – i 2

1 1

2 2

0 2 1 0 2 1 0
or

4 0 2 0 0 0 0
x xi i
x xi

           
                      

R2   R2  +  2iR1

or     –i 2 x1 + x2 = 0  or  1

2

1
2

x
x i
   

   
  

Eigenvector for = –i 2

     
1 1

2 2

0 2 1 0 2 1 0
or

4 0 2 0 4 2 0
x xi i
x xi i

           
                       

  
1 1

1 2
2 2

2 1 0 1
or 2 0 or

0 0 0 2
x xi

i x x
x x i
        

                   

Let 1

1 1
1 1 2 4,
2 2 1 1

2 4

iP P
i i

i



 
  

          

2 2 2
λ 1

2 2 2

1 1 1 1
1 1 0 2 4 2 4
2 2 1 1 1 10 2 2

2 4 2 4

i x i x i x
x

i x i x i x

e e ei iPe P
i i e ie ie

i i




 

   
       

                        

       = 

2 2 2 2

2 2 2 2

1 1 1 1 1cos 2 sin2 2 4 4 2
1 1 2sin 2 cos 2
2 2

i x i x i x i x

i x i x i x i x

e e e e x sxi i

x xie ie e e

 

 

                 

Applying the initial conditions, we get

1
1 2

2

1 1 cos 2cos 2 sin 2
or cos 2 and 2sin 22

0 2sin 22sin 2 cos 2

y xx x
y x y x

y xx x

                        

Ans.

EXERCISE   4.30
Solve the following differential equations by matrix method:

1.
2

2

4 3 0, (0) 2, (0) 1d y dy y y y'
dxdx

     Ans. 
35

2 2

x
x ey e 

2.
2

2

3 2 0, (0) 5, (0) 8d y dy y y y'
dxdx

     Ans. y = 2ex + 3e2x

3.
2

2

5 14 0, (0) 2, (0) 5d y dy y y y'
dxdx

      Ans. y = e2x + e–7x

4.
2

2
2 μ 0, (0) 1, (0) μd y y y y'

dx
    Ans. y = cosx + sinx

5.
2

2 9 0, (0) 1, (0) 3d y y y y'
dx

    Ans.y = cosx + sinx
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4.71 COMPLEX MATRICES
Conjugate of a Complex Number
z = x + i y is called a complex number where 1  = i, x, y are real numbers. z x iy   is
called the conjugate of the complex number z, e.g.,

Complex number Conjugate number
2 + 3i 2 – 3i

– 4 – 5i – 4 + 5i
6i – 6i
2 2

Conjugate of a matrix. The matrix formed by replacing the elements of a matrix by their
respective conjugate numbers is called the conjugate of A and is denoted by A .

( ) ,ij m nA a   then ( )ij m nA a 

Example

If 
3 4 2 4

2 3
i i

A
i i
  

   
 then 3 4 2 4

2 3
i i

A
i i

  
   

4.72 THEOREM
If A and B be two matrices and their conjugate matrices are A and B respectively, then

(i) ( )A A (ii) ( )A B A B   (iii) ( )k A k A (iv) ( )AB AB
Proof. Let     A = [aij]m × n, then

  [ ]ij m nA a   where ija  is the conjugate complex of aij.

The (i, j) th element of ( )A = the conjugate complex of the (i, j)th element of A
= the conjugate complex of ija
= aij = the (i, j)th element of A.

Hence ( ) .A A Proved.
(ii) Let         A = [aij]m × n and B = [bij]m × n

  [ ]ij m nA a   and [ ]ij m nB b 

 (i, j) th element of ( )A B = conjugate complex of (i, j) th element of (A + B)

= conjugate complex of (aij + bij) ( ) ij ijij ija b a b   

= (i, j)th element of A  + (i, j)th element of B

= (i, j)th element of  ( )A B

Hence, ( )A B A B   Proved.
(iii) Let       A = [aij]m × n, let k be any complex number.

The (i, j)th element of  ( )kA  = conjugate complex of the (i, j)th element of kA
 = conjugate complex of kaij

= ij ijka k a  ( , )thk i j   element of ( , )thA i j  element of .k A

Hence, kA k A  Proved.
(iv) Let    A = [aij]m × n, B = [bij]n × p
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Then   [ ] ,ij m nA a  [ ]ij n pB b 

The (i, j)th element of ( )AB  = conjugate complex of (i, j)th element of AB

= conjugate complex of 
1

n

ij jk
j

a b



1 1

n n

ij jk ij jk
j j

a b a b
 

 
   
 
 
 

= (i, j)th element of A B
Hence,     ( )AB A B  Proved.

4.73 TRANSPOSE OF CONJUGATE OF A MATRIX
The transpose of a conjugate of a matrix A is denoted by A  or *.A

     ( )A A 
The (i, j)th element of A  = (j, i)th element of A

= conjugate complex of (j, i)th element of A.

Example 88. If
2 3 1 2 2 4
3 4 4 3 2 6 ,

5 5 6 3

i i i
A i i i

i

   
     
  

find A

Solution. We have, 
2 3 1 2 2 4
3 4 4 3 2 6

5 5 6 3

i i i
A i i i

i

   
     
  



2 3 1 2 2 4
3 4 4 3 2 6

5 5 6 3

i i i
A i i i

i

   
     
  

         
2 3 3 4 5

( ) 1 2 4 3 5 6
2 4 2 6 3

i i
A A i i i

i i


  

      
   

Ans.

EXERCISE 4.31

1. If the matrix 
1 3 5

,
2 5

i i
A

i
  

  
 

 find (i) A   (ii) ( )A    (iii) A   (iv) ( )A 

Ans. (i) 1 3 5
2 5

i i
A

i
  

   
 (ii) 

1 2
( )

3 5 5
i i

A
i

      

     (iii) 1 2
3 5 5

i i
A

i
   
   

 (iv) 
1 3 5

( )
2 5

i i
A

i
    

  
 

4.74 HERMITIAN MATRIX
Definition. A square matrix A = [aij] is said to be Hermitian if the (i, j)th element of A, i.e.,

      jiija a  for all i and j.

For example, 
2 3 4

,
3 4 1

i
i

 
  

a b id
b id c

 
  

Hence all the elements of the principal diagonal are real.

A necessary and sufficient condition for a matrix A to be Hermitian is that .A A
Example 89. The characteristic roots of a Hermitian matrix are all real.

(A.M.I.E.T.E., June 2006)
Solution.  We know that matrix  A is Hermitian if

A A  i.e., where ( ') or ( ) 'A A A 
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Also ( ) and ( )A A AB B A       
If  is a characteristic root of matrix A then AX = X. ... (1)
 (AX) = (X) or   XA X.
But A is Hermitian  A = A.

 X A X X AX X X             ... (2)
Again from (1) I XAX = XX =  XX.      ... (3)
Hence from (2) and (3) we conclude that     showing that  is real.

Deduction 1.From above we conclude that characteristic roots of real symmetric matrix are all
real, as in this case, real symmetric matrix will be Hermitian.

For symmetric, we know that      A = A.      ( ')A A .

or A A A A    as A is real. Rest as above.

Example 90. Prove that the following

          (i) ( )A A   (ii) ( )A B A B     (iii) ( )kA k A  (iv) ( )AB B A   

where A and B  be the transposed conjugates of A and B respectively, A and B
being conformable to multiplication.

Solution.

(i)         ( ) [{( ) }] [ ]A A A A      as  ( )A A 

(ii)     ( ) ( ) ( )A B A B A B       ( ) ( )A B A B     

(iii)        ( ) ( ) ( ) ( )kA kA k A k A k A      

(iv)       ( ) ( ) ( ) ( ) ( )AB AB A B B A B A            Proved.

Example 91. Prove that matrix
1 1 2
1 3
2 0

i
A i i

i

 
   
  

is Hermitian.

Solution.     
1 1 2

1 3
2 0

i
A i i

i

 
    
  



1 1 2
( ) 1 3

2 0

i
A i i

i

 
    
  

       A A   A is Hermitian matrix. Proved.

Example 92. Show that
3 2 2

3 2 0 3 4
2 3 4 2

i i i
A i i

i i i

    
     
     

is Skew-Hermitian matrix.

Solution.   

3 2 2
3 2 0 3 4
2 3 4 2

i i i
A i i

i i i
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3 2 2
( ) 3 2 0 3 4

2 3 4 2

i i i
A i i

i i i

   
      
    


3 2 2

3 2 0 3 4
2 3 4 2

i i i
A i i

i i i


   

     
    

[ ( )A A  ]

     

3 2 2
3 2 0 3 4
2 3 4 2

i i i
i i A

i i i

    
        
     

A  = – A  A is Skew-Hermitian matrix. Proved.

Example 93. Show that the matrix BAB is Hermitian or Skew-Hermitian according as A is
 Hermitian or Skew-Hermitian.

Solution. (i) Let A be Hermitian  A A 
Now          ( ) ( ) ( )B AB AB B    

B A B   

B A B   ( )A A 
Hence, A AB  is Hermitian.
(ii) Let A be Skew-Hermitian  A A  
Now, ( ) ( ) ( )B AB AB B     

B A B   
B A B   ( )A A  

Hence, B AB is Skew-Hermitian. Proved.

4.75 SKEW-HERMITIAN MATRIX
Definition. A square matrix A = (aij) is said to be Skew-Hermitian matrix if the (i, j)th element
of A is equal to the negative of the conjugate complex of the (j, i)th element of A, i.e.,

jiija a   for all i and j.
If A is a Skew-Hermitian matrix, then

       iiiia a 

0iiiia a 
Obviously, aii is either a pure imaginary number or must be zero.

For example, 
0 3 4

3 4 0
i

i
  

  
 and 

0
0

a ib
a ib

 
   

 are Skew-Hermitian matrixes.

A necessary and sufficient condition for a matrix A to be Skew-Hermitian is that .A A  
Deduction 2. Characteristic roots of a skew Hermitian matrix is either zero or a pure
imaginary numbers.
If A is skew Hermitian, then iA is Hermitian.
Also  be a characteristic root of A then AX = X.
 (i .A) X = (i) X.
Above shows that i is characteristic root of matrix iA, which is Hermitian and hence i
should be real, which will be possible if  is either pure imaginary or zero.
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Example 94. Show that every square matrix can be expressed as R + iS uniquely where R
   and S are Hermitian matrices.

Solution. Let A be any square matrix. It can be rewritten as
1 1( ) ( )
2 2

A A A i A A R iS
i

            
   

where 1 ( ),
2

R A A 
1 ( )
2

S A A
i

 

Now we have to show that R and S are Hermitian matrices.
1 1( ) [ ( ) ]
2 2

R A A A A        
1 1( ) ( )
2 2

A A A A R     

Thus R is Hermitian matrix.

Now,          1 1( ) ( )
2 2

S A A A A
i i


          

     
1 1 1[ ( ) ] ( ) ( )
2 2 2

A A A A A A S
i i i

    
       

Thus S is a Hermitian matrix.
Hence A = R + iS, where R and S are Hermitian matrices.
Now, we have to show its uniqueness.
Let A = P + iQ be another expression, where P and Q are Hermitian matrices, i.e.,

,P P  Q Q 

Then   ( ) ( )A P iQ P iQ P iQ P iQ            

   A = P + iQ and A P iQ 

   
1 ( )
2

P A A R    and 
1 ( )
2

Q A A S
i

  

Hence A = R + iS is the unique expression, where R and S are Hermitian matrices. Proved.

Example 95. Express the matrix
1 2 5 5
2 2 4 2
1 4 7

i i
A i i i

i

  
    
    

as the sum of Hermitian matrix

and Skew-Hermitian matrix.

Solution.     
1 2 5 5
2 2 4 2
1 4 7

i i
A i i i

i

  
    
    

    
1 2 5 5
– 2 2 4 2
1 4 7

i i
A i i i

i

  
    
    

...(1)

     
1 2 1

( ) 2 2 4
5 5 4 2 7

i i i
A i

i i

    
     
   

     
1 2 1

2 2 4
5 5 4 2 7

i i i
A i

i i


    

    
   

...(2)

On adding (1) and (2), we get
2 2 2 4 6

2 2 4 2
4 6 2 14

i i
A A i i

i i


  

    
   

Let   

1 1 2 3
1 ( ) 1 2
2

2 3 7

i i
R A A i i

i i


  

     
   

...(3)
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On subtracting (2) from (1), we get
2 2 2 6 4

2 2 2 8 2
6 4 8 2 0

i i i
A A i i i

i i


  

      
     

Let         S = 

1 3 2
1 ( ) 1 4
2

3 2 4 0

i i i
A A i i i

i i


  

      
     

...(4)

From (3) and (4), we have

  
1 1 2 3 1 3 2

1 2 1 4
2 3 7 3 2 4 0

Hermitian matrix Skew-Hermitian matrix

i i i i i
A i i i i i

i i i i

      
           
           

Ans.

Example 96. For any square matrix, if AA I  show that .A A I 

Solution.  AA I  (given)
So A is invertible.
Let B be another matrix such that

       AB = BA = I ...(1)

Now         B = BI = ( )B AA ( )AA I 
= (BA) A

= IA [Using (1)]
We know that BA = I [From (1)]
Putting the value of B from (2) in (1), we get
 A A = I Proved.

4.76 PERIODIC MATRIX
A square matrix is said to be periodic, if Ak+1 = A, where k is a positive integer. If k is the
least positive integer for which Ak+1 = A, then A is said to be of period k.

4.77 IDEMPOTENT MATRIX
A square matrix is said to be idempotent provided A2 = A.
Example 97. Determine all the idempotent diagonal matrices of order n.
Solution. Let A = diag. [d1, d2, d3, ... dn] be an idempotent matrix of order n.
Here, for the matrix ‘A’ to be idempotent A2 = A

1 1 1

2 2 2

3 3 3

0 0........0 0 0........0 0 0........0
0 0........0 0 0........0 0 0........0
0 0 .......0 0 0 .......0 0 0 .......0
0 0 0........ 0 0 0........ 0 0 0........n n n

d d d
d d d

d d d
d d d

     
     
          
     
          

        

2
1 1

2
2 2

2
33

2

0 0........0 0 0........0
0 0........0 0 0........0

0 0 .......00 0 .......0
0 0 0........0 0 0........ nn

d d
d d

dd
dd
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 2
1 1;d d 2 2

2 2......... n nd d d d 

i.e.,   d1 = 0, 1; d2 = 0, 1; d3 = 0, 1 ............ dn = 0, 1.

Hence diag. [d1, d2, d3 … dn], is the required idempotent matrix where

  d1 = d2 = d3 = ... dn = 0 or 1. Ans.

EXERCISE 4.32
1. Which of the following matrices are Hermitian:

(a) 
1 2 3

2 2 4
3 4 3

i i
i i
i i

  
   
   

    (b) 
2 3 1
4 1 6
3 7 2

i

i

 
  
  

  (c) 

4 2 5 2
2 1 2 5
5 2 2 5 2

i i
i i
i i

  
   
   

 (d) 
0 3
7 0 5
3 1 0

i
i

i

 
  
  

Ans. (c)

2. Which of the following matrices are Skew-Hermitian:

(a) 
2 3 4
3 3 5
4 5 4

i
i

i

 
  
  

(b) 

3 1 2
1 2 6
4 6 3

i
i

i

 
  
  

 (c) 
0 1 2 3

1 0 6
2 3 6 4

i i
i i
i i i

  
   
   

 (d) 

1 3 7
3 6

7 8 0

i
i i
i

 
  
  

Ans. (a), (c)
3. Give an example of a matrix which is Skew-symmetric but not Skew-Hermitian.

Ans.
0 2 3

2 3 0
i

i
 

   
4. If A be a Hermitian matrix, show that iA is Skew-Hermitian. Also show that if B be a Skew-

Hermitian matrix, then iB must be Hermitian.
5. If A and B are Hermitian matrices, then show that AB + BA is Hermitian and AB – BA is Skew-

Hermitian.

6. If A is any square matrix, show that A A  is Hermitian.

7. If 
3 5 2 3

5 2 7 4 ,
3 4 5

i
H i i

i

  
   
   

 show that H is a Hermitian matrix.

Verify that iH is a Skew-Hermitian matrix.
8. Show that for any complex square matrix A,

(i) *( )A A  is a Hermitian matrix, where * TA A      (ii) *( )A A  is Skew-Hermitian matrix.

(iii) *AA  and *A A  are Hermitian matrices.
9. Show that any complex square matrix can be uniquely expressed as the sum of a Hermitian matrix

and a Skew-Hermitian matrix.

10. Express 
2 3 4 5

6 0 4 5
2 2

i i i
A i i

i i i

  
    
    

 as the sum of Hermitian and Skew-Hermitian matrices.

11. Prove that the latent roots of a Hermitian matrix are all real.

12. If A = 
2 3 1 3

5 4 2
i i

i i
   

   
 show that AA* is a Hermitian matrix; where A* is the conjugate

transpose of A.                                                                          (AMIETE, June 2010)
4.78 UNITARY MATRIX

A square matrix A is said to be unitary matrix if A A A A I   
Example 98. If A is a unitary matrix, show that AT is also unitary.
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Solution. ,A A A A I     since A is a unitary matrix.

( ) ( )AA A A I      ( )I I 

( ) ( )AA A A I    

        ( ) ( )A A A A I      

    AA A A I   [since ( )A A   ]

( ) ( ) ( )T T TAA A A I  

        ( ) ( )T T T TA A A A I  

      ( ) ( )T T T TA A A A I   
Hence, AT is a unitary matrix. Proved.
Example 99. If A is a unitary matrix, show that A–1 is also unitary.
Solution. ,AA A A I    since A is a unitary matrix.

1 1 1( ) ( ) ( )AA A A I       taking inverse

     1 1 1 1( ) ( )A A A A I       

     1 1 1 1( ) ( )A A A A I       
Hence, A–1 is a unitary matrix. Proved.
Example 100. If A and B are two unitary matrices, show that AB is a unitary matrix.

Solution. A A A A I     since A is a unitary matrix. ...(1)

Similarly,    B B B B I    ...(2)

Now,        ( )( ) ( )( )AB AB AB B A    ( )A BB A  

A I A [From (2)]

AA I  [From (1)]

Again,      ( ) ( ) ( ) ( )AB AB B A AB    

( )B A A B  [From (1)]

B I B B B
= I [From (2)]

Hence, AB is a unitary matrix. Proved.

Example 101. Prove that the matrix
1 11

1 13
i

i
 

   
is unitaryy.

Solution. Let 
1 11

1 13
i

A
i

 
    

1 11
1 13

i
A

i
  
    

   
1 1 1 11 1

1 1 1 13 3
i i

A A
i i

     
           

     
1 (1 1) (1 ) (1 ) 3 0 1 01 1

(1 ) 1(1 ) (1 1) 1 0 3 0 13 3
i i

I
i i
         

                 
Hence, A is a unitary matrix. Proved.
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Example 102. Define a unitary matrix. If 
0 1 2

1 2 0
i

N
i

 
    

 is a matrix, then show that

     (I – N) (I + N)-1 is a unitary matrix, where I is an identity matrix.
(U.P., I Semester, Winter 2000)

Solution. Unitary matrix: A square matrix ‘A’ is said to be unitary if ,A A I   where
( )TA A   and I is an identity matrix.

we have   
0 1 2

1 2 0
i

N
i

 
    

   
1 0 0 1 2 1 1 2
0 1 1 2 0 1– 2 1

i i
I N

i i
       

              
...(1)

Now we have to find (I + N)–1

   
1 0 0 1 2 1 1 2
0 1 1 2 0 1 2 1

i i
I N

i i
      

                
| I + N | = 1 – (– 1 – 4) = 6

     Adj. 
1 1 2

( )
1 2 1

i
I N

i
  

    

        1 1 1 2( ) 1( )
1 2 1| | 6

iAdj I NI N
iI N

   
      

...(2)

For unitary matrix, A A I 
From (1) and (2), we get

 1 1 1 2 1 1 2 4 2 41 1( – ) ( )
1 2 1 1 2 1 2 4 46 6

i i i
I N I N B

i i i
            

                
 (say)

Now     
4 2 41( )

2 4 46
T i

B
i

  
     

   
4 2 4 4 2 4 36 01 1( ) .

2 4 4 2 4 4 0 3636 36
T i i

B B I
i i

         
                

Hence the result. Proved.
4.79 THE MODULUS OF EACH CHARACTERISTIC ROOT OF A UNITARY

MATRIX IS UNITY.
(U.P., I Semester, Compartment 2002)

Solution. Suppose A is a unitary matrix. Then

    .A A I 

Let   be a characteristic root of A. Then
     AX X  ...(1)

Taking conjugate transpose of both sides of (1), we get
  ( )AX X   ...(2)

   X A X   
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From (1) and (2), we have
    ( ) ( )X A AX X X   

       ( )X A A X X X   

   X IX X X   ( . )A A I 

    X X X X  

      ( 1) 0X X    ...(3)

Since, X  0X   therefore (3) gives

1 0.     or 1     or   2| | 1   | | 1  Proved.

EXERCISE 4.33

1. Show that the matrix 
11

12
i

A
i

 
    

 is unitary..

2. Prove that a real matrix is unitary if it is orthogonal.
3. Prove that the following matrix is unitary:

1 1(1 ) ( 1 )
2 2
1 1(1 ) (1 )
2 2

i i

i i

    
 
    

4. Show that 2

2

1 1 1
1 1
3

1

U

 
 

   
    

 is a unitary matrix, where   is the complex cube root of unity..

5. Prove that the latent roots of a unitary matrix have unit modulus.
6. Verify that the matrix

1 11
1 12

i i
A

i i
  

    

has eigen values with unit modulus.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



372 Vectors

372

5.1 VECTORS
A vector is a quantity having both magnitude and direction such as force, velocity

acceleration, displacement etc.
5.2 ADDITION OF VECTORS

Let a


 and b


 be two given vectors

OA


 = a


 and AB


 = b


 then vector OB


 is called the

sum of a


 and b


.
Symbolically

— —
OA AB

 
 =

—
OB


a b
 
 =

—
OB


5.3 RECTANGULAR RESOLUTION OF A VECTOR

Let OX, OY, OZ be the three rectangular axes. Let ^
i , ^

j , ^
k  be three unit vectors and

parallel to three axes.

If OP


 = n


 and the co-ordinates of P be (x, y, z)

OA


= x
^
i , OB


 = y

^
j and OC


 = z

^
k

OP


= OF FP
 



 OP


= OA AF FP
  

 ( )

 OP


= OA OB OC
  

 

r = x

^
i  + y ^

j  + z
^
k

 OP2 = OF2 + FP2

= (OA2 + AF2) + FP2 = OA2 + OB2 + OC2 = x2 + y2 + z2

OP =  2 2 2x y z


| |r =  2 2 2x y z
5.4 UNIT VECTOR

Let a vector be x
^
i + y ^

j + z
^
k .

Unit vector =
^ ^ ^

2 2 2

x i y j z k

x y z

 

 

b

a
A 

B 

O

a + b

xi 


A 

X 
F 

j

jy

zk
–r

k


Y

xi 


(x, y)

(x, y, z)
PC 

Z

BO

Vectors

5
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Example 1. If a


 and b


 be two unit vectors and  be the angle between them, then find

the value of  such that a


 + 

b  is a unit vector. (Nagpur, University, Winter 2001)

Solution.Let 
OA  = 


a  be a unit vector and 


AB  = 


b  is another unit vector and 

be the angle between 

a  and 


b .

If 


OB  = 

c  = 


a  + 


b  is also a unit vector then, we have


| |OA = 1


| |AB = 1


| |OB = 1

OAB is an equilateral triangle.

So, each angle of OAB is 

3

Ans.

Hence 
 

    
2

3 3
5.5 POSITION VECTOR OF A POINT

The position vector of a point A with respect to origin O is the vector OA


 which is
used to specify the position of A w.r.t. O.

To find 
—

AB  if the position vectors of the point A and point B are given.

If the position vectors of A and B are 

a  and 


b . Let the origin be O.

Then OA


=
  

,a OB b

OA AB
 

 = OB


AB


= OB OA
 



 AB


=
 
b a

AB


= Position vector of B – Position vector of A
Example 2. If A and B  are (3, 4, 5) and (6, 8, 9), find AB


.

Solution. AB


= Position vector of  B – Position vector of A
= i j k i j k    ˆ ˆˆ ˆ ˆ ˆ(6 8 9 ) (3 4 5 )  =  i j k  ˆˆ ˆ3 4 4 Ans.

5.6 RATIO FORMULA
To find the position vector of the point which divides the line joining two given

points.
Let A and B be two points and a point C divides AB in the ratio of m : n.
Let O be the origin, then

OA


=


,a and
 

 , ?OB b OC

OC


= OA AC
 



= 
m

OA AB
m n

 



  

m
AC AB

m n
 
   

=
  
 


. ( )

m
a b a

m n

  
  ( )AB b a

O A (a) 

B (b) 

A B 

O 

m C n
(a) (b)

c
O B 

A

a b

c

a + b =
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OC


=

 



m b n a
m n

Cor.  If m = n = 1, then C will be the mid-point, and

OC


=

 

2

a b

5.7 PRODUCT OF  TWO VECTORS
The product of two vectors results in two different ways, the one is a number and

the other is vector. So, there are two types of product of two vectors, namely scalar

product and vector product. They are written as 
 

.a b  and 
 
a b .

5.8 SCALAR, OR DOT PRODUCT

The scalar, or dot product of two vectors 

a  and b


 is defined to be 

 
a b  cos  i.e.,

scalar where  is the angle between 

a  and b


.

Symbolically, 
 

.a b = 
 

cosa b 

Due to a dot between 

a  and b


 this product is also called dot product.

The scalar product is commutative

To Prove.
 

.a b =
 

.b a

Proof.
 

.b a =
 

 cos ( )b a

=  
cosa b

=
 

.a b         Proved.
Geometrical interpretation. The scalar product of two vectors is the product of one

vector and the length of the projection of the other in the direction of the first.

Let OA


=
 

anda OB b

then
 

.a b = (OA) . (OB) cos 

=
ON

OA OB
OB

. .

= OA . ON

= (Length of 

a ) (projection of 


b  along 


a )

5.9 USEFUL RESULTS
^ ^

.i i = (1) (1) cos 0° = 1 Similarly, 
^ ^

.j j  = 1, ^ ^
.k k  = 1

^ ^
.i j = (1) (1) cos 90° = 0 Similarly, ^ ^

.j k  = 0,
^ ^

.k i   = 0
Note. If the dot product of two vectors is zero then vectors are prependicular to each other.

5.10 WORK DONE AS A SCALAR PRODUCT
If a constant force F acting on a particle displaces it from A to B then,

Work done = (component of F along AB). Displacement
= F cos . AB

=
 

.F AB
Work done = Force . Displacement

A 

B 

0 


a

b

B 

N A 
a

b


0

A B 

F 
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5.11 VECTOR PRODUCT OR CROSS PRODUCT

1. The vector, or cross product of two vectors 

a

and 

b  is defined to be a vector such that

(i) Its magnitude is 
ba sin , where  is the

angle between 

a  and b


.

(ii) Its direction is perpendicular to both vectors


a  and b


.

(iii) It forms with a right handed system.

Let 
^

 be a unit vector perpendicular to both the vectors 

a  and b


.

 
a b =

  sin .ba
2. Useful results

Since 
^
i , ^

j ,
^
k  are three mutually perpendicular unit vectors, then


^ ^
i i =    

^ ^ ^ ^
0j j k k


^ ^
i j =

^ ^ ^
j i k      

^ ^ ^ ^
j i i j

 ˆĵ k =   
^ ^ ^
k j i and    

^ ^ ^ ^
k j j k

ˆ ˆk i =   
^ ^ ^
i k j    

^ ^ ^ ^
i k k i

5.12 VECTOR PRODUCT EXPRESSED AS A DETERMINANT

If

a =

^ ^ ^
1 2 3a i a j a k 

b


=
^ ^ ^

1 2 3b i b j b k 
 
a b =

^ ^ ^ ^ ^ ^
1 2 3 1 2 3( ) ( )a i a j a k b i b j b k    

=
^ ^ ^ ^ ^ ^ ^ ^ ^ ^

1 1 1 2 1 3 2 1 2 2( ) ( ) ( ) ( ) ( )a b i i a b i j a b i k a b j i a b j j        
^ ^ ^ ^ ^ ^ ^ ^

2 3 3 1 3 2 3 3( ) ( ) ( ) ( )a b j k a b k i a b k j a b k k       

=     
^ ^ ^ ^ ^ ^

1 2 1 3 2 1 2 3 3 1 3 2a b k a b j a b k a b i a b j a b i

=
^ ^ ^

2 3 3 2 1 3 3 1 1 2 2 1( ) ( ) ( )a b a b i a b a b j a b a b k    

=

^ ^ ^

1 2 3

1 2 3

i j k

a a a
b b b

5.13 AREA OF PARALLELOGRAM
Example 3. Find the area of a parallelogram whose adjacent sides are i – 2j + 3 k and
2i + j – 4k.

Solution. Vector area of   gm = 


^ ^ ^

1 2 3
2 1 4

i j k



a

b
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    = 
^ ^ ^

(8 3) ( 4 6) (1 4)i j k       = 
^ ^ ^

5 10 5i j k 

Area of parallelogram = 2 2 2(5) (10) (5)  = 5 6 Ans.

5.14 MOMENT OF A FORCE

Let a force F ( )PQ


 act at a point P.

Moment of F


 about O
= Product of force F and perpendicular

distance (ON. 
^

)

= (PQ) (ON)(
^

) = (PQ) (OP) sin  (
^

) = 
 

OP PQ

       
  

 M r F

5.15 ANGULAR VELOCITY
Let a rigid body be rotating about the axis OA with the angular

velocity  which is a vector and its magnitude is  radians per second
and its direction is parallel to the axis of rotation OA.

Let P be any point on the body such that OP  = 

r  and

AOP =  and AP  OA. Let the velocity of P be V.

Let   be a unit vector perpendicular to 

  and 


r .

 
  r = ( r sin ) 

^
 = ( AP)   = (Speed of P) 

^

= Velocity of P  to 

  and r

Hence 
V =

 
 r

5.16 SCALAR TRIPLE PRODUCT

Let 
  

, ,a b c  be three vectors then their dot product is written as 
     

. ( ) or [ ]a b c a b c .

If

a =

 
       

^ ^ ^ ^ ^ ^ ^ ^ ^
1 2 3 1 2 3 1 2 3, , anda i a j a k b b i b j b k c c i c j c k

  
. ( )a b c =

^ ^ ^ ^ ^ ^ ^ ^ ^
1 2 3 1 2 3 1 2 3( ) . [( ) ( )]a i a j a k b i b j b k c i c j c k      

=
^ ^ ^ ^ ^ ^

1 2 3 2 3 3 2 3 1 1 3 1 2 2 1( ) . [( ) ( ) ( ) ]a i a j a k b c b c i b c b c j b c b c k      
= a1 (b2c3 – b3c2) + a2 (b3c1 – b1c3) + a3 (b1c2 – b2c1)

=
1 2 3

1 2 3

1 2 3

a a a
b b b
c c c

Similarly,      
 . ( ) and . ( )b c a c a b  have the same value.


  

. ( )a b c =   
. ( )b c a  = 

  
. ( )c a b

The value of the product depends upon the cyclic order of the vector, but is
independent of the position of the dot and cross. These may be interchanged.

The value of the product changes if the order is non-cyclic.

Note.
     
 ( . ) and ( . )a b c a b c  are meaningless.

N P F 
Q

O

r

A 

B 

P 

V

Ax
is

r





O
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5.17 GEOMETRICAL INTERPRETATION

The scalar triple product 
  

. ( )a b c  represents the volume of the parallelopiped

having 

a , 


b , 


c  as its co-terminous edges.

  
. ( )a b c  =


 ^. Area of gma OBDC

= Area of   gm OBDC × perpendicular distance
between the parallel faces OBDC and AEFG.

= Volume of the parallelopiped

Note. (1) If 
  

. ( )a b c  = 0, then 
  

, ,a b c  are
coplanar.

(2) Volume of tetrahedron 
  1

( )
6

a b c .

Example 4. Find the volume of parallelopiped if
  
          

^ ^ ^ ^ ^ ^ ^ ^ ^
, ,a 3 i 7 j 5 k b 3 i 7 j 3 k and c 7 i 5 j 3 k

are the three co-terminous edges of the parallelopiped.
Solution.

Volume =
  

. ( )a b c

= 

 

 

3 7 5
3 7 3
7 5 3

 = – 3 (–21 – 15) – 7 (9 + 21) + 5 (15 – 49)

= 108 – 210 – 170 = – 272
Volume = 272 cube units. Ans.

Example 5. Show that the volume of the tetrahedron having 
     
  , ,A B B C C A  as

concurrent edges is twice the volume of the tetrahendron having 
  

, ,A B C  as concurrent edges.

Solution. Volume of tetrahendron = 
     
   

1
( ) . [( ) ( )]

6
A B B C C A

=
         
       

1
( ) . [ ]

6
A B B C B A C C C A  

 [ 0]C C

=
       
     

1
( ) . ( )

6
A B B C B A C A

= 
                

          
1

[ . ( ) . ( ) . ( ) . ( ) . ( ) . ( )]
6

A B C A B A A C A B B C B B A B C A

=
        

    
1 1

[ . ( ) . ( )] . ( )
6 3

A B C B C A A B C

=
  


1

2 [ ]
6

A B C

= 2 Volume of tetrahedron having 
  

, ,A B C , as concurrent edges. Proved.

EXERCISE 5.1
1. Find the volume of the parallelopiped with adjacent sides.

OA =
      
     3 , 2 , and 5 4i j OB j k OC i j k

extending from the origin of co-ordinates O. Ans. 20
2. Find the volume of the tetrahedron whose vertices are the points A (2, –1, –3), B (4, 1, 3)

C (3, 2, –1) and D (1, 4, 2). Ans.
1

7
3

A 
B 

C 

D 
E 

F G 

O

– a – b

– c

n̂
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3. Choose y in order that the vectors 


     
^ ^ ^ ^ ^ˆ7 , 3 2 ,a i y j k b i j k

^ ^ ^
5 3c i j k


    are linearly dependent. Ans. y = 4

4. Prove that
        

   [ , , ] 2 [ ]a b b c c a a b c

5.18 COPLANARITY QUESTIONS
Example 6. Find the volume of tetrahedron having vertices

                   
^ ^ ^^ ^ ^ ^ ^

( ), ( ), ( )j k 4 i 5 j q k 3 i 9 j 4 k  and 
^ ^ ^

( )4 i j k   .
Also find the value of q for which these four points are coplanar.

(Nagpur University, Summer 2004, 2003, 2002)

Solution.  Let

A =            

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
, 4 5 , 3 9 4 , 4( )j k B i j q k C i j k D i j k

AB =
 
          

^ ^ ^ ^ ^ ^ ^ˆ4 5 ( ) 4 6 ( 1)B A i j q k j k i j q k

AC =
 
         

^ ^ ^ ^ ^ ^ ^ˆ(3 9 4 ) ( ) 3 10 5C A i j k j k i j k

AD =
 
           

^ ^ ^ ^ ^ ^ ^ ^
4 ( ) ( ) 4 5 5D A i j k j k i j k

Volume of the tetrahedron =
1

[ ]
6

AB AC AD

=




4 6 1
1

3 10 5
6

4 5 5

q
 =      

1
{4 (50 25) 6 (15 20) ( 1) (15 40)}

6
q

=
1

{100 210 55 ( 1)}
6

q    = 
1

( 110 55 55 )
6

q  

=    
1 55

( 55 55 ) ( 1)
6 6

q q

If four points A, B, C and D are coplanar, then ( )AB AC AD  = 0
i.e., Volume of the tetrahedron = 0

 
55

( 1)
6

q = 0  q = 1 Ans.

Example 7. If four points whose position vectors are , , ,a b c d  are coplanar, show that

              
           

  [ ] [ ] [ ] [ ]a b c a d b a d c d b c (Nagpur University, Summer 2005)

Solution.  Let A, B, C, D be four points whose position vectors are 
   

, , ,a b c d .


AD =
       
    , andd a BD d b CD d c

If , ,AD BD CD
  

are coplanar, then
  

. ( )AD BD CD = 0


     
   ( ) . [( ) ( )]d a d b d c = 0


         
       ( ) . [ ]d a d d d c b d b c = 0


       
      ( ) . [ ]d a d c b d b c = 0

                   
           . ( ) . ( ) . ( ) . ( ) . ( ) .( )d d c d b d d b c a d c a b a a b c  = 0

            
     0 0 [ ] [ ] [ ] [ ]d b c d d c d b d a b c = 0


  

[ ]a b c          
 [ ] [ ] [ ]a b d a d c d b c Proved.
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EXERCISE 5.2

1. Determine  such that

        
^ ^ ^ ^ ^ ^ ^ ^

, 2 4 , and 3a i j k b i k c i j k are coplanar. Ans.   = 5/3
2. Show that the four points

         
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

6 3 2 , 3 2 4 , 5 7 3 and 13 17i j k i j k i j k i j k are coplanar.
3. Find the constant a such that the vectors

^ ^ ^ ^ ^ ^ ^ ^ ^
2 , 2 3 , and 3 5i j k i j k i a j k      are coplanar. Ans. – 4

4. Prove that four points

        
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

4 5 , ( ), 3 9 4 , 4 ( )i j k j k i j k i j k are coplanar.

5. If the vectors 
  

, anda b c  are coplanar, show that
  

     

     

. . .

. . .

a b c

a a a b a c

b a b b b c
 = 0

5.19 VECTOR PRODUCT OF THREE VECTORS (A.M.I.E.T.E., Summer, 2004, 2000)

Let 

a , b


 and 


c  be three vectors then their vector product is written as   

 ( × )a b c .

Let

a =

^ ^ ^
1 2 3 ,a i a j a k 

b


=
^ ^ ^

1 2 3 ,b i b j b k 

c = 

^ ^ ^
1 2 3c i c j c k 

  
 ( )a b c =        

^ ^ ^^ ^ ^ ^ ^ ^
1 2 3 1 2 3 1 2 3( ) ( ) ( )a i a j a k b i b j b k c i c j c k

=        
^ ^ ^ ^ ^ ^

1 2 3 2 3 3 2 3 1 1 3 1 2 2 1( ) [( ) ( ) ( ) ]a i a j a k b c b c i b c b c j b c b c k

=
^ ^

2 1 2 2 1 3 3 1 1 3 3 2 3 3 2 1 1 2 2 1[ ( ) ( )] [ ( ) ( )]a b c b c a b c b c i a b c b c a b c b c j      
^

1 3 1 1 3 2 2 3 3 2[ ( ) ( ) ]a b c b c a b c b c k   

= ^ ^ ^ ^ ^ ^
1 1 2 2 3 3 1 2 3 1 1 2 2 3 3 1 2 3( ) ( ) ( ) ( )a c a c a c b i b j b k a b a b a b c i c j c k        

=
     

( . ) ( . ) .a c b a b c Ans.

Example 8. Prove that :
        
        ( ) ( ) ( ) 0a b c b c a c a b (Nagpur University, Winter 2008)

Solution.  Here, we have
        
       ( ) ( ) ( )a b c b c a c a b

=
               

    [( . ) ( . ) ] [( . ) ( . ) ] [( . ) ( . ) ]a c b a b c b a c b c a c b b c a b

=
                 

    [( . ) ( . ) ] [( . ) ( . ) ] [( . ) ( . ) ]b a c a b c c b a b c a a c b c a b

  = 
                 

    [( . ) ( . ) ] [( . ) ( . ) ] [( . ) ( . ) ]a b c a b c b c a b c a c a b c a b
          = 0 + 0 + 0 = 0 Proved.
Example 9. Prove that :

   
        

^ ^ ^ ^ ^ ^
( ) ( ) ( ) 2i a i j a j k a k a (Nagpur University, Winter 2003)

Solution.  Let 

a  =  

^ ^ ^
1 2 3a i a j a k
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Now, L.H.S. =
  

       
^ ^ ^ ^ ^ ^

( ) ( ) ( )i a i j a j k a k

=
^ ^ ^ ^ ^ ^ ^ ^ ^ ^

1 2 3 1 2 3( ) ( )i a i a j a k i j a i a j a k j               

^ ^ ^ ^ ^
1 2 3( )k a i a j a k k     

=                   
^ ^^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

1 2 3 1 2 3( ) ( ) ( ) ( ) ( ) ( )i a i i a j i a k i j a i j a j j a k j

    
^ ^ ^ ^ ^ ^ ^

1 2 3( ) ( ) ( )k a i k a j k a k k        

=
^ ^ ^ ^ ^ ^ ^ ^ ^

2 3 1 3 1 20 0 0i a k a j j a k a i k a j a i                     

=
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

2 3 1 3 1 2( ) ( ) ( ) ( ) ( ) ( )a i k a i j a j k a j i a k j a k i           

=
^ ^ ^ ^ ^ ^

2 3 1 3 1 2a j a k a i a k a i a j      = 
^ ^ ^

1 2 32 2 2a i a j a k 

=


  
^ ^ ^

1 2 32 ( ) 2a i a j a k a Proved.

Example 10. Show that for any scalar , the vectors 
 

,x y  given by
   

      
    

2 2

( ) (1 ) ( )
,

q a b p p a b
x a y a

qa a
satisfy the equations

                      
   p x q y a and x y b .  (Nagpur University, Winter 2004)

Solution. The given equations are
 

p x qy =

a ...(1)

 
x y = b


...(2)

Multiplying equation (1) vectorially by 

x , we get

  
 ( )x px qy =  

x a
   
  ( ) ( )p x x q x y =

 
x a

 
 ( )q x y =

 
 ,x a as 

 
  0x x

 
x a =


,qb [From (2) 

  
 x y b ] ...(3)

Multiplying (3) vectorially by 

a , we have

  
 ( )a x a =

 
a q b

     
( . ) ( . )a a x a x a =

 
( )q a b

   
2 ( . )a x a x a =

 
( )q a b       

2a x  = 
    

 ( . ) ( )a x a q a b


x =

    



2 2

( . ) ( )a x a q a b

a a
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x =

 


 
2

( )q a b
a

a
where  = 

 

2

.a x

a

Substituting the value of 

x  in (1), we get  

 
 

 
    

  
2

( )q a b
p a q y

a
 = 


a


q y =

 
 

     
  

2

( )q a b
a p a

a


y =

  
  


2

(1 ) ( )p a p a b
q a

Ans.

EXERCISE 5.3
1. Show that      

    ( ) ( )a b a a b a
2. Write the correct answer

(a)
  
 ( )A B C  lies in the plane of

(i) 
 

andA B (ii) 
 

andB C (iii)
 

andC A Ans. (ii)

(b) The value of 
     

  . ( ) ( + )a b c a b c  is

(i) Zero (ii)
     

[ , , ] [ , , ]a b c b c a (iii)
  

[ , , ]a b c (iv) None of these
Ans. (ii)

5.20 SCALAR PRODUCT OF FOUR VECTORS
Prove the identity
   
 ( ) . ( )a b c d = 

       
( . ) ( . ) ( . ) ( . )a c b d a d b c

Proof.
   
 ( ) . ( )a b c d  = 

  
( ) .a b r

=
  

. ( )a b r dot and cross can be interchanged. Put 
  
 c d r

=
   

 . [ ( )]a b c d  = 
      

. [( . ) ( . ) ]a b d c b c d

=
       

( . ) ( . ) ( . ) ( . )a c b d a d b c

=

   

   

. .

. .

a c a d

b c b d
Proved.

EXERCISE 5.4

1. If 
      

           2 3 , 2 4 , , find ( ) . ( ).a i j k b i j k c i j k a b a c Ans. –74

2. Prove that 
        
   2( ) . ( ) ( . ) ( . ) ( . )a b a c a b c a b a c .

5.21 VECTOR PRODUCT OF FOUR VECTORS

Let 
  

, ,a b c  and 

d  be four vectors then their vector product is written as

    
   
  ( ) ( )a b c d

Now,
   
  ( ) ( )a b c d =

  
 ( )r c d [Put   

 a b r ]

=
     

( . ) ( . )r d c r c d

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



382 Vectors

=
       
  [( ) . ] [( ) . ]a b d c a b c d

=
       

[ ] [ ]a b d c a b c d


   
  ( ) ( )a b c d lies in the plane of 


c  and 


d . ...(1)

Again,
   
  ( ) ( )a b c d =

  
 ( )a b s [Put = 

  
 c d s ]

=
  

  ( )s a b  = 
     

 ( . ) ( . )s b a s a b

=
       

   [( ) . ] [( ) . ]c d b a c d a b  =  
       

 [( ] [ ]b c d a a c d b

    
  ( ) ( )a b c d lies in the plane of 


a  and b


. ...(2)

Geometrical interpretation : From (1) and (2) we conclude that 
   
  ( ) ( )a b c d  is

a vector parallel to the line of intersection of the plane containing 

a , b


 and plane

containing 

c , 


d .

Example 11. Show that
              
            ( ) ( ) ( ) ( ) ( ) ( ) ( )B C A D C A B D A B C D 2 A B C D

Solution. L.H.S. = 
           
          ( ) ( ) ( ) ( ) ( ) ( )B C A D C A B D A B C D

= 
                       

     [( ) ( ) ] [( ) ( ) ] [( ) ( ) ]B C D A B C A D C A D B C A B D B C D A A C D B

= 
                      

    ( ) ( ) ( ) ( ) ( ) ( )B C D A B C D A C A D B A C D B B C A D C A B D

=               
   ( ) ( ) ( ) ( )A C D B A C D B A B C D A B C D

= 
   

 2 ( )A B C D  = R.H.S. Proved.

EXERCISE 5.5
Show that:

1.
       
   ( ) ( ) ( )b c c a c a b c when 

  
( )a b c  stands for scalar triple product.

2.
        
    2[ , , )] [ ]b c c a a b a v c

3.
        
    [ { ( )}] [( . )[ . ( )]d a b c d b d a c d

4.       
    2[ [ ( )] ( )a a a a b a b a

5.
         
   [( ) ( )] . ( . ) [ ]a b a c d a d a b c

6.
  

     
2 2 2

^ ^ ^22a a i a j a k

7.
      
      

^ ^ ^ ^ ^ ^
[( ) . ] [( ) . ] [( ) . ]a b i a b i j a b j k a b k

8.
              
              [( ) ( )] [( ) ( )] [( ) ( )] 0p a q b r q a r b p r a p b q
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Tangent

P (r)
 r

r

r +  r

O

Q

5.22 VECTOR FUNCTION
If vector r is a function of a scalar variable t, then we write

r
 = ( )r t



If a particle is moving along a curved path then the position vector r


 of the particle is a
function of t. If the component of f (t) along x-axis, y-axis, z-axis are f1(t), f2(t), f3(t) respectively.
Then,

—
( )f t


= 1 2 3( ) ( ) ( )f t i f t j f t k
  
 

5.23 DIFFERENTIATION OF VECTORS
Let O be the origin and P be the position of a moving particle at time t.

Let —
OP
 = r



Let Q be the position of the particle at the time t + t and

the position vector of Q is
—
OQ


 = r r

 
 

—
PQ


=
— —
OQ OP

 


= ( )r r r r
   
    

r
t




 is a vector. As t  0, Q tends to P and the chord
becomes the tangent at P.

We define
d r
d t



= 0
lim
t

r
t



 


 , then

d r
d t



 is a vector in the direction of the tangent at P.

d r
d t



 is also called the differential coefficient of r
  with respect to ‘t’.

Similarly, 
2

2
d r
dt



 is the second order derivative of r


.

d r
d t



 gives the velocity of the particle at P, which is along the tangent to its path. Also 
2

2
d r
dt



gives the acceleration of the particle at P.
5.24 FORMULAE OF DIFFERENTIATION

(i) ( )d d F d GF G
dt dt dt


 
         (ii) ( )d d F dF F

dt dt dt


  
        (U.P. I semester, Dec. 2005)

(iii) ( . ) . .d d G d FF G F G
dt dt dt

 
  

  (iv) ( )d d G d FF G F G
dt dt dt

 
   
    

(v) [ ]d d a d b d ca b c b c a c a b
dt dt dt dt

 
        

     
       
      
      

(vi) [ ( )] ( )d d a d b d ca b c b c a c a b
dt dt dt dt

  
        

   
                
   

The order of the functions 
 

,F G  is not to be changed.
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Example 12. A particle moves along the curve 3 2 2 3( 4 ) ( 4 ) (8 3 )r t t i t t j t t k
  

      ,
where t is the time. Find the magnitude of the tangential components of its acceleration
at t = 2.

(Nagpur University, Summer 2005)

Solution. We have, r


= 3 2 2 3( 4 ) ( 4 ) (8 3 )t t i t t j t t k
  

    

Velocity = 2 2(3 4) (2 4) (16 9 )d r t i t j t t k
d t


  

     

At t = 2, Velocity = 8 8 4i j k
  
 

Acceleration = a


 = 
2

2 6 2 (16 18 )d r t i j t k
dt


  

   

At t = 2 12 2 20a i j k
  

  
The direction of velocity is along tangent.
So the tangent vector is velocity.

Unit tangent vector,     T
 =

8 8 4 8 8 4 2 2
| | 12 364 64 16
v i j k i j k i j k
v

        
     

  
 

Tangential component of acceleration, at = .a T


= 2 2(12 2 20 ).
3

i j ki j k
  

    
    = 

24 4 20 48
3 3

 
  = 16 Ans.

Example 13. If d a u a
d t


 

   and d b u b
dt


 

  then prove that [ ] ( )d a b u a b
dt

    
   

(M.U. 2009)
Solution. We have,

[ ]d a b
dt

 
 =

d b d aa b
dt dt

 
 
      = ( ) ( )a u b u a b

     
    

= ( ) ( )a u b b u a
     
    

= ( . ) ( . ) [( . ) ( . ) ]a b u a u b b a u b u a
          

  
(Vector triple product)

= ( . ) ( . ) ( . ) ( . )a b u u a b a b u u b a
           

  

= ( . ) ( . )u b a u a b
     



= ( )u a b
  
  Proved.

Example 14. Find the angle between the surface x2 + y2 + z2 = 9 and z = x2 + y2 – 3 at
(2, –1, 2). (M.D.U. Dec. 2009)
Solution. Here, we have

x2 + y2 + z2 = 9 ...(1)
z = x2 + y2 – 3 ...(2)

Normal to (1)  1= (x2 + y2 + z2 – 9)

= 2 2 2ˆˆ ˆ ( – 9)i j k x y z
x y z

   
       

 = 2 x î  + 2 y ĵ  + 2 z k̂

Normal to (1) at (2, – 1, 2),  1 = 4 î  – 2 ĵ  + 4 k̂ ...(3)
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Normal to (2),                 2 = (z – x2 – y2 + 3)

= 
2 2ˆˆ ˆ ( – – 3)i j k z x y

x y z
   

      
 = – 2 x î  – 2 y ĵ  + k̂

Normal to (2) at (2, – 1, 2),  2 = – 4 î  + 2 ĵ  + k̂ ...(4)

1 2.  = 1 2| | | | cos  

cos  =
1 2

1 2

.
| | | |
 
   = 

ˆ ˆˆ ˆ ˆ ˆ(4 – 2 4 ).(– 4 2 ) – 16 – 4 4=ˆ ˆˆ ˆ ˆ ˆ 16 4 16 16 4 1|4 – 2 4 | |– 4 2 |
i j k i j k
i j k i j k

   
     

=
– 16

6 21
   = 

– 8
3 21

 = –1 – 8cos
3 21

 
 
 

Hence the angle between (1) and (2) –1 – 8cos
3 21

 
 
 

Ans

EXERCISE 5.6

1. The coordinates of a moving particle are given by x = 
2

4
2
tt   and y = 

3
3 6 .

6
tt   Find the

velocity and acceleration of the particle when t = 2 secs. Ans. 4.47, 2.24
2. A particle moves along the curve

x = 2t2, y = t2 – 4t and z = 3t – 5
where t is the time. Find the components of its velocity and acceleration at time t = 1, in the

direction 3 2 .i j k
  
  (Nagpur, Summer 2001) Ans. 8 14 14,

7 7


3. Find the unit tangent and unit normal vector at t = 2 on the curve x = t2 – 1, y = 4t – 3,

z = 2t2 – 6t where t is any variable. Ans. 1 1(2 2 ), (2 2 )
3 3 5

i j k i k
    
  

4. Prove that ( )d d G d FF G F G
dt dt dt

 
   
    

5. Find the angle between the tangents to the curve 2 32 ,r t i t j t k
  

    at the points t = ± 1.

Ans. 1 9cos
17

  
 
 

6. If the surface 5x2 – 2byz = 9x be orthogonal to the surface 4x2y + z3 = 4 at the point (1, –1, 2)
then b is equal to
(a)  0        (b) 1           (c) 2              (d)   3            (AMIETE, Dec. 2009) Ans. (b)

5.25 SCALAR AND VECTOR POINT FUNCTIONS
Point function. A variable quantity whose value at any point

in a region of space depends upon the position of the point, is
called a point function. There are two types of point functions.

(i) Scalar point function. If to each point P (x, y, z) of a
region R in space there corresponds a unique scalar f (P), then f is
called a scalar point function. For example, the temperature
distribution in a heated body, density of a body and potential due to gravity are the examples of
a scalar point function.

(ii) Vector point function. If to each point P (x, y, z) of a region R in space there corresponds
a unique vector f (P), then f is called a vector point function. The velocity of a moving fluid,
gravitational force are the examples of vector point function.

(U.P., I Semester, Winter 2000)




+ d
= c

= c

R 
N 

n 

P

r 

^

Q
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Vector Differential Operator Del i.e. 
The vector differential operator Del is denoted by . It is defined as

 = i j k
x y z

    
 

  
5.26 GRADIENT OF A SCALAR FUNCTION

If  (x, y, z) be a scalar function then i j k
x y z

    
 

  
 is called the gradient of the scalar

function .
And is denoted by grad .

Thus, grad  = i j k
x y z

    
 

  

gard  = ( , , )i j k x y z
x y z

     
      

gard  =   ( is read del or nebla)
5.27 GEOMETRICAL MEANING OF GRADIENT, NORMAL

(U.P. Ist Semester, Dec 2006)
If a surface (x, y, z) = c passes through a point P. The value of the function at each point

on the surface is the same as at P. Then such a surface is called a level surface through P. For
example, If (x, y, z) represents potential at the point P, then equipotential surface  (x, y, z) = c
is a level surface.

Two level surfaces can not intersect.
Let the level surface pass through the point P at which the value of the function is . Consider

another level surface passing through Q, where the value of the function is  + d.

Let r  and r r   be the position vector of P and Q then 
—
PQ r

 

.dr =    .( )i j k i dx j dy k dz
x y z

      
       

 

= dx dy dz d
x y z

   
   

  
...(1)

If Q lies on the level surface of P, then d = 0
Equation (1) becomes  . dr = 0. Then  is  to dr  (tangent).
Hence,  is normal to the surface (x, y, z) = c

Let  = || N , where N  is a unit normal vector. Let n be the perpendicular distance
between two level surfaces through P and R. Then the rate of change of  in the direction of the

normal to the surface through P is 
n

 


.

d
d n


=
0 0

.lim lim
n n

d r
n n



   

 


 

=
0

| | .lim
n

N d r
n

 

 




. | | | | cos

| | cos

N r N r

r n

 



 
    

 
      

=
0

| |lim | |
n

n
n 
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 || =
n



Hence, gradient  is a vector normal to the surface  = c and has a magnitude equal to the
rate of change of  along this normal.
5.28 NORMAL AND DIRECTIONAL DERIVATIVE

(i) Normal. If (x, y, z) = c represents a family of surfaces for different values of the constant
c. On differentiating , we get d = 0

But d =  .


d r so  . d r = 0

The scalar product of two vectors  and 


d r  being zero,  and 


d r  are perpendicular to
each other. d r


 is in the direction of tangent to the given surface.

Thus  is a vector normal to the surface (x, y, z) = c.

(ii) Directional derivative. The component of  in the direction of a vector d


 is equal to

.d  and is called the directional derivative of  in the direction of d


.

r

 = 0

lim
r r 


 where, r = PQ

r



 is called the directional derivative of  at P in the direction of PQ.

Let a unit vector along PQ be N
  .

n
r




= cos   r = 
cos .

n n

N N
 

 


 
...(1)

Now
r



=
 

0
lim .

.

r
N N

n n
N N

 

 

      
  

From(1),
.

nr
N N
 
     

= . | |N N
       = .N

   ( | | )N


  

Hence, r



, directional derivative is the component of  in the direction 
 N .

r



= . | | cos | |N
       

Hence,  is the maximum rate of change of .

Example 15. For the vector field (i) ˆA mi

  and (ii) .A m r

 
  Find . A


  and A


  .

Draw the sketch in each case. (Gujarat, I Semester, Jan. 2009)

Solution. (i) Vector A m i
 
  is represented in the figure (i).

(ii) A


= m r


 is represented in the figure (ii).

(iii) . A


 =   .( ) 1 1 1 3i j k x i y j z k
x y z

     
           



. A


 = 3 is represented on the number line at 3.

(iv) A


  = ( )i j k x i y j z k
x y z
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=

i j k

x y z
x y z

  

  
    = 0

are represented in the adjoining figure.

0 1 2 3
Number line

^ k

^ i

^
m

. i

O

r 
m

r

i
j

k

O

i

j

k

O

(i) (ii) (iii) (iv)

j

Example 16. If  = 3x2y – y3z2; find grad  at the point (1, –2, –1).
(AMIETE, June 2009, U.P., I Semester, Dec. 2006)

Solution. grad  = 

= 2 3 2(3 )i j k x y y z
x y z

     
      

=
2 3 2 2 3 2 2 3 2(3 ) (3 ) (3 )i x y y z j x y y z k x y y z

x y z
    

    
  

= 2 2 2 3(6 ) (3 3 ) ( 2 )i xy j x y z k y z
  

   

grad  at (1, –2, –1) = (6) (1) ( 2) [(3) (1) 3(4) (1)] ( 2)( 8) ( 1)i j k
  

      

= 12 9 16i j k
  

   Ans.
Example 17. If u = x + y + z, v = x2 + y2 + z2, w = yz + zx + xy prove that grad u,
grad v and grad w are coplanar vectors. [U.P., I Semester, 2001]
Solution. We have,

grad u = ( )i j k x y z i j k
x y z

        
          

grad v =
2 2 2( ) 2 2 2i j k x y z x i y j z k

x y z

        
          

grad w = ( ) ( ) ( ) ( )i j k yz zx xy i z y j z x k y x
x y z

        
             

[For vectors to be coplanar, their scalar triple product is 0]

Now, grad u.(grad v × grad w) = 
1 1 1 1 1 1
2 2 2 2x y z x y z

z y z x y x z y z x y x


     

=

1 1 1
2 x y z x y z x y z

z y z x y x
     
  

[Applying R2  R2 + R3]

=
1 1 1

2( ) 1 1 1 0x y z
y z z x x y
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Since the scalar product of grad u, grad v and grad w are zero, hence these vectors are
coplanar vectors. Proved.

Example 18. Find the directional derivative of x2y2z2 at the point (1, 1, –1) in the direction
of the tangent to the curve x = et, y = sin 2t + 1, z = 1 – cos t at t = 0.

(Nagpur University, Summer 2005)
Solution. Let  = x2 y2 z2

Directional Derivative of 

= = 2 2 2( )i j k x y z
x y z

     
     

 = 2 2 2 2 2 22 2 2xy z i yx z j zx y k
  
 

Directional Derivative of  at (1, 1, –1)

= 2 2 2 2 2 22(1)(1) ( 1) 2(1)(1) ( 1) 2( 1)(1) (1)i j k
  

    

= 2 2 2i j k
  
  ...(1)

r
 = (sin 2 1) (1 cos )tx i y j z k e i t j t k

     
      

Tangent vector, T
 = 2 cos 2 sintd r e i t j t k

d t


  

  

Tangent(at t = 0) = 0 2 (cos 0) (sin 0) 2e i j k i j
    
    ...(2)

Required directional derivative along tangent = 
( 2 )(2 2 2 )

1 4
i ji j k
 

   
 


[From (1), (2)]

 = 
2 4 0 6

5 5
 

 Ans.

Example 19. Find the unit normal to the surface xy3z2 = 4 at (–1, –1, 2). (M.U. 2008)
Solution. Let (x, y, z) = xy3z2 = 4
We know that  is the vector normal to the surface  (x, y, z) = c.

Normal vector =  = i j k
x y z

    
 

  

Now =
3 2 3 2 3 2( ) ( ) ( )i xy z j xy z k xy z

x y z

    
 

  

 Normal vector = 
3 2 2 2 33 2y z i xy z j xy z k

  
 

Normal vector at (–1, –1, 2) = 4 12 4i j k
  

  
Unit vector normal to the surface at (–1, –1, 2).

=
4 12 4 1 ( 3 )

| | 16 144 16 11
i j k i j k
  

     
    

  
Ans.

Example 20. Find the rate of change of  = xyz in the direction normal to the surface
x2y + y2x + yz2 = 3 at the point (1, 1, 1). (Nagpur University, Summer 2001)
Solution. Rate of change of =  

      = ( )i j k x y z i yz j xz k xy
x y z
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Rate of change of  at (1, 1, 1) = ( )i j k
  
 

Normal to the surface  = x2y + y2x + yz2 – 3 is given as -

 =
2 2 2( 3)i j k x y y x yz

x y z

     
        

= 2 2 2(2 ) ( 2 ) 2i xy y j x xy z k yz
  

    

()(1, 1, 1) = 3 4 2i j k
  
 

Unit normal =
3 4 2

9 16 4
i j k
  
 
 

Required rate of change of  = (3 4 2 )( ).
9 16 4

i j ki j k
  

    
 

 
 = 3 4 2 9

29 29
 

 Ans.

Example 21. Find the constants m and n such that the surface m x2 – 2nyz = (m + 4)x will
be orthogonal to the surface 4x2y + z3 = 4 at the point (1, –1, 2).

(M.D.U. Dec. 2009, Nagpur University, Summer 2002)
Solution. The point P (1, –1, 2) lies on both surfaces. As this point lies in

mx2 – 2nyz = (m + 4)x, so we have
m – 2n (–2) = (m + 4)

 m + 4n = m + 4  n = 1
 Let 1 = mx2 – 2yz – (m + 4)x and 2 = 4x2y + z3 – 4

Normal to 1 = 1

= 2[ 2 ( 4) ]i j k mx yz m x
x y z

     
        

= (2 4) 2 2i mx m z j y k
  

   

Normal to 1 at (1, –1, 2) = (2 4) 4 2i m m j k
  

     = ( 4) 4 2m i j k
  

  
Normal to 2 = 2

=
2 3(4 4)i j k x y z

x y z

     
       

 = 2 28 4 3i xy x j z k
  

 

Normal to 2  at (1, –1, 2) = – 8 4 12i j k
  
 

Sinec 1 and 2 are orthogonal, then normals are perpendicular to each other.
   1 . 2 = 0

 [( 4) 4 2 ].[ 8 4 12 ]m i j k i j k
     

      = 0
 – 8 (m – 4) – 16 + 24 = 0
 m – 4 = –2 + 3  m = 5
Hence m = 5, n = 1 Ans.
Example 22. Find the values of constants  and  so that the surfaces x2 – yz = (+ 2) x,
4x2y + z3 = 4 intersect orthogonally at the point (1, – 1, 2).

(AMIETE, II Sem., Dec. 2010, June 2009)
Solution. Here, we have

x2 – yz = ( + 2) x ...(1)
4x2 y + z3 = 4 ...(2)
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Normal to the surface (1),  λ (λ 2)x yz x      

2ˆˆ ˆ ( 2)i j k x yz x
x y z

                   
ˆˆ ˆ(2 2) ( ) ( )i x j z k y      

Normal at (1, –1, 2) = î (2 –  – 2) – ĵ  (–2) + k̂  ...(3)

 = î ( – 2) + ĵ z (2) + k̂ 
Normal at the surface (2)

2 3ˆˆ ˆ (4 4)i j k x y z
x y z

   
        

= î (8 × y) + ĵ (4x2) + k̂ (3z2)

Normal at the point (1, –1, 2) = – 8 î  + 4 ĵ  + 12 k̂ ...(4)
Since (3) and (4) are orthogonal so

ˆ ˆˆ ˆ ˆ ˆ( 2) (2 ) . 8 4 12 0i j k i j k               

8 ( 2) 4(2 ) 12 0            8 16 8 12 0      

8 20 16 0            4( 2 5 4) 0     

2 5 4 0            2 5 4    ...(5)
Point (1, – 1, 2) will satisfy (1)

 2(1) ( 1) (2) ( 2) (1)       + 2 = + 2   = 1
Putting  = 1 in (5), we get

92 5 4
2

     

Hence    
9 and =1
2

   Ans.

Example 23. Find the angle between the surfaces x2 + y2 + z2 = 9 and z = x2 + y2 – 3 at
the point (2, –1, 2). (Nagpur University, Summer 2002)
Solution. Normal on the surface (x2 + y2 + z2 – 9 = 0)

 =
2 2 2( 9) (2 2 2 )i j k x y z x i y j z k

x y z

        
           

Normal at the point (2, –1, 2) = 4 2 4i j k
  
  ...(1)

Normal on the surface (z = x2 + y2 – 3) = 2 2( 3)i j k x y z
x y z

     
        

= 2 2x i y j k
  
 

Normal at the point (2, –1, 2) = 4 2i j k
  
  ...(2)

Let  be the angle between normals (1) and (2).

(4 2 4 ).(4 2 )i j k i j k
     
    = 16 4 16 16 4 1 cos    

16 + 4 – 4 = 6 21 cos  16 = 6 21 cos
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 cos  = 8
3 21

  = 1 8cos
3 21

 Ans.

Example 24. Find the directional derivative of 
1
r  in the direction r  where e .r x i y j z k

  
  

(Nagpur University, Summer 2004, U.P., I Semester, Winter 2005, 2002)

Solution. Here,  (x, y, z) =
1

2 2 2 2
2 2 2

1 1 ( )x y z
r x y z


   

 

Now 1
r

   
 

=
1

2 2 2 2( )i j k x y z
x y z

      
       

=
1 1 1

2 2 2 2 2 2 2 2 22 2 2( ) ( ) ( )x y z i x y z j x y z k
x y z

      
       

  

= 
3 3

2 2 2 2 2 22 21 1( ) 2 ( ) 2
2 2

x y z x i x y z y j
     

         
   

3
2 2 2 21 ( ) 2

2
x y z z k

 
    
 

= 2 2 2 3/ 2
( )

( )
x i y j z k

x y z

  
  

 
...(1)

and r


= unit vector in the direction of x i y j z k
  
 

=
2 2 2

x i y j z k

x y z

  
 

 
...(2)

So, the required directional derivative

=
2 2 2

2 2 2 3/ 2 2 2 2 1/ 2 2 2 2 2. .
( ) ( ) ( )

x i y j z k x i y j z k x y zr
x y z x y z x y z

     
      

   
     

  [From (1), (2)]

= 2 2 2 2
1 1

x y z r


 
Ans.

Example 25. Find the direction in which the directional derivative of  (x, y) =
2 2x y

xy
  at

(1, 1) is zero and hence find out component of velocity of the vector 3 2( 1)r t i t j
 

    in
the same direction at t = 1. (Nagpur University, Winter 2000)

Solution. Directional derivative =  = 
2 2x yi j k

x y z xy
        

         

=
2 2 2 2

2 2 2 2
.2 ( ) .2 ( )x y x x y y xy y x y xi j

x y x y

       
   

   

=
2 3 2 3

2 2 2 2
x y y xy xi j

x y x y

     
   

   

Directional Derivative at (1, 1) = 0 0 0i j
 

 
Since ()(1, 1) = 0, the directional derivative of  at (1, 1) is zero in any direction.

Again r = 3 2( 1)t i t j
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Velocity, v = 23 2d r t i t j
d t

 
 

Velocity at t = 1 is = 3 2i j
 


The component of velocity in the same direction of velocity

=
3 2 9 4(3 2 ). 13

9 4 13
i ji j
 

 
 

      
 

Ans.

Example 26. Find the directional derivative of  (x, y, z) = x2 y z + 4 x z2 at (1, –2, 1) in

the direction of 2 2 .i j k
  
   Find the greatest rate of increase of .

(Uttarakhand, I Semester, Dec. 2006)
Solution. Here,  (x, y, z) = x2y z + 4xz2

Now,  = 2 2( 4 )i j k x yz xz
x y z

     
      

= 2 2 2(2 4 ) ( ) ( 8 )xyz z i x z j x y xz k
  

   

 at (1, – 2, 1) = 2{2(1) ( 2)(1) 4(1) } (1 1) {1( 2) 8(1)(1)}i j k
  

      

= ( 4 4) ( 2 8)i j k
  

       = 6j k
 


Let a
 = unit vector = 

2 2 1 (2 2 )
34 1 4

i j k i j k
  

   
  

 
So, the required directional derivative at (1, –2, 1)

= 1. ( 6 ). (2 2 )
3

a j k i j k
     

      = 1 13( 1 12)
3 3


  

Greatest rate of increase of  = 6j k
 
   = 1 36

= 37 Ans.
Example 27. Find the directional derivative of the function  = x2 – y2 + 2z2 at the point P
(1, 2, 3) in the direction of the line PQ where Q is the point (5, 0, 4).

(AMIETE, Dec. 20010, Nagpur University, Summer 2008, U.P., I Sem., Winter 2000)
Solution. Directional derivative = 

= 2 2 2( 2 ) 2 2 4i j k x y z x i y j z k
x y z

        
          

Directional Derivative at the point P (1, 2, 3) = 2 4 12i j k
  
  ...(1)

PQ = Q P  = (5, 0, 4) – (1, 2, 3) = (4, –2, 1) ...(2)

Directional Derivative along PQ = 
(4 2 )(2 4 12 ).

16 4 1
i j ki j k
  

    
 

 
 [From (1) and (2)]

=
8 8 12 28

21 21
 

 Ans.

Example 28. For the function  (x, y) = 2 2
x

x y , find the magnitude of the directional

derivative along a line making an angle 30° with the positive x-axis at (0, 2).
(A.M.I.E.T.E., Winter 2002)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



394 Vectors

Solution. Directional derivative = 



= 2 2
xi j k

x y z x y

     
      

  = 2 2 2 2 2 2 2 2
1 (2 ) (2 )

( ) ( )
x x x yi j

x y x y x y

       

=
2 2

2 2 2 2 2 2
2

( ) ( )
y x xyi j

x y x y

 


 
Directional derivative at the point (0, 2)

= 2 2
4 0 2(0) (2)

4(0 4) (0 4)
ii j


 
 

 

Directional derivative at the point (0, 2) in the direction 
—
CA


i.e. 3 1
2 2

i j
  
 

 

=
3 1.

4 2 2
i i j


  
 

 

cos 30 sin 30

3 1
2 2

CA OB BA i j

i j

    

 

 
       

  
      

=
3

8
Ans.

Example 29. Find the directional derivative of 2
,V


 where 2 2 2 ,V xy i zy j xz k

   
    at the

point (2, 0, 3) in the direction of the outward normal to the sphere x2 + y2 + z2 = 14 at the
point (3, 2, 1). (A.M.I.E.T.E., Dec. 2007)
Solution. V2 = .V V

 

= 2 2 2 2 2 2( ).( )xy i zy j xz k x y i z y j xz k
     
     = x2y4 + z2y4 + x2z4

Directional derivative = 2V

= 2 4 2 4 2 4( )i j k x y z y x z
x y z

     
       

= 4 4 2 3 3 2 4 2 3(2 2 ) (4 4 ) (2 4 )xy xz i x y y z j y z x z k
  

    

Directional derivative at (2, 0, 3) = (0 2 2 81) (0 0) (0 4 4 27)i j k
  

        

= 324 432 108 (3 4 )i k i k
   
   ...(1)

Normal to x2 + y2 + z2 – 14 = 

=
2 2 2( 14)i j k x y z

x y z
     

        

= (2 2 2 )x i y j z k
  
 

Normal vector at (3, 2, 1) = 6 4 2i j k
  
  ...(2)

Unit normal vector  = 
6 4 2 2(3 2 ) 3 2

36 16 4 2 14 14
i j k i j k i j k
        
     

 
 

        [From (1), (2)]

Directional derivative along the normal = 3 2108(3 4 ). .
14

i j ki k
  

   


=
108 (9 4) 1404

14 14
 

 Ans.

30°(0, 2)

C 3—2

1—2

i

1

A
j

j

i
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Example 30. Find the directional derivative of  ( f) at the point (1, – 2, 1) in the direction
of the normal to the surface xy2z = 3x + z2, where f = 2x3y2z4. (U.P., I Semester, Dec 2008)
Solution. Here, we have

f = 2x3 y2 z4

f =   3 2 4(2 )i j k x y z
x y z
        
  =  2 2 4 3 4 3 2 36   4   8x y z i x yz j x y z k 

(f) =    2 2 4 3 4 3 2 3(6 4 8 )i j k x y z i x yz j x y z k
x y z
          
 

= 12xy2z4 + 4x3z4 + 24x3y2z2

Directional derivative of ( f )

=   2 4 3 4 3 2 2(12 4 24 )i j k xy z x z x y z
x y z
          


= 2 4 2 4 2 2 2(12 12 72 ) (24 4 48 3 2)y z x z x y z i xyz x yz j   

+ (48xy2z3 + 16x3z3 + 48x3y2z) k

Directional derivative at (1, – 2, 1) = (48 + 12 + 288) i  + (– 48 – 96) j  + (192 + 16 + 192) k
=  348  – 144   400i j k

Normal to(xy2z – 3x – z2) = (xy2z – 3x – z2)

=   2 2( – 3 – )i j k xy z x z
x y z
        


=  2 2(  – 3) (2 ) (  – 2 )y z i xyz j xy z k 

Normal at(1, – 2, 1) =   – 4   2i j k

Unit Normal Vector = 
 – 4 2

1 16 4
i j k

 


  =  1 ( – 4 2 )

21
i j k

Directional derivative in the direction of normal

=    1(348 – 144 400 ) ( – 4 2 )
21

i j k i j k  

=
1 (348 576 800)
21

   = 
1724

21
Ans.

Example 31. If the directional derivative of  = a x2 y + b y2 z + c z2 x at the point

(1, 1, 1) has maximum magnitude 15 in the direction parallel to the line 
1 3 ,

2 2 1
x y z 

 


find the values of a, b and c. (U.P. I Semester, June 2007, Winter 2001)
Solution. Given  = a x2 y + b y2 z + c z2 x

  = i j k
x y z

     
     

 (a x2 y + b y2 z + c z2 x)

= 2 2 2(2 ) ( 2 ) ( 2 )i a x y c z j a x b y z k b y c z x
  

    

  at the point (1, 1, 1) = (2 ) ( 2 ) ( 2 )i a c j a b k b c
  

     ...(1)
We know that the maximum value of the directional derivative is in the direction of .

i.e. || = 15  (2a + c)2 + (2b + a)2 + (2c + b)2 = (15)2

But, the directional derivative is given to be maximum parallel to the line
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1
2

x 
=

3
2 1

y z



i.e., parallel to the vector 2 2 .i j k

  
  ...(2)

On comparing the coefficients of (1) and (2)


2

2
a c

=
2 2

2 1
b a c b 




 2a + c = – 2b – a  3a + 2b + c = 0 ...(3)
and 2b + a = – 2(2c + b)
 2b + a = – 4c – 2b  a + 4b + 4c = 0 ...(4)
Rewriting (3) and (4), we have

3 2 0
4 4 0

a b c
a b c

   
   


4 11 10
a b c
 


 = k (say)

 a = 4k, b = –11k and c = 10k.
Now, we have

(2a + c)2 + (2b + a)2 + (2c + b)2 = (15)2

 (8k + 10k)2 + (–22k + 4k)2 + (20k – 11k)2 = (15)2

 k = 5
9



 a = 20
9

 , b = 55
9

 and c = 50
9

 Ans.

Example 32. If ,r x i y j z k
  

    show that :

(i) grad r = r
r



(ii) grad 3
1 .r
r r


    
 

(Nagpur University, Summer 2002)

Solution. (i) r = x i y j z k
  
   r = 2 2 2x y z   r2 = x2 + y2 + z2

 2 rr
x



= 2x 
r x
x r





Similarly,
r
y



=
y
r

and
r z
z r





grad r = r = 
r r ri j k r i j k

x y z x y z
           

           

=
x y z x i y j z k ri j k
r r r r r

  
    

    Proved.

(ii) grad 
1
r

 
 
 

= 1 1i j k
r x y z r

                     
 = 

1 1 1i j k
x r y r z r

                      

= 2 2 2
1 1 1r r ri j k

x y zr r r

                      

=
2 2 2

1 1 1x y zi j k
r r rr r r

                
     

 = 
3 3

x i y j z k r
r r

  
 

   Proved.

Example 33. Prove that 2 2( ) ´´ ( ) ´ ( )f r f r f r
r

   . (K. University, Dec. 2008)
Solution.
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   ( )f r ( )i j k f r
x y z

   
      

2 2 2 2 2 2 , andr r x r y r zr x y z r x
x x r y r z r

    
             

´ ( ) ´( ) ´( )r r ri f r j f r k f r
x y z
  

  
  

´ ( ) x y zf r i j k
r r r

     

´ ( ) x i y j z kf r
r

 


2 ( )f r [ ( )]f r   ´( ) xi yj zki j k f r
x y z r

                

´( ) ´ ( ) ´( )x y zf r f r f r
x r y r z r
                     

2

1
´´( ) ´( ) ´´( )

rr xr x rxf r f r f r
x r yr


                    

y
r

 
 
  2

.1
´( )

rr y
yf r

r





 

2

.1
´´( ) ´( )

zr zr z rf r f r
z r r


          

= 

2

2´́ ( ) ´( )

xrx x rf r f r
r r r

       
   

2

2´́ ( ) ´ ( )

yry y rf r f r
r r r

       
   

2

2´́ ( ) ´( )

zrz z rf r f r
r r r

       
   

= 
2 2 2 2

3 3´´( ) ´( ) ´́ ( ) ´( )x x r x y r yf r f r f r f r
r r rr r

                  

2 2

3´´ ( ) ´ ( )z z r zf r f r
r r r

       
   

2 2 2 2 2 2 2 2 2

2 3 2 3 2 3´ (́ ) ´( ) ´́ ( ) ´( ) ´́ ( ) ´( )x y z y x z z x yf r f r f r f r f r f r
r r r r r r

  
     

= 
2 2 2 2 2 2 2 2 2

2 2 2 3 3 3´´( ) ´ ( )x y z y z z x x yf r f r
r r r r r r
     

       
   

2 2 2 2 2 2

2 3
2( )´´ ( ) ´( )x y x x y zf r f r

r r
   

   = 
2 2

2 3
2´´( ) ´ ( )r rf r f r

r r


= 
2´́ ( ) ´( )f r f r
r

 Ans.

EXERCISE 5.7

1. Evaluate grad  if  = log (x2 + y2 + z2) Ans. 2 2 2
2( )x i y j z k

x y z

  
 

 

2. Find a unit normal vector to the surface x2 + y2 + z2 = 5 at the point (0, 1, 2). Ans. 1 ˆˆ( 2 )
5

j k

 (AMIETE, June 2010)
3. Calculate the directional derivative of the function (x, y, z) = xy2 + yz3 at the point

(1, –1, 1) in the direction of (3, 1, –1)   (A.M.I.E.T.E. Winter 2009, 2000) Ans.
5
11

4. Find the direction in which the directional derivative of f (x, y) = (x2 – y2)/xy at (1, 1) is zero.

      (Nagpur Winter 2000) Ans. 
2

i j
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A 

B 

C 

D S 

O P 

Q

X

Y

Z

Vx

dz

R

5. Find the directional derivative of the scalar function of (x, y, z) = xyz in the direction of the outer

normal to the surface z = xy at the point (3, 1, 3). Ans.
27
11

6. The temperature of the points in space is given by T(x, y, z) = x2 + y2 – z. A mosquito located at
(1, 1, 2) desires to fly in such a direction that it will get warm as soon as possible. In what direction

should it move? Ans.
1 (2 2 )
3

i j k
  
 

7. If  (x, y, z) = 3xz2y – y3z2, find grad  at the point (1, –2, –1) Ans. (16 9 4 )i j k
  

  
8. Find a unit vector normal to the surface x2y + 2xz = 4 at the point (2, –2, 3).

Ans.
1 ( 2 2 )
3

i j k
  

  

9. What is the greatest rate of increase of the function u = xyz2 at the point (1, 0, 3)? Ans. 9
10. If  is the acute angle between the surfaces xyz2 = 3x + z2 and 3x2 – y2 + 2z = 1 at the point

(1, –2, 1) show that cos  = 3/7 6 .
11. Find the values of constants a, b, c so that the maximum value of the directional directive of

 = axy2 + byz + cz2x3 at (1, 2, –1) has a maximum magnitude 64 in the direction parallel to the
axis of z. Ans. a = b, b = 24, c = –8

12. Find the values of  and µ so that surfaces x2 – µ y z = ( + 2)x and 4 x2 y + z3 = 4 intersect

orthogonally at the point (1, –1, 2). Ans.  = 
9 , 1
2

 

13. The position vector of a particle at time t is R = cos (t – 1) i + sinh (t – 1) j + at2k. If at t = 1,
the acceleration of the particle be perpendicular to its position vector, then a is equal to

(a)  0               (b)  1          (c)  
1
2               (d) 

1
2     (AMIETE, Dec. 2009)  Ans. (d)

5.29 DIVERGENCE OF A VECTOR FUNCTION

The divergence of a vector point function F


 is denoted by div F and is defined as below..

Let F


= 1 2 3F i F j F k
  
 

div F
 = 1 2 3. ( )F i j k i F j F k F

x y z

          
         

= 31 2 FF F
x y z

 
 

  
It is evident that div F is scalar function.

5.30 PHYSICAL INTERPRETATION OF DIVERGENCE
Let us consider the case of a fluid flow. Consider a small rectangular parallelopiped of

dimensions dx, dy, dz parallel to x,y and z axes respectively.

Let x y zV V i V j V k
   
    be the velocity of the

fluid at P(x, y, z).
 Mass of fluid flowing in through the face ABCD in unit time

= Velocity × Area of the face  = Vx (dy dz )
Mass of fluid flowing out across the face PQRS per unit time

= Vx (x + dx) (dy dz)

= ( )x
x

VV dx dy dz
x

   
Net decrease in mass of fluid in the parallelopiped
corresponding to the flow along x-axis per unit time
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= x
x x

VV dy dz V dx dy dz
x

    

= xV dx dy dz
x





(Minus sign shows decrease)

Similarly, the decrease in mass of fluid to the flow along y-axis = yV
dx dy dz

y




and the decrease in mass of fluid to the flow along z-axis = zV dx dy dz
z




Total decrease of the amount of fluid per unit time = 
yx zVV V dx dy dz

x y z
  

     

Thus the rate of loss of fluid per unit volume = yx zVV V
x y z

 
 

  

= .( )x y zi j k i V jV k V
x y z

        
       

 = . divV V 

If the fluid is compressible, there can be no gain or loss in the volume element. Hence
div V


= 0 ...(1)

and V is called a Solenoidal vector function.
Equation (1) is also called the equation of continuity or conservation of mass.

Example 34. If 
2 2 2

,x i y j z kv
x y z

  
  


 
 find the value of div v .

(U.P., I Semester, Winter 2000)

Solution. We have, v
 =

2 2 2

x i y j z k

x y z

  
 

 

div v


= . v
 
  = 2 2 2 1/ 2.

( )
x i y j z ki j k

x y z x y z

  
  

 
                 

= 2 2 2 1/ 2 2 2 2 1/ 2 2 2 2 1/ 2( ) ( ) ( )
x y z

x y zx y z x y z x y z
  

 
       

=

1
2 2 2 1/ 2 2 2 2 2

2 2 2

1( ) . ( ) .2
2

( )

x y z x x y z x

x y z

 
     
 

 
1 1

2 2 2 2 2 22 2

2 2 2

1( ) . ( ) 2
2

( )

x y z y x y z y

x y z

 
      
 

 

2 2 2 1/ 2 2 2 2 1/ 2

2 2 2

1( ) . ( ) .2
2

( )

x y z z x y z z

x y z

       
 

=
2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 3/ 2 2 2 2 3/ 2 2 2 2 3/ 2
( ) ( ) ( )
( ) ( ) ( )
x y z x x y z y x y z z
x y z x y z x y z
        

 
     

=
2 2 2 2 2 2

2 2 2 3/ 2( )
y z x z x y

x y z
    

 
 = 

2 2 2

2 2 2 3/ 2 2 2 2

2( ) 2
( ) ( )

x y z
x y z x y z

 


   
Ans.

Example 35. If u = x2 + y2 + z2, and ,r x i y j z k
  

    then find div ( )ur  in terms of u.
(A.M.I.E.T.E., Summer 2004)
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Solution. div ( )u r


=
2 2 2.[( ) ( )]i j k x y z x i y j z k

x y z
        

         

=
2 2 2 2 2 2 2 2 2.[( ) ( ) ( ) ]i j k x y z x i x y z y j x y z z k

x y z
        

             

= 3 2 2 2 3 2 2 2 3( ) ( ) ( )x xy xz x y y yz x z y z z
x y z
  

       
  

= (3x2 + y2 + z2) + (x2 + 3y2 + z2) + (x2 + y2 + 3z2)  = 5 (x2 + y2 + z2) = 5 u Ans.

Example 36. Find the value of n for which the vector nr r
  is solenoidal, wheree

.r x i y j z k
  

  

Solution. Divergence F


= 2 2 2 /2. . .( ) ( )n nF r r x y z x i y j z k
      
       

= 2 2 2 / 2 2 2 2 /2 2 2 2 / 2.[( ) ( ) ( ) ]n n ni j k x y z x i x y z y j x y z z k
x y z

        
             

= 
2
n

(x2 + y2 + z2)n/2 – 1 (2x2) + (x2 + y2 + z2)n/2 + 
2
n

(x2 + y2 + z2)n/2 – 1 (2y2)

+ (x2 + y2 + z2)n/2 + 
2
n

(x2 + y2 + z2)n/2 – 1 (2z2) + (x2 + y2 + z2)n/2

= n(x2 + y2 + z2)n/2 – 1 (x2 + y2 + z2) + 3 (x2 + y2 + z2)n/2

= n(x2 + y2 + z2)n/2 + 3(x2 + y2 + z2)n/2  = (n + 3) (x2 + y2 + z2)n/2

If nr r


 is solenoidal, then (n + 3) (x2 + y2 + z2)n/2 = 0 or n + 3 = 0 or n = –3. Ans.

Example 37. Show that 
2

( . ) ( . )
n n n

a r a n a r r
r r r

     



 
   
  

. (M.U. 2005)

Solution. We have,
.
n

a r
r

 

= 1 2 3( ).( )
n

a i a j a k x i y j z k
r

     
   

 = 1 2 3
n

a x a y a z
r

 

Let  = 1 2 3.
n n

a x a y a za r
r r

 
 




x




=
1

1 1 2 3
2

. ( ) ( / )n n

n
r a a x a y a z n r r x

r

    

    But r2 = x2 + y2 + z2       2 rr
x



 = 2x 
r x
x r






x




=
2

1 1 2 3
2

( ). .n n

n
a r a x a y a z n r x

r

  
 = 1 2 31

2
( )

n n
n a x a y a z xa

r r 

 


  = i j k
x y z
    
 

  

= 1 2 3 1 2 32
1 ( ) [( ) ( )]n n

na i a j a k a x a y a z x i y j z k
r r

     


      

= 2 ( . )n n
a n a r r
r r 
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Example 38. Let , | |r x i y j z k r r
   

     and a


 is a constant vector. Find the value of

n
a rdiv

r

  
 

  
 

Solution. Let a


= 1 2 3a i a j a k
  
 

a r
 
 = 1 2 3( ) ( )a i a j a k x i y j z k

     
    

= 1 2 3

i j k
a a a
x y z

  

 = 2 3 1 3 1 2( ) ( ) ( )a z a y i a z a x j a y a x k
  

    

| |n
a r

r

 




= 2 3 1 3 1 2

2 2 2 / 2
( ) ( ) ( )

( )n
a z a y i a z a x j a y a x k

x y z

  
    

 

div
| | n

a r

r

 



 
 

  
 

= .
| |n
a r

r

 







= 2 3 1 3 1 2
2 2 2 / 2

( ) ( ) ( ).
( )n

a z a y i a z a x j a y a x ki j k
x y z x y z

  
          

       

= 2 3 1 3 1 2
2 2 2 / 2 2 2 2 / 2 2 2 2 / 2

( )
( ) ( ) ( )n n n

a z a y a z a x a y a x
x y zx y z x y z x y z

    
 

       

= 2 3 1 3 1 2
2 2 2

2 2 2 2 2 2 2 2 22 2 2

( ) 2 ( ) 2 ( ) 2
2 2 2

( ) ( ) ( )
n n n

a z a y x a z a x y a y a x zn n n

x y z x y z x y z
  

  
  

     

= 2 3 1 3 1 22
2 2 2 2

[( ) ( ) ( ) ]

( )
n

n a z a y x a z a x y a y a x z

x y z


     

 

= 2 3 1 3 1 22
2 2 2 2

[ ]

( )
n

n a zx a xy a yz a xy a yz a zx

x y z


     

 

 = 0 Ans.

Example 39. Find the directional derivative of div ( )u


 at the point (1, 2, 2) in the direction

of the outer normal of the sphere x2 + y2 + z2 = 9 for 4 4 4 .u x i y j z k
  

  

Solution. div ( )u


 = . u




= 4 4 4 3 3 3.( ) 4 4 4i j k x i y j z k x y z
x y z

        
          

Outer normal of the sphere = (x2 + y2 + z2 – 9)

= 2 2 2( 9) 2 2 2i j k x y z x i y j z k
x y z

        
           

Outer normal of the sphere at (1, 2, 2) = 2 4 4i j k
  
  ...(1)

Directional derivative = 3 3 3(4 4 4 )x y z

  

= 
3 3 3 2 2 2(4 4 4 ) 12 12 12i j k x y z x i y j z k

x y z
        

          

Directional derivative at (1, 2, 2) = 12 48 48i j k
  
  ...(2)
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Directional derivative along the outer normal = 
2 4 4(12 48 48 ).

4 16 16
i j ki j k
  

    
 

 
[From (1), (2)]

=
24 192 192

6
 

 = 68 Ans.

Example 40. Show that div (grad rn) = n (n + 1)rn – 2, where

r = 2 2 2x y z 

Hence, show that 2 1
r

   
 

= 0. (U.P. I Semester, Dec. 2004, Winter 2002)

Solution. grad (rn) = n n ni r j r k r
x y z

    
 

  
 by definition

= 1 1 1.n n nr r ri n r j n r k n r
x y z

      
 

  
  = 1n r r rn r i j k

x y z
      

     

= 1 2 2( ) .n n nx y zn r i j k nr x i y j z k nr r
r r r

                              
2 2 2 2 2 2 etc.r r xr x y z r x

x x r
           



Thus, grad (rn) = 2 2 2n n nn r x i n r y j n r z k
      ...(1)

 div grad rn = div [ 2 2 2n n nn r x i n r y j n r z k
      ]

= 2 2 2.( )n n ni j k nr x i nr y j nr z k
x y z

          
       

[From (1)]

= 2 2 2( ) ( ) ( )n n nn r x n r y n r z
x y z

    
 

  
(By definition)

= 2 3 2 3( 2) ( 2)n n n nr rn r nx n r n r ny n r
x y

                

2 3( 2)n n rn r nz n r
z

       

= 2 33 ( 2)n n r r rn r n n r x y z
x y z

     
       

= 2 33 ( 2)n n x y zn r n n r x y z
r r r

                       

2 2 2 2 2 2 etc.r r xr x y z r x
x x r
           



= 3nrn – 2 + n (n – 2)rn – 4 [x2 + y2 + z2]
= 3nrn – 2 + n (n – 2) rn – 4.r2 ( r2 = x2 + y2 + z2)
= rn – 2 [3n + n2 – 2n] = rn – 2 (n2 + n) = n(n + 1) rn – 2

If we put n = –1
div grad (r– 1) = –1 (–1 + 1) r– 1 – 2

 2 1
r

   
 

= 0

Ques. If ,r x i y j z k
  

    and r = |r| find div 2 .
r

 
 
 

r
  (U.P. I Sem., Dec. 2006) Ans. 2

1
r
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EXERCISE 5.8

1. If r = x i y j z k
  
   and r = | |r


, show that (i) div 3| |

r
r

 
 
 
 

 = 0,

(ii) div (grad rn) = n (n + 1) rn – 2    (AMIETE, June 2010)  (iii) div (r ) = 3 + r grad .

2. Show that the vector V = ( 3 ) ( 3 ) ( 2 )x y i y z j x z k
  

      is solenoidal.
(R.G.P.V., Bhopal, Dec. 2003)

3. Show that .( A) = .A + (.A)
4. If , , z are cylindrical coordinates, show that grad (log ) and grad  are solenoidal vectors.
5. Obtain the expression for 2f in spherical coordinates from their corresponding expression in

orthogonal curvilinear coordinates.
Prove the following:

6. .( ) ( ). ( . )F F F
     
      

7. (a) .() = 2 (b)
2

( ) (2 ) ( . ) , | |n n n
A R n A n A R R r R

r r r

     
 


 

    

8. div ( f  g) – div (g  f) = f 2g – g 2 f
5.31   CURL (U.P., I semester, Dec. 2006)

The curl of a vector point function F is defined as below

curl F
 = F

 
 1 2 3( )F F i F j F k

  
  

= 1 2 3( )i j k F i F j F k
x y z

        
        

= 3 32 1 2 1

1 2 3

i j k
F FF F F Fi j k

x y z y z x z x y
F F F

  

                                  

Curl F


 is a vector quantity..
5.32 PHYSICAL MEANING OF CURL

(M.D.U., Dec. 2009, U.P. I Semester, Winter 2009, 2000)

We know that ,V r
  
   where  is the angular velocity, V


is the linear velocity and r



is the position vector of a point on the rotating body.

Curl V


= V
 
 

1 2 3i j k

r x i y j z k

   

   

 
       
 
    

= ( )r
  
     = 1 2 3[( ) ( )]i j k x i y j z k

      
         

=
1 2 3

i j k

x y z

  


       = 2 3 1 3 1 2[( ) ( ) ( ) ]z y i z x j y x k

   
            

= 2 3 1 3 1 2[( ) ( ) ( ) ]i j k z y i z x j y x k
x y z
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=

2 3 3 1 1 2

i j k

x y z
z y x z y x

  

  
  

        

= 1 2 2 2 3 3( ) ( ) ( )i j k
  

             = 1 2 32( ) 2i j k
  

      

Curl V


 = 2 which shows that curl of a vector field is connected with rotational properties
of the vector field and justifies the name rotation used for curl.

If Curl F  = 0, the field F is termed as irrotational.

Example 41. Find the divergence and curl of 2 2 2( ) (3 ) ( )v x y z i x y j xz y z k
  

     at
(2, –1, 1) (Nagpur University, Summer 2003)
Solution. Here, we have

v
 = 2 2 2( ) (3 ) ( )x y z i x y j xz y z k

  
  

Div. v
 = 

Div v
 = 2 2 2( ) (3 ) ( )x y z x y xz y z

x y z
  

  
  

= yz + 3x2 + 2x z – y2          = –1 + 12 + 4 – 1 = 14 at (2, –1, 1)

Curl v =

2 2 23

i j k

x y z

xyz x y xz y z

  

  
  



      = 22 ( ) (6 )yz i z xy j xy xz k
  

    

= 22 ( ) (6 )yz i xy z j xy xz k
  

    
Curl at (2, –1, 1)

= 2( 1)(1) {(2) ( 1) 1} {6(2)( 1) 2(1)}i j k
  

       

= 2 3 14i j k
  
  Ans.

Example 42. If 
2 2 2

,x i y j z kV
x y z

  
  


 
 find the value of curl V


.

(U.P., I Semester, Winter 2000)

Solution. Curl V


= V
 
 

= 2 2 2 1/ 2( )
x i y j z ki j k

x y z x y z

  
  

 
                  

=

2 2 2 1/ 2 2 2 2 1/ 2 2 2 2 1/ 2( ) ( ) ( )

i j k

x y z
x y z

x y z x y z x y z
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= 2 2 2 1/ 2 2 2 2 1/ 2 2 2 2 1/ 2( ) ( ) ( )
z y zi j

y z xx y z x y z x y z

                                

2 2 2 1/ 2 2 2 2 1/ 2 2 2 2 1/ 2( ) ( ) ( )
x y xk

z x yx y z x y z x y z

                                 

= 2 2 2 3/ 2 2 2 2 3/ 2 2 2 2 3/ 2 2 2 2 3/ 2
.

( ) ( ) ( ) ( )
yz y z zx zxi j

x y z x y z x y z x y z

                    

2 2 2 3/ 2 2 2 2 3/ 2 0
( ) ( )

xy xyk
x y z x y z

         
Ans.

Example 43. Prove that 2 2( – 3 – 2 ) (3 2 ) (3 – 2 2 )y z yz x i xz xy j xy xz z k


      is both
solenoidal and irrotational. (U.P., I Sem, Dec. 2008)

Solution. Let F
 = 2 2( – 3 – 2 ) (3 2 ) (3 – 2 2 )y z yz x i xz xy j xy xz z k


    

For solenoidal, we have to prove .F
 
  = 0.

Now, .F
 
  =   2 2( – 3 – 2 ) (3 2 ) (3 – 2 2 )i j k y z yz x i xz xy j xy xz z k

x y z

                   


= – 2 + 2x – 2x + 2 = 0

Thus, F


 is solenoidal. For irrotational, we have to prove Curl F  = 0.

Now, Curl F


=

2 2– 3 – 2 3 2 3 – 2 2

i j k

x y z

y z yz x xz xy xy xz z

  

  
  

  

= (3 2 – 2 3 ) – (– 2 3 – 3 2 )

(3 2 – 2 – 3 )

z y y z i z y y z j

z y y z k

 



    



= 0 0 0i j k
  
   = 0

Thus, F


 is irrotational.

Hence, F


 is both solenoidal and irrotational. Proved.
Example 44. Determine the constants a and b such that the curl of vector

A  = 2 2(2 3 ) ( – 4 ) – (3 )xy yz i x axz z j xy byz k
  

     is zero.o.
(U.P. I Semester, Dec 2008)

Solution. Curl A =   2 2[(2 3 ) ( – 4 )

(3 ) ]

i j k xy yz i x axz z j
x y z

xy byz k

 



            

 



=

2 22 3 – 4 – 3 –

i j k

x y z

xy yz x axz z xy byz
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= [– 3 – – 8 ] – [– 3 – 3 ] [2 – 2 – 3 ]x bz ax z i y y j x az x z k
  

  

= [– (3 ) ( 8 – )] 6 (– 3 )x a z b i y j z a k
  

    
= 0 (given)

i.e., 3 + a = 0 and 8 – b = 0,                 – 3 + a = 0
          a = – 3, 3 b = 8                      a = 3 Ans.
Example 45. If a vector field is given by

2 2( – ) – (2 )F x y x i xy y j
  
   . Is this field irrotational ? If so, find its scalar potential.

(U.P. I Semester, Dec 2009)
Solution. Here, we have

F


= 2 2( – ) – (2 )x y x i xy y j
 

 

Curl F = F




= 2 2( – ) – (2 )i j k x y x i xy y j
x y z

       
        

=

2 2– – 2 – 0

i j k

x y z

x y x xy y

  

  
  



 = (0 – 0) – (0 – 0) (– 2 2 )i j k y y
  

   = 0

Hence, vector field F
  is irrotational.

To find the scalar potential function 
F


=  

d = dx dy dz
x y z
  

 
  

 = ( )i j k i dx j dy k dz
x y z

       
    

  

= ( )i j k d r
x y z

      
      

 = d r


    = F d r
 


= 2 2[( – ) – (2 ) ] ( )x y x i xy y j i dx j dy k dz
  

    
= (x2 – y2 + x)dx – (2xy + y)dy.

 = 2 2[( – ) – (2 ) ]x y x dx xy y dy c  
= 2 2 2x d x x dx y dy y dx xy dy c        = 

3 2 2
2– –

3 2 2
x x y xy c 

Hence, the scalar potential is 
3 2 2

2– –
3 2 2
x x y xy c  Ans.

Example 46. Find the scalar potential function f for 2 22A y i xy j z k
   
   .

(Gujarat, I Semester, Jan. 2009)

Solution.  We have, A


=
2 22y i xy j z k
  
 

Curl A


= A


   = 
2 2( 2 )i j k y i xy j z k

x y z
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=

2 22

i j k

x y z

y xy z

  

  
  



  = (0) (0) (2 2 )i j k y y
  

    = 0

Hence, A


 is irrotational. To find the scalar potential function f.

A


=  f

df =
f f fdx dy dz
x y z
  

 
  

     = .( )f f fi j k i dx j dy k dz
x y z

        
       

= .i j k f dr
x y z

     
     

 = .f d r




= .A dr


(A =  f)

= 2 2( 2 ).( )y i xy j z k i dx j dy k dz
     
   

= y2 dx + 2xy dy – z2 dz    = d (xy2) – z2 dz

f = 2 2( )d xy z dz         = 
3

2

3
zxy C  Ans.

Example 47. A vector field is given by A


= (x2 + xy2) i  + (y2 + x2y) j . Show that the field
is irrotational and find the scalar potential.(Nagpur Univeristy, Summer 2003, Winter 2002)

Solution. A


 is irrotational if curl A


 = 0

Curl A


=

2 2 2 2 0

i j k

A
x y z

x xy y x y

  

   
 

  

 

 = (0 0) (0 0) (2 2 ) 0i j k xy xy
  

     

Hence, A


 is irrotational. If  is the scalar potential, then
A


= grad 

d  = dx dy dz
x y z
  

 
  

[Total differential coefficient]

= .( )i j k i dx j dy k dz
x y z

        
       

 = grad  . dr

= .A dr


 = 
2 2 2 2[( ) ( ) ].( )x xy i y x y j i dx j dy k dz

    
    

= (x2 + xy2) dx + (y2 + x2y) dy = x2 dx + y2 dy + (x dx)y2 + (x2) (y dy)

 = 2 2 2 2[( ) ( ) ( )]x dx y dy x dx y x y dy      = 
3 3 2 2

3 3 2
x y x y c     Ans.

Example 48. Show that 2 2( , , ) 2 ( 2 )V x y z x y z i x z y j x y k
   

     is irrotational and find a

scalar function u(x, y, z) such that V


 = grad (u).

Solution. V
  (x, y, z) = 2 22 ( 2 )x y z i x z y j x y k
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Curl V


= 2 2[2 ( 2 ) ]i j k x y z i x z y j x y k
x y z

        
         

=

2 22 2

i j k

x y z

x y z x z y x y

  

  
  



= 2 2( ) (2 2 ) (2 2 ) 0x x i xy xy j xz xz k
  

     

Hence, V


(x, y, z) is irrotational.
To find corresponding scalar function u, consider the following relations given

V


= grad (u)

or V


= ( )u

 ...(1)

du = u u udx dy dz
x y z
  

 
  

(Total differential coefficient)

= .( )u u ui j k i dx j dy k dz
x y z

        
       

= . .u d r V d r
   
  [From (1)]

= 2 2[2 ( 2 ) ].( )x y z i x z y j x y k i dx j dy k dz
     
    

= 2 x y z dx + (x2z + 2y) dy + x2y dz
= y(2x z dx +  x2 dz) + (x2z) dy + 2y dy
= [yd (x2z) + (x2z) dy] + 2y dy = d(x2yz) + 2y dy

Integrating, we get u = x2yz + y2 Ans.

Example 49. A fluid motion is given by ( ) ( ) ( ) .v y z i z x j x y k
  

       Show that the
motion is irrotational and hence find the velocity potential.

(Uttarakhand, I Semester 2006; U.P., I Semester, Winter 2003)

Solution. Curl v
 = v


 

= [( ) ( ) ( ) ]i j k y z i z x j x y k
x y z

        
           

=

i j k

x y z
y z z x x y

  

  
  
  

 = (1 1) (1 1) (1 1) 0i j k
  

     

Hence, v
  is irrotational.

To find the corresponding velocity potential , consider the following relation.
v = 

d = dx dy dz
x y z
  

 
  

[Total Differential coefficient]
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= .( )i j k i dx j dy k dz
x y z

        
       

= . .i j k d r d r
x y z

       
       

= .v d r
 

= [( ) ( ) ( ) ].( )y z i z x j x y k i dx j dy k dz
     

      
= (y + z) dx + (z + x) dy + (x + y) dz
= y dx + z dx + z dy + x dy + x dz + y dz

 = ( ) ( ) ( )y dx x dy z dy y dz z dx x dz      
 = xy + yz + zx + c

Velocity potential = xy + yz + zx + c Ans.
Example 50. A fluid motion is given by

v


= (y sin z – sin x) i


 + (x sin z + 2yz) j


+ (xy cos z + y2) k


  is the motion irrotational? If so, find the velocity potential.

Solution. Curl v


= v
 


= 2( sin sin ) + ( sin + 2 ) + (  cos  + )i j k y z x i x z yz j xy z y k
x y z

        
       

=

2sin sin sin 2 cos

i j k

x y z

y z x x z yz xy z y

  

  
  

  

= (x cos z + 2y – x cos z – 2y) i


 – [y cos z – y cos z] j


 + (sin z – sin z) k


 = 0
Hence, the motion is irrotational.

So, v =   where  is called velocity potential.

d = dx dy dz
x y z
  

 
  

[Total differential coefficient]

= .( )i j k i dx j dy k dz
x y z

        
       

 = .d r
 
  = .v d r

 

= [(y sin z – sin x) i


 + (x sin z + 2yz) j


 + (xy cos z + y2) k


]. [ ]i dx j dy k dz
  

 
= (y sin z – sin x) dx + (x sin z + 2 y z) dy + (x y cos z + y2) dz
= (y sin z dx + x dy sin z + x y cos z dz) – sin x dx + (2 y z dy + y2 dz)
= d (x y sin z) + d (cos x) + d (y2 z)

 = 2( sin ) (cos ) ( )d xy z d x d y z   
 = xy sin z + cos x + y2z + c

Hence, Velocity potential = xy sin z + cos x + y2z + c. Ans.

Example 51. Prove that 2F r r
 
  is conservative and find the scalar potential  such that

F
 = . (Nagpur University, Summer 2004)

Solution. Given F
 = 2r r


 = 2 ( )r x i y j z k

  
   = 2 2 2r x i r y j r z k

  
 

Consider F
 
   = 

2 2 2

i j k

x y z

r x r y r z
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= 2 2 2 2 2 2i r z r y j r z r x k r y r x
y z x z x y

                              

= 2 2 2 2 2 2r r r r r ri rz ry j rz rx k ry rx
y z x z x y

                              

2 2 2 2But , , ,r x r y r zr x y z
x r y r z r
            

= 2 2 2 2 2 2y z x z x yi rz ry j rz rx k ry rx
r r r r r r

                     

= (2 2 ) (2 2 ) (2 2 )i yz yz j zx zx k xy xy
  

      = 0 0 0 0i j k
  
  

 F


  = 0

 F
  is irrotational  F is conservative.

Consider scalar potential  such that F


 = .

d = dx dy dz
x y z
  

 
  

[Total differential coefficient]

= .( )i j k i dx j dy k dz
x y z

        
       

= .( )i j k i dx j dy k dz
x y z

        
        

  = .( )i dx j dy k dz
  

  

= .( )F i dx j dy k dz
   

            = 2 .( )r r i dx j dy k dz
   

  ( = F


)

= 2 2 2( ) ( ).( )x y z i x j y k z i dx j dy k dz
     

     
= (x2 + y2 + z2) (x dx + y dy + z dz)
= x3 dx + y3 dy + z3 dz + (x dx) y2 + (x2) (y dy)

+ (x dx)z2 + z2 (y dy) + x2 (z dz) + y2 (z dz)
 = 3 3 3 2 2[( ) ( ) ]x dx y dy z dz x dx y y dy x      

2 2 2 2[( ) ( ) ] [( ) ( ) ]x dx z z dz x y dy z z dz y    

=
4 4 4

2 2 2 2 2 21 1 1
4 4 4 2 2 2
x y z x y x z y z c     

=
1
4

 (x4 + y4 + z4 + 2x2y2 + 2x2z2 + 2y2 z2) + c Ans.

Example 52. Show that the vector field 
3| |

rF
r





  is irrotational as well as solenoidal. Find

the scalar potential.
(Nagpur University, Summer 2008, 2001, U.P. I Semester Dec. 2005, 2001)

Solution. F = 2 2 2 3/2
3 ( )| |

r x i y j z k
x y zr

  



 


 

Curl F


= F
 
   = 2 2 2 3/ 2( )

x i y j z ki j k
x y z x y z
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=

2 2 2 3/ 2 2 2 2 3/ 2 2 2 2 3/ 2( ) ( ) ( )

i j k

x y z
x y z

x y z x y z x y z

  

  
  

     

= 2 2 2 5 / 2 2 2 2 5 / 2
3 2 3 2

2 2( ) ( )
yz yzi

x y z x y z

       

2 2 2 5/ 2 2 2 2 5/ 2
3 2 3 2

2 2( ) ( )
xz xzj

x y z x y z

            

2 2 2 5/ 2 2 2 2 5/ 2
3 2 3 2
2 2( ) ( )

xy xyk
x y z x y z

             
= 0

Hence, F
  is irrotational.

 F
 =


 , where  is called scalar potential

d = dx dy dz
x y z
  

 
  

[Total differential coefficient]

= .( )i j k i dx j dy k dz
x y z

        
       

  = . .d r F d r
   
 

= 2 2 2 3/ 2 .( )
( )

x i y j z k i dx j dy k dz
x y z

  
   

 
 

    = 2 2 2 3/ 2( )
x dx y dy z dz
x y z

 
 

 = 2 2 2 3/ 2
1 2 2 2
2 ( )

x dx y dy z dz
x y z

 
 

=
1

2 2 2 2
1

2 2 2 2

1 2 1 1( )
2 1 | |

( )

x y z
r

x y z

        
 

 
Ans.

Now, Div F
 = .F

 


=
2 2 2 3/ 2.

( )
x i y j z ki j k

x y z x y z

  
       

       

= 2 2 2 3/ 2 2 2 2 3/ 2 2 2 2 3/ 2( ) ( ) ( )
x y z

x y zx y z x y z x y z
  

 
       

=

2 2 2 3/ 2 2 2 2 1/ 2

2 2 2 3

3( ) (1) ( ) (2 )
2

( )

x y z x x y z x

x y z

      
 

 

2 2 2 3/ 2 2 2 2 1/ 2

2 2 2 3

3( ) (1) ( ) (2 )
2

( )

x y z y x y z y

x y z

      
 

 
2 2 2 3/ 2 2 2 2 1/ 2

2 2 2 3

3( ) (1) ( ) (2 )
2

( )

x y z z x y z z

x y z
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=
2 2 2 1/ 2

2 2 2 3
( )
( )
x y z
x y z
 

 
 [x2 + y2 + z2 – 3x2 + x2 + y2 + z2 – 3y2 + x2 + y2 + z2 – 3z2]

= 0

Hence, F


 is solenoidal. Proved.

Example 53. Given the vector field 2 2 2 2( 2 ) ( ) ( )V x y xz i xz xy yz j z x k
  

        find
curl V. Show that the vectors given by curl V at P0 (1, 2, –3) and P1 (2, 3, 12) are orthogonal.

Solution. Curl V


= V
 
 

= 2 2 2 2[( 2 ) ( ) ( ) ]i j k x y xz i xz xy yz j z x k
x y z

        
             

curl V
 =

2 2 2 22

i j k

x y z

x y xz xz xy yz z x

  

  
  

    

= ( ) (2 2 ) ( 2 )x y i x x j z y y k
  

        = ( ) ( )x y i y z k
 

   

curl V


 at P0 (1, 2, –3) = (1 2) (2 3) 3i k i k
   

      

curl V


 at P1 (2, 3, 12) = (2 3) (3 12) 5 15i k i k
   

      

The curl V


 at (1, 2, –3) and (2, 3, 12) are perpendicular since

( 3 ).( 5 15 )i k i k
   

    = +15 – 15 = 0 Proved.
Example 54. Find the constants a, b, c, so that

F


= ( 2 ) ( 3 ) (4 2 )x y az i bx y z j x cy z k
  

        ...(1)
is irrotational and hence find function  such that F

 = .
(Nagpur University, Summer 2005, Winter 2000; R.G.P.V., Bhopal 2009)

Solution. We have,

 F


  =

( 2 ) ( 3 ) (4 2 )

i j k

x y z
x y az bx y z x cy z

  

  
  

     

= ( 1) (4 ) ( 2)c i a j b k
  

    

As F


 is irrotational, 0F
 

  

i.e., ( 1) (4 ) ( 2) 0 0 0c i a j b k i j k
     

       
 c + 1 = 0, 4 – a = 0 and b – 2 = 0
i.e., a = 4, b = 2, c = –1
Putting the values of a, b, c in (1), we get

F


= ( 2 4 ) (2 3 ) (4 2 )x y z i x y z j x y z k
  

       

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Vectors 413

Now we have to find  such that F


 = 
We know that

d = dx dy dz
x y z
  

 
  

[Total differential coefficient]

= .( )i j k i dx j dy k dz
x y z

        
       

= .( )i j k i dx j dy k dz
x y z

        
        

 = .( )i dx j dy k dz
  

  

= .( )F i dx j dy k dz
  

 

= [( 2 4 ) (2 3 ) (4 2 ) )].( )x y z i x y z j x y z k i dx j dy k dz
     

         
= (x + 2y + 4z) dx + (2x – 3y – z) dy + (4x – y + 2z) dz
= x dx – 3y dy + 2z dz + (2y dx + 2x dy) + (4z dx + 4x dz) + (–z dy – y dz)

 = 3 2 (2 2 ) (4 4 )x dx y dy z dz y dx x dy z dx x dz          ( )z dy y dz 

=
2 23

2 2
x y

  + z2 + 2xy + 4zx – yz + c Ans.

Example 55. Let V


(x, y, z) be a differentiable vector function and (x, y, z) be a scalar

function. Derive an expression for div ( )V


  in terms of  .V


, div V


 and .
(U.P. I Semester, Winter 2003)

Solution. Let V


 = 1 2 3V i V j V k
  
 

div ( )V


 = .( )F
 
 

= 1 2 3.[ ]i j k V i V j V k
x y z

        
          

 = 1 2 3( ) ( ) ( )V V V
x y z
  

    
  

=
31 2

1 2 3
VV VV V V

x x y y z z
                           

=
31 2

1 2 3
VV V V V V

x y z x y z
                       

= 1 2 3.( )i j k V i V j V k
x y z

        
        

1 2 3.( )i j k V i V j V k
x y z

        
        

= ( . ) ( ). (div ) (grad ).V V V V
    

        Ans.

Example 56. If A


 is a constant vector and R


 = x î  + y ĵ  + z k̂ , then prove that

Curl .A R A A R
      

   
  

(K. University, Dec. 2009)

Solution.  Let A
   = A1 î  + A2

ĵ  + A3 k̂ , R


 = x î  + y ĵ  + z k̂

.A R
 

 (A1 î  + A2
ĵ  + A3 k̂ ) . (x î  + y ĵ  + z k̂ ) = A1 x + A2 y + A3 z

[ . ]A R R
  

 =  (A1 x + A2y + A3 z) (x î  + y ĵ  + z k̂ )

= (A1 x
2 + A2 xy + A3 zx) î  + (A1 xy + AA2 y

2 + A3 yz) ĵ  + (A1 xz + A2 yz + A3z
2) k̂
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Curl ( . )A R R
   

 
 

 = 

2 2 2
1 2 3 2 2 3 1 2 3

ˆˆ ˆi j k

x y z

A x A xy A zx A xy A y A yz A xz A yz A z

  
  

     

      =  (A2 z – A3 y) î  – [A1 z – AA3 x) ĵ [A1 y – A2 x] k̂ ... (1)

             L.H.S.   = A R
 


      = (A1 î  + A2
ĵ  + A3 k) ×(x î  + y ĵ  + z k̂ )

      = 1 2 3

ˆ ˆi j k
A A A
x y z

      = (A2 z – A3 y) î  – (A1 z – A3 x) ĵ  + (A1 y – A2 x) k̂
     = R.H.S. [From (1)]

Example 57. Suppose that ,U V
 

 and f are continuously differentiable fields then

Prove that, div ( ) . .U V V curl U U curl V
     
   . (M.U. 2003, 2005)

Solution. Let U


= 1 2 3 1 2 3,u i u j u k V v i v j v k
     

    

U V
 
 =

1 2 3

1 2 3

i j k
u u u
v v v

  

= 2 3 3 2 1 3 3 1 1 2 2 1(   )   (   )  + (   )u v u v i u v u v j u v u v k
  

   

div ( )U V
 
 = 2 3 3 2 1 3 3 1 1 2 2 1.[( ) (  ) + ( ) ]i j k u v u v i u v u v j u v u v k

x y z
        

         

= 2 3 3 2 1 3 3 1 1 2 2 1( ) ( ) ( )u v u v u v u v u v u v
x y z
  

     
  

=
3 3 32 2 1

2 3 3 2 1 3
v u vu v uu v u v u v
x x x x y y

                  
31

3 1
uvu v

y y
     

2 1 1 2
1 2 2 1

v u v u
u v u v

z z z z
            

= 3 32 1 2 1
1 2 3

u uu u u uv v v
y z x z x y

                           
3 32 1 1 2

1 2 3
v vv v v vu u u
y z x z y x

                            

= 3 2 1 3 2 1
1 2 3( ) . u u u u u uv i v j v k i j k

y z z x x y
                                    

3 32 1 1 2
1 2 3( ). v vv v v vu i u j u k i j k

z y x z y x
                                       

= .( ) .( ) .curl .curlV U U V V U U V
      

       Proved.
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Example 58. Prove that

( )F G
  
   = ( . ) ( . ) ( . ) ( . )F G G F G F F G

           
       (M.U. 2004, 2005)

Solution. ( )F G
  
   = ( )i F G

x
  

  


= F G F Gi G F i G i F
x x x x

              
                         

= ( . ) ( . )F F G Gi G i G i F i F
x x x x

                
                   

= ( . ) . . ( . )F F G GG i G i F i F i
x x x x

             
              

= . ( . ) ( . )G F F GF i G i G i F i
x x x x

            
              

= ( ) ( . ) ( . ) ( . )F G G F G F F G
           

       Proved.
Questions for practice:

Prove that

( . )F G
  
 = ( . ) ( . ) ( ) ( )G F F G G F F G

           
         

Example 59. Prove that, for every field V


; div curl V


 = 0.
(Nagpur University, Summer 2004; AMIETE, Sem II, June 2010)

Solution. Let V = 1 2 3V i V j V k
  
 

div (curl )V


= .( )V
  
 

=

1 2 3

.

i j k

x y z
V V V

  

   


  

= 3 32 1 2 1. V VV V V Vi j k i j k
x y z y z x z x y

                                               

= 3 32 1 2 1V VV V V V
x y z y x z z x y
                              

=
2 22 2 2 2

3 32 1 2 1V VV V V V
x y x z y x y z z x z y
    

    
           

=
2 22 2 2 2

3 31 1 2 2 V VV V V V
y z z y z x x z x y y x

         
                             

= 0 Ans.

Example 60. If a


 is a constant vector, show that

( )a r
  
   = ( . ) ( . ) .a r a r

     
   (U.P., Ist Semester, Dec. 2007)

Solution. a


= 1 2 3 1 2 3,a i a j a k r r i r j r k
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r
 
  =

1 2 3

i j k

x y z
r r r

  

  
  

 = 
3 32 1 2 1r rr r r ri j k
y z x z x y

                           

( )a r
  
   = 1 2 3

3 32 1 2 1

i j k
a a a

r rr r r r
y z x z x y

  

    
   

     

= 3 32 1 1 2 1 2
2 2 3 3 1 1 3 3

r rr r r r r ra a a a i a a a a j
x y x z x y y z

                                    
3 31 2

1 1 2 2
r rr ra a a a k
x z y z

   
         

=
3 31 2 1 2

1 2 3 1 2 3
r rr r r ra i a i a i a j a j a j

x x x y y y
            

               

3 31 2 1 2
1 2 3 1 1 1

r rr r r ra k a k a k a i a j a k
z z z x x x

             
                  

3 31 2 1 2
2 2 2 3 3 3

r rr r r ra i a j a k a i a j a k
y y y z z z

            
                 

= 1 1 2 2 3 3 1 2 3 1 2 3( ) ( )i j k a r a r a r a a a r i r j r k
x y z x y z

             
                   

= ( . ) ( . )a r a r
    

   Proved.
Example 61. If r is the distance of a point (x, y, z) from the origin, prove that

1 1.Curl k grad grad k grad
r r

       
   

 = 0, where k is the unit vector in the direction OZ.
(U.P., I Semester, Winter 2000)

Solution. r2 = (x – 0)2 + (y – 0)2 + (z – 0)2 = x2 + y2 + z2


1
r

= (x2 + y2 + z2)– 1/2

grad 
1
r =

1
r


  = 2 2 2 1/ 2( )i j k x y z

x y z
      

       

= 2 2 2 3/ 21 ( ) (2 2 2 )
2

x y z x i y j z k
      

= – 2 2 2 3/ 2( ) ( )x y z x i y j z k
     

k × grad 
1
r

= 2 2 2 3/ 2[ ( ) ( )]k x y z x i y j z k
       

= 2 2 2 3/ 2( ) ( )x y z x j y i
    

curl 
1gradk
r

  
 

=
1gradk
r
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= i j k
x y z

     
     

 × [–(x2 + y2 + z2)–3/2 ( )x j y i
 
 ]

=

2 2 2 3/ 2 2 2 2 3/ 2 0
( ) ( )

i j k

x y z
y x

x y z x y z

  

  
  


   

= 2 2 2 5 / 2 2 2 2 5 / 2 2 2 2 5/ 2
3 ( ) (2 ) 3 (2 ) 3 ( )(2 )
2 2 2( ) ( ) ( )

x z y z x xi j
x y z x y z x y z

          
       

2 2 2 3/ 2 2 2 2 5/ 2 2 2 2 3/ 2
1 ( 3 / 2) ( ) (2 ) 1

( ) ( ) ( )
y y k

x y z x y z x y z

          

= 
2 2 2 2 2 2 2 2

2 2 2 5 / 2 2 2 2 5 / 2 2 2 2 5 / 2
3 3 (3 3 )

( ) ( ) ( )
xz yz x x y z y x y zi j k

x y z x y z x y z

         
 

     

= 
2 2 2

2 2 2 5/ 2
3 3 ( 2 )

( )
xz i yz j x y z k

x y z

  
    

 
...(1)

k . grad 
1
r

= 2 2 2 3/ 2
2 2 2 3/ 2.[ ( ) ( )]

( )
zk x y z x i y j z k

x y z

   
     

 

grad 1.gradk
r

 
 
 

= 2 2 2 3/ 2( )
zi j k

x y z x y z

      
       

= 2 2 2 5/ 2 2 2 2 5/ 2
3 ( )(2 ) 3 ( )(2 )
2 2( ) ( )

i z x j z y
x y z x y z

 
 

  
   

2 2 2 5 / 2 2 2 2 3/ 2
3 ( )(2 ) 1
2 ( ) ( )

z z k
x y z x y z

        

= 
2 2 2 2 2 2 2

2 2 2 5/ 2 2 2 2 5/ 2
3 3 (3 ) 3 3 ( 2 )

( ) ( )
xz i yz j z x y z k xz i yz j x y z k

x y z x y z

     
        


   

...(2)

Adding (1) and (2), we get
1 1Curl grad grad .gradk k
r r

       
   

= 0 Proved.

Example 62. Prove that 
2

(2 ) ( . )
n n n

a r n a n a r r
r r r

     



 
       

 

.

(M.U. 2009, 2005, 2003, 2002; AMIETE, II Sem. June 2010)
Solution. We have,

n
a r

r

 


= 1 2 3
1
n

i j k
a a a

r x y z

  

= 2 3 3 1 1 2
1 1 1( ) ( ) ( )n n na z a y i a x a z j a y a x k
r r r
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( )

n

a r

r
=

2 3 3 1 1 2
n n n

i j k

x y z
a z a y a x a z a y a x

r r r

  

  
  
  

= 3 1 2 31 2 1 2
n n n n

a x a z a z a ya y a x a y a xi j
y z x zr r r r

                                     
3 1 2 3

n n
a x a z a z a yk

x yr r

                 

Now, r2 = x2 + y2 + z2    2 rr
x



  =   2x  r x
x r





Similarly,
r
y



= ,y
r

r z
z r





 n
a r

r

  
     

 

= 1
1 2 1

1. ( )n
n

yi nr a y a x a
r r

         
  

1
3 1 1

1( ) ( )n
n

znr a x a z a
r r

          
  

 + two similar terms

= 2 21 1
1 2 3 12 2( ) ( )n n n n

a an ni a y a xy a xz a z
r r r r



 
        

+ two similar terms

= 2 21
1 2 32 2

2
( ) ( )n n n

a n ni a y z a xy a xz
r r r



 
      

 + two similar terms

Adding and subtracting 2
12n

n a x
r   to third and from second term, we get

n
a r

r

 
  

     
 

= 2 2 2 21 1
1 2 32 2

2
( ) ( )n n n

a na ni x y z a x a xy a xz
r r r



 
        

+ two similar terms

= 21 1
1 2 32 2

2
( )n n n

a na ni r x a x a y a z
r r r



 
      

 + two similar terms

= 1 1
1 2 32

2
( )n n n

a na ni x a x a y a z
r r r




      

    2 2
2 3 12

2
( )n n n

a na nj y a y a z a x
r r r




       

3 3
3 1 22

2 ( )n n n
a na nk z a z a x a y

r r r




       

= 1 2 3 1 2 3
2 ( ) ( )n n

na i a j a k a i a j a k
r r

     
     1 2 32 ( ) ( )n

n a x a y a z x i y j z k
r

  


    

= 1 2 3 1 2 32
2 ( ) ( ) ( )n n

n na i a j a k a x a y a z x i y j z k
r r

     




      

= 2
2 ( . )n n

n na a r r
r r

   




 Proved.
Example 63. If f and g are two scalar point functions, prove that

div (f g) = f 2g + f g. (U.P., I Semester, compartment, Winter 2001)
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Solution. We have, g = g g gi j k
x y z
    
 

  

 f g = g g gf i f j f k
x y z
    
 

  

 div (f g) =
g g gf f f

x x y y z z
          

                

=
2 2 2

2 2 2
g g g f g f g f gf

x x y y z zx y z
           

                   

=
2 2 2

2 2 2 .f f f g g gf g i j k i j k
x y z x y zx y z

                  
                         

= f 2g + f.g Proved.

Example 64. For a solenoidol vector F


, show that curl curl curl curl F


 = 4 .F



(M.D.U., Dec. 2009)

Solution. Since vector F


 is solenoidal, so div F


 = 0 ... (1)

We know that curl curl F


 = grad div ( F


 – 2 F


) ... (2)

Using (1) in (2), grad div F


 = grad (0) = 0 ... (3)
On putting the value of grad div F in (2), we get

curl curl F


 = – 2 F


... (4)

Now, curl curl curl curl F


 = curl curl (– 2 F


) [Using (4)]

   = – curl curl  ( 2 F
 ) = – [grad div ( 2 F


) – 2  ( 2 F


) ] [Using (2)]

   = – grad ( . 2 F


) + 2  ( 2 F


) = – grad ( 2  . F
 ) + 4 F


[ . F

  = 0]

   = 0 +  4 F


 =  4 F
 [Using (1)] Proved.

EXERCISE 5.9

1. Find the divergence and curl of the vector field V = (x2 – y2) i


 + 2xy j


 + (y2 – xy) k


.

Ans. Divergence = 4x, Curl = (2y – x) i


 + y j


 + 4y k


2. If a is constant vector and r is the radius vector, prove that

(i) ( . )a r a  
  (ii) div ( ) 0r a

 
  (iii) curl ( ) 2r a a

  
  

where r


 = x i y j z k
  
   and 1 2 3a a i a j a k

   
   .

3. Prove that:
(i) .(A) = .A + (.A)

(ii) (A.B) = (A.)B + (B.)A + A × ( × B) + B × ( × A) (R.G.P.V. Bhopal, June 2004)
(iii)  × (A × B) = (B.)A – B(.A) – (A.)B + A(.B)

4. If F = (x + y + 1) i
 + j


 – (x + y) k

 , show that F.curl F = 0.
(R.G.P.V. Bhopal, Feb. 2006, June 2004)

Prove that

5. ( ) ( ) ( )F F F
    
                        6. .( ) .( ) .( )F G G F F G

     
       

7. Evaluate div ( )A r
 
  if curl A


 = 0.          8.  Prove that curl ( )a r

 
  = 2a
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9. Find div F


 and curl F where F = grad (x3 + y3 + z3 – 3xyz). (R.G.P.V. Bhopal Dec. 2003)

Ans. div F


 = 6(x + y + z), curl F


 = 0

10. Find out values of a, b, c for which v


  = (x + y + az) i


 + (bx + 3y – z) j


 + (3x + cy + z) k


is irrotational.
Ans. a = 3, b = 1, c = –1

11. Determine the constants a, b, c, so that F


 = (x + 2y + az) i


 + (bx – 3y – z) j


 + (4x + cy + 2z) k


 is

irrotational. Hence find the scalar potential  such that F


 = grad .
(R.G.P.V. Bhopal, Feb. 2005) Ans. a = 4, b = 2, c = 1

Potential  = 
2 2

23 2 4
2 2
x y z xy yz zx

 
     

 
Choose the correct alternative:

12. The magnitude of the vector drawn in a direction perpendicular to the surface
x2 + 2y2 + z2 = 7 at the point (1, –1, 2) is

(i)
2
3

(ii)
3
2

(iii) 3 (iv) 6     (A.M.I.E.T.E., Summer 2000) Ans. (iv)

13.If u = x2 – y2 + z2 and  V xi y j zk    then  ( )uV  is equal to

(i) 5u (ii) 5 | |V


(iii) 5( | |)u V


 (iv) 5( | |)u V


         (A.M.I.E.T.E., June 2007)
14.A unit normal to x2 + y2 + z2 = 5 at (0, 1, 2) is equal to

(i)
1 ( )
5

i j k
  
  (ii) 1 ( )

5
i j k
  
  (iii)

1 ( 2 )
5

j k
 
 (iv)

1 ( )
5

i j k
  
 

(A.M.I.E.T.E., Dec. 2008)
15.The directional derivative of  = x y z at the point (1, 1, 1) in the direction i  is:

(i) –1 (ii)
1
3

 (iii) 1 (iv)
1
3

Ans. (iii)
(R.G.P.V. Bhopal, II Sem., June 2007)

16.If r x i y j z k
   
    and r = | |r


 then  (r) is:

(i)  (r) r


(ii) ( )r r
r


 (iii) ( )r r

r


 (iv) None of these Ans. (iii)

(R.G.P.V. Bhopal, II Semester, Feb. 2006)

17. If r


 = x i y j z k
  
   is position vector, then value of (log r) is (U.P., I Sem, Dec 2008)

(i)
r
r


 (ii) 2

r

r



 (iii) 3–
r

r



     (iv)  none of the above. Ans. (ii)

18. If r x i y j z k
   
    and | |r


 = r, then div r


 is:

(i) 2 (ii) 3 (iii) –3 (iv) –2 Ans. (ii)
(R.G.P.V. Bhopal, II Semester, Feb. 2006)

19. If 2 2 22 3V xy i yx z j yz k
   
    then curl V


 at point (1, –1, 1) is

(i) ( 2 )j k
 

  (ii) ( 3 )i k
 
 (iii) ( 2 )i k

 
  (iv) ( 2 )i j k

  
 

(R.G.P.V. Bhopal, II Semester, Feb 2006)
Ans. (iii)

20. If A


 is such that A


   = 0 then A


 is called
(i) Irrotational (ii) Solenoidal (iii) Rotational (iv) None of these

(A.M.I.E.T.E., Dec. 2008)

21. If F


 is a conservative force field, then the value of curl F


 is
(i) 0 (ii) 1 (iii) F (iv) –1 (A.M.I.E.T.E., June 2007)
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5.33 LINE INTEGRAL

Let ,( , )y zF x
  be a vector function and a curve AB.

Line integral of a vector function F


 along the curve AB is defined as integral of the component

of F


 along the tangent to the curve AB.

Component of F


 along a tangent PT at P

= Dot product of F
  and unit vector along PT

= is a unit vector along tangent PTdr drF
ds ds

 
  

    
 

Line integral = 
drF
ds



  from A to B along the curve

 Line integral = c

drF ds
ds


 

   
 
  = 

c
F d r
 



Note (1) Work. If F  represents the variable force acting on a particle along arc AB, then the
total work done = B

A
F dr
 


(2) Circulation. If V
  represents the velocity of a liquid then 

c
V dr
 
  is called the circulation

of V round the closed curve c.
If the circulation of V round every closed curve is zero then V is said to be irrotational there.
(3) When the path of integration is a closed curve then notation of integration is  in place

of .
Example 65. If a force 2 ˆ ˆ2 3F x yi xyj


  displaces a particle in the xy-plane from (0, 0) to

(1, 4) along a curve y = 4 x2. Find the work done.

Solution. Work done = .
c
F dr
 

 ˆ ˆ

ˆ ˆ

r xi yj

dr dxi dy j





 
  

 
   = 

2 ˆ ˆ ˆ ˆ(2 3 ) . ( )
c

x y i xy j dx i dy j 
= 

2(2 3 )
c

x y dx xy dy

22.If 2  [(1 – x) (1 – 2x)] is equal to
(i) 2 (ii) 3 (iii) 4 (iv) 6 (A.M.I.E.T.E., Dec. 2009)  Ans. (iii)

23.If R


 = xi + yj + zk and A


 is a constant vector, curl ( )A R
 
  is equal to

(i) R


(ii) 2 R


(iii) A


(iv) 2 A


(A.M.I.E.T.E., Dec. 2009) Ans. (iv)

24. If r is the distance of a point (x, y, z) from the origin, the value of the expression 
1ˆ grad
2

j 
equals

(i)  
3

2 2 2 2 ˆˆ( ) ( )x y z j z k x


       (ii)  
3

2 2 2 2 ˆ ˆ( ) ( )x y z j z i z


  

(iii)  zero     (iv)   
3

2 2 2 2 ˆˆ( ) ( )x y z j y k x


  
(AMIETE, Dec. 2010)  Ans. (ii)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



422 Vectors

Putting the values of y and dy, we get
24

8
y x

dy x dx
 
   

= 
1 2 2 2
0

[2 (4 ) 3 (4 ) 8 ]x x dx x x x dx 

= 
151 4

0
0

104104 104
5 5
xx dx

 
   

 
 Ans.

Example 66. Evaluate 2ˆ ˆ.
C

F dr where F x i xyj
  

  and C is the boundary of the square in the

plane z = 0 and bounded by the lines x = 0, y = 0, x = a and y = a.
(Nagpur University, Summer 2001)

Solution. . . . . .
C OA AB BC CO

F d r F dr F dr F dr F dr
         

       
Here ˆ ˆ,r xi yj


  ˆ ˆ,d r dxi dyj


  2ˆ ˆF x i xy j


 

.F dr
 

= x2dx + xydy ...(1)

On OA, y = 0  2.F dr x dx
 



.
OA

F dr
 

 = 
3 3

2
0

0
3 3

a
a x ax dx

 
  
 

 ...(2)

On AB, x = a  dx = 0
(1) becomes

 .F dr
 

 = aydy

.
Ab

F dr
 

 = 
2 3

0
0

2 2

a
a y aaydy a

 
  

 
 ...(3)

On BC, y = a  dy = 0

 (1) becomes 2.F dr x dx
 



.
BC

F dr
 

 = 

03 30 2 –
3 3a

a

x ax dx
 

  
 

 ...(4)

On CO, x = 0,  . 0F dr
 


(1) becomes

.
CO

F dr
 

 = 0 ...(5)

On adding (2), (3), (4) and (5), we get .
C

F dr
 

  = 
3 3 3 3

– 0
3 2 3 2
a a a a

   Ans.
Example 67. A vector field is given by

F


= ˆˆ ˆ(2 3) ( – ) .y i xzj yz x k    Evaluate .
C

F dr
 

  along the path c is x = 2t,
y = t, z = t3 from t = 0 to t = 1. (Nagpur University, Winter 2003)

  Solution.    .
C

F dr
 

  = (2 3) ( ) ( – )
C

y dx xz dy yz x dz  
3

2

Since 2

2 1 3

x t y t z t
dx dy dz t
dt dt dt

   
 
    
  

Y

C B

O A
X
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= 
1 3 4 2
0

(2 3) (2 ) (2 ) ( ) ( – 2 ) (3 )t dt t t dt t t t dt    = 1 4 6 3
0

(4 6 2 3 – 6 )t t t t dt  

= 

12
5 7 4

0

2 3 64 6 –
2 5 7 4
t t t t t

 
   

 
 = 

1
2 5 7 4

0

2 3 32 6 –
5 7 2

t t t t t     

= 2 3 32 6 –
5 7 2

    = 7.32857. Ans.

Example 68. The acceleration of a particle at time t is given by

a
 = ˆˆ ˆ18 cos 3 8 sin 2 6 .t i t j t k 

If the velocity v
  and displacement r

  be zero at t = 0, find v


 and r


 at any point t.

Solution. Here, a


= 
2

2
d r
dt



 = ˆˆ ˆ18 cos 3 8 sin 2 6 .t i t j t k 
On integrating, we have

v
 = ˆˆ ˆ18 cos 3 8 sin 2 6dr i t dt j t dt k t dt

dt



     
 v

 = 2 ˆˆ ˆ6 sin 3 4 cos 2 3t i t j t k c


   ...(1)

At t = 0, v
 = 0



Putting t = 0 and v
 = 0 in (1), we get

0


= ˆ ˆ4 4j c c j
 

   

 v
 = 2 ˆˆ ˆ6 sin 3 4(cos 2 1) 3dr t i t j t k

dt



   

Again integrating, we have

r
 = 2ˆˆ ˆ6 sin 3 4 (cos 2 1) 3i t dt j t dt k t dt    

 r


= 3
1

ˆˆ ˆ2 cos 3 (2 sin 2 4 )t i t t j t k c


     ...(2)

At, t = 0, r


= 0

Putting t = 0 and r


 = 0 in (2), we get

 0


= 1 1
ˆ ˆ2 2i C C i

 
   

Hence, r


= 3 ˆˆ ˆ2 (1 cos 3 ) 2 (sin 2 2 )t i t t j t k    Ans.

Example 69. If A
 2 2 ˆˆ ˆ(3 6 ) – 14 20 , .x y i yzj xz k evaluate the line integral A dr

 
    fromom

(0, 0, 0) to (1, 1, 1) along the curve C.
x = t, y = t2, z = t3. (Uttarakhand, I Semester, Dec. 2006)

Solution. We have,

.
C

A dr
 

  =
2 2 ˆ ˆˆ ˆ ˆ ˆ[ (3 6 ) – 14 20 ] . [ ]

C
x y i yzj xz k i dx j dy k dz   

=
2 2[ (3 6 ) – 14 20 ]

C
x y dx yzdy xz dz 

If x = t, y = t2, z = t3, then points (0, 0, 0) and (1, 1, 1) correspond to t = 0 and t = 1 respectively.

Now, .
C

A dr
 

  = 
1 2 2 2 3 2 3 2 3
0
[ (3 6 ) ( ) – 14 ( ) 20 ( ) ( )]

t

t
t t d t t t d t t t d t




 

=
1 2 5 7 2
0
[ 9 – 14 . 2 20 . 3 ]

t

t
t dt t t d t t t dt




  = 

1 2 6 9
0

(9 – 28 60 )t t t dt
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=

13 7 10

0

9 – 28 60
3 7 10
t t t      

                  
               = 3 – 4 + 6 = 5 Ans.

Example 70. Evaluate 2 ˆˆ ˆˆ. ( ) – 2 2
S

A n ds where A x y i xj yzk
 

   and S is the surface of
the plane 2x + y + 2z = 6 in the first octant. (Nagpur University, Summer 2000)
Solution. A vector normal to the surface “S” is given by

(2 2 )x y z   = ˆ ˆˆ ˆ ˆ ˆ(2 2 ) 2 2i j k x y z i j k
x y z

   
          

And n̂  = a unit vector normal to surface S

= 
ˆˆ ˆ2 2 2 1 2 ˆˆ ˆ

3 3 34 1 4
i j k i j k 

  
 

ˆ ˆ.k n = 
2 1 2 2ˆ ˆˆ ˆ.
3 3 3 3

k i j k    
 

 ˆ.
S

A n ds = ˆ. ˆ .R

dx dyA n
k n

Where R is the projection of S.

Now,   ˆ.A n


= 2 2 1 2ˆ ˆˆ ˆ ˆ ˆ[ ( ) – 2 2 ] .
3 3 3

x y i xj yzk i j k     
 

           = 2 22 2 4 2 4( ) –
3 3 3 3 3

x y x yz y yz    ...(1)

Putting the value of z in (1), we get

ˆ.A n


 = 22 4 6 2
3 3 2

x yy y     
 

on the plane 2 2 6,
(6 2 )

2

x y z
x yz

   
    
 



ˆ.A n


 =
2 4( 6 – 2 – ) (3 – )
3 3

y y x y y x  ...(2)

Hence, ˆ.
S

A n ds


  = . ˆ| . |R

dx dyA n
k n   ...(3)

Putting the value of ˆ.A n


 from (2) in (3), we get

ˆ.
S

A n ds


  = 
3 6 2

0 0

4 3(3 – ) . 2 (3 )
3 2

x

R
y x dx dy y x dydx


   

=

6 – 223

0
0

2 (3 – )
2

x
yx dx

 
 
 



=
3 32 3
0 0

(3 – ) (6 – 2 ) 4 (3 – )x x dx x dx 

=
34

0

(3 – )4. – (0 – 81) 81
4 (– 1)

x 
  

 
Ans.

Example 71. Compute 2 2

ˆ ˆ
. ,

c

iy jxF dr where F
x y

   


  and c is the circle x2 + y2 = 1 traversed

counter clockwise.

Z
N

M Y

R

X

L

O

K

3

n–

M

O L
X

2x
+

3y
=

6
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Solution. r
 = ˆ ˆˆ ˆ ˆ ˆ,i x j y k z d r i dx j dy k dz    

.
c

F d r
 

 = 2 2

ˆ ˆ ˆˆ ˆ( )
c

iy jx idx jdy kdz
x y


  



= 2 2 ( )
c c

ydx xdy ydx xdy
x y


 

  ...(1) [ x2 + y2 = 1]

Parametric equation of the circle are x = cos , y = sin .
Putting x = cos , y = sin , dx = – sin  d , dy = cos  d  in (1), we get

C
F d r
 

 = 
2

0
sin ( sin ) cos (cos )d d


       

= 
2 22 2
0 0

(sin cos ) d d
 

          =  2
0 2     Ans.

Example 72. Show that the vector field 2 3 2 2 2 ˆˆ ˆ2 ( ) 2 3F x y z i x yj x z k

    is conservative.

Find its scalar potential and the work done in moving a particle from (–1, 2, 1) to (2, 3, 4).
(A.M.I.E.T.E. June 2010, 2009)

Solution. Here, we have
2 3 2 2 2 ˆˆ ˆ2 ( ) 2 3F x y z i x y j x z k


   

Curl F F
 
 

2 3 2 2 2

ˆˆ ˆ

2 ( ) 2 3

i j k

x y z

x y z x y x z

  


  



2 2 ˆˆ(0 0) (6 6 ) (4 4 )i xz xz j xy xy k       = 0

Hence, vector field F


 is irrotational.
To find the scalar potential function 
   F 

 
 

  d dx dy dz
x y z
  

   
    ˆ ˆˆ ˆ ˆ ˆ.i j k idx jdy kdz

x y z
   

        

ˆˆ ˆ . . .i j k d r d r F d r
x y z

       
             

2 3 2 2 2 ˆ ˆˆ ˆ ˆ ˆ2 ( ) 2 3 ( )x y z i x yj x z k idx jdy kdz       
2 3 2 2 22 ( ) 2 3x y z dx x y dy x z dz   

 = 2 3 2 2 22 ( ) 2 3x y z dx x ydy x z dz C     
2 2 3 2 2(2 2 ) (2 3 )xy dx x ydy xz dx x z dz    + C = x2y2 + x2z3 + C

Hence, the scalar potential is x2y2 + x2z3 + C
Now, for conservative field

Work done = 
(2, 3, 4) (2, 3, 4)

( 1, 2,1) ( 1,2,1)

.F d r d
 

 

    
(2,3,4)(2,3,4) 2 2 2 3

( 1,2,1) ( 1,2,1)
x y x z c

 
      

          = (36 + 256) – (2 – 1) = 291 Ans.
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Example 73. A vector field is given by ˆ ˆ(sin ) (1 cos ) .F y i x y j

   Evaluate the line integral

over a circular path x2 + y2 = a2, z = 0. `(Nagpur University, Winter 2001)
Solution. We have,

Work done = .
C

F d r
 


= ˆ ˆ ˆ ˆ[ (sin ) (1 cos ) ] . [ ]

C
y i x y j dxi dyj   ( z = 0 hence dz = 0)

 .
C

F d r
 

 = sin (1 cos ) (sin cos )
C C

y dx x y dy y dx x y dy x dy     
= ( sin )

C C
d x y x dy 

(where d is differential operator).
The parametric equations of given path

x2 + y2 = a2 are x = a cos , y = a sin ,
Where  varies form 0 to 2

 .
C

F d r
 

 = 
2 2

0 0
[ cos sin ( sin ) ] cos . cosd a a a a d

 
      

= 
2 2 2 2
0 0

[ cos sin ( sin ) ] cos .d a a a d
 

     
= 

22 2 2
0 0

[ cos sin ( sin ) ] cosa a a d
    

= 
2222

0
0

1 cos 2 sin 20
2 2 2

aa d


                

= 
2

2. 2
2

a a   Ans.
Example 74. Determine whether the line integral

2 2 2 2(2 ) ( cos ) (2 cos )x y z dx x z z y z dy x yz y yz dz    is independent of the path of

integration ? If so, then evaluate it from (1, 0, 1) to 0, , 1 .
2
 

 
 

Solution. 
2 2 2 2(2 ) ( cos ) (2 cos )

c
xy z dx x z z y z dy x yz y yz dz   

= 
2 2 2 2 ˆ ˆˆ ˆ ˆ ˆ[(2 ) ( cos ) (2 cos ) ].( )

c
xy z i x z z y z j x yz y yz k idx jdy kdz     

= c
F dr
 


This integral is independent of path of integration if

F


= 0F


    

F = 

2 2 2 2

ˆˆ ˆ

2 cos 2 cos

i j k

x y z

x yz x z z y z x y z y y z

  
  

 

= (2x2z + cos yz – yz sin yz – 2x2z – cos yz + yz sin yz) = 2 2 ˆˆ ˆ– (4 – 4  ) (2 – 2 ) i xyz x yz j xz xz k
= 0
Hence, the line integral is independent of path.

d  = dx dy dz
x y z

    
 

  
(Total differentiation)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Vectors 427

= ˆ ˆˆ ˆ ˆ ˆ( )i j k idx jdy kdz
x y z

     
        

  = dr F d r
 

  

= 2 2 2 2 ˆ ˆˆ ˆ ˆ ˆ[(2 ) ( cos ) (2 cos ) ]. (  )xyz i x z z y z j x yz y yz k idx jdy kdz     
= 2xyz2 dx + (x2z2 + z cos y z) dy + (2x2yz + y cos yz) dz
= [(2x dx) yz2 + x2 (dy) z2 + x2y (2z dz)] + [(cos yz dy) z + (cos yz dz) y]
= d (x2yz2) + d (sin yz)

 = 2 2 2 2( ) (sin ) sind x yz d yz x yz yz   
 BA =  (B) –  (A)

= 2 2 2 2
(1, 0,1)(0, ,1)

2

[ sin ] [ sin ]x yz yz x yz yz    = 0 sin ( 1) [0 0]
2
      

= 1 Ans.
Example 75. Evaluate ˆˆ ˆˆ. , 18 – 12 3

S
A n d S where A zi j y k
 

  and S is the part of the
plane 2x + 3y + 6z = 12 included in the first octant. (Uttarakhand, I semester, Dec. 2006)

Solution.  Here, A


= ˆˆ ˆ18 – 12 3zi j yk
Given surface f (x, y, z) = 2x + 3y + 6z – 12

Normal vector = f  =  ˆˆ ˆ (2 3 6 – 12)i j k x y z
x y z

   
       

 = ˆˆ ˆ2 3 6i j k 

n̂ = unit normal vector at any point (x, y, z) of 2x + 3y + 6z = 12

= 
ˆˆ ˆ2 3 6 1 ˆˆ ˆ(2 3 6 )

74 9 36
i j k i j k 

  
 

dS = 
7

ˆ 1 6 6ˆ . ˆ ˆˆ ˆ(2 3 6 ) .
7 7

dx dy dx dy dxdy dx dy
n k i j k k

  
 

Now, ˆ.A n dS


 = 
1 7ˆ ˆˆ ˆ ˆ ˆ(18 – 12 3 ) . (2 3 6 )
7 6

z i j y k i j k dx dy  

= (36 – 36 18 )
6

dx dyz y          = (6 – 6 3 )z y dx dy
Putting the value of 6z = 12 – 2x – 3y, we get

= 
16 (12 – 2 )
3

0 0
(12 – 2 – 3 – 6 3 )

x
x y y dx dy 

= 
16 (12 – 2 )
3

0 0
(6 – 2 )

x
x dx dy 

 = 
16 (12 – 2 )
3

0 0
(6 – 2 )

x
x dx dy 

= 
1 (12 – 2 )6 3

0 0
(6 – 2 ) ( )

x
x dx y

= 
6

0

1(6 – 2 ) (12 – 2 )
3

x x dx  = 
6 2
0

1 (4 – 36 72)
3

x x dx
63

2

0

1 4 – 18 72
3 3

x x x
 

  
 

= 
1 [4 36 2 – 18 36 72 6]
3

     = 
72 [4 – 9 6] 24
3

  Ans.

Y

B

O A
X

2x + 3y = 12
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EXERCISE 5.10
1. Find the work done by a force ˆ ˆyi xj which displaces a particle from origin to a point ˆ ˆ( ).i j Ans. 1
2. Find the work done when a force 2 2 ˆ ˆ( – ) (2 ) F x y x i xy y j     moves a particle from origin to

(1, 1) along a parabola y2 = x. Ans. 
2
3

3. Show that 3 2 2 ˆˆ ˆ(2 )  3V xy z i x j xz k

     is a conservative field. Find its scalar potential  such that

V


 = grad . Find the work done by the force V


 in moving a particle from (1, – 2, 1) to (3, 1, 4).
Ans. x2y + xz3, 202

4. Show that the line integral 2(2 3) ( 4 ) 4
c

xy dx x z dy y dz   
where c is any path joining (0, 0, 0) to (1, – 1, 3) does not depend on the path c and evaluate the line
integral. Ans. 14

5. Find the work done in moving a particle once round the ellipse 
2 2

1
25 16
x y

  , z = 0, under the field of

force given by F = (2x – y + z) î  + (x + y – z2) ĵ  + (3x – 2y + 4z) ˆ.k  Is the field of force conservative?
(A.M.I.E.T.E., Winter 2000)   Ans. 40 

6. If 

  = (y2 – 2xyz3) î  + (3 + 2xy – x2z3) ĵ  + (z3 – 3x2yz2) ˆ,k  find . Ans. 

4
2 2 33

4
zy x y x y z  

7. .
C

R d R
 

  is independent of the path joining any two point if it is. (A.M.I.E.T.E., June 2010)
Ans. (i)(i) irrotational field   (ii) solenoidal field    (iii) rotational field    (iv) vector field.

5.34 SURFACE INTEGRAL
A surface r = f(u, v) is called smooth if f  (u, v) posses continous

first order partial derivative.

Let F
  be a vector function and S be the given surface.

Surface integral of a vector function F


 over the surface S is defined

as the integral of the components of F


 along the normal to the
surface.

Component of F


 along the normal

= F


. n̂ , where n is the unit normal vector to an element ds and

n̂ = 
grad

| grad |
f
f ds = ˆˆ( )

dx dy
n k

Surface integral of F over S

= ˆF n


  = ˆ( )
S

F n ds



Note. (1) Flux = ˆ( )
S

F n d s

  where, F  represents the velocity of a liquid.

If ˆ( )
S

F n ds

  = 0, then F


 is said to be a solenoidal vector point function.

Example 76. Evaluate ˆˆ ˆ( )
S

yzi zxj xyk ds


    where S is the surface of the spheree

x2 + y2 + z2 = a2 in the first octant. (U.P., I Semester, Dec. 2004)
Solution. Here,  = x2 + y2 + z2 – a2
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Vector normal to the surface =    = ˆˆ ˆi j k
x y z
  

 
  

= 
2 2 2 2ˆ ˆˆ ˆ ˆ ˆ( ) 2 2 2i j k x y z a xi yj zk

x y z
   

           

n̂ = 
2 2 2 2 2 2

ˆ ˆˆ ˆ ˆ ˆ2 2 2
| | 4 4 4

xi y j z k xi yj zk

x y z x y z

    
 

    

= 
ˆˆ ˆxi yj zk

a
 

[ x2 + y2 + z2 = a2]

Here, F


= ˆˆ ˆyz i zx j xy k 

ˆF n

 = 

ˆˆ ˆ 3ˆˆ ˆ( ) xi yj zk xyzyz i zx j xy k
a a

  
     

 

Now, ˆ
S

F n ds = 
2 2

0 0

3ˆ( ) ˆ ˆ| . |
a a x

S

dx dy xyz dx dyF n
zk n a
a

 
 

 
 
 

  

= 

2 2
22 2

0 0 0
0

3 3
2

a x
a a x a yxy dy dx x dx


  

   
 

  

= 
2 2 4 4 4 4

2 2
0

0

3 3 3 3( ) .
2 2 2 4 2 2 4 8

a
a a x x a a ax a x dx

   
           

   
 Ans.

Example 77. Show that ˆ ,
S

3F n ds
2


   where F


 = 4 xz î  – y2 ĵ  + yz k̂

and S is the surface of the cube bounded by the planes,
x= 0, x = 1, y = 0, y = 1, z = 0, z = 1.

Solution. ˆ
S

F n ds

  = ˆ

OABC
F n ds



ˆ ˆ
DEFG OAGF

F n ds F n ds
 

    

ˆ ˆ
BCED ABDG

F n ds F n ds
 

    

ˆ
OCEF

F n ds


  ...(1)

Now, OABC
F n ds

 = 2 ˆˆ ˆ(4 ) ( )

OABC
xzi y j yz k k dx dy   =

1 1

0 0
0yz dx dy   (as z = 0)

2 ˆ ˆˆ ˆ(4 )
DEFG

xzi y j yz k k dx dy  

= 
1 1

0 0
(1)

DEFG
yz dx dy y dx dy  

= 

121 1
00

0

1 1[ ]
2 2 2
ydx x

 
  

 


2 ˆˆ ˆ(4 ) ( )
OAGF

xz i y j yz k j dx dz     = 2 0
OAGF

y dx dz  (as y = 0)

S.No. Surface Outward ds
normal

1 OABC – k dx dy z = 0
2 DEFG k dx dy z = 1
3 OAGF – j dx dz y = 0
4 BCED j dx dz y = 1
5 ABDG i dy dz x = 1
6 OCEF – i dy dz x = 0
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2 ˆˆ ˆ ˆ(4 )
BCED

xz i y j yz k j dx dz    = 
2( )

BCED
y dx dz

= 
1 1 1 1

0 00 0
( ) ( ) 1dx dz x z      (as y = 1)

2 ˆˆ ˆ ˆ(4 )
ABDG

xzi y j yzk i dy dz    = 
1 1

0 0
4 4 (1)xz dy dz z dy dz  

= 
12

1
0

0

14 ( ) 4 (1) 2
2 2
zy

           
2 ˆˆ ˆ ˆ(4 ) ( )

OCEF
xz i y j yz k i dy dz    = 

1 1

0 0
4 0xz dy dz   (as x = 0)

On putting these values in (1), we get

ˆ
S

F n ds  = 
10 0 1 2 0
2

      = 
3
2

Proved.

EXERCISE 5.11

1. Evaluate ˆ. ,
S

A n ds


  where A


 = 2 ˆˆ ˆ( ) 2 2x y i xj yzk    and S is the surface of the plane

2x + y + 2z = 6 in the first octant. Ans. 81

2. Evaluate ˆ. ,
S

A n ds


  where A


 = 2 ˆˆ ˆ 3zi xj y zk   and S is the surface of the cylinder x2 + y2 = 16

included in the first octant between z = 0 and z = 5. Ans. 90

3. If r


 = 2 ˆˆ ˆ ( 1)ti t j t k    and S


 = 2 ˆˆ2 6 ,t i tk  evaluate 
2

0
.r S dt


 Ans. 12

4. Evaluate ˆ ,
S

F n dS

  where, F


 = ˆˆ ˆ18 12 3z i j yk   and S is the surface of the plane 2x + 3y + 6z = 12

in the first octant. Ans. 24

5. Evaluate ˆ ,
S

F n ds

 where, F = 2 ˆˆ ˆ2yxi yzj x k   over the surface S of the cube bounded by the

coordinate planes and planes x = a, y = a and z = a. Ans. 41
2

a

6. If 2 ˆˆ ˆ2 3F yi j x k

    and S is the surface of the parabolic cylinder y2 = 8x in the first octant bounded

by the planes y = 4, and z = 6, then evaluate ˆ .
S

F n dS

 Ans. 132

5.35   VOLUME INTEGRAL
Let F


 be a vector point function and volume V enclosed by a closed surface.

The volume integral = 
V

F d v




Example 78. If F


 = 2 z î  – x ĵ  + y k̂ , evaluate 
V

F dv


  where, v is the region bounded by

the surfaces
x = 0,  y = 0,  x = 2,  y = 4,  z = x2,  z = 2.

Solution.
V

F dv


 = ˆˆ ˆ(2 )z i xj yk dx dy dz 
= 

2 4 2
20 0

ˆˆ ˆ(2 )
x

dx dy zi xj yk dz        = 
2 4 22

20 0
ˆˆ ˆ[ ]

x
dx dy z i xzj yzk  

= 
2 4 4 3 2
0 0

ˆ ˆˆ ˆ ˆ ˆ[4 2 2 ]dx dy i xj yk x i x j x yk     
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= 

42 22 2 4 3
0

0

ˆ ˆˆ ˆ ˆ ˆ4 2
2

x ydx yi xyj y k x yi x yj k
 

     
 



= 
2 4 3 2
0

ˆ ˆˆ ˆ ˆ ˆ(16 8 16 4 4 8 )i xj k x i x j x k dx    

= 
25 3

2 4

0

4 8ˆ ˆˆ ˆ ˆ ˆ16 4 16
5 3
x xxi x j xk i x j k

 
     

 

= 
128 64ˆ ˆˆ ˆ ˆ ˆ32 16 32 16

5 3
i j k i j k      = 

ˆˆ32 32
5 3

i k
  = 

32 ˆˆ(3 5 )
15

i k Ans.

EXERCISE 5.12

1. If F


 = 2 ˆˆ ˆ(2 3 ) 2 4 ,x z i xy j x k    then evaluate ,
V

F dV


  where V is bounded by the plane

x = 0, y = 0, z = 0 and 2x + 2y + z = 4. Ans. 8
3

2. Evaluate ,
V

dV  where  = 45 x2y and V is the closed region bounded by the planes
4x + 2y + z = 8,  x = 0, y = 0, z = 0 Ans. 128

3. If F


 = (2x2 – 3z) ˆˆ ˆ2 4 ,i xy j xk   then evaluate ,
V

F dV


   where V is the closed region bounded

by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4. Ans.  
8 ˆˆ( )
3

j k

4. Evaluate (2 ) ,
V

x y dV  where V is closed region bounded by the cylinder z = 4 – x2 and the planes

x = 0, y = 0, y = 2 and z = 0. Ans. 80
3

5. If F


= 2 ˆˆ ˆ2 ,xz i xj y k   evaluate F d V


  over the region bounded by the surfaces x = 0, y = 0,

y = 6 and z = x2, z = 4. Ans. ˆˆ ˆ(16 3 48 )i j k 

5.36 GREEN’S THEOREM (For a plane)

Statement. If  (x, y),  (x, y), and
y x
 
 

be continuous functions over a region R bounded

by simple closed curve C in x – y plane, then

( )
C

dx dy    = R
dx dy

x y
   

   
   (AMIETE, June 2010, U.P., I Semester, Dec. 2007)

Proof. Let the curve C be divided into two curves C1 (ABC) and C1 (CDA).
Let the equation of the curve C1 (ABC) be y = y1 (x) and equation of the curve C2 (CDA) be
y = y2 (x).
Let us see the value of

R
dx dy

y
 
 = 

2

1

( )

( )

x c y y x

x a y y x
dy dx

y
 

 

 
  

    =   2

1

( )
( )( , )

c y y x
y y xa

x y dx


=  2 1( , ) ( , )
c

a
x y x y dx     = 2 1( , ) ( , )

a c

c a
x y dx x y dx    

= 2 1( , ) ( , )
a c

c a
x y dx x y dx       

= 
2 1

( , ) ( , )
c c

x y dx x y dx         = – ( , )
c

x y dx
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Thus, c
dx = 

R
dx dy

y



 ...(1)

Similarly, it can be shown that

c
dy = dx dy

x

 ...(2)

On adding (1) and (2), we get

( )dx dy   = R
dx dy

x y
   

   
 Proved.

Note. Green’s Theorem in vector form

c
F d r
 
 = ˆ( )

R
F k d R


  

where, ˆˆ ˆ ˆ ˆ, ,F i j r xi yj k

      is a unit vector along z-axis and dR = dx dy.

Example 79. A vector field F
  is given by ˆ ˆsin (1 cos ) .F yi x y j


  

Evaluate the line integral 
C

F dr
 
  where C is the circular path given by x2 + y2 = a2.

Solution. ˆ ˆsin (1 cos  ) F yi x y j

  

C
F dr
 
 = ˆ ˆ ˆ ˆ[sin (1 cos ) ] ( )

C
yi x y j idx jdy     = sin (1 cos )

C
y dx x y dy 

On applying Green’s Theorem, we have

( )
c

dx dy   = s
dx dy

x y
  

   


= [(1 cos ) cos ]
s

y y dx dy 
where s is the circular plane surface of radius a.

= s
dx dy  = Area of circle =  a2. Ans.

Example 80. Using Green’s Theorem, evaluate 2 2( ),
c

x ydx x dy  where c is the boundaryy

described counter clockwise of the triangle with vertices (0, 0), (1, 0), (1, 1).
(U.P., I Semester, Winter 2003)

Solution.  By Green’s Theorem, we have

( )
c

dx dy   = R
dx dy

x y
   

   


2 2( )
c

x y dx x dy = 
2(2 )

R
x x dx dy

= 
1 2
0 0

(2 )
x

x x dx dy  = 
1 2

00
(2 ) [ ]xx x dx y

= 
1 2
0
(2 ) ( )x x x dx  = 

1 2 3
0

(2 )x x dx  = 
13 4

0

2
3 4
x x 

  
 

= 
2 1
3 4

  
 

 = 
5

12
Ans.

Example 81. State and verify Green’s Theorem in the plane for 2 2(3 – 8 ) (4 – 6 )x y dx y xy
dy where C is the boundary of the region bounded by x  0, y  0 and 2x – 3y = 6.

(Uttarakhand, I Semester, Dec. 2006)

X
(1, 0)(0, 0)O

A
(1, 1)

y
x=

Y
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Solution. Statement: See Article 24.4 on page 576.
Here the closed curve C consists of straight lines OB, BA and AO, where coordinates of A and

B are (3, 0) and (0, – 2) respectively. Let R be the region bounded by C.
Then by Green’s Theorem in plane, we have

2 2[ (3 – 8 ) (4 – 6 ) ]x y dx y xy dy
= 

2 2(4 – 6 ) – (3 – 8 )
R

y xy x y dx dy
x y

  
   

 ...(1)

= (– 6 16 ) 10
R R

y y dx dy y dx dy  

= 
023 0 3

10 (2 – 6) 0 13 (2 – 6)
3

10 10
2x

x

ydx y dy dx
 

  
 

     = 
3 2
0

5– (2 – 6)
9

dx x

= 
33

3

0

5 (2 – 6) 5– – (0 6)
9 3 2 54

x 
   

                 = 
5– (216) – 20
54

 ...(2)

Now we evaluate L.H.S. of (1) along OB, BA and AO.
Along OB, x = 0, dx = 0 and y varies form 0 to –2.

Along BA, x = 
1 3(6 3 ),
2 2

y dx  dy and y varies from –2 to 0.

and along AO, y = 0, dy = 0 and x varies from 3 to 0.

L.H.S. of (1) = 2 2[ (3 – 8 ) (4 – 6 ) ]x y dx y xy dy
=

2 2 2 2[ (3 – 8 ) (4 – 6 ) ] [ (3 – 8 ) (4 – 6 ) ]
OB BA

x y dx y xy dy x y dx x xy dy   
2 2[ (3 – 8 ) (4 – 6 ) ]

AO
x y dx y xy dy 

= 
– 2 0 02 2 2
0 – 2 3

3 34 (6 3 ) – 8 [4 – 3 (6 3 ) ] 3
4 2

y dy y y dy y y y dy x dx              

= 
3

0– 2 02 2 2 2 3
0 – 2

9[ 2 ] (6 3 ) – 12 4 – 18 – 9 ( )
8

y y y y y y dy x      
= 

0 2 2
–2

92 [4] (6 3 ) – 21 – 14 (0 – 27)
8

y y y dy     

= 

03
3 2 3 2

– 2

9 (6 3 ) 2168 – 7 – 7 – 27 – 19 7 (– 2) 7 (– 2)
8 3 3 8

y y y
             

= – 19 + 27 – 56 + 28 = – 20 ...(3)
With the help of (2) and (3), we find that (1) is true and so Green’s Theorem is verified.

Example 82. Apply Green’s Theorem to evaluate 2 2 2 2[(2 ) ( ) ],
C

x y dx x y dy    where C

is the boundary of the area enclosed by the x-axis and the upper half of circle x2 + y2 = a2.
(M.D.U. Dec. 2009, U.P., I Sem., Dec. 2004)

Solution. 
2 2 2 2[(2 ) ( ) ]

C
x y dx x y dy  

By Green’s Theorem, we’ve ( )
C

dx dy    = 
S

dx dy
x y
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= 
2 2

2 2 2 2
0

( ) (2 )
a a x

a
x y x y dx dy

x y




  
     

 

= 
2 2

0
(2 2 )

a a x

a
x y dx dy




   = 

2 2

0
2 ( )

a a x

a
dx x y dy




 

=

2 2
2

0

2
2

a x
a

a

ydx xy




 
  

 
 =

2 2
2 22

2
a

a

a xx a x dx


 
   

 


= 2 2 2 22 ( )
a a

a a
x a x dx a x dx

 
    0

( ) 2 ( ) , is even

0, is odd

a a

a
f x dx f x dx f

f


  
  

 

= 2 2
0

0 2 ( )
a

a x dx   = 
3 3

2 3

0

2 2
3 3

a
x aa x a

   
        

   
 = 

34
3
a

Ans.

Example 83. Evaluate 1 22 2 2 2 ,
C

y xdx dy where C C U C
x y x y

  
  with C1 : x

2 + y2 = 1

and C2 : x =  2, y =  2. (Gujarat, I Semester, Jan 2009)

Solution. 2 2 2 2C

y xdx dy
x y x y

 
 

= 2 2 2 2
x y dx dy

x yx y x y
  

     


= 
2 2 2 2

2 2 2 2 2 2
( )1 – 2 ( ) ( )1 – 2 ( )

( ) ( )
x y x x x y y y dx dy

x y x y
  

 
  



= 
2 2 2 2 2 2

2 2 2 2 2 2
– 2 – 2

( ) ( )
x y x x y y dx dy

x y x y
  

 
  



= 
2 2 2 2

2 2 2 2 2 2
– –

( ) ( )
y x x y dx dy

x y x y
 

 
  

  = 2 2 2
0 0

( )
dx dy

x y


 Ans.

5.37 AREA OF THE PLANE REGION BY GREEN’S THEOREM
Proof. We know that

C

Mdx Ndy = –
A

N M dx dy
x y

  
   

 ...(1)

On putting N = x 1N
x

 
  

 and M = – y 1M
y

 
  

 in (1), we get

–
C

y dx x dy = [1 – (–1) ]
A

dx dy  = 2 dx dy  = 2 A

Area = 
1 ( – )
2 C

x dy y dx
Example 84. Using Green’s theorem, find the area of the region in the first quadrant bounded
by the curves

y = x, y = 
1 ,
x y = 

4
x

(U.P. I, Semester, Dec. 2008)
Solution. By Green’s Theorem Area A of the region bounded by a closed curve C is given by

y = 2

x = 2

y = – 2

x = – 2

x  2+ y  2= 1

Y

XOX

Y
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A = 
1 ( – )
2 C

xdy ydx
Here, C consists of the curves C1 : y = ,

4
x

C2 : y = 1
x

 and C3 : y = x So

1 2 3
1 2 3

1 1 1 ( )
2 2 2C C C C

A I I I               

Along C1 : y = 
1, , : 0 to 2

4 4
x dy dx x

I1 = 
1 1

1( – ) – 0
4 4C C

xxdy ydx x dx dx   
  

Along C2 : y = 2
1 1, – , : 2 to 1dy dx x
x x



I2 = 
2

( – )
C

xdy ydx
1

22

1 1– –
2

x dx dx
x

       
  = 1

2[– 2log ] 2 log 2x 

Along C3 : y = x, dy = dx ; x : 1 to 0 ;
I3 = 

3
( – ) ( – ) 0

C
xdy ydx xdx xdx  

A = 1 2 3
1 1( ) (0 2log 2 + 0) log 2
2 2

I I I     Ans.

EXERCISE 5.13

1. Evaluate 2 2[(3 6 ) (2 3 ) (1 4 ) ]
c

x yz dx y xz dy xyz dz      from (0, 0, 0) to (1, 1, 1) along the path c

given by the straight line from (0, 0, 0) to (0, 0, 1) then to (0, 1, 1) and then to (1, 1, 1).

2. Verify Green’s Theorem in plane for 2 2 3( 2 ) ( ) ,
C

x xy dx y x y dy    where c is a square with the

vertices P (0, 0), Q (1, 0), R (1, 1) and S (0, 1). Ans. 1
2



3. Verify Green’s Theorem for 2 2( 2 ) ( 3)
c

x xy dx x y dy    around the boundary c of the region
y2 = 8 x and x = 2.

4. Use Green’s Theorem in a plane to evaluate the integral 2 2 2 2[(2 ) ( ) ]
c

x y dx x y dy   ,

where c is the boundary in the xy-plane of the area enclosed by the x-axis and the semi-circle x2 + y2 =1

in the upper half xy-plane. Ans. 
4
3

5. Apply Green’s Theoem to evaluate [( sin ) cos ],
c

y x dy x dy   where c is the plane triangle enclosed

by the lines y = 0, x = 
2and .

2
xy




Ans. 
2 8
4

 



6. Either directly or by Green’s Therorem, evaluate the line integral (cos sin ),x

c
e y dx y dy 

where c is the rectangle with vertices (0, 0), (, 0,), , and 0, .
2 2
       

   
Ans. 2 (1 – e– )

(AMIETE II Sem June 2010)

7. Verify the Green’s Theorem to evaluate the line integral 2(2 3 ),
c

y dx x dy  where c is the boundary
of the closed region bounded by y = x and y = x2.

(U.P., I Semester, Dec. 20005, AMIETE Summer 2004, Winter 2001) Ans. 
27
4

Y

O (0, 0)
X

y
=

x

C3 C1

C2

B (1, 1)

y = —1x

y = —
4
x

A (2, —)1
2
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8. Evaluate ˆ. . ,
s
F n ds where 2 ˆˆ ˆ ( )F x y i x j x z k


    and s is the region of the plane 2x + 2y + z = 6

in the first octant. (A.M.I.E.T.E., Summer 2004, Winter 2001) Ans. 27
4

9. Verify Green’s Theorem for 2 2( )
C

xy y dx x dy    where C is the boundary by y = x and y = x2.
(AMIETE, June 2010)

5.38 STOKE’S THEOREM (Relation between Line Integral and Surface Integral)
(Uttarakhand, I Sem. 2008, U.P., Ist Semester, Dec. 2006)

Statement. Surface integral of the component of curl F  along the normal to the surface S,
taken over the surface S bounded by curve C is equal to the line integral of the vector point function

F


 taken along the closed curve C.
Mathematically

.F d r


 = ˆcurl
S

F n ds

 

where n̂  = cos  î  + cos  ĵ  + cos  k̂  is a unit
external normal to any surface ds,

Proof. Let r
 = ˆˆ ˆxi yj zk 

d r = ˆˆ ˆi dx j dy k dz 

F = 1 2 3
ˆˆ ˆF i F j F k 

On putting the values of ,F d r
 

 in the statement of the theorem

1 2 3
ˆ ˆˆ ˆ ˆ ˆ( ) ( )

c
F i F j F k i dx j dy k dz    

= S
i j k

x y z
   

     
 1 2

ˆ ˆˆ ˆ ˆ ˆ ( 3 ). (cos cos cos )F i F j F k i j k ds       

1 2 3( )F dx F dy F dz  = 3 32 1 2 1 ˆˆ ˆ .
S

F FF F F Fi j k
y z z x x y

                            


ˆˆ ˆ( cos cos cos )i j k ds    

= 
3 32 1 2 1cos cos cos

S

F FF F F F ds
y z z x x y

                               
 ...(1)

Let us first prove

1c
F dx  = 1 1cos cos

S

F F ds
z y

   
       

 ...(2)

Let the equation of the surface S be z = g (x, y). The projection of the surface on x – y plane
is region R.

1 ( , , )
c
F x y z dx = 1 [ , , ( , )]

c
F x y g x y dx

= 1 ( , , )
R

F x y g dx dy
y



 [By Green’s Theorem]

= 1 1
R

F F g dx dy
y z y

   
     
 ...(3)

The direction consines of the normal to the surface z = g(x, y) are given by
cos

g
x


 


= 
cos cos

1g
y
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And dx dy = projection of ds on the xy-plane = ds cos 
Putting the values of ds in R.H.S. of (2)

1 1cos cos
S

F F ds
z y

  
     

 = 1 1cos cos
cosR

F F dx dy
z y

  
      



= 1 1cos
cosR

F F dx dy
z y

  
    

  = 
1 1

R

F Fg dx dy
z y y

   
       



= 1 1
R

F F g dx dy
y z y

   
     
 ...(4)

From (3) and (4), we get

1c
F dx = 1 1cos cos

S

F F ds
z y

  
     

 ...(5)

Similarly, 2c
F dy = 2 2cos cos

S

F F
ds

x z
        ...(6)

and 3c
F dz = 3 3cos cos

S

F F ds
y x

  
     

 ...(7)

On adding (5), (6) and (7), we get

1 2 3( )
c

F dx F dy F dz  = 
1 1 2 2cos cos cos cos

S

F F F F
z y x z

   
          



3 3cos cos
F F

ds
y x

  
     

Proved.

5.39 ANOTHER METHOD OF PROVING STOKE’S THEOREM
The circulation of vector F around a closed curve C is equal to the flux of
the curve of the vector through the surface S bounded by the curve C.

c
F d r = 

S S
curl F n d s curl F d S

   
   

Proof : The projection of any curved surface over xy-plane can be treated as kernal of the
surface integral over actual surface

Now, ˆ( )
S

F k d S
 

  = ( ) ( )
S

F i j dx dy
  

   ˆ ˆ ˆ[ ]k i j 

= ˆ ˆ ˆ ˆ[( ) ( ) ( ) ( )]
S

i F j j F i dx dy
 

       = ( ) ( )y xS
F F dx dy

x y
  

   


= [ ]x yS
F dx F dy [By Green’s theorem]

= ˆ ˆ ˆ ˆ[ ] ( )x yS
i F j F i dx j dy    = .

c
F dr
 


ˆ

S
curl F n dS


  = . .

c
F d r
 


where, F

  = ˆ ˆˆ ˆ ˆ ˆandx y zF i F j F k dr dx i dy j dz k


    

Example 85. Evaluate by Strokes theorem ( )
C

yz dx zx dy xy dz  where C is the curve

x2 + y2 = 1, z = y2. (M.D.U., Dec 2009)
Solution. Here we have yz dx zx dy xy dz 
       = ˆˆ ˆ ˆ ˆ( ). ( )yzi zxj xyk idx jdy kdz   
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       = .F dx         Curl F  = 

ˆˆ ˆi j k

x y z
yz zx xy

  
  

       = .curl F ds                            = (x – x) î  + (y – y) ĵ  + (z – z) k̂
                   = 0 = 0 Ans.

Example 86. Using Stoke’s theorem or otherwise, evaluate
2 2[(2 ) ]

c
x y dx yz dy y z dz  

where c is the circle x2 + y2 = 1, corresponding to the surface of sphere of unit radius.
(U.P., I Semester, Winter 2001)

Solution. 
2 2[(2 ) ]

c
x y dx yz dy y z dz  

= 
2 2 ˆ ˆˆ ˆ ˆ ˆ[(2 ) ] ( )

c
x y i yz j y z k i dx j dy k dz     

By Stoke’s theorem F d r
 
 = Curl

S
F n ds
 
 ...(1)

Curl F
  = F


  = 

2 2

ˆˆ ˆ

2

i j k

x y z

x y yz y z

  
  

  

= ˆ ˆˆ ˆ(– 2 2 ) – (0 – 0) (0 1) yz yz i j k k   

Putting the value of curl F


 in (1), we get

= ˆ ˆk n ds  = ˆ ˆ ˆˆ
dx dyk n
n k


  = dx dy  = Area of the circle =  ˆˆ( )

dx dyds
n k

 
 

  


Example 87. Evaluate 2 2, ) – ˆˆ ˆ. , ( ,
C

z yF d r where F x y i xj z k
 

    and C is the curve of
intersection of the plane y + z = 2 and the cylinder x2 + y2 = 1. (Gujarat, I sem. Jan. 2009)

Solution. 2 2 ˆˆ ˆˆ ˆ. curl . curl (– )
C S S

F dr F n ds y i x j z k n ds
 

      ...(1)

F (x, y, z) = 2 2 ˆˆ ˆy i x j z k   (By Stoke’s Theorem)

Curl F


= 

2 2

ˆˆ ˆ

–

i j k

x y z

y x z

  
  

= ˆ ˆˆ ˆ(0 – 0) – (0 – 0) (1 2 ) (1 2 )i j k y y k   

Normal vector = F




= ˆ ˆˆ ˆ ˆ( – 2)i j k y z j k
x y z

   
        

Unit normal vector n̂ = 
ˆˆ

2
j k

ds = ˆˆ .
dx dy

k

O
1

x  + y  = 12 2

3y + z = 2
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On putting the values of curl ˆ,F n


 and ds in (1), we get

.
C

F dr
 

 = 
ˆˆˆ(1 2 ) .

ˆˆ2 ˆ.
2

S

j k dx dyy k
j k k




 
  
 



= 
1 2 (1 2 )

12
2

y dx dy y dx dy
   = 

2 1

0 0
(1 2 sin )r r d d r


   

= 
2 1 2
0 0

( 2 sin )r r d d r


   

= 
12 32 2

0 0
0

2 1 2sin sin
2 3 2 3
r rd d

               
 

= 
2

0

2 2 2– cos – – 0
2 3 3 3

           
 =   Ans.

Example 88. Apply Stoke’s Theorem to find the value of
( )

c
y dx z dy x dz 

where c is the curve of intersection of x2 + y2 + z2 = a2 and x + z = a. (Nagpur, Summer 2001)

Solution. ( )
c

y dx z dy x dz 
= ˆ ˆˆ ˆ ˆ ˆ( ) ( )

c
yi zj xk i dx j dy k dz      = ˆˆ ˆ( )

C
yi zj xk dr  

= ˆˆ ˆ ˆcurl ( )
S

yi zj xk n ds   (By Stoke’s Theorem)

= ˆ ˆˆ ˆ ˆ ˆ ˆ( )
S

i j k yi zj xk n ds
x y z

   
         

  = ˆˆ ˆ ˆ( )
S

i j k n ds    ...(1)

where S is the circle formed by the intersection of x2 + y2 + z2 = a2 and x + z = a.

n̂ = 
| |
 
 

 = 

ˆˆ ˆ ( )

| |

i j k x z a
x y z

   
       

 
 = 

ˆˆ

1 1
i k



 n̂ = 
ˆˆ

2 2
i k



Putting the vlaue of n̂  in (1), we have

= 
ˆˆˆˆ ˆ( )

2 2S

i ki j k ds
 

      
 



= 
1 1
2 2S

ds   
 

2 2
2 2 2 2Use

2 2
a ar R p a

 
     

 

= 
2 22 2

2 2 2 2S

a ads   
    

  Ans.

Example 89. Directly or by Stoke’s Theorem, evaluate ˆˆ ˆˆ , ,
s
curl v n ds v iy jz kx

 
     s is

the surface of the paraboloid z = 1 – x2 – y2, z3 > 0 and n̂  is the unit vector normal to s.

Y

X

r d dr

O
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Solution. v


  = 

ˆˆ ˆ

ˆˆ ˆ

i j k

i j k
x y z
y z x

  
   

  

Obviously n̂ = ˆ.k

Therefore ˆ( )v n


   = ˆ ˆˆ ˆ(–  –  – ). – 1i j k k 

Hence ˆ( )
S

v n ds    = ( 1)
S

dx dy   = 
S

dx dy  
= –  (1)2 = – . (Area of circle =  r2) Ans.

Example 90. Use Stoke’s Theorem to evaluate ,
c

v dr


  where 2 ˆˆ ˆ ,v y i xyj x z k

   and c

is the bounding curve of the hemisphere x2 + y2 + z2 = 9, z > 0, oriented in the positive
direction.
Solution. By Stoke’s theorem

c
v dr


 = ˆ ˆ(curl ) ( )

S S
v n ds v n ds
 

     

v


  = 

2

ˆˆ ˆ
ˆˆ ˆ(0 0) ( 0) ( 2 )

ˆˆ

i j k
i z j y y k

x y z zj yk
y xy xz

       
     

n̂ = | |
 
 

 = 

2 2 2( 9)

| |

i j k x y z
x y z

           
 

= 
2 2 2 2 2 2

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 2 2
34 4 4

xi yj zk xi yj zk xi yj zk

x y z x y z

     
 

   

ˆ( )v n


   = 
ˆˆ ˆ 2ˆˆ( )

3 3 3
xi yj zk yz yz yzzj yk     

    

ˆn̂ k ds = dx dy 
ˆˆ ˆ ˆ.

3
xi yj zk k   dx = dx dy 

3
z ds  = dx dy

 ds = 
3 dx dy
z

ˆ( )
S

v n ds


   = 
2 3
3

yz dx dy
z

   
   
     = 2 y dx dy 

= 2 sinr r d dr   = 
2 3

2

0 0

2 sin d r dr


   

= 
33

2
0

0

2 ( cos )
3
r  

     
 

= – 2 (– 1 + 1) 9 = 0   Ans.

Example 91. Evaluate the surface integral ˆcurl .
S

F n d S


  by transforming it into a line

integral, S being that part of the surface of the paraboloid z = 1 – x2 – y2 for which

ˆˆ ˆ0 andz F y i z j x k


    .                                                (K. University, Dec. 2008)
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Solution. F
 
  = 

ˆˆ ˆ

ˆˆ ˆ

i j k

i j k
x y z
y z x

  
   

  

Obviously n̂ = ˆ.k

Therefore ˆ( )F n


   = ˆ ˆˆ ˆ(–  –  – ). – 1i j k k 

Hence ˆ( )
S

F n ds


   = ( 1)
S

dx dy   = 
S

dx dy  
= –  (1)2 = – . (Area of circle =  r2) Ans.

Example 92. Evaluate 
C

F dr
 
  by Stoke’s Theorem, where 2 2 ˆˆ ˆ ( )F y i x j x z k


     and

C is the boundary of triangle with vertices at (0, 0, 0), (1, 0, 0) and (1, 1, 0).
(U.P., I Semester, Winter 2000)

Solution. We have, curl F
  = F


 

= 

2 2

ˆˆ ˆ

ˆˆ ˆ0. 2 ( ) .

( )

i j k

i j x y k
x y z

y x x z

  
  

  

 
We observe that z co-ordinate of each vertex of the triangle is zero.
Therefore, the triangle lies in the xy-plane.
 n̂  = k̂

 curl ˆ ˆˆˆ [ 2 ( ) ] . 2 ( ).F n j x y k k x y

     

In the figure, only xy-plane is considered.
The equation of the line OB is y = x
By Stoke’s theorem, we have

C

F dr
 
 = ˆ(curl )

S

F n ds

 

= 
1

0 0
2 ( )

x

x y
x y dx dy

 
   = 

21

0
0

2
2

x
yxy dx

 
 

 


= 
21 2

0
2

2
xx dx

 
 

 
  = 

21

0
2

2
x dx  = 

1 2
0

x dx  = 
13

0
3
x 

 
 

 = 1 .
3

Ans.

Example 93. Evaluate 
C

F dr
 
  by Stoke’s Theorem, where 2 2 ˆ ˆ( ) 2F x y i xy j


   and C

is the boundary of the rectangle x =  a, y = 0 and y = b. (U.P., I Semester, Winter 2002)
Solution. Since the z co-ordinate of each vertex of the given rectangle is zero, hence the given
rectangle must lie in the xy-plane.
Here, the co-ordinates of A, B, C and D are (a, 0), (a, b), (– a, b) and (– a, 0) respectively.

 Curl F  = 

2 2

ˆˆ ˆ

2 0

i j k

x y z

x y x y

  
  

 

 = – 4 y k
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Here, ˆˆ ,n k  so by Stoke’s theorem, we’ve

C
F dr
 
 = ˆcurl

S
F n d s

                 = ˆ ˆ( 4 ) ( )
S

y k k d x d y    = 
0

4
a b

x a y

y dx dy
  

  

=
2

0

4
2

ba

a

y dx


 
  

 
 = 2 22 4

a

a

b dx a b


   Ans.

Example 94. Apply Stoke’s Theorem to calculate c
4 y dx 2 z dy 6 y dz 

where c is the curve of intersection of x2 + y2 + z2 = 6 z and z = x + 3.

Solution.
c
F dr
 
 = 4 2 6

c
y dx z dy y dz 

= ˆ ˆˆ ˆ ˆ ˆ(4 2 6 ) ( )
c

yi zj yk idx jdy kdz    

F


= ˆˆ ˆ4 2 6 yi zj yk 

F


  = 

ˆˆ ˆ
ˆˆ ˆ(6 2) (0 0) (0 4)

ˆˆ4 4
4 2 6

i j k
i j k

x y z i k
y z y

       
    

S is the surface of the circle x2 + y2 + z2 = 6z, z = x + 3, n̂  is normal to the plane x – z + 3 = 0

n̂  = 
| |
 
 

= 

ˆˆ ˆ ( 3)

| |

i j k x z
x y z

          
 

 = 
ˆ ˆˆ ˆ

1 1 2
i k i k 




ˆ( )F n   = 
ˆˆˆˆ(4 4 )

2
i ki k 

   = 4 4
2
  = 4 2

c
F dr
 
 = ˆ(curl )

S
F n ds  = 4 2 ( )

S
dx dz  = 4 2  (area of circle)

Centre of the sphere x2 + y2 + (z – 3)2 = 9, (0, 0, 3) lies on the plane z = x + 3. It means that
the given circle is a great circle of sphere, where radius of the circle is equal to the radius of the
sphere.

Radius of circle = 3, Area =  (3)2 = 9 

ˆ( )
S

F n ds   = 4 2(9 ) 36 2   Ans.

Example 95. Verify Stoke’s Theorem for the function ˆˆ ˆ ,F z i x j y k   where C is the unit

circle in xy-plane bounding the hemisphere z = ( ).2 21 x y  (U.P., I Semester Comp. 2002)

Solution. Here F = ˆˆ ˆ .z i x j y k  ...(1)

Also, r = ˆˆ ˆxi y j z k     dr  = ˆˆ ˆ .d xi dy j dz k 
 F dr = z dx + x dy + y dz.


C

F dr = ( ).
C

z dx x dy y dz  ...(2)
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On the circle C, x2 + y2 = 1, z = 0 on the xy-plane. Hence on C, we
have z = 0 so that dz = 0. Hence (2) reduces to

C
F dr = .

C
x dy ...(3)

Now the parametric equations of C, i.e., x2 + y2 = 1 are
x = cos , y = sin . ...(4)

Using (4), (3) reduces to .
C

F dr
 

  = 
2

0
cos cos d



 
    = 

2

0

1 cos 2
2

d
  



= 
2

0

1 sin 2
2 2

    
 =  ...(5)

Let P(x, y, z) be any point on the surface of the hemisphere x2 + y2 + z2 = 1, O origin is the
centre of the sphere.

Radius  = OP = ˆˆ ˆxi y j z k             Normal = ˆˆ ˆxi y j z k 

n̂ =
2 2 2

ˆˆ ˆ ˆˆ ˆx i y j z k x i y j z k
x y z

 
  

 
(Radius is  to tangent i.e. Radius is normal)

x = sin  cos ,  y = sin  sin ,  z = cos  ...(6)
n̂  = sin  cos  î  + sin  sin  ĵ  + cos  k̂

Also, Curl F


= 

ˆˆ ˆ
ˆˆ ˆ/ / /

i j k
x y z i j k

z x y
         ...(7)

Curl ˆF n

 = ˆ ˆˆ ˆ ˆ ˆ( ) . (sin cos sin sin  sin )i j k i j k        

= sin  cos  + sin  sin  + cos 

 ˆCurl
s

dS

 F n = 

/ 2 2

0 0
ˆˆ ˆ( )i j k

 

   
  

. (sin  cos  î  + sin  sin  ĵ  + cos  k̂ ) sin  d d

=  
/ 2 2

0 0
sin (sin cos sin sin cos )d d

 

   
          

[ dS = Elementary area on hemisphere = sin  d  d]

= 
/ 2 2

00
sin [sin sin sin ( cos ) cos ]d

             = 
/ 2

0
sin d


 

= 
/ 2

0
(0 0 2 sin cos ) d


       = 

/ 2

0
sin 2 d


    = 

/ 2

0

cos 2
2

    
= – (/2) [– 1 – 1] = .

From (5) and (8), 
C

 
 F dr  = ˆcurl ,

S
F n d S  which verifies Stokes’s theorem.

Example 96. Verify Stoke’s theorem for the vector field 2 2 ˆˆ ˆ(2 – ) – –F x y i yz j y z k over
the upper half of the surface x2 + y2 + z2 = 1 bounded by its projection on xy- plane.

(Nagpur University, Summer 2001)
Solution. Let S be the upper half surface of the sphere x2 + y2 + z2 = 1. The boundary C or S
is a circle in the xy plane of radius unity and centre O. The equation of C are x2 + y2 = 1,
                       z = 0 whose parametric form is
                       x = cos t, y = sin t, z = 0, 0 < t < 2

.
C

F dr
 

 = 
2 2 ˆ ˆˆ ˆ ˆ ˆ[ (2 – ) – – ].[ ]

C
x y i yz j y z k i dx j dy k dz 
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= 
2 2[ (2 – ) – – ]

C
x y dx yz dy y z dz  = (2 – ) ,

C
x y dx  since on C, z = 0 and 2z = 0

= 
2 2

0 0
(2cos – sin ) (2cos – sin ) (– sin )dxt t dt t t t dt

dt
 

 

= 
2 22
0 0

1 – cos 2(– sin 2 sin ) – sin 2
2

tt t dt t dt
     

  

= 
2

0

cos 2 sin 2 1 1– –
2 2 4 2 2

t t t 
        

...(1)

Curl F
 = 

2 2

ˆˆ ˆ

2 – – –

i j k

x y z

x y yz y z

  
    = ˆ ˆˆ ˆ(– 2 2 ) (0 – 0) (0 1)yz yz i j k k    

Curl ˆ.F n


= ˆ ˆˆ ˆ. .k n n k

ˆ.
S

Curl F n ds


 = ˆ ˆˆ ˆ. . . . ˆˆS R

dx dyn k ds n k
n k

 
Where R is the projection of S on xy-plane.

 = 
2

2

1 1 –

–1 – 1 –

x

x
dx dy     = 

1 12 2
–1 0

2 1 – 4 1 –x dx x dx 

= 
1

2 –1

0

1 14 1 – sin 4 .
2 2 2 2
x x x              ...(2)

From (1) and (2), we have

 .
C

F dr
 

  = ˆCurl . which is the Stoke's theorem.F n ds Ans.

Example 97. Verify Stoke’s Theorem for 2 2 ˆˆ ˆ( 4) 3 (2 )F x y i xyj xz z k

     

over the surface of hemisphere x2 + y2 + z2 = 16 above the xy-plane.

Solution. ,
c
F dr
 
  where c is the boundary of the circle x2 + y2 + z2 = 16

                         (bounding the hemispherical surface)

= 
2 2 ˆˆ ˆ ˆ ˆ[( 4) 3 (2 ) ] ( )

c
x y i xyj xz z k idx jdy      

= 
2[( 4) 3 )]

c
x y dx xy dy  

Putting x = 4 cos , y = 4 sin , dx = – 4 sin  d , dy = 4 cos  d 

= 
2 2 2
0

[(16 cos 4 sin 4) ( 4 sin ) (192 sin cos )]d d


          
= 

2 2 2 2
0

16 [ 4 cos sin sin sin 12 sin cos ] d

          

= 
2 2 2
0

16 (8 sin cos sin sin ) d


      
= 

2 2
0

16 sin d


  
2

0

2

0

sin cos 0

cos sin 0

n

n

d

d





     
 
    
 



= 22
0

16 4 sin d


     = 
164
2 2
   

 
 = – 16 .

To evaluate surface integral F


   = 

2 2

ˆˆ ˆ

4 3 2

i j k

x y z

x y xy xz z

  
  

  

Z

CX

O Y
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= ˆ ˆˆ ˆ ˆ(0 – 0)  – (2  – 0) (3  – 1) – 2 (3  – 1) i z j y k zj y k  

n̂ = | |
 
 

 = 

2 2 2ˆˆ ˆ ( 16)

| |

i j k x y z
x y z

           
 

= 
2 2 2

ˆˆ ˆ2 2 2

4 4 4

xi yj zk

x y z

 

 
 = 

2 2 2

ˆˆ ˆxi yj zk

x y z

 

 
 = 

ˆˆ ˆ
4

xi yj zk 

ˆ( )F n


  = 
ˆˆ ˆˆˆ[– 2 (3  – 1) ]

4
xi yj zkzj y k  

   = 2 (3 1)
4

yz y z  

k̂ n ds  = dx dy   
ˆˆ ˆ

4
xi yj zk  . k ds = dx dy   

4
z

ds = dx dy

 ds = 
4
z

dx dy

ˆ( )F n ds   = 
2 (3 1) 4

4
yz y z dx dy

z
    

 
  = [ 2 (3 1)]y y dx dy    = ( 1)y dx dy

On putting x = r cos , y = r sin , dx dy = r d  dr, we get

= ( sin 1)r r d dr    = 2( sin )d r r dr   
= 

42 3 2

0 0

sin
3 2
r rd

  
    
 

  = 
2

0

64 sin 8
3

d


    
 

= 
2

0

64 cos 8
3


     
 

 = 
64 6416
3 3


    = – 16 

The line integral is equal to the surface integral, hence Stoke’s Theorem is verified. Proved.

Example 98. Verify Stoke’s theorem for a vector field defined by 2 2 ˆ ˆ( – ) 2F x y i xy j

  in

the rectangular in xy-plane bounded by lines x = 0, x = a, y = 0, y = b.
(Nagpur University, Summer 2000)

Solution. Here we have to verify Stoke’s theorem .
C

F dr
 

  = ˆ( ) .
S

F n ds 
Where ‘C’ be the boundary of rectangle (ABCD) and S be the surface enclosed by curve C.

F


= 2 2 ˆ ˆ( – ) (2 )x y i xy j

.F dr
 

= 2 2 ˆ ˆ ˆ ˆ[ ( – ) 2 ] . [ ]x y i xy j i dx j dy 

 .F dr
 

= (x2 + y2) dx + 2xy dy ...(1)

Now, .
C

F dr
 

 = . . . .
OA AB BC CO

F d r F d r F d r F d r
      

      ...(2)

Along OA, put y = 0 so that k dy = 0 in (1) and .F d r
 

 = x2 dx,
Where x is from 0 to a.

 2
0

.
a

OA
F dr x dx
 

  = 
3 3

0
3 3

a
x a 

 
 

...(3)

Along AB, put x = a so that dx = 0 in (1), we get .F d r
   = 2ay dy

Where y is from 0 to b.


0

. 2
b

AB
F d r ay dy
 

  = 2 2
0[ ] bay ab ...(4)
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Along BC, put y = b and dy = 0 in (1) we get .F dr  = (x2 – b2) dx,
where x is from a to 0.

 .
BC

F d r
 

 = 

03 30 2 2 2 2–( – ) –
3 3a

a

x ax b dx b x b a
 

   
 

 ...(5)

Along CO, put x = 0 and dx = 0 in (1), we get . 0F d r
 



 .
CO

F dr
 

 = 0 ...(6)
Putting the values of integrals (3), (4), (5) and (6) in (2),
we get

.
C

F d r
 

 = 
3 3

2 2 2– 0 2
3 3
a aab ab ab    ...(7)

Now we have to evaluate R.H.S. of Stoke’s Theorem i.e. ˆ( ) .
S

F nds


 
We have,

F


  = 

2 2

ˆˆ ˆ

ˆ ˆ(2 2 ) 4

– 2 0

i j k

y y k y k
x y z

x y xy

  
  

  

Also the unit vector normal to the surface S in outward direction is n̂ k
(z-axis is normal to surface S)
Also in xy-plane ds = dx dy

 ˆ( ) . .
S

F n ds


  = ˆ ˆ4 . 4 .
R R

y k k dx dy y dx dy 
Where R be the region of the surface S.
Consider a strip parallel to y-axis. This strip starts on line y = 0 (i.e. x-axis) and end on the line

y = b, We move this strip from x = 0 (y-axis) to x = a to cover complete region R.

 ˆ( ) . .
S

F n ds


  = 2
00 0 0

4 [2 ]
a b a by dy dx y dx      

= 2 2 2
00

2 2 [ ] 2
a ab dx b x ab  ...(8)

 From (7) and (8), we get

.
C

F d r
 

  = ˆ( ) .
S

F n ds  and hence the Stoke’s theorem is verified.
Example 99. Verify Stoke’s Theorem for the function

F


= 2ˆ ˆ–x i xyj
integrated round the square in the plane z = 0 and bounded by the lines

x = 0, y = 0, x = a, y = a.

Solution. We have, F


 = 2ˆ ˆ–x i xyj

F


  = 

2

ˆˆ ˆ

0

i j k

x y z

x xy

  
  



= ˆ ˆˆ ˆ(0 – 0) – (0 – 0) (– – 0) –i j y k yk  ( n̂  to xy plane i.e. k̂ )

(a, b)

x = a

A XO

C

Y

x = 0

y = 0

By = b
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ˆ( )
S

F n ds


   = ( )
S

yk k dx dy 

= 
0 0

a a

dx ydy   = 
2

0 0
2

aa ydx
 
 
 

  = 
2

0( )
2

aa x  = 
3

2
a

 ...(1)

To obtain line integral

C

F d r
 
 = 2 ˆ ˆ ˆ ˆ( ) ( )

C

x i xyj i dx j dy    = 2( )
C

x dx xy dy
where c is the path OABCO as shown in the figure.

Also,
C

F d r
 
 = 

OABCO

F dr

  = 

OA AB BC CO

F dr F dr F dr F dr
   
          ...(2)

Along OA,  y = 0, dy = 0

OA
F d r
 
 = 2( )

OA
x dx xydy

= 2
0

a
x dx  = 

3

0
3

a
x 

 
 

 = 
3

3
a

Along AB,   x = a, dx = 0

AB
F dr
 
 = 2( )

AB
x dx x y d y

= 0

a
a y d y  = 

2

0
2

a
ya

 
  

 
 = 

3

2
a



Along BC, y = a, dy = 0

BC
F dr
 
 =  2( )

BC
x dx xy dy  = 

0 2
a

x dx  = 
03

3
a

x 
 
 

 = 
3

3
a



Along CO, x = 0, dx = 0

CO
F dr
 
 = 2( )

CO
x dx xy dy  = 0

Putting the values of these integrals in (2), we have

C
F dr
 
 = 

3 3 3
0

3 2 3
a a a

    = 
3

2
a

 ...(3)

From (1) and (3), ˆ( )
S

F n ds
 
    = 

C

F dr
 


Hence, Stoke’s Theorem is verified. Ans.

Example 100. Verify Stoke’s Theorem for F


= (x + y) î  + (2x – z) ĵ  + (y + z) k̂  for the
surface of a triangular lamina with vertices (2, 0, 0), (0, 3, 0) and (0, 0, 6).
                   (Nagpur University 2004, K. U. Dec. 2009, 2008, A.M.I.E.T.E., Summer 2000)
Solution. Here the path of integration c consists of the straight lines AB, BC, CA where the
co-ordinates of A, B, C and (2, 0, 0), (0, 3, 0) and (0, 0, 6) respectively. Let S be the plane
surface of triangle ABC bounded by C. Let n̂  be unit normal vector to surface S. Then by
Stoke’s Theorem, we must have

c
F dr
 
 = ˆcurl

s
F n ds

 ...(1)

line Eq. of Lower Upper
line limit limit

OA y = 0 dy = 0 x = 0 x = a
AB x = a dx = 0 y = 0 y = a
BC y = a dy= 0 x = a x = 0
CO x = 0 dx = 0 y = a y = 0
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L.H.S. of (1)= 
c

ABC
F dr
 
  = AB BC CA

F dr F dr F dr
     
      

Along line AB, z = 0, equation of AB is 
2 3
x y
  = 1

 y = 
3 (2 ),
2

x dy  = 
3
2

dx

At A, x = 2, At B, x = 0, r  = ˆ ˆxi yj

AB
F dr
 
 = ˆˆ ˆ ˆ ˆ[( ) 2 ] ( )

AB
x y i xj yk idx jdy    

= ( ) 2
AB

x y dx xdy 

= 
3 33 2
2 2AB

xx dx x dx         
   

=
020

2
2

7 73 3
2 4
x xdx x

             


= (7 – 6) = + 1

Along line BC, x = 0, Equation of BC is 
3 6
y z
  = 1 or z = 6 – 2y,, dz = – 2dy

At B, y = 3, At C, y = 0, r  = ˆˆyj zk

BC
F dr
 
 = [ ( ) ] ( )

BC
yi zj y z k jdy kdz      = ( )

BC
zdy y z dz  

              = 
0

3
( 6 2 ) ( 6 2 ) ( 2 )y dy y y dy     

              = 
0 2 0

33
(4 18) (2 18 )y dy y y    = 36

Along line CA, y = 0, Eq. of CA, 2 6
x z
  = 1  or  z = 6 – 3x, dz = – 3dx

At C, x = 0, at A,  x = 2, r = ˆˆxi zk

CA
F dr
 
 = ˆ ˆˆ ˆ ˆ[ (2 ) ] [ ]

CA
xi x z j zk dxi dzk      = ( )

CA
xdx zdz

= 
2

0
(6 3 ) ( 3 )xdx x dx    = 

2

0
(10 18)x dx  = 2 2

0[5 18 ]x x  = – 16

line Eq. of Lower Upper
line limit limit

AB 1
2 3
x y
 

3–
2

dy dx
At

2
A

x 
At

0
B

x 
z = 0

BC 1
3 6
y z
  dz = – 2dy

At
3
B

y 
At

0
C

y 
x = 0

CA 1
2 6
x z
  dz = – 3dx

At
0
C

x 
At

2
A

x 
y = 0
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L.H.S. of (1) =  
ABC

F dr
 
  = 

AB BC CA
F dr F dr F dr
     
        = 1 + 36 – 16 = 21 ...(2)

Curl F = F  = ˆˆ ˆ ˆ ˆ[( ) (2 ) ( ) ]i j k x y i x z j y z k
x y z

              

                   = 

ˆˆ ˆ

ˆ ˆˆ ˆ ˆ(1 1) (0 0) (2 1) 2

2

i j k

i j k i k
x y z

x y x z y z

          
  
  

Equation of the plane of ABC is 
2 3 6
x y z   = 1

Normal to the plane ABC is

 = ˆˆ ˆ 1
2 3 6
x y z

i j k
x y z

                 
 = 

ˆˆ ˆ

2 3 6
i j k 

Unit Normal Vector = 

ˆˆ ˆ
2 3 6
1 1 1
4 9 36

i j k 

 

n̂ = 
1 ˆˆ ˆ(3 2 )
14

i j k 

R.H.S. of (1) = curl
s

F n ds

  = 

1ˆ ˆˆ ˆ ˆ(2 ) (3 2 )
14 ˆ ˆˆ ˆ(3 2 ).
14

s

dx dy
i k i j k

i j k k
   

 


= 
(6 1)

114
14

s

dx dy
  = 7 dx dy  = 7 Area of  OAB

= 17 2 3
2

   
 

 = 21 ...(3)

with the help of (2) and (3) we find (1) is true and so Stoke’s Theorem is verified.
Example 101. Verify Stoke’s Theorem for

F
 = (y – z  + 2) î  + (yz + 4) ĵ  – (xz) k̂

over the surface of a cube x = 0, y = 0, z = 0, x = 2, y = 2, z = 2 above the XOY plane
(open the bottom).
Solution. Consider the surface of the cube as shown in the figure. Bounding path is OABCO
shown by arrows.

c

F d r
 
 = ˆ ˆˆ ˆ ˆ ˆ[( 2) ( 4) ( ) ] ( )y z i yz j xz k idx jdy kdz       

= ( 2) ( 4)
c

y z dx yz dy xzdz    

c

F dr
 
 = 

OA AB BC CO

F dr F dr F dr F dr
       
            ...(1)

(1) Along OA, y = 0, dy = 0, z = 0, dz = 0
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OA

F dr
 
 = 

2
2
0

0

2 [2 ]dx x  = 4

(2) Along AB, x = 2, dx = 0, z = 0, dz = 0

AB

F dr
 
 = 

2
2
0

0

4 4 ( )dy y  = 8

(3) Along BC, y = 2, dy = 0, z = 0, dz = 0

BC

F dr
 
 = 

2
0
2

0

(2 0 2) (4 )dx x    = – 8

(4) Along CO, x = 0, dx = 0, z = 0, dz = 0

CO

F dr
 
 = ( 0 2) 0 (0 4) 0y dy     

                    = 0
24 4 ( )dy y  = – 8

On putting the values of these integrals in (1), we get

c

F dr
 
 = 4 + 8 – 8 – 8 = – 4

To obtain surface integral

F


  = 

ˆˆ ˆ

2 4

i j k

x y z
y z yz xz

  
  
   

= (0 – y) î  – (– z + 1) ĵ  + (0 – 1) k̂  = – y î  + (z – 1) ĵ  – k̂
Here we have to integrate over the five surfaces, ABDE, OCGF, BCGD, OAEF, DEFG.
Over the surface ABDE (x = 2), n̂  = i, ds = dy dz

ˆ( )F n ds


  = [ ( 1) ]yi z j k i dx dz y dy dz       
=   2

1

( , )
3 ( , )( , , ) z f x y

z f x yR
F x y z dx dy



Line Equ. Lower Upper .F dr
of line limit limit

1 OA
0
0

y
z



0
0

dy
dz


 x = 0 x = 2 2 dx

2 AB
2
0

x
z



0
0

dx
dz


 y = 0 y = 2 4 dy

3 BC
2
0

y
z



0
0

dy
dz


 x = 2 x = 0 4 dx

4 CO
0
0

x
z



0
0

dx
dz


 y = 2 y = 0 4 dy
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= 
22 2 2

2
0

0 0 0

[ ] 4
2
yy dy dz z

 
     

 
 

  Over the surface OCGF (x = 0), n̂  = – i, ds = dy dz

ˆ( )F n ds


   = ˆˆ ˆ ˆ[ ( 1) ] ( )yi z j k i dy dz     

= 
22 2 2

0 0 0

2 4
2
yy dy dz y dy dz

 
   

 
  

(3) Over the surface BCGD, (y = 2), n̂ = j, ds = dx dz

ˆ( )F n ds


   = ˆˆ ˆ ˆ[ ( 1) ]yi z j k j dx dz    

= ( 1)z dx dz   = 
2 2

0 0

( 1)dx z dz   = 
22

2
0

0

( )
2
zx z

 
   

 
 = 0

(4) Over the surface OAEF, (y = 0), n̂  = – ĵ , ds = dx dz

ˆ( )F n d s


   = ˆˆ ˆ ˆ[ ( 1) ] ( )yi z j k j dx dz     

= ( 1)z dx dz   = – 
2 2

0 0

( 1)dx z dz   = 
22

2
0

0

( )
2
zx z

 
   

 
 = 0

(5) Over the surface DEFG, (z = 2), n̂  = k, ds = dx dy

ˆ( )F n ds


   = ˆ ˆˆ ˆ[ ( 1) ]yi z j k k dx dy      = – dx dy

= – 
2 2

0 0

dx dy   = 2 2
0 0[ ] [ ]x y  = – 4

Total surface integral = – 4 + 4 + 0 + 0 – 4 = – 4

Thus ˆcurl
S

F n ds

  = 

c

F dr
 
  = – 4

which verifies Stoke’s Theorem. Ans.

Surface Outward
dsnormal

1 ABDE i dy dz x = 2
2 OCGF – i dy dz x = 0
3 BCGD j dx dz y = 2
4 OAEF – j dx dz y = 0
5 DEFG k dx dy z = 2
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EXERCISE 5.14
1. Use the Stoke’s Theorem to evaluate  2 ,

C
y dx xy dy xz dz 

where C is the bounding curve of the hemisphere x2 + y2 + z2 = 1, z  0, oriented in the positive
direction. Ans. 0

2. Evaluate ˆ(curl ) ,
s

F n dA  using the Stoke’s Theorem, where ˆˆ ˆF yi zj xk

    and s is the paraboloid

z = f (x, y) = 1 – x2 – y2 , z  0. Ans. 

3. Evaluate the integral for 2 2 2 ,
C

y dx z dy x dz  where C is the triangular closed path joining the points
(0, 0, 0), (0, a, 0) and (0, 0, a) by transforming the integral to surface integral using Stoke’s Theorem.

Ans. 
3

.
3
a

4. Verify Stoke’s Theorem for 2 ˆˆ ˆ3 ,A yi xzj yz k

    where S is the surface of the paraboloid 2z = x2 + y2

bounded by z = 2 and c is its boundary traversed in the clockwise direction. Ans. – 20 

5. Evaluate 
C

F d R
 
  where 3 3 ˆˆ ˆ ,F yi xz j zy k


   C is the circl x2 + y2 = 4,  z = 1.5 Ans. 19

2


6. If S is the surface of the sphere x2 + y2 + z2 = 9. Prove that curl
S

F ds

  = 0.

7. Verify Stoke’s Theorem for the vector field
ˆˆ ˆ(2 ) (  – ) ( – ) F y z i x z j y x k


   

over the portion of the plane x + y + z = 1 cut off by the co-ordinate planes.

8. Evaluate 
c

F dr

  by Stoke’s Theorem for ˆ ˆ  F yz i zx j xy k


    and C is the curve of intersection of

x2 + y2 = 1 and y = z2. Ans. 0

9. If 3 2 ˆˆ ˆ( – ) ( ) 3F x z i x yz j xy k

     and S is the surface of the cone z = a – 2 2( )x y  above the

xy-plane, show that curl
s

F dS

  = 3  a4 / 4.

10. If 2 ˆˆ ˆ3F yi xyj yz k

    and S is the surface of the paraboloid 2z = x2 + y2 bounded by z = 2, show by

using Stoke’s Theorem that ( )
s

F dS


    = 20 .

11. If 2 2 2 2 2 2 2 2 2 ˆˆ ˆ( – ) ( – ) ( –  ) ,F y z x i z x y j x y z k

       evaluate ˆcurl F n ds


  integrated over

the portion of the surface x2 + y2 – 2ax + az = 0 above the plane z = 0 and verify Stoke’s Theorem; where
n̂  is unit vector normal to the surface. (A.M.I.E.T.E., Winter 20002) Ans. 2  a3

12. Evaluate by using Stoke’s Theorem  sin cos sin
C

z dx x dy y dz   where C is the boundary of

rectangle 0 , 0 1, 3x y z      . (AMIETE, June 2010)

5.40 GAUSS’S THEOREM OF DIVERGENCE
(Relation between surface integral and volume integral)

(U.P., Ist Semester, Jan., 2011, Dec, 2006)
Statement. The surface integral of the normal component of a vector function F taken around

a closed surface S is equal to the integral of the divergence of F taken over the volume V enclosed
by the surface S.

Mathematically

ˆ.
S V

F n ds div Fdw
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Proof. Let 1 2 3
ˆˆ ˆ .F F i F j F k


  

Putting the values of ˆ,F n


in the statement of the divergence theorem, we have

1 2 3
ˆˆ ˆ ˆ

S
F i F j F k n ds   = 1 2 3

ˆ ˆˆ ˆ ˆ ˆ( ) .
V

i j k F i F j F k dx dy dz
x y z

   
       



= 
31 2

V

FF F dx dy dz
x y z

  
     

 ...(1)

We require to prove (1).

Let us first evaluate 3
V

F dx dy dz
z


 .

3
V

F dx dy dz
z


 = 

( , )2 3
( , )1

z f x y

R z f x y

F dz dx dy
z





 
   

= 3 2 3 1[ ( , , ) ( , , )]
R

F x y f F x y f dx dy ...(2)
For the upper part of the surface i.e. S2, we have

dx dy = ds2 cos r2 = n̂ 2. k̂ ds2
Again for the lower part of the surface i.e. S1, we have,

dx dy = – cos r1, ds1 = n̂ 1. k̂ ds1

3 2( , , )
R

F x y f dx dy = 3 2 2
2

ˆˆ
S

F n k ds
and 3 1( , , )

R
F x y f dx dy = 3 1 1

1
ˆˆ

S
F n k ds 

Putting these values in (2), we have
3

V

F dv
z


 = 3 2 2 3 1 1

2 1
ˆ ˆˆ ˆ

S S
F n k ds F n k ds     = 3

ˆˆ
S

F n k ds ...(3)
Similarly, it can be shown that

2
V

F dv
y


 = 2

ˆˆ
S

F n j ds ...(4)

1
V

F dv
x


 = 1

ˆˆ
S

F n i ds ...(5)
Adding (3), (4) & (5), we have

31 2
V

FF F dv
x y z

  
     



= 1 2 3
ˆˆ ˆ ˆ( )

S
F i F j F k n ds   

  ( )
V

F dv  = ˆ
S

F n ds  Proved.

Example 102. State Gauss’s Divergence theorem ˆ.
S

F nds Div F dv


  where S is the

surface of the sphere x2 + y2 + z2 = 16 and ˆˆ ˆ3 4 5 .F x i y j z k

  

(Nagpur University, Winter 2004)
Solution. Statement of Gauss’s Divergence theorem is given in Art 24.8 on page 597.
Thus by Gauss’s divergence theorem,

ˆ.
S

F n ds


  = .
v

F dv


  Here ˆˆ ˆ3 4 5F xi y j z k
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. F


 = ˆ ˆˆ ˆ ˆ ˆ. (3 4 5 )i j k xi yj zk
x y z

   
       

. F


 = 3 + 4 + 5 = 14
Putting the value of  . F, we get

ˆ.
S

F n ds


 = 14 .
v

dv  where v is volume of a sphere
= 14 v

= 34 358414 (4)
3 3


  Ans.

Example 103. Evaluate 2 ˆˆ ˆˆ. 4 –
S

F n ds where F xz i y j yz k
 

  and S is the surface of the

cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
(U.P., Ist Semester, 2009, Nagpur University, Winter 2003)

Solution. By Divergence theorem,

ˆ.
S

F n ds


 = ( . )
v

F dv


 

= 2ˆ ˆˆ ˆ ˆ ˆ. (4 – )
v

i j k xz i y j yz k dv
x y z

   
      



= 2(4 ) (– ) ( )
v

xz y yz dx dy dz
x y z

   
     

 

= (4 – 2 )
v

z y y dx dy dz 

= 
121 1

0 0
0

4(4 – ) –
2v

zz y dx dy dz yz dx dy
 

   
 

   

= 
1 1 1 112

00 0 0 0
(2 – ) (2 – )z yz dx dy y dx dy   

= 
121 1

0 0
0

32 –
2 2
yy dx dx

 
  

 
   = 1

0
3 3 3[ ] (1)
2 2 2

x   Ans.

Note: This question is directly solved as on example 14 on Page 574.

Example 104. Find ˆ ,F n ds

   where 2 ˆˆ ˆ(2 3 )  – ( ) ( 2 ) F x z i xz y j y z k


      and S is

the surface of the sphere having centre (3, – 1, 2) and radius 3.
(AMIETE, Dec. 2010, U.P., I Semester, Winter 2005, 2000)

Solution. Let V be the volume enclosed by the surface S.
By Divergence theorem, we’ve

        ˆ
S

F n ds

   = .

V
div F dv





       Now,  div F


 = 
2(2 3 ) [ ( )] ( 2 )x z xz y y z

x y z
  

     
    = 2 – 1 + 2 = 3

 ˆ
S

F n ds

  = 3

V
dv = 3

V
dv  = 3V.

Again V is the volume of a sphere of radius 3. Therefore

V = 34
3

r  = 34 (3)
3
  = 36 .

 ˆ
S

F n ds

  = 3V = 3 × 36  = 108  Ans.
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Example 105. Use Divergence Theorem to evaluate 
S

A ds


 ,

where 3 3 3 ˆˆ ˆA x i y j z k

   and S is the surface of the sphere x2 + y2 + z2 = a2.

(AMIETE, Dec. 2009)

Solution.
S

A ds


 = div
v

A dV




= 3 3 3ˆ ˆˆ ˆ ˆ ˆ( )
v

i j k x i y j z k dV
x y z

   
        


= 2 2 2(3 3 3 )

v
x y z dV   = 2 2 23 ( )

v
x y z dV 

On putting x = r sin  cos , y = r sin  sin , z = r cos , we get

= 2 23 ( sin )r r dr d dv     = 3 × 8 
2 2

4
0

0 0

sin
a

d d r dr

 

    

= 
5

2 2
0 0

0

24 ( ) ( cos )
5

a
r   

     
 

 = 
5 51224 ( 0 1)

2 5 5
a a             

Ans.

Example 106. Use divergence Theorem to show that
2 2 2( )

S
sx y z d


   = 6 V
where S is any closed surface enclosing volume V. (U.P., I Semester, Winter 2002)

Solution. Here   (x2 + y2 + z2) = 
2 2 2ˆˆ ˆ ( )i j k x y z

x y z
   

        
= ˆ ˆˆ ˆ ˆ ˆ2  2  2  2 (    )x i y j z k x i y j z k    


2 2 2( )

S
x y z ds     = 

2 2 2 ˆ( )
S

x y z n ds   
n̂  being outward drawn unit normal vector to S

= ˆˆ ˆ ˆ2 ( )
S

x i y j z k n ds  
= ˆˆ ˆ2 ( )

V
div x i y j z k d v  ...(1)

(By Divergence Theorem)
(V being volume enclosed by S)

Now, div. ˆˆ ˆ( )x i y j zk  = ˆ ˆˆ ˆ ˆ ˆ( )i j k x i y j z k
x y z

   
        

= 
x y z
x y z

  
 

  
 = 3 ...(2)

From (1) & (2), we have
2 2 2( )x y z dS    = 2 3

V
dv  = 6

V
dv  = 6 V Proved.

Example 107. Evaluate 2 2 2 2 2 2 ˆˆ ˆ ˆ( ) ,
S

y z i z x j z y k n dS   where S is the part of the spheree

x2 + y2 + z2 = 1 above the xy-plane and bounded by this plane.
Solution. Let V be the volume enclosed by the surface S. Then by divergence Theorem, we
have

2 2 2 2 2 2 ˆˆ ˆ ˆ( )
S

y z i z x j z y k n dS   = 2 2 2 2 2 2 ˆˆ ˆ( )
V

div y z i z x j z y k dV 

= 
2 2 2 2 2 2( ) ( ) ( )

V
y z z x z y dV

x y z
   

     
 2 22 2

V V
z y dV zy dV  
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Changing to spherical polar coordinates by putting
x = r sin  cos ,      y= r sin  sin ,      z = r cos , dV = r2 sin  dr d d

To cover V, the limits of r will be 0 to 1, those of  will be 0 to 
2


 and those of  will be 0 to
2.


22

V
zy dV = 

2 / 2 1 2 2 2 2
0 0 0

2 ( cos ) ( sin sin ) sinr r r dr d d
 

       

= 
2 / 2 1 5 3 2
0 0 0

2 sin cos sinr dr d d
 

      

= 
162 3 22

0 0
0

2 sin cos sin
6
r d d


  

     
 

 

= 
2 2
0

2 2sin
6 4.2

d


    = 
2 2
0

1 sin
12

d


   = 
12


Ans.

Example 108. Use Divergence Theorem to evaluate 
S

F d S
 
  where 2 2 ˆˆ ˆ4 – 2F xi y j z k


 

and S is the surface bounding the region x2 + y2 = 4, z = 0 and z = 3.
(A.M.I.E.T.E., Summer 2003, 2001)

Solution. By Divergence Theorem,

S
F dS

 = 

V
div F dV





= 2 2ˆ ˆˆ ˆ ˆ ˆ(4 2 )
V

i j k xi y j z k dV
x y z

   
        



= (4 4 2 )
V

y z dx dy dz 

= 
3

0

(4 4 2 )dx dy y z dz    = 2 3
0[4 4 ]dx dy z yz z 

= (12 12 9)y dx dy   = (21 12 )y dx dy
Let us put x = r cos , y = r sin 

= (21 12 sin )r r d dr    = 
2 2 2

0
0

(21 12 sin )d r r dr


   

= 

22 2
3

0 0

21 4 sin
2
rd r

  
   
 

  = 
2

2
0

0

(42 32 sin ) (42 32 cos )d


      
= 84  + 32 – 32 = 84  Ans.

Example 109. Apply the Divergence Theorem to compute ^ ,u n ds

  where s is the surface of

the cylinder x2 + y2 = a2 bounded by the planes z = 0, z = b and where ˆˆ ˆ– .u ix jy kz 
Solution. By Gauss’s Divergence Theorem

ˆu nds

 = ( )

V
u dv


 
= ˆ ˆˆ ˆ ˆ ˆ( )

V
i j k ix jy kz dv

x y z
   

        


= V

x y z dv
x y z

   
     

  =  1 1 1
V

dv 

= V
dv  = V

dx dy dz  = Volume of the cylinder  =  a2b Ans.
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Example 110. Apply Divergence Theorem to evaluate ˆ. ,
V

F n ds


  wheree

F


 = 3 2 2 ˆˆ ˆ4x i x y j x zk  and S is the surface of the cylinder x2 + y2 = a2 bounded by the
planes z = 0 and z = b. (U.P. Ist Semester, Dec. 2006)
Solution. We have,

F


= 3 2 2 ˆˆ ˆ4x i x y j x zk 

 div F = 
3 2 2ˆ ˆˆ ˆ ˆ ˆ(4 )i j k x i x yj x zk

x y z
   

        

= 
3 2 2(4 ) ( ) ( )x x y x z

x y z
  

  
    = 12x2 – x2 + x2 = 12 x2

Now,
V

div F dV


 = 
2 2

2
2 2 0

12
a a x b

x a zy a x
x dz dy dx



    
  

= 
2 2

2
02 2

12 ( )
a a x b
x a y a x

x z dy dx


    
    = 

2 22
2 2

12 ( )
a a x

a a x
b x y dx

  


= 2 2 212 .2
a

a
b x a x dx


               = 2 2 224

a

a
b x a x dx




= 2 2 2
0

48
a

b x a x dx [Put x = a sin , dx = a cos  d]

= 
/ 2 2 2

0
48 sin cos cosb a a a d


   

= 
/ 24 2 2

0
48 sin cosba d


     = 4

3 3
2 248
2 3

ba

= 4

1 1
2 248

2 2
ba

  


 = 3 b a4 Ans.

Example 111. Evaluate surface integral ˆ ,F n ds

  where F


 = (x2 + y2 + z2) ˆˆ ˆ( ),i j k  S

is the surface of the tetrahedron x = 0, y = 0, z = 0, x + y + z = 2 and n is the unit normal in
the outward direction to the closed surface S.
Solution. By Divergence theorem

ˆ
S

F n ds

 = div

V
F dv



where S is the surface of tetrahedron x = 0, y = 0, z = 0, x + y + z = 2

= 2 2 2ˆ ˆˆ ˆ ˆ ˆ( ) ( )
V

i j k x y z i j k dv
x y z

   
          



= (2 2 2 )
V

x y z dv 
= 2 ( )

V
x y z dx dy dz 

= 
2 2 2

0 0 0
2 ( )

x x y
dx dy x y z dz

  
   

= 

222 2

0 0
0

2
2

x y
x zdx dy x z y z
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= 
22 2 2 2

0 0

(2 )2 2 2
2

x x ydx dy x x xy y xy y
   

      
 

 

= 
23 32 2 2 2

0
0

(2 )2 2
3 6

x
y x ydx xy x y x y y


  

     
 



= 
3 32 2 2 2

0

(2 ) (2 )2 2 (2 ) (2 ) (2 ) (2 )
3 6

x xdx x x x x x x x
  

         
 



= 
3 32 2 2 3 2 3 2

0

(2 ) (2 )2 4 2 2 4 4 (2 )
3 6

x xx x x x x x x x
  

          
 



= 
23 4 3 4 3 4 4

2 2

0

4 4 (2 ) (2 ) (2 )2 2 2
3 4 3 4 3 12 24
x x x x x x xx x

   
        

 

= 
23 4 4

0

(2 ) (2 ) (2 )2
3 12 24

x x x   
   
 

 = 
8 16 162
3 12 24
    

 = 4 Ans.

Example 112. Use the Divergence Theorem to evaluate
( )

S
x dy dz y dz dx z dx dy 

where S is the portion of the plane x + 2 y + 3 z = 6 which lies in the first Octant.
(U.P., I Semester, Winter 2003)

Solution. 1 2 3( )
S

f dy dz f dx dz f dx dy 

= 
31 2

V

ff f d x d y d z
x y z

  
     


where S is a closed surface bounding a volume V.

 ( )
S

x dy dz y dz dx z dx dy 

= V

x y z dx dy dz
x y z

   
     



= (1 1 1)
V

dx dy dz   = 3
V

dx dy dz
= 3 (Volume of tetrahedron OABC)

= 
13 [( Area of the base ) height ]
3

OAB OC 

= 
1 13 6 3 2
3 2
        

 = 18 Ans.

Example 113. Use Divergence Theorem to evaluate : ( )x dy dz y dz dx z dx dy  
over the surface of a sphere radius a. (K. University, Dec. 2009)

Solution. Here, we have

    
S

x dy dz y dx dz z dx dy 
31 2

V

ff f dx dy dz
x y z

  
      
    V

x y z dx dy dz
x y z

   
      


V
  (1 + 1 + 1) dx dy dz = 3 (volume of the sphere)

= 
343

3
a  

 
  = 4 a3 Ans.
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Example 114. Using the divergence theorem, evaluate the surface integral
( )

S

yz dy dz zx dz dx xy dy dx  where S : x2 + y2 + z2 = 4.

(AMIETE, Dec. 2010, UP, I Sem., Dec 2008)

Solution. 1 2 3( )
S

f dy dz f dx dz f dx dy 

            = 31 2
v

ff f dx dy dz
x y z

  
     


where S is closed surface bounding a volume V.

 ( )
S

yz dy dz zx dx dz xy dx dy 

=
( ) ( ) ( )

v

yz zx xy dx dy dz
x y z

   
     

  = (0 0 0)
v

dx dy dz 
= 0 Ans.

Example 115. Evaluate 2 2 3 2( ) (2 )
S

xz dy dz x y z dz dx xy y z dx dy   
where S is the surface of hemispherical region bounded by

z = 2 2 2a x y  and z = 0.

Solution. 1 2 3( )
S

f dy dz f dz dx f dx dy   = 
31 2

V

ff f dx dy dz
x y z

  
     


where S is a closed surface bounding a volume V.


2 2 3 2( ) (2 )

S
xz dy dz x y z dz dx xy y z dx dy   

= 
2 2 3 2( ) ( ) (2 )

V
xz x y z xy y z dx dy dz

x y z
   

       


(Here V is the volume of hemisphere)

= 
2 2 2( )

V
z x y dx dy dz 

Let x = r sin  cos , y = r sin  sin , z = r cos 

= 2 2( sin )r r dr d d    = 
2 42
0 0 0

sin
a

d d r dr


    

= 
5

2 / 2
0 0

0

( ) ( cos )
5

a
r   

     
 

 = 
5

2 ( 0 1)
5
a

    = 
52

5
a

Ans.

Example 116. Evaluate ˆ.
S

F n ds


  over the entire surface of the region above the xy-plane

bounded by the cone z2 = x2 + y2 and the plane z = 4, if F = 2 ˆˆ ˆ4 3 .xz i xyz j z k 
Solution. If V is the volume enclosed by S, then V is bounded by the surfaces z = 0, z = 4,
z2 = x2 + y2.
By divergence theorem, we have

ˆ.
S

F n ds = V
div F dx dy dz





= 
2(4 ) ( ) (3 )

V
xz xyz z dx dy dz

x y z
   

     


= 
2(4 3)

V
z xz dx dy dz 

Limits of z are 2 2x y  and 4.
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4 2
2 2 (4 3)

x y
z xz dz dy dx


     = 

43
2

2 2
2 3

3
x y

xzz z dy dx


 
  

 


= 
2 2 2 2 3/2 2 26432 12 {2( ) ( ) 3 }

3
x x y x x y x y dy dx             



= 
2 2 2 2 3/ 2 2 26444 2( ) ( ) 3

3
x x y x x y x y dy dx        

 
Putting x = r cos  and y = r sin , we have

= 
2 364 cos44 2 cos 3

3
r r r r r r d dr       

 
Limits of r are 0 to 4.
and limits of  are 0 to 2

= 
22 4 3 5 2

0 0

64 cos44 2 cos 3
3

rr r r r d dr
  

       
 

 

= 

43 4 62 2 3
0

0

64 cos22 cos
9 2 6

r r rr r d
   

      
 



= 
3 4 62 2 3

0

64 (4) cos (4) (4)22(4) cos (4)
9 2 6

d
   

      
 



= 
62

0

64 64 (4)352 cos 128 cos 64
9 6

d
  

       
 



= 
62

0

64 64 (4)160 cos
9 6

d
   

         


= 

26

0

64 64 (4)160 sin
9 6


  

         
= 

664 64 (4)160 (2 ) sin 2
9 6

 
     

 
           = 320  Ans.

Example 117. The vector field 2 ˆˆ ˆF x i zj yzk

   is defined over the volume of the cuboid

given by 0  x  a, 0  y  b, 0  z  c, enclosing the surface S. Evaluate the surface integral

  .
S

F d s
 

 (U.P., I Semester, Winter 2001)
Solution. By Divergence Theorem, we have

2 2ˆ ˆˆ ˆ ˆ ˆ( ) . ( ) ,
S v

x i z j yz k ds div x i z j yz k dv     
where V is the volume of the cuboid enclosing the surface S.

=
2ˆ ˆˆ ˆ ˆ ˆ. ( )

v
i j k x i z j yz k dv

x y z
   

       


=
2( ) ( ) ( )

v
x z y z dx dy dz

x y z
   

  
   



= 0 0 0
(2 )

a b c

x y z
x y dx dy dz

  
    = 0 0 0

(2 )
a b c

dx dy x y dz  

= 0
0 0 0 0

[2 ] (2 )
a b a b

cdx xz yz dy dx xc yc dy     
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=
2 2

0 0 0 00

(2 ) 2 2
2 2

ba b a ay bc dx x y dy c xy dx c bx dx
   

        
   

   

=
2 2 2

2

0

2
2 2 2 2

a
bx b x ab bc c a b abc a

              
    

Ans.

Example 118.  Verify the divergence Theorem for the function F  = 2 x2yi – y2j + 4 x z2k
taken over the region in the first octant bounded by y2 + z2 = 9 and x = 2.

Solution. V
F dV


   = 2 2 2ˆˆ ˆ ˆ ˆ(2 4 )i j k x yi y j xz k dV
x y z

   
        



= (4 2 8 )xy y xz dx dy dz   = 
22 3 9

0 0 0
(4 2 8 )

y
dx dy xy y xz dz


   

= 
22 3 92

00 0
(4 2 4 ) ydx dy xyz yz xz   

= 
2 3 2 2 2
0 0

[4 9 2 9 4 (9 )]dx xy y y y x y dy     

= 

332 2 3/ 2 2 3/ 2
0

0

4 2 2 4(9 ) (9 ) 36
2 3 3 3
x xydx y y xy

 
      
 



= 
2

0
(0 0 108 36 36 18)x x x dx      = 

2

0
(108 18)x dx  = 

22

0

108 18
2
x x

 
 

 
= 216 – 36 = 180 ...(1)

Here ˆ
S

F n ds

  = ˆ ˆ ˆ ˆ ˆ

OABC OCE OADE ABD BDEC

F n ds F n ds F n ds F n ds F n ds
    
            

ˆ
BDEC

F n ds = 2 2 2 ˆˆ ˆ ˆ(2 4 ) .
BDEC

x yi y j xz k n ds 
Normal vector

=  = ˆˆ ˆi j k
x y z

   
     

 (y2 + z2 – 9)

= ˆˆ2 2  yj z k

Unit normal vector = n̂ =
2 2

ˆˆ2 2

4 4

yj zk

y z




=

2 2

ˆˆyj zk

y z





= 
ˆˆ

9
yj zk

 = 
ˆˆ

3
yj zk

2 2 2 ˆˆ ˆ(2 4 )
3BDEC

yj zkx yi y j xz k ds
    = 3 31 ( 4 )

3 BDEC

y xz ds 

ˆˆ ˆˆ( ) or
3 3

3

yj zk z dx dydx dy ds n k ds k ds ds z

 
  

        
  
  

= 3 31 ( 4 )
3

3
BDEC

dxdyy xz z   = 
32 3 2

0 0
4ydx xz dy

z
 
   
 

 
3 sin ,
3 cos

y
z
  

   

= 
32 22

0 0

27 sin 4 (9 cos )
3 cos

dx x
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= 
2

0

2 227 108
3 3

dx x     
   = 

2

0
( 18 72 )x dx 

= 
22
0

18 36x x     = 108 ...(2)

ˆ
OABC

F n ds

 = 2 2 2 ˆ ˆˆ ˆ(2 4 ) ( )

OABC

x yi y j xz k k ds   
= 24

OABC

x z ds  = 0 ...(3) because in OABC xy-plane, z = 0

ˆ
OADE

F n ds

 = 2 2 2 ˆˆ ˆ ˆ(2 4 ) ( )

OADE

x yi y j xz k j ds     = 
2

OADE

y ds  = 0 ...(4)
because in OADE xz-plane, y = 0

ˆ
OCE

F n ds

 = 2 2 2 ˆˆ ˆ ˆ(2 4 ) ( )

OCE

x yi y j xz k i ds     = 22
OCE

x y ds  = 0 ...(5)
because in OCE yz-plane, x = 0

ˆ
ABD

F n ds

 = 2 2 2 ˆˆ ˆ ˆ(2 4 ) ( )

ABD

x yi y j xz k i ds    = 22
ABD

x y ds

= 22 x y dy dz  = 
23 9 2

0 0
2 (2)

z
dz y dy



          because in ABD plane, x = 2

= 

2923

0
0

8
2

z
ydz


 
 
 

  = 3 2
0

4 (9 )dz z  = 
33

0

4 9
3
zz

 
 

 
 = 4 [27 – 9] = 72 ...(6)

On adding (2), (3), (4), (5) and (6), we get

ˆ
S

F n ds

 = 108 + 0 + 0 + 0 + 72 = 180 ...(7)

From (1) and (7), we have 
V

F dV


  = ˆ
S

F n ds



Hence the theorem is verified.
Example 119. Verify the Gauss divergence Theorem for

F
 = (x2 – yz) î  + (y2 – zx) ĵ + (z2 – xy) k̂ taken over the rectangular parallelopiped

0  x  a, 0  y  b, 0  z  c. (U.P., I Semester, Compartment 2002)
Solution. We have

div F


 = F


   = 
2 2 2ˆ ˆˆ ˆ ˆ ˆ[( ) ( ) ( ) ]i j k x yz i y zx j z xy k

x y z
   

           

= 
2 2 2( ) ( ) ( )x yz y zx z xy

x y z
  

    
    = 2x + 2y + 2z

 Volume integral = V
F dV


   = 2 ( )
V

x y z dV 
= 0 0 0

2 ( )
a b c

x y z
x y z dx dy dz

  
     = 0 0 0

2 ( )
a b c

dx dy x y z dz   

= 
2

0 0
0

2
2

c
a b zdx dy xz yz

 
   

 
   = 

2

0 0
2

2
a b cdx dy cx cy

 
   

 
 

= 
2 2

0
0

2
2 2

b
a y c ydx c x y c

 
   

 
  = 

2 2

0
2

2 2
a b c b cdx bcx
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= 
2 2 2

0

2
2 2 2

a
bc x b cx bc x 

  
 

 = [a2bc + ab2c + abc2]

= abc (a + b + c) ...(A)

To evaluate ˆ ,
S

F n ds

  where S consists of six plane surfaces.

ˆ
S

F n ds

 = ˆ ˆ ˆ

OABC DEFG OAFG
F n ds F n ds F n ds
  
      

ˆ ˆ ˆ
BCDE ABEF OCDG

F n ds F n ds F n ds
  

       
ˆ

OABC
F n ds

  = 

2 2 2 ˆ ˆˆ ˆ{( ) ( ) ( ) } ( )
OABC

x yz i y xz j z xy k k dx dy     

= 
2

0 0

( )
a b

z xy dx dy  

= 
0 0

(0 )
a b

xy dx dy    = 
2 2

4
a b

...(1)

ˆ
DEFG

F n ds

 = 2 2 2 ˆ ˆˆ ˆ{( ) ( ) ( ) } ( )

DEFG
x yz i y xz j z xy k k dx dy    

= 2

0 0

( )
a b

z xy dx dy   = 2

0 0

( )
a b

c xy dx dy 

= 
2

2

0 0
2

ba xyc y dx
 

 
 
  = 

2
2

0 2

a x bc b dx
 

  
 


= 
2 2

2

0
4

a
x bc bx

 
 

 
 = 

2 2
2

4
a babc  ...(2)

ˆ
OAFG

F n ds

  = 

2 2 2 ˆˆ ˆ ˆ{( ) ( ) ( ) } ( )
OAFG

x yz i y zx j z xy k j dx dz     
= 

2( )
OAFG

y zx dx dz 

= 
0 0

(0 )
a c

dx zx dz    = 
2

0 0
2

ca x zdx
 
  
 

  = 
2

0 2

a x c dx  = 
2 2

0
4

a
x c 

 
 

 = 
2 2

4
a c

...(3)

ˆ
BCDE

F n ds

 = 2 2 2 ˆˆ ˆ ˆ{( ) ( ) ( ) }x y z i y zx j z xy k j dx dz      =

2( )
BCDE

y xz dx dz

= 2

0 0

( )
a c

dx b x z dz    = 
2

2

0 0
2

ca x zb z dx
 

  
 
  = 

2
2

0 2

a x cb c dx
 

  
 


= 
2 2

2

0
4

a
x cb c x

 
 

 
 = 

2 2
2

4
a cab c  ...(4)

ˆ
ABEF

F n ds

 = 

2 2 2 ˆˆ ˆ ˆ{( ) ( ) ( ) }
ABEF

x y z i y xz j z x y k i dy dz     

= 2( )
ABEF

x y z dy dz  = 2

0 0

( )
b c

dy a y z d z   = 
2

2

0 0
2

cb y zdy a z
 

  
 



S.No. Surface Outward
dsnormal

1 OABC  – k dx dy z = 0
2 DEFG k dx dy z = c
3 OAFG – j dx dz y = 0
4 BCDE j dx dz y = b
5 ABEF i dy dz x = a
6 OCDG – i dy dz x = 0
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= 
2

2

0 2

b y ca c dy
 

  
 
  = 

2 2
2

0
4

b
y ca cy

 
 

 
 = 

2 2
2

4
b ca bc  ...(5)

ˆ
OCDG

F n ds

 = 

2 2 2 ˆˆ ˆ ˆ{( ) ( ) ( ) } ( )
OCDG

x y z i y z x j z x y k i dy dz      

= 2
0 0

( )
b c

x y z dy dz   = 
0 0

( )
b c

dy y z dz    = 
2

0
0

2

c
b y zdy

 
  

 


= 
2

0 2
b y c dy  = 

2 2

0
4

b
y c 

 
 

 = 
2 2

4
b c

...(6)

Adding (1), (2), (3), (4), (5) and (6), we get

ˆF n ds

 = 

2 2 2 2 2 2 2 2
2 2

4 4 4 4
a b a b a c a cabc ab c

       
                  

       
2 2 2 2

2

4 4
b c b ca bc

   
        
   

= abc2 + ab2c + a2bc
= abc (a + b + c) ...(B)

From (A) and (B), Gauss divergence Theorem is verified. Verified.

Example 120. Verify Divergence Theorem, given that 2 ˆˆ ˆ4 –  F xzi y j yz k

   and S is the

surface of the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

Solution. F


  = 
2ˆ ˆˆ ˆ ˆ ˆ(4 )i j k zxi y j yzk

x y z
   

        
= 4 z – 2 y + y
= 4 z – y

Volume Integral = F dv



= (4 )z y dx dy dz

= 
1 1 1

0 0 0
(4 )dx dy z y dz  

= 
1 1 12

00 0
(2 )dx dy z yz   = 

1 1

0 0
(2 )dx dy y 

= 
121

0
0

2
2
ydx y

 
  

 
  = 

1

0

12
2

dx  
   = 

1 1
00

3 3 ( )
2 2

dx x  = 
3
2

...(1)

To evaluate ˆ ,
S

F n ds

  where S consists of six plane surfaces.

Over the face OABC , z = 0, dz = 0, n̂  = – k̂ , ds = dx dy

1 1 2
0 0

ˆˆˆ. (– ) (– ) 0F n ds y j k dx dy


    
Over the face BCDE, y = 1, dy = 0
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ˆF n ds

 = 

1 1

0 0
ˆˆ ˆ ˆ(4 ) ( )xzi j zk j dx dz   

n̂ = ˆ,j ds dx dz  = 
1 1

0 0
dxdz 

= 
1 1

0 0
dx dz    = 1 1

0 0( ) ( )x z  = – (1) (1) = – 1

Over the face DEFG, z = 1, dz = 0, n̂  = k̂  , ds = dx dy

ˆF n ds

 = 

1 1 2
0 0

ˆ ˆˆ[4 (1) (1) ] ( )x y j y k k dx dy   

= 
1 1

0 0
y dx dy   = 

1 1

0 0
dx y dy   = 

12
1
0

0

( )
2
yx

 
  
 

 = 
1
2

Over the face OCDG, x = 0, dx = 0, n̂  = – ˆ,i ds = dy dz

ˆF n ds

 =

1 1 2
0 0

ˆˆ ˆ ˆ(0 ) ( )i y j yzk i dy dz     = 0

Over the face AOGF, y = 0, dy = 0, n̂  = – ĵ , ds = dx dz

ˆF n ds

 = 

1 1

0 0
ˆ ˆ(4 ) ( )xzi j dx dz    = 0

Over the face ABEF, x = 1, dx = 0, n̂  = î , ds = dy dz

ˆF n ds

 = 

1 1 2
0 0

ˆˆ ˆ ˆ[(4 ) ( )]zi y j yzk i dy dz     = 
1 1

0 0
4 z dy dz 

= 
1 1

0 0
4dy z dz   = 

1 2 1
00

(2 )dy z  = 
1

0
2 dy   = 1

02 ( ) 2y 

On adding we see that over the whole surface

ˆF n ds

 = 

10 1 0 0 2
2

      
 

 = 
3
2

...(2)

From (1) and (2), we have 
V

F dv


  = ˆ
S

F n ds

 Verified.

EXERCISE 5.15
1. Use Divergence Theorem to evaluate 2 2 2 2 2 2 ˆˆ ˆ( ). ,

s
y z i z x j x y k ds 

where S is the upper part of the sphere x2 + y2 + z2 = 9 above xy- plane. Ans. 
243

8


2. Evaluate ( ) . ,
S

F ds


 where S is the surface of the paraboloid x2 + y2 + z = 4 above the xy-plane and
2 2 ˆˆ ˆ( 4) 3 (2 ) .F x y i xyj xz z k


      Ans. – 4 

3. Evaluate 2 2 3 2[ ( ) (2 ) ],
s

x z dy dz x y z dz dx xy y z dx dy    where S is the surface enclosing a
region bounded by hemisphere x2 + y2 + z2 = 4 above XY-plane.

4. Verify Divergence Theorem for 2 ˆˆ ˆ ,F x i zj yzk

   taken over the cube bounded by

x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

5. Evaluate 2 ˆˆ ˆ(2 )
S

xyi yz j xz k ds


   over the surface of the region bounded by

x = 0, y = 0, y = 3, z = 0 and x + 2 z = 6 Ans. 
351
2
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6. Verify Divergence Theorem for 2 ˆˆ ˆ( ) – 2 2 F x y i xj yzk

   and the volume of a tetrahedron bounded

by co-ordinate planes and the plane 2 x + y + 2 z = 6.
(Nagpur, Winter 2000, A.M.I.E.T.E.. Winter 2000)

7. Verify Divergence Theorem for the function 2 ˆˆ ˆF yi xj z k

   over the region bounded by

x2 + y2 = 9,   z = 0  and  z = 2.

8. Use the Divergence Theorem to evaluate 3 2 2 ,
s

x dy dz x y dz dx x z dx dy 
where S is the surface of the region bounded by the closed cylinder

x2 + y2 = a2, (0  z  b) and z = 0, z = b. Ans.
45

4
a b

9. Evaluate the integral 2( ) 3 ,
s

z x dy dz xy dx dz z dx dy   where S is the surface of closed region

bounded by z = 4 – y2 and planes x = 0, x = 3, z = 0 by transforming it with the help of Divergence
Theorem to a triple integral. Ans. 16

10. Evaluate 
2 2 2 2 2 2s

ds

a x b y c z 
 over the closed surface of the ellipsoid ax2 + by2 + cz2 = 1 by

applying Divergence Theorem.   Ans. 4
( )a b c


11. Apply Divergence Theorem to evaluate 2 2 2( )l x m y n z ds 
taken over the sphere (x – a)2 + (y – b)2 + (z – c)2 = r2, l, m, n being the direction cosines of the external

normal to the sphere. (AMIETE June 2010, 2009)   Ans. 38 ( )
3

a b c r
 

12. Show that ( )
V

u V u V dv
 

       = .
s
uV ds



13. If E = grad  and 2   = 4 , prove that 
S

E n ds
 
  = 4

V

dv    
where n

 is the outward unit normal vector, while dS and dV are respectively surface and volume
elements.

Pick up the correct option from the following:

14. If F


 is the velocity of a fluid particle then .
C

F dr
 
  represents.

(a) Work done (b) Circulation (c) Flux (d) Conservative field.
(U.P. Ist Semester, Dec 2009)  Ans. (b)

15. If f


 = ,ax i by j cz k
 

  a, b, c, constants, then .f dS where S is the surface of a unit sphere is

(a) ( )
3

a b c
  (b) 

4 ( )
3

a b c   (c) 2 ( )a b c   (d)  (a + b + c)
(U.P., Ist Semester, 2009)   Ans. (b)

16. A force field F


 is said to be conservative if

(a) Curl 0F

 (b) grad 0F  (c) Div 0F  (d) Curl (grad F ) = 0

(AMIETE, Dec. 2006)  Ans. (a)

17. The line integral 2 2 ,
c

x dx y dy where C is the boundary of the region x2 + y2 < a2 equals

(a) 0, (b) a (c)  a2 (d) 21
2

a

(AMIETE, Dec. 2006)   Ans. (b)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Complex Numbers 467

467

Complex  Numbers

6.1 INTRODUCTION
We have learnt the complex numbers in the previous class. Here we will review the complex

number. In this chapter we will learn how to add, subtract, multiply and divide complex numbers.

6.2 COMPLEX NUMBERS
A number of the form a + i b is called a complex number when a and b are real numbers and

i = 1 . We call ‘a’ the real part and ‘b’ the imaginary part of the complex number a + ib. If
a = 0 the number i b is said to be purely imaginary, if b = 0 the number a is real.

A complex number x + iy is denoted by z.

6.3 GEOMETRICAL REPRESENTATION OF IMAGINARY NUMBERS
Let OA be positive numbers which is represented by x and OA by –x.
And –x = (i)2 x = i (ix) is on OX.
It means that the multiplication of the real number x by i twice

amounts to the rotation of OA through two right angles to reach OA.
Thus, it means that multiplication of x by i is equivalent to the

rotation of x through one right angle to reach OA.
Hence, y-axis is known as imaginary axis.
Multiplication by i rotates its direction through a right angle.

6.4 ARGAND DIAGRAM
Mathematician Argand represented a complex number in a

diagram known as Argand diagram. A complex number x + iy
can be represented by a point P whose co-ordinate are (x, y). The
axis of x is called the real axis and the axis of y the imaginary
axis. The distance OP is the modulus and the angle, OP makes
with the x-axis, is the argument of x + iy.

6.5 EQUAL COMPLEX NUMBERS
If two complex numbers a + ib and c + id are equal, prove that

a = c and b = d
Solution. We have, a + ib = c + id  a – c = i(d – b)

(a – c)2 = –(d – b)2  (a – c)2 + (d – b)2 = 0
Here sum of two positive numbers is zero. This is only possible if each number is zero.
i.e., (a – c)2 = 0  a = c and (d – b)2 = 0  b = d Ans.



r

P (x + iy)

y

x

Y 

Y

X XO

Y

X X

A

A A
O

Y

6
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Q (z )2

P (z )1

X X

Y

Y

Q (–z ) 2

O 

R 

6.6 ADDITION OF COMPLEX NUMBERS
Let a + ib and c + id be two complex numbers, then

(a + ib) + (c + id) = (a + c) + i (b + d)
Procedure. In addition of complex numbers we add real parts with real parts and imaginary

parts with imaginary parts.

6.7 ADDITION OF COMPLEX NUMBERS BY GEOMETRY
Let z1 = x1 + i y1 and z2 = x2 + i y2 be two complex numbers represented by the points P and

Q on the Argand diagram.
Complete the parallelogram OPRQ.
Draw PK, RM, QL, perpendiculars on OX.
Also draw PN  to RM.

OM = OK + KM = OK + OL = x1 + x2

and RM = MN + NR = KP + LQ = y1 + y2
 The co-ordinates of R are (x1 + x2, y1 + y2) and it

represents the complex number.
(x1 + x2) + i (y1 + y2) = (x1 + iy1) + (x2 + iy2)

Thus the sum of two complex numbers is represented by the extremity of the diagonal of the
parallelogram formed by OP (z1) and OQ (z2) as adjacent sides.

|z1 + z2| = OR and amp (z1 + z2) = ROM.

6.8 SUBTRACTION
(a + ib) – (c + id) = (a – c) + i(b – d)

Procedure. In subtraction of complex numbers we subtract real parts from real parts and
imaginary parts from imaginary parts.

SUBTRACTION OF COMPLEX NUMBERS BY GEOMETRY.
Let P and Q represent two complex numbers

z1 = x1 + iy1 and z2 = x2 + iy2.
Then z1 – z2 = z1 + (–z2)
z1 – z2 means the addition of z1 and –z2.
–z2 is represented by OQ formed by producing OQ to OQ
such that OQ = OQ.
Complete the parallelogram OPRQ, then the sum of z1 and
–z2 represented by OR.

6.9 POWERS OF i
Some time we need various powers of i.
We know that i = 1 .
On squaring both sides, we get

i2 = –1
Multiplying by i both sides, we get

i 3 = –i
Again, i 4 = (i3) (i) = (–i) (i) = –(i 2) = –(–1) = 1

i 5 = (i 4) (i) = (1) (i) = i

L K M X 

Z2

Z1
P N

Z
+ Z

1

2

(x , y )
Q

2 2
R

O

Y

(x , y )1 1
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i 6 = (i 4) (i 2) = (1) (–1) = –1
i 7 = (i 4) (i 3) = 1(–i) = –i
i 8 = (i 4) (i 4) = (1) (1) = 1.

Example 1. Simplify the following: (a) i 49, (b) i 103.
Solution. (a) We divide 49 by 4 and we get

49 = 4 × 12 + 1
i 49 = i 4 × 12 + 1 = (i 4)12 (i1) = (1)12 (i) = i

(b) we divide 103 by 4, we get
103 = 4 × 25 + 3
i 103 = i 4 × 25 + 3 = (i 4)25 (i3) = (1)25 (–i) = –i Ans.

6.10 MULTIPLICATION
(a + ib) × (c + id) = ac – bd + i(ad + bc)

Proof. (a + ib) × (c + id) = ac + iad + ibc + i2bd
= ac + i(ad + bc) + (–1)bd [ i2 = –1]
= (ac – bd) + (ad + bc)i

Example 2. Multiply 3 + 4i by 7 – 3i.
Solution. Let z1 = 3 + 4i and z2 = 7 – 3i

z1.z2 = (3 + 4i).(7 – 3i)
= 21 – 9i + 28i – 12i2

= 21 – 9i + 28i – 12(–1) [ i2 = –1]
= 21 – 9i + 28i + 12
= 33 + 19i Ans.

Multiplication of complex numbers (Polar form) :
Let z1 = r1(cos 1 + i sin 1) and z2 = r2(cos 2 + i sin 2)

x1 = r1 cos 1, y1 = r1 sin 1

x2 = r2 cos 2, y2 = r2 sin 2
z1 = x1 + iy1 = r1(cos 1 + i sin 1)  z1  = r1

z2 = x2 + iy2 = r2(cos 2 + i sin 2)  z2  = r2
z1 . z2 = r1r2(cos 1 + i sin 1)(cos 2 + i sin 2)

= r1r2 [cos 1 cos 2 – sin 1 sin 2 + i(sin 1 cos 2 + cos 1 sin 2)]
= r1r1[cos (1 + 2) + i sin (1 + 2)],  z1z2  = r1r2

The modulus of the product of two complex numbers is the product of their moduli and
the argument of the product is the sum of their arguments.

Graphical method
Let P, Q represent the complex numbers.

z1 = x1 + iy1

= r1(cos 1 + i sin 1)
z2 = x2 + iy2

= r2(cos 2 + i sin 2)
Cut off OA = 1 along x-axis. Construct  ORQ on OQ

similar to  OAP.
1

 1
+  2

r1

r2

r 1
. r 2

R (Z , Z )1 2

Q (Z )2

P (Z )1

Y 

X O

2

A1

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



470 Complex Numbers

So that OR
OP

= OQ
OA


1

OR OQ
OP

  O R = OP . OQ = r1r2

XOR = AOQ + QOR = 2 + 1

Hence the product of two complex numbers z1, z2 is represented by the point R, such that
(i) |z1 . z2| = |z1|.|z2| (ii) Arg (z1 . z2) = Arg (z1) + Arg (z2)

6.11 i (IOTA) AS AN OPERATOR
Multipliction of a complex number by i.
Let z = x + iy = r(cos  + i sin )

i = 0 + i . 1 =     
cos sin

2 2
i

i . z = r(cos  + i sin ) .     
cos sin

2 2
i

=                  
cos sin

2 2
r i

Hence a complex number multiplied by i results :

The rotation of the complex number by 
2

 in anticlockwise direction without change in

magnitude.

6.12 CONJUGATE OF A COMPLEX NUMBER
Two complex numbers which differ only in the sign of imaginary parts are called conjugate
of each other.
A pair of complex number a + ib and a – ib are said to be conjugate of each other.
Theorem. Show that the sum and product of a complex number and its conjugate complex are

both real.
Proof. Let x + iy be a complex number and x – iy its conjugate complex.

Sum = (x + iy) + (x – iy) = 2x (Real)
Product = (x + iy).(x – iy) = x2 + y2. (Real) Proved.

Note. Let a complex number be z. Then the conjugate complex number is denoted by z .
Example 3. Find out the conjugate of a complex number 7 + 6i.
Solution. Let z = 7 + 6i
To find conjugate complex number of 7 + 6i we change the sign of imaginary number.

Conjugate of z = z  = 7 – 6i Ans.

6.13 DIVISION

To divide a complex number a + ib by c + id, we write it as 



.
a ib
c id

To simplify further, we multiply the numerator and denominator by the conjugate of the
denominator.




a ib
c id

=
    

 
  

2

2 2

( ) ( )
( ) ( ) ( ) ( )

a ib c id ac iad ibc i bd
c id c id c id
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=
2 2 2

( )ac i ad bc bd

c d i

  


[ i2 = –1]

=
2 2 2 2

ac bd bc ad
i

c d c d

 


 

Example 4. Divide 1 + i by 3 + 4i.

Solution.



1
3 4

i
i

=
 


 

1 3 4
3 4 3 4

i i
i i

=
  



2

2

3 4 3 4

9 16

i i i

i

=
 

 


3 4 7 1
9 16 25 25

i
i Ans.

DIVISION (By Algebra)
Let z1 = r1(cos 1 + i sin 1) and z2 = r2(cos 2 + i sin 2)

1

2

z
z

=
        


        

1 1 1 1 1 1 2 2

2 2 2 2 2 2 2 2

(cos sin ) (cos sin )(cos sin )
(cos sin ) (cos sin )(cos sin )

r i r i i
r i r i i

=
          

  
1 1 2 1 2 1 2 2 1

2 2
2 2 2

[(cos cos sin sin ) (sin cos sin cos )]

(cos sin )

r i

r

=        1
1 2 1 2

2
cos ( ) sin ( )

r
i

r

The modulus of the quotient of two complex numbers is the quotient of their moduli, and the
argument of the quotient is the difference of their arguments.

6.14 DIVISION OF COMPLEX NUMBERS BY GEOMETRY
Let P and Q represent the complex numbers.

z1 = x1 + i y1 = r1(cos 1 + i sin 1)
z2 = x2 + i y2 = r2(cos 2 + i sin 2)

Cut off OA = 1, construct  OAR on OA similar to
 OQP.

So that OR
OA

=  
OP OR OP
OQ OQ1

OR =  1

2

rOP
OQ r

AOR = QOP = AOP – AOQ = 1 – 2

 R represents the number       1
1 2 1 2

2
[cos ( ) sin ( )]

r
i

r

Hence the complex number 1

2

z
z

 is represented by the point R.

(i) 11

2 2

zz
z z

 (ii)
 
 
 

1

2
Arg.

z
z

 = Arg. (z1) – Arg. (z2).

1

1 2

O 
 1 2 – 

A

R ( )

Q (Z )2

P (Z )1

Z1
Z2

r1
r2

r 2

r 1

Y 

X 
1
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Example 5. If a = cos  + i sin , prove that 1 + a + a2 = (1 + 2 cos )(cos  + i sin ).
Solution. Here we have a = cos  + i sin 

1 + a + a2 = 1 + (cos  + i sin ) + (cos  + i sin )2

= 1 + cos  + i sin  + cos2  + 2i sin  cos  – sin2 
= (cos  + i sin ) + (1 – sin2 ) + cos2  + 2i sin  cos 
= (cos  + i sin ) + cos2  + cos2  + 2i sin  cos 
= (cos  + i sin ) + 2 cos2  + 2i sin  cos 
= (cos  + i sin ) + 2 cos  (cos  + i sin )
= (cos  + i sin ) (1 + 2 cos ) Proved.

Example 6. If a2 + b2 + c2 = 1 and b + ic = (1 + a)z, prove that 
 

 
 

a ib 1 iz
1 c 1 iz

Solution. Here, we have b + ic = (1 + a)z  z = 

1

b ic
a




1
1

iz
iz

=




   


   


1
1 1

11
1

b ic
i

a a ib c
b ic a ib ci

a

=
2 2

2 2

[(1 ) ] (1 ) (1 )
(1 ) (1 ) (1 )

a ib c a ib c a ib c
a c ib a c ib a c b

        
 

        

=
           


           

2 2 2 2 2 2

2 2 2 2 2 2

1 2 2 2 1 2 2 2

1 2 2 2 1 ( ) 2 2 2

a b a ib iab c a b c a ib iab

a c a c ac b a b c a c ac
Putting the value of a2 + b2 + c2 = 1 in the above, we get

=         


      

2 2 21 (1 ) 2 2 2 2( )
1 1 2 2 2 2(1 )

a a a ib iab a a ib iab
a c ac a c ac

= 
  


  

2(1 )( )
2(1 )(1 ) 1

a a ib a ib
a c c

Proved.
Example 7. If z = cos  + i sin , prove that

        


 

2

1 i tan
1 z 2

Solution. Here, we have z = cos  + i sin 

(a)

2

1 z
= 2

1 (cos sin )i   
  =  

   


       
(1 cos ) sin2

(1 cos ) sin (1 cos ) sin
i

i i

=
   

   2 2

2[(1 cos ) sin ]

(1 cos ) sin

i

= 
    

 
   

2[(1 cos ) sin ] sin
1

2(1 cos ) 1 cos
i i

=

    
               

 
 

2

2 sin cos
2 21 1 tan

22 cos
2

i i Proved.

Example 8. If x = cos  + i sin , y = cos  + i sin , prove that



x y
x y

=
   

  
i

2
tan (M.U. 2008)

Solution. We have,



x y
x y

=
(cos sin ) (cos sin )
(cos sin ) (cos sin )

i i
i i

      
      

   2 2(1 cos ) sin
= 1 + cos2  + 2 cos  + sin2 
= 1 + (sin2  + cos2 ) + 2 cos 
= 1 + 1 + 2 cos 
= 2 + 2 cos 
= 2 (1 + cos )
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=
      
      

i
i

(cos cos ) (sin sin )
(cos cos ) (sin sin )

=

                                    
                                   

i

i

2 sin sin 2 cos sin
2 2 2 2

2 cos cos 2 sin cos
2 2 2 2

=

                          
                          

i i

i

2 sin cos sin
2 2 2

2 cos cos sin
2 2 2

 = 
   

  
i tan

2
 Proved.

EXERCISE 6.1

1. If z = 1 + i, find (i) z2 (ii) 
z
1

 and plot them on the Argand diagram. And. (i) 2i, (ii) 
i1

2 2


Express the following in the form a + ib, where a and b are real (2 – 4):

2.
i
i

2 3
4



Ans. i
11 10
17 17

 3.
i i

i
(3 4 ) (2 )

1
 


Ans. i

13 9
2 2



4. 
 

3(1 2 )
(1 )(2 )

i
i i

Ans. 7 1
2 2

i 

5. The points A, B, C represent the complex numbers z1, z2, z3 respectively, and G is the centroid of
the triangle ABC, if 4z1 + z2 + z3 = 0, show that the origin is the mid-point of AG.

6. ABCD is a parallelogram on the Argand plane. The affixes of A, B, C are 8 + 5i, –7 – 5i, –5 + 5i,
respectively. Find the affix of D. Ans. 10 + 15i

7. If z1, z2, z3 are three complex numbers and
a1 = z1 + z2 + z3
b1 = z1 +  z2 + 2 z3
c1 = z1 + 2 z2 +  z3

show that        |a1|
2 + |b1|

2 + |c1|
2 = 3{|z1|

2 + |z2|
2 + |z3|

2}
where , 2 are cube roots of unity.

8. Find the complex conjugate of 



2 3
.

1
i

i
Ans.  

1 5
2 2

i

9. If x + iy = 

1

a ib
, prove that (x2 + y2)(a2 + b2) = 1

10. Find the value of x2 – 6x + 13, when x = 3 + 2i. Ans. 0

11. If  – i = 

1

a ib
, prove that (2 + 2)(a2 + b2) = 1. (M.U. 2008)

12. If 
1 1

i a i b


   
 = 1, where , , a, b are real, express b in terms of , .

Ans.


     2 2 2 1
13. If (x + iy)1/3 = a + ib, then show that 4(a2 – b2) = 

yx
a b

.

14. If (x + iy)3 = u + iv, then show that 
u v
x y

 = 4(x2 – y2).

15. Find the values of x and y, if 
   


 

(1 ) 2 (2 3 )
3 3
i x i i y i

i i
 = i. Ans. x = 3 and y = –1

16. If a + ib = 



2

2
( )

2 1

x i

x
, prove that a2 + b2 = 

2 2

2 2

( 1)

(2 1)

x

x




.
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6.15 MODULUS AND ARGUMENT
Let x + iy be a complex number.

Putting x = r cos  and y = r sin  so that r = 2 2x y

cos  =
2 2

x

x y
and sin  = 

2 2

y

x y
the positive value of the root being taken.

Then r called the modulus or absolute value of the complex number x + iy and is denoted by
 x + iy .

The angle  is called the argument or amplitude of the complex number x + iy and is denoted
by arg. (x + iy).

It is clear that  will have infinite number of values differing by multiples of 2. The values
of  lying in the range – <    [(0 <  < ) or (– <  < 0)] is called the principal value of
the argument.

The principal value of  is written either between 0 and  or between 0 and –.
A complex number x + iy is denoted by a single letter z. The number x – iy (conjugate) is

denoted by z . The complex number in polar form is r(cos  + i sin ).
Modulus of z is denoted by  z  and  z 2 = x2 + y2.

Angle  Principal value of 

Y

X X

Y

P


O

Y

X X

Y


O

P

Y

X X

Y
P



O

Y

X X

Y


O

P

Y

X X

Y

P



O

Y

X X

Y

P



O

Y

X X

Y

P



O

Y

X X

Y

O

P

Y 

X 


P (x, y)

r 

O 

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Complex Numbers 475

For example (i) the principal value of 240° is –120°.
(ii) the principal value of 330° is –30°.

Example 9. Find the modulus and principal argument of the complex number



 
.

( )2

1 2i

1 1 i

Solution.


  2

1 2

1 (1 )

i

i
=  


   

1 2 1 2
1 (1 1 2 ) 1 2

i i
i i

 = 1 = 1 + 0i




  2

1 2
1 (1 )

i
i

=   2|1 0 | 1 1i Ans.

Principal argument of 


  2

1 2

1 (1 )

i

i
 = Principal argument of 1 + 0i

= tan–1 0
1

 = tan–1 0 = 0°.

Hence modulus = 1 and principal argument = 0°. Ans.
Example 10. Find the modulus and principal argument of the complex number :

1 + cos  + i sin .     
 

0
2

Solution. Let (1 + cos ) + i sin  = r(cos  + i sin )
Equating real and imaginary parts, we get

1 + cos  = r cos  ...(1)
And sin  = r sin  ...(2)
Squaring and adding (1) and (2), we get

r2(cos2  + sin2 ) = (1 + cos )2 + (sin )2

 r2 = 1 + cos2  + 2 cos  + sin2  = 1 + 2 cos  + 1

= 2(1 + cos ) =      
 

2 22 1 2 cos 1 4 cos
2 2

 r = 
2 cos

2

From (1), we have, cos  =


   

 


21 2 cos 11 cos 2 cos
22 cos

2
r

...(3)

From (2), we have, sin  =

 
  
  

 

2 sin cossin sin 2 2 sin
22 cos 2 cos

2 2
r

...(4)

Argument =   

 
  

  
   

1 1 1

2

2 sin cossin 2 2tan tan tan tan
1 cos 2 21 2 cos 1

2
General value of argument = 2

2
k


 

 = 
2

 satisfied both equations, (1) and (2),

Arg (1 + cos  + i sin ) = 
2

 and modulus of (1 + cos  + i sin ) = r = 2 cos 
2

  Ans.
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EXERCISE 6.2
Find the modulus and principal argument of the following complex numbers:

1.  3 i Ans. 2, 
5
6


 2.



2(1 )
1

i
i

Ans. 3
2 ,

4

3.  
  

1
1

i
i

Ans. 1, 
4

4. tan  – i Ans. sec ,      2

5. 1 – cos  + i sin  Ans. 2 sin   
,

2 2

6.   (4 2 )( 3 2 )i i Ans.   
   

1 3 2 2
2 55 , tan

6 2
Find the modulus of the following complex numbers :

7.     2 3(7 ) (6 ) (4 3 )i i i Ans. 4 5

8.     (5 6 ) (5 6 ) (8 )i i i Ans. 185

9.     3 2(8 ) (7 5) (9 )i i i Ans. 365

10. (5 + 6i11) + (8i3 + i5) + (i2 – i4) Ans. 178

11. If arg. (z + 2i) = 
4

 and arg. (z – 2i) = 3
4

, find z. Ans. z = 2

Example 11. If z1 and z2 are any two complex numbers, prove that
 z1 + z2 2 +  z1 – z2 2 = 2[ z1 2 +  z2 2]

Solution. Let z1 = x1 + iy1
z2 = x2 + iy2

 z1 + z2 2 =  (x1 + iy1) + (x2 + iy2) 
2

=  (x1 + x2) + i(y1 + y2) 
2

= (x1 + x2)
2 + (y1 + y2)

2 ...(1)
Similarly  z1 – z2 2 = (x1 – x2)

2 + (y1 – y2)
2 ...(2)

and  z1 2 = 2 2
1 1x y ...(3)

 z2 2 = 2 2
2 2x y ...(4)

L.H.S. =  z1 + z2 
2 +  z1 – z2 

2 = (x1 + x2)
2 + (y1 + y2)

2 + (x1 – x2)
2 + (y1 – y2)

2

[Using (1) and (2)]
=     2 2 2 2

1 1 2 2 1 1 2 22 2x x x x y y y y

     2 2 2 2
1 1 2 2 1 1 2 22 2x x x x y y y y

= 2 2 2 2 2 2 2 2
1 2 1 2 1 1 2 22[ ] 2[( ) ( )]x x y y x y x y       ...(5)

= 2[ z1 
2 +  z2 

2] = R.H.S. Proved.
Example 12. If z1 and z2 are two complex numbers such that

 z1 + z2  =  z1 – z2 , prove that

arg. z1 – arg. z2 = 
2

(M.U. 2002, 2007)
Solution. Let z1 = x1 + iy1

z2 = x2 + iy2
Given that  z1 + z2  =  z1 – z2 
  (x1 + iy1) + (x2 + iy2)  =  (x1 + iy1) – (x2 + iy2) 
  (x1 + x2) + i(y1 + y2)  =  (x1 – x2) + (y1 – y2)i 
 (x1 + x2)

2 + (y1 + y2)
2 = (x1 – x2)

2 + (y1 – y2)
2

     2 2 2 2
1 2 1 2 1 2 1 22 2x x x x y y y y  =     2 2 2 2

1 2 1 2 1 2 1 22 2x x x x y y y y
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 2x1x2 + 2y1y2 = –2x1x2 – 2y1y2
 4x1x2 + 4y1y2 = 0
 x1x2 + y1y2 = 0 ...(1)

Now, arg. z1 – arg. z2 =     
   

   
1 11 2

1 2
tan tan

y y
x x

= 

 
 

 
    

    
     

1 2

1 1 2

1 2

1 2

tan
1

y y
x x

y y
x x

=   
  

1 2 1 1 2

1 2 1 2
tan

x y x y
x x y y

           = 
  
 
 

1 2 1 1 2tan
0

x y x y
    = tan–1  = 

2
[Using (1)]

   arg. z1 – arg. z2  = 
2

Proved.

Example 13. Find the complex number z if arg (z + 1) = 
6

 and arg (z – 1) = 2
3

.
(M.U. 2009, 2000, 01, 02, 03)

Solution. Let z = x + iy ...(1)
 z + 1 = (x + 1) + iy
We also given that

Arg (z + 1) = 1tan
1 6

y
x

     


 1
y

x
= tan 30° = 

1
3

 3y = x + 1 ...(2)
Now z – 1 = (x – 1) + iy [From (1)]

and   
  

1tan
1

y
x

= 2
3


 1
y

x
 = tan 120°


 1
y

x
= – cot 30° =  3

 –y = 3 3x

 – 3y = 3x – 3 ...(3)
Adding (2) and (3), we get

0 = 4x – 2        4x  =   2  x = 1
2

Putting x = 1
2

 in (2), we get

3y =     
1 3 3

1 3
2 2 2

y y

Putting the values of x and y in (1), we get

z = 
1 3
2 2

i Ans.
Example 14. Prove that
(i)  z1 + z2    z1  +  z2  (ii)  z1 – z2    z1  –  z2 

Solution. (a) (By Geometry) Let z1 = x1 + iy1 and
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z2 = x2 + iy2 be the two complex numbers shown in the figure
 z1  = OP,  z2  = OQ

(i) Since in a traingle any side is less than the
sum of the other two.

In  OPR, OR < OP + PR, OR < OP + OQ
  z1 + z2  <  z1  +  z2 

OR = OP + PR if O, P, R are collinear.
or  z1 + z2  =  z1  +  z2 
(ii) Again, any side of a triangle is greater than

the difference between the other two, we have
In  OPR
OR > OP – PR,  OR > OP – OQ

 z1 – z2  >  z1  –  z2  Proved.
(b) By Algebra. z1 + z2 = x1 + iy1 + x2 + iy2 = (x1 + x2) + i(y1 + y2)
(i)  z1 + z2 2 = (x1 + x2)2 + (y1 + y2)2

=     2 2 2 2
1 2 1 2 1 2 1 22 2x x x x y y y y  =     2 2 2 2

1 1 2 2 1 2 1 2( ) ( ) 2( )x y x y x x y y

=     2 2 2 2 2
1 1 2 2 1 2 1 2( ) ( ) 2 ( )x y x y x x y y

=    2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 22 2z z x x y y x x y y

[ (x1y2 – x2y1)2  0 or 2 2 2 2
1 2 2 1x y x y  2x1x2y1y2]

 z1 + z2 
2      2 2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 2 12z z x x y y x y x y

    2 2 2 2 2 2
1 2 1 1 2 22 ( )( )z z x y x y

  z1 
2 +  z2 

2 + 2 z1   z2 
 { z1  +  z2 }

2

 z1 + z2    z1  +  z2 
(ii)  z1  =  (z1 – z2) + z2    z1 – z2  +  z2 

 z1  –  z2    z1 – z2 
 z1 – z2    z1  –  z2  Proved.

EXERCISE 6.3

1. If z = x + iy, prove that 
         

x yz z
z z x y

2 2

2 2
2 .

2. If z = a cos  + ia sin , prove that    
z z
z z

 = 2 cos 2.

3. Prove that 



1
1

z
z

 = 1.

4. Let z1 = 2 – i, z2 = –2 + i, find

(i) 1 2

1
Re

z z
z

 
 
 

(ii)
1 2

1
Im

z z

 
 
 

Ans. (i) 
2
5 , (ii) 0

5. If  z  = 1, prove that 



1
1

z
z

 (z  1) is a pure imaginary number, what will you conclude, if

z = 1? Ans. If z = 1, 



1
1

z
z

 = 0, which is purely real.

X 

P (x  + i y )1 1

R

O
|z |1

|z |1

|Z
|2

|z
|2

Y

 (x  + i y )2 2
Q
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6.16  POLAR FORM
Polar form of a complex number as we have discussed above

x = r cos  and y = r sin 
 x + iy = r(cos  + i sin )

= r ei (Exponential form) (ei = cos  + i sin )
Procedure. To convert x + iy into polar.
We write x = r cos 

y = r sin 
On solving these equations, we get the value of  which satisfy both the equations and

r = 2 2x y .
6.17 TYPES OF COMPLEX NUMBERS

1. Cartesian form : x + iy             2. Polar form :  r(cos  + i sin )
3. Exponential form : rei

Example 15. Express in polar form :  1 2 i

Solution. Let  (1 2) i = r(cos  + i sin )

 1 2 = r cos  ...(1)
1 = r sin  ...(2)

Squaring and adding (1) and (2), we get
r2(cos2  + sin2 ) =  2 2(1 2) 1

 r2 =   1 2 2 2 1             r = 4 2 2
Putting the value of r in (1) and (2), we get

cos  =




1 2

4 2 2
      and      sin  = 



1

4 2 2

Hence, the polar form is 
    

   

1 2 1
4 2 2

4 2 2 4 2 2
i Ans.

Example 16. Find the smallest positive integer n for which

 
  

n
1 i
1 i

= 1. (Nagpur University, Winter 2004)

Solution.
 
  

1
1

n
i
i

= 1

  
   

1 1
1 1

n
i i
i i

= 1     
  
  

1 1 2
1 1

n
i

 = 1

(i)n = 1 = (i)4  n = 4 Ans.
EXERCISE 6.4

Express the following complex numbers into polar form :

  1.  



1
1

i
i

        Ans.  
cos sin

2 2
i       2.   


35 5

4 2 3 2
i

i
   Ans.     

3 3
5 cos sin

4 4
i

  3.     


3( 4 3 4 3 )
8 2

i i
i

Ans.     
2 2

3 cos sin
3 3

i 4.



2 6 3
5 3

i
i

  Ans.     
2 cos sin

3 3
i
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5.



2 3
3 7

i
i

  Ans. r = 754 ,  =     
1 23

tan
15

  6.
    

   
    

4 5 3 2
2 3 7

i i
i i

Ans. 0.905,  = tan–1 (–7.2)

7.   

 2
(2 5 )( 3 )

(1 2 )

i i

i
Ans.    

 
1290 1

, tan
5 17

  8. 

 2
1 7

(2 )

i

i
  Ans.     

3 3
2 cos sin

4 4
i

9.



1 3
1 2

i
i

Ans.     
3 3

2 cos sin
4 4

i       10.


 


1

cos sin
3 3

i

i
Ans.     

5 5
2 cos sin

12 12
i

6.18 SQUARE ROOT OF A COMPLEX NUMBER
Let a + ib be a complex number and its square root is x + iy.

i.e., a ib = x + iy ...(1)
where x and y  R.
Squaring both sides of (1), we get

a + ib = (x + iy)2

 a + ib = x2 + i2y2 + i 2xy
 a + ib = (x2 – y2) + i 2xy [ i2 = –1] ...(2)
Equating real and imaginary parts of (2), we get

x2 – y2 = a ...(3)
and 2xy = b ...(4)
Also, we know that

(x2 + y2)2 = (x2 – y2)2 + 4x2y2

 (x2 + y2)2 = a2 + b2 [Using (3) and (4)]

 x2 + y2 = 2 2a b ...(5)
Adding (3) and (5), we get

2x2 =  2 2a a b     x = 
 2 2

2

a a b

Example 17. Find the square root of the complex number 5 + 12i.
Solution. Let 5 12i = x + iy ...(1)
Squaring both sides of (1), we get 5 + 12i = (x + iy)2 = (x2 – y2) + i 2xy ...(2)
Equating real and imaginary parts of (2), we get

x2 – y2 = 5 ...(3)
and 2xy = 12 ...(4)

Now, x2 + y2 =    2 2 2 2 2 2 2( ) 4 (5) (12)x y x y

=  25 144 169  = 13
 x2 + y2 = 13 ...(5)

Adding (3) and (5), we get 2x2 = 5 + 13 = 18  x = 
18

9
2

 = ± 3

Subtracting (3) from (5), we get 2y2 = 13 – 5 = 8  y = 
8

4
2

 = ± 2

Since, xy is positive, so x and y are of same sign. Hence, x = ± 3, y = ± 2
 5 12i = ± 3 ± 2i i.e. (3 + 2i) or –(3 + 2i) Ans.
Example 18. Prove that if the sum and product of two complex numbers are real then the two
numbers must be either real or conjugate. (M.U. 2008)
Solution. Let z1 and z2 be the two complex numbers.
We are given that z1 + z2 = a (real)
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and z1.z2 = b (real)
If sum and product of the roots of a quadratic equation are given. Then the equation becomes

x2 – (sum of the roots) x + product of the roots = 0
x2 – ax + b = 0

Root = x = 
 a a b2 4

2
Case I. If a2 > 4b        Then both the roots are real
Case II. If a2 < 4b

Then one root =
24

2 2

b aa
i




Second root =
24

2 2

b aa
i




These roots are conjugate to each other. Proved.

EXERCISE 6.5
Find the square root of the following :

1. 1 + i Ans.
     
  

i
2 1 2 1

2 2
2. 1 – i Ans.

    
  

 i
2 1 2 1

2 2

3. i Ans.    
 

1 1
2 2

i 4. 15 – 8i Ans. 1 – 4i, –1 + 4i

5.  2 2 3i Ans.  (1 3 )i 6. 3 4 7i Ans.  ( 7 2 )i

7.
 


 

2 3 2 3
5 4 5 4

i i
i i

Ans.  i
2
41

8. x2 – 1 + i 2x Ans. ±(x + i)

9. 3 – 4i Ans. ±(2 – i)
6.19 EXPONENTIAL AND CIRCULAR FUNCTIONS OF COMPLEX VARIABLES

Proof. cos  + i sin  = ei 

ez =     
z z z

z
2 3 4

1 ...
2 ! 3 ! 4 !

...(1)

sin z =    
z z z

z
3 5 7

...
3 ! 5 ! 7 !

...(2)

cos z =    
2 4 6

1 ...
2 ! 4 ! 6 !
z z z ...(3)

From (2) and (3), we have

cos z + i sin z =
   

             
   

2 4 6 3 5

1 ... ...
2 ! 4 ! 6 ! 3 ! 5 !
z z z z z

i z

=    
1 2 3( ) ( ) ( )

1 ...
1 ! 2 ! 3 !
iz iz iz  = eiz

Therefore, cos z + i sin z = eiz ...(4)
Similarly, cos z – i sin z = e–iz ...(5)
From (4) and (5), we have

cos z =
iz ize e

2
...(6)

sin z =
iz ize e

i2
...(7)
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6.20 DE MOIVRE’S THEOREM (By Exponential Function)
(cos  + i sin n = cos n  + i sin n 

Proof. We know that ei = cos  + i sin 
(ein = (cos  + i sin )n

ein = (cos  + i sin )n

(cos n  + i sin n ) = (cos  + i sin )n Proved.
If n is a fraction, then cos n  + i sin n  is one of the values of (cos  + i sin )”

6.21 DE MOIVRE’S THEOREM (BY INDUCTION)
Statement: For any rational number n the value or one of the values of

(cos  + i sin )n = cos n  + i sin n 
Proof. Case I. Let n be a non-negative integer. By actual multiplication,
(cos  + i sin )(cos  + i sin ) = (cos  cos – sin  sin )

+ i(cos  sin + sin  cos )
= cos (+ ) + i sin (+ ) ...(1)

Similarly we can prove that
(cos  + i sin ) (cos  + i sin ) (cos  + i sin )

= cos (+ + ) + i sin (+ + )
Continuing in this way,  we can prove that
(cos  + i sin ) (cos  + i sin ) ... (cos n + i sin n)

= cos (+ ... + n) +  i sin (+ + ... + n)
Putting   = = = ... n = , we get

(cos  + i sin )n = (cos n + i sin n )
Case II. Let n be a negative integer, say n = –m where m is a positive integer. Then,

(cos  + i sin )n = (cos  + i sin )–m

= 1
(cos sin )mi  

 = 
1

(cos sin )m i m  
[By case I]

=  
(cos sin )1

.
(cos sin ) (cos sin )

m i m
m i m m i m

 
    

=  
 

 2 2

m i m

m m

cos sin

cos sin
= cos m  – i sin m  [  cos2 m  + sin2 m  = 1]
=  cos (–m ) + i sin (– m ) =  cos n  + i sin n 
Hence, the theorem is true for negative integers also.

Case III. Let n be a proper fraction 
p
q

 where p and q are integers. Without loss of generality

we can select q to be positive integer, p may be a positive or negative integer.
Since q is a positive integer

Now,
  

 
 

cos sin
q

i
q q

=  
cos . sin .q i q

q q
[By case I]

= cos  + i sin 
Taking the q th root of both sides, we get

  
1

(cos sin )qi =  
 i

q q
cos sin

Raising both sides to the power p,

  
p
qi(cos sin )  = 

    
   

 

p

i p i p
q q q q

cos sin cos . sin .       [By case I and II]

Hence, one of the values of (cos  + i sin )n is cos n  + i sin n  when n is a proper fraction.
Thus, the theorem is true for all rational values of n.
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Example 19. Express 
  

  

8

4

i

i

(cos sin )

(sin cos )
in the form (x + iy).

Solution.
   

  

i

i

8

4

cos sin

(sin cos )
=

 8

4
4

cos sin

1( ) cos sin

i

i
i

  

    
 

= 
 
 

  

  

i

i

8

4

cos sin

cos sin
= 

   

   

i

i

8

4

cos sin

[cos ( ) sin ( )]

=
 



  

   1

i

i

8

4

cos sin

[(cos sin ) ]
 =  

 
  

  

i

i

8

-4

cos sin

cos sin
 = (cos  + i sin )12

= cos 12  + i sin 12  Ans.

Example 20. Prove that (1 + cos  + i sin )n + (1 + cos  – i sin )n  = 2n +1 cosn 
2

 cos 
n

2
where n is an integer.
Solution.  L.H.S. = (1 + cos  + i sin )n + (1 + cos  – i sin )n

=        
21 2 cos 1 2 sin cos

2 2 2

n

i  +        
21 2 cos 1 2 sin cos

2 2 2

n

i

=                 
2 22 cos 2 sin cos 2 cos 2 sin cos

2 2 2 2 2 2

n n

i i

=                            
2 cos cos sin 2 cos cos sin

2 2 2 2 2 2

n n n n

i i

= 2 cos cos sin 2 cos cos sin
2 2 2 2 2 2

n n n nn n n n
i i

               

=
         

2 cos cos sin cos sin
2 2 2 2 2

n n n n n n
i i

= 12 cos 2 cos 2 cos cos
2 2 2 2

n n n nn n     
 

 = R.H.S. Proved.

Example 21. Evaluate 
    
     

n
1 sin i cos
1 sin i cos

(M.U. 2001, 2004, 2005)

Solution.  We know that,
1 = sin2  + cos2 

 1 = sin2  – i2cos2 
 1 = (sin  + i cos  ) (sin  – i cos ) ...(1)

Adding sin  + i cos  both sides of (1), we get
1 + sin  + i cos  = (sin  + i cos  ) (sin  – i cos ) + (sin  + i cos )

= (sin  + i cos  ) (sin  – i cos + 1)


   
   

1 sin cos
1 sin cos

i
i

= sin  + i cos 

=            
   

cos sin
2 2

i ...(2)


    
     

1 sin cos
1 sin cos

n
i
i

=              
    

cos sin
2 2

n

i

=            
   

cos sin
2 2

n i n Ans.
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Example 22. Prove that the general value of  which satisfies the equation

(cos + i sin ).(cos 2  + i sin 2 ) ... (cos n  + i sin n ) = 1 is 


4 m
n n 1( )

, where m

is any integer.
Solution. (cos  + i sin ) (cos 2  + i sin 2 )...(cos n  + i sin n ) = 1

(cos  + i sin ) (cos  + i sin )2...(cos  + i sin )n = 1
(cos  + i sin )1 + 2 ... + n = 1



  
n n

i
( 1)

2(cos sin ) = (cos 2 m  + i sin 2 m )

 
  

n n n n
i

( 1) ( 1)
cos sin

2 2
 = cos 2 m  + i sin 2 m 




n n( 1)
2

= 2 m    = 



m
n n

4
( 1)

Proved.

Example 23. If (a1 + ib1) . (a2+ ib2) ... (an + ibn) = A + iB, then prove that

(i) 1 1 1 1n1 2

1 2 n

bb b B
tan tan ... tan tan

a a a A
      

(ii) (a2
1+ b2

1) (a 2
2+ b 2

2)   ...     (a 2
n+ b 2

n) =A2 + B2

Solution.  Let a1 = r1 cos 1, b1 = r1 sin 1
a2 = r2 cos 2, b2 = r2 sin 2

an = rn cos n, bn = rn sin n
A = R cos , B = R sin ,

(a1+ ib1).(a2 + ib2)...(an + ibn) = A + iB (Given)
r1 (cos 1 + i sin 1) r2 (cos 2 + i sin 2)...rn (cos n + i sin n) = R (cos  + i sin )
             r1 r2 ...rn [cos (1+ 2 + ...n) + i sin (1+ 2 + ...n)] = R (cos  + i sin )

 r1 r2 .................. rn = R
 (a1

2 + b1
2) (a2

2 + b2
2) ... (an

2 + bn
2) = A2 + B2

And 1 + 2 + ... + n = 

      n

n

bb b
a a a

1 1 11 2

1 2
tan tan .... tan =

B
A

1tan Proved.

Example 24. If cos  + cos  + cos  = 0 = sin  + sin  + sin , then prove that

(i) sin2  + sin2  + sin2  = cos2  + cos2  + cos2  = 
3
2

(ii) cos 2 + cos 2 + cos 2 = 0
(iii) cos ( + ) + cos ( + ) + cos ( + ) = 0
(iv) sin ( + ) + sin ( + ) + sin ( + ) = 0 (M.U. 2009)
Solution.  Here, we have

(cos  + cos  + cos ) + i (sin  + sin  + sin ) = 0
(cos  + i sin ) + (cos  + i sin ) + (cos  + i sin ) = 0

 a + b + c = 0 say ...(1)
where, a = cos  + i sin , b = cos  + i sin  and c = cos  + i sin 
Also we can write

(cos  – i sin ) + (cos  – i sin ) + (cos  – i sin ) = 0
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 (cos  + i sin )–1 + (cos  + i sin )–1 + (cos  + i sin )–1 = 0

  
a b c
1 1 1 = 0


 bc ca ab

abc
= 0  ab + bc + ca = 0 ...(2)

But (a + b + c)2 = (a2 + b2 + c2) + 2(ab + bc + ca)
0 = (a2 + b2 + c2) + 0 [From (1) and (2)]

 a2 + b2 + c2 = 0
 (cos  + i sin )2 + (cos  + i sin )2 + (cos  + i sin )2 = 0
 (cos 2 + i sin 2) + (cos 2 + i sin 2) + (cos 2 + i sin 2) = 0
 (cos 2 + cos 2 + cos 2) + i(sin 2 + sin 2 + sin 2) = 0
 cos 2 + cos 2 + cos 2 = 0. ...(3)
 2 cos2  – 1 + 2 cos2  – 1 + 2 cos2  – 1 = 0

 cos2  + cos2  + cos2  = 3
2

...(4)

Further 1 – sin2  + 1 – sin2  + 1 – sin2  = 3
2

 sin2  + sin2  + sin2  = 3
2

...(5)

Again consider ab + bc + ca = 0 [From (2)]
 (cos  + i sin ) (cos  + i sin ) + (cos  + i sin ) (cos  + i sin )

+ (cos  + i sin ) (cos  + i sin ) = 0
 [cos ( + ) + i sin ( + )] + [cos ( + ) + i sin ( + )]

+ [cos ( + ) + i sin ( + )] = 0
Equating real and imaginary parts, we get

cos ( + ) + cos ( + ) + cos ( + ) = 0
sin ( + ) + sin ( + ) + sin ( + ) = 0 Proved.

EXERCISE 6.6
1. If n is a positive integer show that (a + ib)n + (a – ib)n = 2rn cos n  where r2 = a2 + b2 and

 = tan–1 b
a

 
 
 

. Hence deduce that      i i
8 8

1 3 1 3  = –28.

2. If n be a positive integer, prove that (1 + i)n + (1 – i)n = 



n

n
2

22 cos
4

3. Show that (a + ib)m/n + (a – ib)m/n = 
m
na b2 2 22 ( ) cos 

m b
n a

 
 
 

1tan .

4. If P = cos  + i sin , q = cos  + i sin , show that

(i)
P q

i
P q
   




tan
2

(ii)
P q Pq
P q Pq
    


    

( ) ( 1) sin sin
( ) ( 1) sin sin

5. If x = cos  + i sin , show that (i) m
m

x
x

1
 = 2 cos m  (ii) m

m
x

x

1
 = 2i sin m .

6. Prove that tanh 
1

(log 3)
2

7. Prove that [sin ( + ) – ei sin ]n = sinn  e–in 

8. If x
x
1

 = 2 cos , y
y
1

= 2 cos , z
z
1

 = 2 cos , show that
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xyz
xyz
1

 = 2 cos ( +  + )

6.22  ROOTS OF A COMPLEX NUMBER
We know thatcos  + i sin  = cos (2m  + ) + i sin (2m  + ), m  I

[cos  + i sin ]1/n = [cos (2m  + ) + i sin (2m  + )]1/n

=
     


m m

i
n n

(2 ) (2 )
cos sin

Giving m the values 0, 1, 2, 3, .... n – 1 successively, we get the following n values of
(cos  + i sin )1/n.

when m = 0,
 
 i

n n
cos sin

When m = 1,
              

i
n n

2 2
cos sin

When m = 2,
              

i
n n

4 4
cos sin

When m = n – 1,
                

n n
i

n n
2( 1) 2( 1)

cos sin

When m = n,
                      

n n
i i

n n n n
2 2

cos sin cos 2 sin 2

=  
 i

n n
cos sin

which is the same as the value for m = 0. Thus, the values of (cos  + i sin )1/n for m = n,
n + 1, n + 2 etc., are the mere repetition of the first n values as obtained above.

Example 25. Solve x4 + i = 0. (M.U. 2008)
Solution. Here, we have

x4 = –i =  
cos sin

2 2
i

x4 =            
   

cos 2 sin 2
2 2

n i n

 x =
                 

1
4

cos 2 sin 2
2 2

n i n

=  
  cos (4 1) sin (4 1)

8 8
n i n

Putting n = 0, 1, 2, 3 we get the roots as

x1 =
 
cos sin

8 8
i , x2 = 

 


5 5
cos sin

8 8
i

x3 =
 


9 9
cos sin

8 8
i , x4 = 

 


13 13
cos sin

8 8
i Ans.

Example 26. Solve x5 = 1 + i and find the continued product of the roots.
(M.U. 2005, 2004)

Solution. x5 = 1 + i
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= i
   

 
2 cos sin

4 4
  x  = i

   
 

11
5102 cos sin

4 4

 x =                  
k i k

1
10 1 1

2 cos 2 . sin 2 .
4 5 4 5

=    k i k
      

1
102 cos 8 1 sin 8 1

20 20
The roots are obtained by putting k = 0, 1, 2, 3, 4...

x1 = i
    

1
102 cos sin

20 20
, x2 = i

    

1
10 9 9

2 cos sin
20 20

x3 = i
    

1
10 17 17

2 cos sin
20 20

, x4 = i
    

1
10 5 5

2 cos sin
4 4

x5 = i
    

1
10 33 33

2 cos sin
20 20

x1 . x2 . x3. x4. x5 =
51

10 9 9 17 17
2 cos sin cos sin cos sin

20 20 20 20 20 20
i i i

                             
5 5 33 33

cos sin cos sin
4 4 20 20

i i
          

   

= 
1
2 9 17 5 33

2 cos
20 20 20 4 20
            

9 17 5 33
sin

20 20 20 4 20
i

            

=
    

i
17 17

2 cos sin
4 4

= i
                 

2 cos 4 sin 4
4 4

= i
    

2 cos sin
4 4

= 1 1
2 1

2 2
i i     

Ans.

Example 27. If , 2, 3, 4, are the roots of x5 – 1 = 0 find them and show that
(1 – ) (1 – 2) (1 – 3) (1 – 4) = 5. (M.U. 2007)
Solution. Here, we have

x5 – 1 = 0
 x5 = 1 = cos 0 + i sin 0
 x5 = cos (2k) + i sin (2k)

 x = (cos 2k + i sin 2k)1/5 = 
2 2

cos sin
5 5
k k

i
 


Putting k = 0, 1, 2, 3, 4, we get the five roots as below

x0 = cos 0 + i sin 0, x1 = 
2 2

cos sin
5 5

i
 


x2 = 4 4
cos sin

5 5
i

 
 , x3 = 

6 6
cos sin

5 5
i

 


x4 =
8 8

cos sin
5 5

i
 


Putting x1 = 
2 2

cos sin
5 5

i
 
  = , we see that

x2 =
             

   
i i

2
24 4 2 2

cos sin cos sin
3 3 3 3
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Similarly, x3 = 3 and x4 = 4

 The roots are 1, , 2, 3, 4

Hence x5 – 1 = (x – 1) (x – ) (x – 2) (x – 3) (x – 4)


5 1

1
x
x



= (x – ) (x – 2) (x – 3) (x – 4)

On dividing x5 – 1 by x – 1, we get
x4 + x3 + x2 + x + 1 = (x – ) (x – 2) (x – 3) (x – 4)

(x – ) (x – 2) (x – 3) (x – 4) = x4 + x3 + x2 + x + 1
Putting x = 1, we get
(1 – ) (1 – 2) (1 – 3) (1 – 4) = 1 + 1 + 1 + 1 + 1 = 5. Proved.
Example 28. If  is a cube root of unity, prove that

(1 – )6 = – 27 (M.U. 2003)
Solution. Let x3 = 1
 x = (1)1/3 = (cos 0 + i sin 0)1/3 = (cos 2n + i sin 2n)1/3

=
2 2

cos sin
3 3
n n

i
       

   
Putting n = 0, 1 , 2 the roots of unity are

x0 = 1

x1 =
2 2

cos sin
3 3

i
 
  =  (say)

x2 =
2

24 4 2 2
cos sin cos sin

3 3 3 3
i i

          
Now, 1 +  + 2 = 2 2 4 4

1 cos sin cos sin
3 3 3 3

i i
   

   

= 1 cos sin
3 3

i
            

   
               

icos sin
3 3

= 1 cos sin cos sin
3 3 3 3

i i
   

   

=       
 

1
1 2 cos 1 2 0

3 2
 1 +  + 2 = 0
 1 + 2 = – ...(1)
Now, (1 – )6 = [(1 – )2]3 = [1 – 2 + 2]3 = [–  – 2]3

= (–3)3 = –273 = –27 [Using (1)] Proved.
Example 29. Use De Moivre’s theorem to solve the equation x4 – x3 + x2 – x + 1 = 0.
Solution. x4 – x3 + x2 – x + 1 = 0
(x + 1) (x4 – x3 + x2 – x + 1) = 0

x5 + 1 = 0
x5 = – 1 = (cos  + i sin ) = cos (2n + ) + i sin (2n + )
x = [cos (2n + 1) + i sin (2n + 1)]1/5

=
(2 1) (2 1)

cos sin
5 5

n n
i
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When n = 0, 1, 2, 3, 4, the values are
     
     i i i i

3 3 7 7
cos sin , cos sin , cos sin , cos sin ,

5 5 5 5 5 5
9 9

cos sin
5 5

i
 
 .

cos  + i sin  = –1, which is rejected as it is corresponding to x + 1 = 0.
Hence, the required roots are

3 3 7 7 9 9
cos sin , cos sin , cos sin , cos sin

5 5 5 5 5 5 5 5
i i i i

       
    . Ans.

EXERCISE 6.7
Find the values of:

1. (1 + i)1/5. Ans.                  
n i n1/10 1 1

2 cos 2 sin 2
5 4 5 4

, where n = 0, 1, 2, 3, 4

2. 3/4(1 3)  Ans. 3/4 3 3
(2) cos 2 sin 2

4 3 4 3
n n

                 
, where n = 0, 1, 2, 3.

3. (–i)1/6 Ans. cos (4n + 1) 
12


 – i sin (4n + 1) 
12


, where n = 0, 1, 2, 3, 4, 5.

4. (1 + i)2/3 Ans.
                 

1/3 4 4
2 cos sin

3 6 3 6
n n

i , where n = 0, 1, 2

5. Solve the equation with the help of De Moivre’s theore x7 – 1 = 0

Ans.
 


2 2
cos sin

7 7
n n

i  where n = 0, 1, 2, 3, 4, 5, 6.

6. Find the roots of the equation x3 + 8 = 0.

Ans.
             

    

2 2
2 cos sin

3 3
n n

i , where n = 0, 1, 2.

7. Use De-Moivre’s theorem to solve x9 – x5 + x4 – 1 = 0

Ans.       
cos (2 1) sin (2 1)

5 5
n i n , wehre n = 0, 1, 2, 3, 4,

and     
cos sin

2 2
n n

i , where n = 0, 1, 2, 3.

8. Show that the roots of (x + 1)6 + (x – 1)6 = 0 are given by
(2 1)

cot
12

n
i , n = 0, 1, 2, 3, 4, 5. Deduce 

  
 2 2 23 5

tan tan tan
12 12 12

 = 15.

9. Show that all the roots of (x + 1)7 = (x – 1)7 are given by ± i cot 
 

 
 7

n
, where n = 1, 2, 3, why

r  0.
6.23 CIRCULAR FUNCTIONS OF COMPLEX NUMBERS

We have already discussed circular functions in terms of exponential functions i.e, Euler’s
exponential form of circular functions:

                 cos
2

i ie e  
  ,       sin

2

i ie e
i

  
 

If  = z, then   cos
2

iz ize e
z


  and sin

2

iz ize e
z

i




6.24 HYPERBOLIC FUNCTIONS

(i) sinh x = 


2

x xe e
 (ii) cosh x = 


2

x xe e
    (iii)  tanh x = 








x x

x x

e e

e e
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(iv) coth x = 







x x

x x

e e

e e     (v) sech x = 
2

x xe e   (vi)  cosech x = 
2

x xe e

(vii) cosh x + sinh x = 
  

 
2 2

x x x x
xe e e e

e

(viii) cosh x – sinh x = 
 

 
 

2 2

x x x x
xe e e e

e

(ix) (cosh x + sinh x)n = cosh nx + sinh nx.

6.25 RELATION BETWEEN CIRCULAR AND HYPERBOLIC FUNCTIONS
sin ix = i sinh x sinh ix = i sin x
cos ix = cosh x cosh ix = cos x
tan ix = i tanh x tanh ix = i tan x

6.26 FORMULAE OF HYPERBOLIC FUNCTIONS
A. (1) cosh2 x – sinh2 x = 1, (2)  sech2 x = 1 – tanh2 x,

(3) cosech2 x = coth2 x – 1
B. (1) sinh (x ± y) = sinh x cosh y ± cosh x sinh y

(2) cosh (x ± y) = cosh x cosh y ± sinh x sinh y

(3) tanh (x ± y) = 


tanh  tanh
1 tanh tanh

x y
x y

C. (1) sinh 2x = 2 sinh x cosh x            (2) cosh 2x = cosh2 x + sinh2 x
(3) cosh 2x = 2 cosh2 x – 1              (4) cosh 2x = 1 + 2 sinh2 x

(5) tanh 2x = 
 2

2 tanh

1 tanh

x

x

D. (1) sinh x + sinh y =  
2 sinh cosh

2 2
x y x y

(2) sinh x – sinh y = 
 

2 cosh sinh
2 2

x y x y

(3) cosh x + cosh y =  
2 cosh cosh

2 2
x y x y

(4) cosh x – cosh y = 
 

2 sinh sinh
2 2

x y x y

Note: For proof, put sinh x = and cosh
2 2

x x x xe e e e
x

  
 .

Example 30. Prove that
(cosh x – sinh x)n = cosh nx – sinh nx. (M.U. 2001, 2002)

Solution. L.H.S. = (cosh x – sinh x)n

=
   

 
 2 2

nx x x xe e e e = 


  
   

2
( )

2

nx
x n nxe

e e ...(1)

R.H.S. = cosh nx – sinh nx

=
   

 
 2 2

nx nx nx nxe e e e           = 



2

2

nx
nxe

e          ...(2)

From (1) and (2), we have
L.H.S. = R.H.S. Proved.
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Example 31. If tan ( + i) = cos  + i sin , prove that:
 

 
n

= + and
2 4

=    
 

1
log tan

2 4 2
    (Nagpur University, Summer 2002, Winter 2001)

Solution. We have, tan ( + i) = cos  + i sin 
 tan ( – i) = cos – i sin 
But tan 2  = tan [( + i)+ ( – i)]

= 
      

      
tan ( ) tan ( )

1 tan ( ) tan ( )
i i

i i
 = 

      
      
cos sin cos sin

1 (cos sin ) (cos sin )
i i

i i

= 
2 2

2 cos 2 cos
tan

1 1 21 (cos sin )

  
   

   

 2  = 
2

 or for general values,

2  =   
     

2 2 4
n

n

Again, tan (2 i) = tan [( + i) – ( – i)] = 
      

      
tan ( ) tan (  )

1 tan ( ) tan ( )
i i

i i

=
      

      
cos sin (cos sin )

1 (cos sin ) (cos sin )
i i

i i

= 
2 2

2 sin 2 sin
1 11 cos sin

i i 


   
 = 2 sin

sin
2

i
i


 

 i tanh 2  = i sin  ( tan ix = i tanh x)
 tanh 2 = sin 

i.e.,
  

  




2 2

2 2

e e
e e

= sin
1


     

     

  
  

2 2 2 2

2 2 2 2( ) ( )

e e e e

e e e e
=  

 
1 sin
1 sin

(Componendo and dividendo)

i.e.


 

2

2
2

2
e

e
=

    
 
    

 

1 cos
2

1 cos
2

      
 

 cos sin
2

 e4 =

   
 
   

 

2

2

2 sin
4 2

2 cos
4 2

 e4 =             
   

2 2tan tan
4 2 4 2

e

Hence, 2 =              
   

1
log tan log tan

4 2 2 4 2e e Proved.

Example 32. If cosh x = sec , prove that:

(i)  = ( )1 x2 tan e
2

 


(ii) tanh
2
 = tan

2
 (M.U. 2003, 2005)
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Solution. (i) Let tan–1 e–x = 
 e–x = tan  and  = tan–1 (e–x) ...(1)
 ex = cot  ...(2)

Now, sec  = cosh
2

x xe e
x


 ...(3) (Given)

Putting the values of e–x and ex from (1) and (2) in (3), we get

sec  =
cot tan

2
  

 2 sec  = cot  + tan  =     
 

   

2 2cos sin cos sin
sin cos sin cos

=
2

2 sin cos 
[  cos2  + sin2  = 1]

=
2

sin 2
 cos  = sin 2

 cos  = cos 2
2
   

 

  = 12 2 tan ( )
2 2

xe  
    [From (1)] Proved.

(ii) We have,
cosh x = sec  (Given)


2

x xe e
= sec  cosh

2

x xe e
x

 
 

 


 ex – 2 sec  + e–x = 0
 (ex)2 – 2 ex sec  + 1 = 0
Solving the quadratic equation in ex.

ex =
   22 sec 4 sec 4

2

 ex = 2sec sec 1   
 ex = sec  ± tan  ...(4)

Now, tanh
2
x

=
2 2

2 2

x x

x x

e e

e e









 = 
1

1

x

x

e

e




...(5)

Putting the value of ex from (4) in (5), we get

tanh
2
x

=
sec tan 1
sec tan 1

   
   

[Using (1)]

=
1 sin cos
1 sin cos
   
   

 = 
(1 cos ) sin
(1 cos ) sin

   
   

=

2

2

2 sin 2 sin cos
2 2 2

2 cos 2 sin cos
2 2 2

  


  


 = 
sin

2 tan
2cos

2





 Proved.
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EXERCISE 6.8

1. If tan    
 8

i  = x + iy, prove that x2 + y2 + 2x = 1.

2. If cot 
   

 8
i  = x + iy, prove that x2 + y2 – 2x = 1.

3. Prove that if (1 + i tan )1 + i tan  can have real values, one of them is (sec )sec2 .

4. If (1 )
,

(1 )

x iy

x iy
i

i
i






   


prove that the value of tan–1 log 2.
2
x

is y
 




5. If tanh x = 1
2

, find the value of sinh 2x. Ans.
4
3

6. If sin  cosh  = 
2
x , cos  sinh  = 

2
y , show that

(i) cosec ( – i) + cosec ( + i) = 
2 2

4x

x y

(ii) cosec ( – i) – cosec ( + i) = 
2 2

4iy

x y

7. Show that tan
2

u iv 
 
 

 = 


sin sinh
cos cosh

u i v
u v

8. If cot ( + i) = x + iy, prove that
(i) x2 + y2 – 2x cot 2 = 1

(ii) x2 + y2 + 2y coth 2 + 1 = 0

10. Solve the following equation for real values of x.
17 cosh x + 18 sinh x = 1 Ans. – log 5

6.27 SEPARATION OF REAL AND IMAGINARY PARTS OF CIRCULAR FUNCTIONS
Example 33. Separate the following into real and imaginary parts:
(i) sin (x + iy) (ii) cos (x + iy) (iii) tan (x + iy)

Solution. (i) sin (x + iy) = sin x cos iy + cos x sin (iy) = sin x cosh y + i cos x sinh y.
(ii) cos (x + iy) = cos x cos (iy) – sin x sin (iy) = cos x cosh y – i sin x sinh y.

(iii) tan (x + iy) =
  


  

sin ( ) 2 sin ( ) cos ( )
cos ( ) 2 cos ( ) cos ( )

x iy x iy x iy
x iy x iy x iy

=
sin 2 sin (2 ) sin 2 sinh 2
cos 2 cos 2 cos 2 cosh 2

x iy x i y
x iy x y
 


 

    
     

 A B A B A B
A B A B A B

2 sin . cos sin ( ) sin ( )
and 2 cos . cos cos ( ) cos ( )

Example 34. If tan (A + iB) = x + iy, prove that

tan 2A = 
2 2

2
1

x
x y 

 and  tanh 2B =  
2 2

2
1

x
x y 

        (Nagpur University, Summer 2000)

Solution. tan (A + iB) = x + iy ; tan (A – iB) = x – iy
tan 2A = tan (A + iB + A – iB)

= tan( ) tan( )
1 tan( ) tan( )

A iB A iB
A iB A iB
  

  

tan 2A =
  2 22 2

( ) ( ) 2 2
1 ( )( ) 11

x iy x iy x x
x iy x iy x yx y

  
 

     

Again tan 2iB = tan (A + iB – A + iB) =   
  

A iB A iB
A iB A iB

tan( ) tan( )
1 tan( ) tan( )
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tan 2iB =   


    2 2

( ) ( ) (2 )
1 ( )( ) 1

x iy x iy y i
x iy x iy x y

tanh 2B =
2 2

2

1

y

x y 
tan ix = i tanh x Proved.

Example 35. If sin ( + i) = x + iy, prove that

                (a) 
22

2 2

yx
1

cosh sinh
 

 
      (b)  

 

22

2 2

yx
1

sin cos
Solution. (a) x + iy = sin ( + i) = sin  cosh  + i cos  sinh 
Equating real and imaginary parts, we get

x = sin  cosh , y = cos  sinh 

sin  =  
 

yx and cos 
cosh sinh

Squaring and adding, sin2  + cos2   = 
 

yx 22

2 2+
cosh sinh

 1 =
22

2 2+
cosh sinh

yx
 

Proved.

(b) Again cosh  =  
 

yx and sinh
sin cos

cosh2  – sinh2  =
22

2 2sin cos

yx 
 

1 =
22

2 2sin cos

yx 
 

Proved.

6.28 SEPARATION OF REAL AND IMAGINARY PARTS OF HYPERBOLIC FUNCTIONS

Example 36. Separate the following into real and imaginary parts of hyperbolic functions.
(a) sinh (x + iy) (b) cosh (x + iy) (c) tanh (x + iy)

Solution. (a) sinh (x + iy) = sinh x cosh (iy) + cosh x sinh (iy)
= sinh x cos y + i sin y cosh x. Ans.

(b) cosh (x + iy) = cosh x cosh (iy) – sinh x sinh iy = cosh x cos y – i sinh x sin y.
Ans.

(c) tanh (x + iy) =
 
 

 
 

  


 
x iy i i x iy

x iy i x iy

sinh sin

cosh cos

                 
 

 
 




i ix y

ix y

sin

cos  = 
   

   
  

 

i ix y ix y

ix y ix y

2 sin cos

2 cos cos
(Note this step)

 = 





ix y
i

ix y
sin 2 sin 2
cos 2 cos 2


 


i x y

i
x y

sinh 2 sin 2
cosh 2 cos 2  = 




x i y
x y

sinh 2 sin 2
cosh 2 cos 2

                 = 
 

x y
i

x y x y
sinh 2 sin 2

cosh 2 cos 2 cosh 2 cos 2
Ans.

Example 37. If tan (x + iy) = sin (u + iv), prove that

               
sin 2x tan u

=
sinh 2y tanh v
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Solution. Now tan (x + iy) = sin (u + iv) separating the real and imaginary parts of both sides,
we have

sin 2 sinh 2
cos 2 cosh 2 cos 2 cosh 2

x i y
x y x y


 

= sin u cosh v + i cos u sinh v

Equating real and imaginary parts, we get
sin 2

cos 2 cosh 2
x

x y
= sin u cosh v ...(1)

and


sinh 2
cos 2 cosh 2

y
x y

= cos u sinh v ...(2)

Dividing (1) by (2), we obtain
sin 2

sinh 2
x
y

= sin cosh
cos sinh

u v
u v


sin 2

sinh 2
x
y

= tan
tanh

u
v

Proved.

Example 38. If sin ( + i) = tan  + i sec , show that cos 2 cosh 2 = 3
Solution. sin ( + i) = tan  + i sec 
sin  cosh  + i cos  sinh = tan  + i sec 
Equating real and imaginary parts, we get

sin  cosh  = tan  ...(1)
cos  sinh  = sec  ...(2)

We know that
sec2  – tan2  = 1

cos2  sinh2  – sin2  cosh2  = 1 [From (1) and (2)]
                     

       
1 cos 2 cosh 2 1 1 cos 2 cosh 2 1

2 2 2 2
= 1

[– 1 + cosh 2 – cos 2 + cos 2 cosh 2] – [cosh 2 + 1 – cos 2 cosh 2 – cos 2] = 4
 – 2 + 2 cos 2 cosh 2 = 4
 2cos 2 cosh 2 = 6      cos 2 cosh 2 = 3 Proved.
Example 39. If ez = sin (u + iv) and z = x + iy, prove that

2e2x = cosh 2v – cos 2u (M.U. 2006)
Solution. We have, ez = sin (u + iv)
 ex + iy = sin (u + iv)
 ex. eiy = sin u cos iv + cos u sin iv
 ex (cos y + i sin y) = sin u cosh v + i cos u sinh v
Equating real and imaginary parts, we get

ex cos y = sin u cosh v
and ex sin y = cos u sinh v
Squaring and adding, we get

e2x(cos2 y + sin2 y) = sin2 u cosh2 v + cos2 u sinh2 v
 e2x = (1 – cos2 u) cosh2 v + cos2 u (cosh2 v – 1)
 e2x = cosh2 v – cos2 u

 e2x =
1 1

(1 cosh 2 ) (1 cos 2 )
2 2

v u  
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 e2x = 
1

(cosh 2 cos 2 )
2

v u

 2e2x = cosh 2v – cos 2u Proved.
Example 40.  If sin ( + i) = cos  + i sin , prove that

cos4  = sin2  = sinh4 . (M.U. 2003, 2004)
Solution. Here, we have

sin ( + i) =  cos  + i sin 
    sin  cosh  + i cos  sinh  = cos  + i sin 
Equating real and imaginary parts, we get

sin  cosh  =
cos

cos cosh
sin


   


...(1)

and cos  sinh  =
sin

sin sinh
cos


   


...(2)

But cosh2  – sinh2  = 1


2 2

2 2

cos sin

sin cos

 


 
= 1 [Using (1) and (2)]

 cos2 . cos2  – sin2 .sin2  = sin2  cos2 

 (1 – sin2 ) cos2  – sin2 .sin2  = (1 – cos2 ) cos2 

 cos2  – sin2  (cos2  + sin2 ) = cos2  – cos4 

 sin2  = cos4  ...(3)
Again sin2  + cos2  = 1


2 2

2 2

cos sin
cosh sinh

 


 
= 1 [Using (1) and (2)]

 cos2 . sinh2  + sin2  cosh2  = sinh2  cosh2 

 (1 – sin2 ) sinh2  + sin2  (1 + sinh2 ) = sinh2  (1 + sinh2 )
 sinh2  – sin2  sinh2  + sin2 + sin2  sinh2  = sinh2  + sinh4 

 sin2  = sinh4  . ...(4)
From (3) and (4), we have cos4  = sin2  = sinh4  Proved.

Example 41. If cosec ,ix u iv
4
    

 
prove that

(u2 + v2)2 = 2(u2 – v2) (M.U. 2009)
Solution. Here, we have

 u + iv = cosec
4

ix
  

 

= 1

sin
4

ix
  

 

  = 
 



1

sin cos cos sin
4 4

ix ix

=
1

1 1
cosh sinh

2 2
x i x

 = 
2

cosh sinhx i x
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= 2 2

2 (cosh sinh )

cosh sinh

x i x

x x




 = 2 (cosh sinh )
cosh 2

x i x
x

Equating real and imaginary parts, we get u = 2 cosh 2 sinh
,

cos 2 cosh 2
x x

v
h x x

 

Squaring and adding, we get

u2 + v2 =
2 2

2 2

2 (cosh sinh ) 2 cosh 2

cosh 2 cosh 2

x x x

x x




 (u2 + v2)2 =
2

2
2 4

cosh 2 cosh 2x x
   
 

...(1)

Also, u2 – v2 = 2 2
2 2

2 2
(cosh sinh )

cosh 2 cosh 2
x x

x x
  ...(2)

From (1) and (2), we have
(u2 + v2)2 = 2 (u2 – v2) Proved.

Example 42. Separate into real and imaginary parts i
i . (M.U. 2008)

Solution. We have,
1
2i i =

1
2

cos sin
2 2

i
   

 
 =  

cos sin
4 4

i  = 
1 1
2 2

i

Also, i =        
 

11
22 2 4cos sin

2 2

i i
i e e

   i
i =  

       


1 1
.

2 2
4 2 4 24

i
ii

e e

=
  

      
 

4 2 4 2 4 2. cos sin
4 2 4 2

i
e e e i

 Real part =


  
 
 

4 2 cos
4 2

e

Imaginary part =


  
 
 

4 2 sin
4 2

e Ans.

EXERCISE 6.9
Separate into real and imaginary parts.

1. sech (x + iy) Ans. 


x y i x y
x y

2 cosh cos 2 sinh sin
cosh 2 cos 2

2. coth i (x + iy) Ans. 
sinh 2 sin 2
cosh 2 cos 2

y i x
x y

 


3. coth (x + iy) Ans. 


sinh 2 sin 2
cosh 2 cos 2

x i y
x y

4. If sin ( + i) = p (cos  + i sin ), prove that

         p2 =  1
cosh 2 cos 2 , tan tanh cot

2
      

5. If sin ( + i) = x + iy, prove that x2 sech2  + y2 cosech2   = 1
and x2 cosec2  – y2 sec2  = 1
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6. If cos ( + i) =r (cos  + i sin ), prove that  = 
sin ( )1

log
2 sin ( )

   
    

7. If tan    
 6

i  = x + iy, prove that  2 2 2
3
x

x y  = 1

8. If tan (A + B) =  + i, show that 
   


   

2 2

2 2
1 ( ) cos 2

cosh 21 ( )

A
B

9. If  


 
u ivx iy c

e
x iy c

, prove that

               x = 


sinh
cosh cos

c u
u v

, y = 


sinh
cosh cos

c v
u v

Further, if v = (2n + 1)

2

, prove that x2 + y2 = c2 where n is an integer..

10. If 1
1

u
u



= sin (x + iy), where u =  + i show that the argument of u is  +  where

tan  = 

cos sinh

1 sin cosh
x y

x y
 and ,   tan  = 


cos sinh

1 sin sinh
x y

x y

11. If A + iB = C tan (x + iy), prove that tan 2 x = 
 

CA

C A B2 2 2
2

12. If cosh ( + i) = x + iy, prove that

(a)  
 

22

2 2 1
cosh sinh

yx  (b)  
 

yx 22

2 2
1

cos sin

13. If cos ( + i ) = R (cos  + i sin ), prove that  = 1
2

 loge
 
 

sin

sin

   
 

    
14. If cos ( + i) cos ( + i) = 1, prove that tanh2  cosh2  = sin2 

15. If 


1
1

u
u

 = sin (x + iy), find u. Ans. tan–1

2 2
2cos sinh

cos sinh

x y

x y

6.29 LOGARITHMIC FUNCTION OF A COMPLEX VARIABLE
Example 43. Define logarithm of a complex number.
Solution. If z and w are two complex numbers and z = ew then w = log z, and

if w = log z; then z = ew

Here log z is a many valued function. General value of log z is defined by Log z, where
Log z = log z + 2 n  i.
Example 44. Separate log (x + iy) into its real and imaginary parts.
Solution. Let x = r cos  ...(1)
and y = r sin  ...(2)
Squaring and adding (1) and (2) we have x2 + y2 = r2

 r = 2 2 ,x y

We have, tan  =
y
x   = tan–1

y
x

 
 
 

[Dividing (2) by (1)]

 log (x + iy) = log [r (cos  + i sin )]
= [log r + log (cos  + i sin )]

log (x + iy) = log r + log [cos (2 n  + ) + i sin (2 n  + )]
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= log r + log ei(2 n  + ) = log r + i (2 n  + )

Log (x + iy) =     
 

2 2 1log 2 tan
y

x y i n
x

and log (x + iy) = log  2 2 1tan
y

x y i
x

Ans.

Example 45. Show that log 
x iy
x iy



 = 2 i tan–1 y
x . (Nagpur University, Winter 2003)

Solution. Let log (x + iy) = log (r cos  + ir sin ) = log r ei

= log r + i 
cos
sin

x r
y r
  
   

Similarly, log (x – iy) = log r – i 

log 
x iy
x iy



= log (x + iy) – log (x – iy) = (log r + i) – (log r – i) = 2i 

= 2 i tan–1 y
x . Proved.

Example 46. Show that for real values of a and b


 
  

– 1cot
a

2ai b b i 1
e

b i 1 = 1 (M.U. 2008)

Solution. Consider 
1
1

b i
b i




 = 
2

2

b i i b i
b ib i i

 





1
1

a
b i
b i


 
  

=


 
  

a
b i
b i

1
log

1

a
b i
b i


 
  

=


 
  

log
a

b i
b i

 = –a [log (b + i) – log (b – i)]

=          
2 1 2 11 1

log 1 tan log 1 tana b i b i
b b

=  1 1
2 tanai

b

1
1

a
b i
b i


 
  

=
    

 
1 1

2 tanai
be 1 1

1
If cot , tan

1
Since cot tan

b
b

b
b

 

     
 

       




 
  

12 cot 1
1

a
ai b b i

e
b i  = 

       
   

   
   
      

1 11 1
2 tan 2 tan

.
ai ai

b be e  = 1 Proved.

EXERCISE 6.10

1. Find the general value of Log i. Ans. (4 n + 1) 
2
i

2. Express Log (– 5) in terms of a + ib. Ans. log 5 + i (2 n + 1) 
3. Find the value of z if

(a) cos z = 2. Ans. z = 2 n  + i log  2 3
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(b) cosh z = –1. Ans. z = (2 n + 1)  i

4. Find the general and principal values of ii Ans.
2

2 2,
n

e e
       

5. If i( + i) = x + iy, prove that x2 + y2 = e– (4 m + 1)  .

6. Prove that log 
          

   
1 1log cosec

2 2 2i i
l e

7. Show that log sin (x + iy) = 
 1cosh2 cos 21 log tan (cot tanh ).

2 2
y x

i x y

8. Prove that tan 
     2

2log a ib abi
a ib a b

.

9. log 



cos( )
cos( )

x iy
x iy

 = 2 i tan–1 (tan x tanh y).

10. Separate i(1 + i) into real and imaginary parts.           Ans.

2ie

6.30 INVERSE FUNCTIONS

If sin  = 1
2  then  = sin–1 1

2
  
 

, so here  is called inverse sine of 1
2 .

Similarly, we can define inverse hyperbolic function sinh, cosh, tanh, etc. If cosh  = z then
 = cosh–1 z.

6.31 INVERSE HYPERBOLIC FUNCTIONS

Example 47. Prove that sinh-1 x = log ( )2x x 1  (M.U. 2009)
Solution. Let sinh–1 x = y  x = sinh y

x =
2

y ye e

 ey – e–y = 2x
 e2y – 2x ey – 1 = 0
This is quadratic in ey.

ey =
2

22 4 4
1

2
x x

x x
 

  

y = log 2( 1)x x  (Taking positive sign only)

sinh–1 x = log 2( 1)x x  Proved.

Example 48. Prove that cosh–1 x = log 2( 1)x x  (M.U. 2009)
Solution. Let y = cosh–1 x   x = cosh y

x =
2

y ye e
 2x = ey + e–y

 e2y – 2x ey + 1 = 0 (This is quadratic in ey)

 ey =
2

22 4 4
1

2
x x

x x
 

  

 y = log 2( 1)x x  (Taking positive sign only)

 cosh–1 x = log 2( 1)x x  Proved.

Example 49.   Prove that sech–1  x  = log 
21 1 x

x
 

Solution. Let y = sech–1 x  x = sech y
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x = 2
y ye e

 x = 
2
2

1

y

y
e

e 

 xe2y – 2ey + x = 0  ey = 
22 4 4

2
x

x
   = 

21 1 x
x

 

We take only positive sign

ey =
  21 1 x

x
     y = log   21 1 x

x

sech–1 x = log 
  21 1 x

x

Similarly, cosech–1 x = log 
21 1 x

x
 

Proved.

Example 50. If x + iy = cos ( + i) or if cos–1 (x + iy) =  + i express x and y in terms
of  and . Hence show that cos2  and cosh2  are the roots of the equation
2 – (x2 + y2 + 1)  + x2 = 0. (M.U. 2002, 2004)
Solution. Here, we have

cos ( + i ) = x + iy
cos  cos i  – sin  sin i  = x + iy
cos  cosh  – i sin  sinh  = x + iy
Equating real and imaginary parts, we get

cos  cosh  = x and sin  sinh  = – y
We want to find the equation whose roots are cos2  and cosh2 .
Now, x2 + y2 + 1 = cos2  cos h2  + sin2  sinh2  + 1

= cos2  cosh2  + (1 – cos2 ) (cosh2 – 1) + 1
= cos2  cosh2  + cosh2  – 1 – cos2  cosh2 + cos2  + 1
= cos2  + cosh2 

Sum of the roots = cos2  + cosh2 

= x2 + y2 + 1
And product of the roots = cos2  cosh2 

= x2

Hence, the equation whose roots are cos2 , cosh2  is
2 – (x2 + y2 + 1)  + x2 = 0 Proved.

Example 51. Separate into real and imaginary part cos–1  
 
 

3i
4

(M.U. 2003)

Solution. Let cos–1 3
4
i 

 
 

 = x + iy

    3
4
i  = cos (x + iy)          3

4
i  = cos x cosh y – i sin x sinh y

Equating real and imaginary parts, we get

 cos x cosh y = 0  cos x = 0  x = 
2
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and – sin x sinh y = 3
4

– 1 sinh y = 3
4

sin x = sin 2
 

 
 

 = 1

 sinh y = – 3
4

 y = log  
   

 

3 9
1

4 16
     y = log 

3 5
4 4
  

 
= – log 2 = log 

1
2

 
 
 

   Real part  =
2
  and imaginary Part = – log 2 Proved.

6.32 SOME OTHER INVERSE FUNCTIONS
Example 52. Separate tan–1 (cos  + i sin ) into real and imaginary parts. (M.U. 2009)
Solution. Let tan–1 (cos  + i sin ) = x + iy
 cos  + i sin  = tan (x + iy)
Similarly, cos  – i sin  = tan (x – iy)

                        tan 2x = tan [(x + iy) + (x – iy)] = 
tan ( ) tan ( )

1 tan ( ) tan ( )
x iy x iy

x iy x iy
  

  

= 
    

    
(cos sin ) (cos sin )
1 (cos sin )(cos sin )

i i
i i

 = 2 2
2 cos

1 (cos sin )


  

= 2 cos 2 cos
tan

1 1 0 2
  
   



tan 2x = tan 
2

n
   

 
         2x = n + 

2


 x = 
2 4

n 


Now, tan 2iy = tan [(x + iy) – (x – iy)] = tan ( ) tan ( )
1 tan ( ) tan ( )

x iy x iy
x iy x iy
  

  

=     
    

(cos sin ) (cos sin )
1 (cos sin )(cos sin )

i i
i i

 = 2 2
2 sin

1 (cos sin )
i 

  
= 2 sin

1 1
i 


 = i sin 

i tanh 2y = i sin         
2 2

2 2

y y

y y
e e

e e







 = 

sin
1


By componendo and dividendo, we have

2

2
2

2

y

y
e

e
 = 

 
 

1 sin
1 sin

    e4y = 
1 cos

2

1 cos
2

    
 
   

 

 = 

2

2

1 2 cos 1
4 2

1 1 2 sin
4 2

     
 

         

=

               
 

2

2

2

cos
4 2 cot

4 2sin
4 2

  e2y = cot 
4 2
   

 

 2y = log cot 4 2
   

 
 y = 

1
2

 log cot 
4 2
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Imaginary part = 1
2

 log cot 
4 2
   

 

Real part =
2 4

n 


tan–1 (cos  + i sin ) =
2 4 2

n i 
   log cot 4 2

   
 

Ans.

Example 53. Separate tan–1 (a + i b) into real and imaginary parts.
(Nagpur University, Summer 2008, 2004)

Solution. Lettan –1 (a + i b) = x + i y ...(1)
 tan (x + i y) = a + i b
On both sides for i write – i we get,

 tan (x – i y) = a – i b
Now, tan 2x = tan [(x + i y) + (x – i y)]

=  
tan( ) tan( )

1 tan( ) tan( )
x i y x i y

x i y x i y
  

  
 = 

  
  
a i b a i b

a i b a i b1 ( ) ( )


 
a

a b2 2
2

1

2x = tan–1
2 2
2

1
a

a b
 
   

   x = 
1
2

 tan–1
2 2
2

1
a

a b
 
   

...(2)

and tan (2 y i) = tan [(x + i y) – (x – i y)]

=
tan ( ) tan ( )

1 tan ( ) tan ( ) 1 ( )( )
x i y x i y a b i a b i

x i y x i y a b i a b i
     


     

i tanh 2y = 2 2

2

1

b i

a b 
 so, tanh 2y  = 2 2

2

1

b

a b 

2y = tanh–1
2 2

2

1

b

a b
 
   

so y =
1
2

 tanh–1 
2 2

2

1

b

a b
 
   

...(3)

From (1), (2) and (3), we have

tan–1 (a + ib) =
1
2

tan–1
2 2

2

1

a

a b
 
   

 + 
2
i  tanh–1 

2 2

2

1

b

a b
 
   

Ans.

Example 54. Show that tan–1 i x a
x a
 

  
= i

2
 log x

a
 
 
 

. (M.U. 2006, 2002)

Solution. Let tan–1 i 
x a
x a
 

  
= u + i v ...(1)

 tan (u + iv) = i
x a
x a
 

  
 and  tan (u – iv) = – i

x a
x a
 

  

 tan 2u = tan [(u + iv) + (u – iv)] = 
tan( ) tan( )

1 tan( ) tan( )
u iv u iv

u iv u iv
  

  
 = 0

ix ia ix ia
x a
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 tan 2u = 0  2u = 0  u = 0
Putting the value of u in (1), we get

    tan–1 i
 

  

x a
x a

 = i v     x a
i

x a
 

  
 = tan i v = i tanh v

    
x a
x a

  = tanh v  = 







v v

v v
e e
e e

By Componendo and dividendo, we get

2
2

x
a =

2
2

v

v
e
e

 2vx
e

a
      v  =  1

2
 log 

x
a

 
 
 

 tan–1 i
x a
x a
 

  
= u + iv  = 0 + 

2
i

 log 
x
a  = 

2
i

 log 
x
a

 
 
 

Proved.

Example 55. Prove that

       (i)        cosh–1 21 x  = sinh–1 x (M.U. 2007)

(ii)        cosh–1 21 x  = tanh–1
2

x

1 x

 
 

 
(M.U. 2002)

Solution. (i)    Let cosh–1 21 x  = y ...(1)

 21 x = cosh y ...(2)

On squaring both sides, we get
1 + x2 = cosh2 y

 x2 = cosh2 y – 1  x2 = sinh2 y
 x = sinh y ...(3)
 y = sinh–1 x

 cosh–1 21 x = sinh–1 x [Using (1)] Proved.
(ii) Dividing (3) by (2), we get

sinh
cosh

y
y

=
21

x

x

 tanh y =
21

x

x
  y = tanh–1

21

x

x

 
   

 cosh–1 21 x = tanh–1
21

x

x

 
   

  [Using (1)]                      Proved.

EXERCISE 6.11

1. Prove that sin–1 (cosec ) = 
2


 + i log cot 
2


.

2. If tan ( + i) = x + iy, prove that
(a) x2 + y2 + 2 x cot 2   = 1                     (b)  x2 + y2 – 2 y coth 2  = – 1.
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3. If tan ( + i ) = sin (x + iy), then prove that
coth y sinh 2  = cot x sin 2 .

4. If sin–1 (cos  + i sin ) = x + iy, show that.

(a) x = cos–1 sin (b) y = log    [ sin 1 sin ] .

5. Prove that tan–1 
 


log

2
x a i a

i
x a x

6. Separate into real and imaginary parts of cos–1 3
4
i .

7. Separate into real and imaginary parts sin–1 (ei) Ans. cos–1      sin log [ sin 1 sin ]i

8. Prove that

tan–1    
    

tan 2 tan 2
tan 2 tan 2

 + tan–1    
    

tan tan
tan tan

= tan–1 (cot  coth )

9. Prove that tanh–1 x = sinh–1

 21

x

x
.

10. Prove that tanh–1 (sin ) = cosh–1 (sec )
11. Prove that

cosh–1

              
  

tancos 2log
cos tan

x
b a b ab a x

xa b x b a b a
a

12. Prove that tan–1 (ei) = 
 


2 4
n

 = log tan    
 4 2

13. If cosh–1 (x + iy) + cosh–1 (x – iy) = cosh–1 a, prove that
2 (a – 1) x2 +  2 (a + 1) y2 = a2 – 1.

14. Prove that : tanh–1 cos  = cosh–1 cosec 
15. Prove that : sinh–1 tan  = log (sec  + tan )

16. Prove that : sinh–1 tan  = log tan 
   

 2 4

Separate into real and imaginary parts

17. cos–1 ei or cos–1 (cos  + i sin ) Ans. sin–1       sin log 1 sin sini

18. If sinh–1 (x + iy) + sinh–1 (x – iy) = sinh–1 a, prove that

2 (x2 + y2) 2 1a  = a2 – 2x2 – 2y2.
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Functions of a Complex Variable

7.1 INTRODUCTION
The theory of functions of a complex variable is of atmost importance in solving a large 
number of problems in the field of engineering and science. Many complicated integrals of 
real functions are solved with the help of functions of a complex variable.

7.2 COMPLEX VARIABLE
x + iy is a complex variable and it is denoted by z.

 (1) z = x + iy  where i = −1  (Cartesian form)   

 (2)  z = r (cos θ + i sin θ) (Polar form)

 (3)  z = rei θ     (Exponential form)    
7.3 FUNCTIONS OF A COMPLEX VARIABLE

f (z) is a function of a complex variable z and is denoted by w.
   w = f (z)
              w = u + iv
where u and v are the real and imaginary parts of  f (z).

7.4 NEIGHBOURHOOD OF Z0

Let z0 is a point in the complex plane and let z be any positive number, then the set of points 
z such that

   |z – z0| < ∈
is called ∈ -neighbourhood of z0.
Closed set
A set S is said to be closed if it contains all of its limits point.
Interior Point
A point z0 is called a interior point of a point set S if there exists a neighbourhood of z0 

lying wholly in S,

Y

O
X

y

x

Y

O X

P (r, )�
P (x, y)

�

r

y

x



7.5 LIMIT OF A FUNCTION OF A COMPLEX VARIABLE
Let f (z) be a single valued function defined at all points in some neighbourhood of point z0. 

Then f (z) is said to have the limit l as z approaches z0 along any path if given an arbitrary real 
number ∈  > 0, however small there exists a real number d > 0, such that

| f (z) – l | < ∈  whenever  0 < | z – z0 | < d
i.e. for every z ≠ z0 in d-disc (dotted) of z-plane, f (z) has a value lying in the ∈ -disc of w-plane
In symbolic form, Lim

z z
f z l

→
=

0
( )

Note: (I) d usually depends upon ∈.
(II) z → z0 implies that z approaches z0 along any path. 
The limits must be independent of the manner in which z 
approaches z0

If we get two different limits as z → z0 along two different paths 
then limits does not exist.

Example 1. Prove that lim ( )
z i

z z
z

i
→ −

+ +
+

= −
1

2 4 3
1

4

Solution.   lim lim ( ) ( )
( )

lim ( ) (
z i z i z i

z z
z

z z
z

z
→ − → − → −

+ +
+

= + +
+

= + =
1

2

1 1

4 3
1

1 3
1

3 11 3 4− + = −i i)  Proved.

Example 2. Show that   lim
| |z

z
z→0

 does not exist.

Solution. lim
| |

lim
z x

y

z
z

x iy

x y→ →
→

= +

+0 0
0

2 2

Let y = mx,

  = +

+
= +

+
= +

+→ →
lim lim
x x

x imx

x m x

im

m

mi

m0 2 2 0 2 2

1

1

1

1

The value of 
1

1 2

+

+

mi

m
 are different for different values of m.

Hence, limit of the function does not exist. Proved.

Example 3. Prove that lim
z

z
z→0

 does not exist.

Solution. Case I. lim lim lim lim
z x

y
x y

z
z

x iy
x iy

x iy
x iy→ →

→
→ →

= +
−

= +
−









0 0

0
0 0

    = =
→

lim
x

x
x0

1

Here the path is y → 0 and then x → 0

Case II. Again lim lim lim lim
z y x y

z
z

x iy
x iy

iy
iy→ → → →

= +
−









 =

−
= −

0 0 0 0
1

Y

X

z

O x 0�

y
0

�

X

Y

z

O

x 0�

y
0

�

Y

X

z0

z

O
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In this case, we have a different path first x → 0, then y → 0
As z → 0 along two different paths we get different limits.
Hence the limit does not exist. Proved.

Example 4. Find the limit of the following  lim
( )( )z

iz iz
z i z i→∞

+ −
+ −

3

2
1

2 3
Solution. On dividing numerator and denominator by z3, we get

   lim
( )( )

lim
x z

iz iz
z i z i

i i
z z

i
z

→∞ →∞

+ −
+ −

+ −





+





3

2

2 31
2 3

1

2 3
 −





=
1

22i
z

i
  Ans.

Example 5. Find the limit of the following lim
z i

z z i
z z→ +

− + −
− +1

2

2
1

2 2
Solution. 

    lim lim ( )( ) ( )
( ) (z i z i

z z i
z z

z i z i z i
z i z→ + → +

+ − −
− +

= + − − +
− −1

2

2 1

1
2 2

1
1 ++ +

= + − −
− − − +

= +
− +→ + → +1

1
1 1 11 1i

z i z i
z i z i

z i
z iz i z i)

lim ( ) ( )
( ) ( )

lim

    = + +
+ − +

= + = + −
−

= − + = − = −1
1 1

1 2
2

1 2
2

2
2 1

2
2

1
2

i i
i i

i
i

i i
i i

i i i( ) ( )
( ) ( ) ( )

 Ans.

EXERCISE 7.1

Show that the following limits do not exist:

 1. lim Im( )
Re( )z

z
z→0

3

3  2. lim
z i

z
z i→− +

2

 3. lim Re( )
Imz

z
z→0

2

 4. lim
( )z

z
z→0 2

Find the Limits of the following:

 5. lim Re( )
| |z

z
z→0

2

 Ans. 0 6. lim
Im( )z i

z
z→ +1

3

2
2

 Ans. 2(–1 + i) 7. lim
z

z z
z z→

+ +
+ +0

2

2
6 3
2 2

 Ans. 
3
2

7.6 CONTINUITY
The function f (z) of a complex variable z is said to be continuous at the point z0 if for 
any given positive number ∈ , we can find a number d such that  | f (z) – f (z0)| < ∈
for all points z of the domain satisfying 
     | z – z0 | < d
f (z) is said to be continuous at z = z0 if
    lim ( ) ( )

z z
f z f z

→
=

0
0

7.7 CONTINUITY IN TERMS OF REAL AND IMAGINARY PARTS
If w = f (z) = u (x, y) + iv (x, y) is continuous function at z = z0 then u (x, y) and v (x, y) are 
separately continuous functions of x, y at (x0, y0) where z0 = x0 + i y0.
Conversely, if u(x, y) and v(x, y) are continuous functions of x, y at (x0, y0) then f (z) is 
continuous at z = z0.
Example 6. Examine the continuity of the following

  f z
z iz z i

z i
z i

z i
( ) ,

,
=

− + −
−

≠

=







3 2

0
                                        at z = i
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Solution. lim lim ( ) ( )
z z i

z iz z i
z i

z z i z i
z i→ →

− + −
−

= − + −
−0

3 2 2 1

             = − +
−

= + = − + =
→ →

lim ( )( ) lim( )
z i z i

z i z
z i

z
2

21 1 1 1 0

         f(i) = 0

   lim ( ) ( )
z i

f z f i
→

=

Hence f (z) is continuous at z = i Ans.
Example 7. Show that the function f(z) defined by

    f z
z

z
z

z
( )

Re( ) ,

,
=

≠

=







0

0 0
is not continuous at z = 0

Solution. Here f (z) = 
Re( )z

z
 when z ≠ 0

   lim Re( ) lim lim lim lim
z x

y
x y x

z
z

x
x iy

x
x iy→ →

→
→ → →

=
+

=
+









 =

0 0
0

0 0 0

xx
x

= 1

Again  lim Re( ) lim lim
z y x

z
z

x
x iy→ → →

=
+









 =

0 0 0
0

As z → 0, for two different paths limit have two different values. So, limit does not exist.
Hence f (z) is not continuous at z = 0 Proved.

EXERCISE 7.2

Examine the continuity of the following functions.

 1. f z
z

z
z

z
( )

Im( )
| |

,
=

≠

=







0

0 0
               at z = 0 Ans. Not Continuous

 2. f z z z
z i

( ) = + +
+

2

2
3 4

 at z = 1 – i Ans. Continuous

 3. Show that the following functions are continuous for z
  (i) cos z        (ii) e2z

7.8 DIFFERENTIABILITY
Let f (z) be a single valued function of the variable z, then

         ′ = + −
→

f z f z z f z
zz

( ) lim ( ) ( )
δ

δ
δ0

provided that the limit exists and is independent of the path 
along which dz → 0.
Let P be a fixed point and Q be a neighbouring point. The 
point Q may approach P along any straight line or curved path.
Example 8. Consider the function
    f (z) = 4x + y + i(–x + 4y)

    and discuss 
df
dz

.

Q(z + z)�

RP(z)

Y

O X
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Solution.   Here,    f(z) = 4x + y + i(–x + 4y) = u + iv
so        u = 4x + y and   v = – x + 4y
           f z z x x y y i x x i y y( ) ( ) ( ) ( ) ( )+ = + + + − + + +δ δ δ δ δ4 4
  f z z f z x x y y i x x i y y x y ix iy( ) ( ) ( ) ( ) ( ) ( )+ − = + + + − + + + − − + −δ δ δ δ δ4 4 4 4
             = 4 4δ δ δ δx y i x i y+ − +

            
f z z f z

z
x y i x i y

x i y
( ) ( )+ − = + − +

+
δ
δ

δ δ δ δ
δ δ

4 4

       
δ
δ

δ δ δ δ
δ δ

f
z

x y i x i y
x i y

= + − +
+

4 4
 ... (1)

(a) Along real axis: If Q is taken on the 
horizontal line through P (x, y) and Q then approaches 
P along this line, we shall have dy = 0 and dz = dx.

  
δ
δ

δ δ
δ

f
z

x i x
x

i= − = −4 4

(b) Along imaginary axis: If Q is taken on the vertical line through P and then Q  
approaches P along this line, we have
        z = x + iy = 0 + iy, dz = idy, dx = 0.
Putting these values in (1), we have

      
δ
δ

δ δ
δ

f
z

y i y
i y i

i i= + = + = −4 1 1 4 4( )

(c) Along a line y = x : If Q is taken on a line y = x.
        z = x + iy = x + ix = (1 + i)x
       dz = (1 + i)dx  and   dy = dx
On putting these values in (1), we have

  
δ
δ

δ δ δ δ
δ δ

f
z

x x i x i x
x i x

i i
i

i
i

i i= + − +
+

= + − +
+

= +
+

= + −4 4 4 1 4
1

5 3
1

5 3 1( ) ( )
(( ) ( )1 1

4
+ −

= −
i i

i

In all the three different paths approaching Q from P, we get the same values of 
δ
δ
f
z

i= −4 .  

In such a case, the function is said to be differentiable at the point z in the given region.

Example 9. If f (z) = 
x y y ix

x y
z

z

3

6 2

0

0

0

( ) ,

,

,−
+







≠

=
 then discuss 

df
dz

 at z = 0.

Solution. If z → 0 along radius vector y = mx

 lim ( ) ( ) lim

( )

z z

f z f
z

x y y ix
x y

x iy→ →

− =

−
+

−

+





















=
0 0

3

6 20
0

llim ( )
( ) ( )z

ix y x iy
x y x iy→

− +
+ +











0

3

6 2

            = lim lim ( )
z x

ix y
x y

ix mx
x m x→ →

−
+









 = −

+











0

3

6 2 0

3

6 2 2  [Q y =  mx]

            = lim
x

imx
x m→

−
+









 =

0

2

4 2 0

O
X

Y
Q (x, y + y)� �

P(x, y)

Q (x + x, y + y)�� � �

Q (x + x, y)�
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But along         y = x3

   lim ( ) ( ) lim lim ( )
(z z x

f z f
z

ix y
x y

ix x
x→ → →

− = −
+









 = −

+0 0

3

6 2 0

3 3

6
0

xx
i

3 2 2)
= −

In different paths we get different values of 
df
dz

 i.e. 0 and 
−i
2

. In such a case, the function 

is not differentiable at z = 0.
Theorem: Continuity is a necessary condition but not sufficient condition for the existence 
of a finite derivative.

Proof.  We have,  f z z f z z
f z z f z

z
( ) ( )

( ) ( )
0 0

0 0+ − =
+ −








δ δ
δ

δ
 ... (1)

Taking lim  of both sides of (1), as dz → 0, we get
 Lim Lim

δ δ
δ δ

z z
f z z f z f z f z z f z

→ →
+ −[ ] = ′ ⇒ + −[ ] =

0 0 0 0 0 0 00 0( ) ( ) . ( ) ( ) ( )

⇒           Lim
z z

f z f z
→

− =
0

0 0[ ( ) ( )]         ⇒  Lim
z z

f z f z
→

=
0

0( ) ( )

⇒     f (z) is continuous at z = z0. Proved.
The converse of the above theorem is not true.
This can be shown by the following example.
Example 10. Prove  that the function f (z) = | z |2 is continuous everywhere but no where         
differentiable except at the origin.
Solution. Here, f (z) = | z |2. 

∴ But | z | = ( )x y2 2+     ⇒    | z |2 = x2 + y2

Since x2 and y2 are polynomial so x2 + y2 is continuous everywhere, therefore, | z |2 is 
continuous everywhere.

Now, we have f  ′ (z) = lim ( ) ( )
δ

δ
δz

f z z f z
z→

+ −
0

 f  ′ (z) = lim | | | | ( | | )
δ

δ
δz

z z z
z

zz z
→

+ − =
0

2 2
2

    = lim ( ) ( ) lim . .
δ δ

δ δ
δ

δ δ δ δ
δz z

z z z z zz
z

zz z z z z z z zz
z→ →

+ + − = + + + −
0 0

    = lim . . lim lim
δ δ δ

δ δ δ δ
δ

δ δ
δz z z

z z z z z z
z

z z z z
z→ → →

+ + = + +











=

0 0 00
z z z

z
+












δ
δ

     ...(1)

    [Since, dz → 0 so δz → 0]
Let dz = r (cos θ + i sin θ) and δz  = r (cos θ – i sin θ)

⇒ 
δ
δ

z
z

 = 
cos sin
cos sin

θ θ
θ θ

−
+

i
i

 ⇒ 
δ
δ

z
z

 = (cos θ – i sin θ) (cos θ + i sin θ)–1

⇒ 
δ
δ

z
z

 = (cos θ – i sin θ) (cos θ – i sin θ) ⇒ 
δ
δ

z
z

 = (cos θ – i sin θ)2

⇒ 
δ
δ

z
z

 = cos 2θ – i sin 2θ

since 
δ
δ

z
z

 depends on θ. It means for different values of θ, 
δ
δ

z
z

 has different values.  

It means 
δ
δ

z
z

 has different values for different z.  z = r (cos θ + i sin θ)
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Therefore lim
δ

δ
δz

z
z→ 0

 does not tend to a unique limit when z ≠ 0.

    Thus, from (1), it follows that f ′(z) is not unique and hence f (z) is not differentiable when z ≠ 0.
But when z = 0 then f ′(z) = 0 i.e., f ′(0) = 0 and is unique.
Hence, the function is differentiable at z = 0. Proved.
By different method, the above example 10 is again solved as example 11 on page 143.

7.9 ANALYTIC FUNCTION 
A function f (z) is said to be analytic at a point z0, if f is differentiable not only at z0 but at 
every point of some neighbourhood of z0.
A function f (z) is analytic in a domain if it is analytic at every point of the domain.
The point at which the function is not differentiable is called a singular point of the function.
An analytic function is also known as “holomorphic”, “regular”, “monogenic”.
Entire Function. A function which is analytic everywhere (for all z in the complex plane) 
is known as an entire function.
For Example 1. Polynomials rational functions are entire.
     2. | |z 2  is differentiable only at z = 0. So it is no where analytic.
Note:  (i) An entire is always analytic, differentiable and continuous function. But converse 

is not true.
  (ii) Analytic function is always differentiable and continuous. But converse is not 

true.
 (iii) A differentiable function is always continuous. But converse is not true

7.10 THE NECESSARY CONDITION FOR F (Z) TO BE ANALYTIC
Theorem. The necessary conditions for a function f (z) = u + iv to be analytic at all the 

points in a region R are

(i) 
∂
∂

= ∂
∂

u
x

v
y

   (ii) 
∂
∂

= − ∂
∂

u
y

v
x

 provided 
∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

, , ,  exist.

Proof: Let f (z) be an analytic function in a region R,
      f (z) = u + iv,

where u and v are the functions of x and y.
Let du and dv be the increments of u and v respectively corresponding to increments dx and 

dy of x and y.
∴           f (z + dz) = (u + du) + i(v + dv)

Now 
f z z f z

z
u u i v v u iv

z
u i v

z
u
z

i v
z

( ) ( ) ( ) ( ) ( )+ − = + + + − + = + = +δ
δ

δ δ
δ

δ δ
δ

δ
δ

δ
δ

  lim ( ) ( ) lim
δ δ

δ
δ

δ
δ

δ
δz z

f z z f z
z

u
z

i v
z→ →

+ − = +



0 0

 or ′ = +



→

f z u
z

i v
zz

( ) lim
δ

δ
δ

δ
δ0

 ... (1)

since dz can approach zero along any path.
(a) Along real axis (x-axis)
  z = x + iy  but on x-axis, y = 0
∴           z = x,   dz = dx, dy = 0
Putting these values in (1), we have

   ′ = +





= ∂
∂

+ ∂
∂→

f z u
x

i v
x

u
x

i v
xx

( ) lim
δ

δ
δ

δ
δ0

 ... (2)

O

Y

X
QP(z = x)

�z = x�
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(b) Along imaginary axis (y-axis)
         z = x + iy     but on y-axis, x = 0
         z = 0 + iy     dx = 0, dz = idy.
Putting these values in (1), we get

 ′ = +








 = − +









 = −

→ →
f z u

i y
i v
i y

i u
y

v
yy y

( ) lim lim
δ δ

δ
δ

δ
δ

δ
δ

δ
δ0 0

ii u
y

v
y

∂
∂

+ ∂
∂

 ... (3)

If f (z) is differentiable, then two values of f′(z) must be the same.
Equating (2) and (3), we get

         
∂
∂

+ ∂
∂

= − ∂
∂

+ ∂
∂

u
x

i v
x

i u
y

v
y

Equating real and imaginary parts, we have

      
∂
∂

= ∂
∂

u
x

v
y

,   
∂
∂

= − ∂
∂

v
x

u
y

     
∂∂
∂∂

==
∂∂
∂∂

u
x

v
y

    

       
∂∂
∂∂

== −−
∂∂
∂∂

u
y

v
x

    are known as Cauchy Riemann equations.

7.11 SUFFICIENT CONDITION FOR F (Z) TO BE ANALYTIC
Theorem. The sufficient condition for a function f (z) = u + iv to be analytic at all the points in 
a region R are

(i)  
∂
∂

= ∂
∂

∂
∂

= − ∂
∂

u
x

v
y

u
y

v
x

,    

(ii) 
∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

, , ,  are continuous functions of x and y in region R.

Proof. Let f (z) be a single-valued function having

   
∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

, , ,

    at each point in the region R. Then the C – R equations are satisfied.
By Taylor’s Theorem:
          f z z u x x y y iv x x y y( ) ( , ) ( , )+ = + + + + +δ δ δ δ δ

            = u x y u
x

x u
y

y i v x y v
x

x v
y

y( , ) ... ( , )+ ∂
∂

+ ∂
∂









 + + + ∂

∂
+ ∂

∂








δ δ δ δ ++









...

            = [ ( , ) ( , )]u x y iv x y u
x

x i v
x

x u
y

y i v
y

y+ + ∂
∂

⋅ + ∂
∂

⋅





+ ∂
∂

+ ∂
∂

⋅



δ δ δ δ




 + ...

            = f z u
x

i v
x

x u
y

i v
y

y( ) ...+ ∂
∂

+ ∂
∂







+ ∂
∂

+ ∂
∂









 +d d

(Ignoring the terms of second power and higher powers)

     ⇒    f z z f z u
x

i v
x

x u
y

i v
y

y( ) ( ) .+ − = ∂
∂

+ ∂
∂







+ ∂
∂

+ ∂
∂









d d d  ... (1)

We know C – R equations i.e.,

                 
∂
∂

= ∂
∂

∂
∂

= − ∂
∂

u
x

v
y

u
y

v
x

and

O

Y

X

Q

P (z = iy)

� �z = i y
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Replacing 
∂
∂

∂
∂

u
y

v
y

and  by − ∂
∂

∂
∂

v
x

u
x

and  respectively in (1), we get

f z z f z u
x

i v
x

x v
x

i u
x

y( ) ( ) . .+ − = ∂
∂

+ ∂
∂







+ − ∂
∂

+ ∂
∂







δ δ δ  (taking i common)

        = 
∂
∂

+ ∂
∂







+ ∂
∂

+ ∂
∂







= ∂
∂

+ ∂
∂







u
x

i v
x

x i v
x

u
x

i y u
x

i v
x

. . .δ δ (( )δ δ δx i y u
x

i v
x

z+ = ∂
∂

+ ∂
∂






.

⇒        
f z z f z

z
u
x

i v
x

( ) ( )+ − = ∂
∂

+ ∂
∂

δ
δ

⇒  lim ( ) ( )
δ

δ
δz

f z z f z
z

u
x

i v
x→

+ − = ∂
∂

+ ∂
∂0

⇒    ′′ ==
∂∂
∂∂

++
∂∂
∂∂

f z u
x

i v
x

( )

⇒      ′′ ==
∂∂
∂∂

−−
∂∂
∂∂

f z v
y
i u
y

( )  Proved.

 Remember:  1.  If a function is analytic in a domain D, then u, v satisfy C – R conditions   
   at all points in D.
  2. C – R conditions are necessary but not sufficient for analytic function.
  3. C – R conditions are sufficient if the partial derivative are continuous.

 Example 11. Determine whether 
1
z

 is analytic or not? (R.G.P.V. Bhopal, III Sem., June 2003)

Solution. Let w = f (z) = u + iv = 
1
z

    ⇒       u + iv  = 
1

2 2x iy
x iy

x y+
= −

+
Equating real and imaginary parts, we get

 u = 
x

x y
v y

x y2 2 2 2+
= −

+
,

 
∂
∂
u
x

 = 
( ). .

( ) ( )
,

( )
.x y x x

x y
y x

x y
u
y

xy
x y

2 2

2 2 2

2 2

2 2 2 2 2 2
1 2 2+ −

+
= −

+
∂
∂

= −
+

 
∂
∂
v
x

 = 
2

2 2 2
xy

x y( )
,

+
                                 

∂
∂

= −
+

v
y

y x
x y

2 2

2 2 2( )

Thus, 
∂
∂
u
x

 = 
∂
∂

∂
∂

= − ∂
∂

v
y

u
y

v
x

and .

Thus C – R equations are satisfied. Also partial derivatives are continuous except at (0, 0). 

Therefore 
1
z

 is analytic everywhere except at z = 0.

Also 
dw
dz

 = – 
1
2z

This again shows that 
dw
dz

 exists everywhere except at z = 0. Hence 
1
z

 is analytic 

everywhere except at z = 0.   Ans.
 Example 12.  Show that the function ex (cos y + i sin y) is an analytic function, find its 

derivative.     (R.G.P.V., Bhopal, III Semester, June 2008)
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Solution. Let ex (cos y + i sin y) = u + iv

So,  ex cos y = u and   ex sin y = v    then   
∂
∂

=u
x

e yx cos ,  
∂
∂

=v
y

e yx cos

         
∂
∂

= −u
y

e yx sin ,   
∂
∂

=v
x

e yx sin

Here we see that       
∂
∂

= ∂
∂

u
x

v
y

,   
∂
∂

= − ∂
∂

u
y

v
x

These are C – R equations and are satisfied and the partial derivatives are continuous.
Hence, ex (cos y + i sin y) is analytic.

  f (z) = u + iv = ex (cos y + y sin y) and 
∂
∂

= ∂
∂

=u
x

e y v
x

e yx xcos , sin

 ′ = ∂
∂

+ ∂
∂

= + = + = = +f z u
x

i v
x

e y ie y e y i y e e ex x x x iy x i( ) cos sin (cos sin ) . yy ze= .  

Which is the required derivative.  Ans.
Example 13.  Test the analyticity of the function w = sin z and hence derive that:

          
d
dz

z z(sin ) cos=
Solution.  w = sin z = sin (x + iy) 
    = sin x cos iy + cos x sin iy
       = sin x cosh y + i cos x sinh y

u = sin x cosh y, v = cos x sinh y      
∂
∂

= ∂
∂

=u
x

x y u
y

x ycos cosh , sin sinh   

∂
∂

= − ∂
∂

=v
x

x y v
y

x ysin sinh , cos cosh    

Thus    
∂
∂

= ∂
∂

u
x

v
y

   and    
∂
∂

= − ∂
∂

u
y

v
x

 

So C – R equations are satisfied and 

partial derivatives are continuous.

Hence, sin z is an analytic function.

d
dz

z d
dz

x y i x y(sin ) [sin cosh cos sinh ]= +

 = 
∂
∂

+
x

x y i x y(sin cosh cos sinh )

 =  cos cosh sin sinh cos cos sin sinx y i x y x iy x iy− = −

  = cos ( ) cosx iy z+ =  Ans.

Example 14. Show that the real and imaginary parts of the function w = log z satisfy the 
Cauchy-Riemann equations when z is not zero. Find its derivative.                         

cos cosh
sin sinh

iy y
iy i y

=
=











cosh x e ex x
= + −

2
 ... (1)

sinh x e ex x
= − −

2
 ... (2)

cos x e eix ix
= + −

2
 ... (3)

sin x e e
i

ix ix
= − −

2
   ... (4)

From (1) cosh cosix e e x
ix ix

= + =
−

2

From (3)  cos
( ) ( )

ix e ei ix i ix
= + −

2

                         = + −e ex x

2
 = cosh x

From (4)  sin
( ) ( )

i x e e
i

i ix i ix
= − −

2

                         = − =
−

i e e i x
x x

2
sinh

From (2)  sinh ix = − =
−e e i x

ix ix

2
sin   
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Solution. To separate the real and imaginary parts of log z, we put  x = r cos θ; y = r sin θ
  w = log z = log (x + iy)  
⇒     u + iv = log (r cos θ + ir sin θ) = log r(cos θ + i sin θ) = loge r.e

iθ

    = log log log log tan
tan

e e
ir e r i x y i y

x

r x y
y
x

+ = + = + +
= +

=





−
−

θ θ
θ

2 2 1
2 2

1










So            u x y x y v y
x

= + = + = −log log ( ), tan2 2 2 2 11
2

On differentiating u, v, we get

         
∂
∂

=
+

=
+

u
x x y

x x
x y

1
2

1 22 2 2 2.( )  ... (1)

         
∂
∂

=
+







=
+

v
y y

x
x

x
x y

1

1

1
2

2

2 2  ... (2)

From (1) and (2), 
∂
∂

= ∂
∂

u
x

v
y

 ... (A)

Again differentiating u, v, we have

         
∂
∂

=
+

=
+

u
y x y

y y
x y

1
2

1 22 2 2 2( )  ... (3)

         
∂
∂

=
+

−





= −
+

v
x y

x

y
x

y
x y

1

1
2

2

2 2 2  ... (4)

From (3) and (4), we have

         
∂
∂

= − ∂
∂

u
y

v
x

 ... (B)

Equations (A) and (B) are C – R equations and partial derivatives are continuous.
Hence, w = log z is an analytic function except
when  x2 + y2 = 0 ⇒  x = y = 0 ⇒  x + iy = 0 ⇒  z = 0
Now         w = u + iv

   
dw
dz

u
x

i v
x

x
x y

i y
x y

x iy
x y

= ∂
∂

+ ∂
∂

=
+

−
+

= −
+2 2 2 2 2 2

        = 
x iy

x iy x iy x iy z
−

+ −
=

+
=

( ) ( )
1 1

  

Which is the required derivative.  Ans.
Example 15.  Discuss the analyticity of the function f z z z( ) .=

Solution. f z z z x iy x iy x i y x y( ) ( ) ( )= = + − = − = +2 2 2 2 2

 f z x y u iv( ) .= + = +2 2

      u x y v= + =2 2 0,

At origin,      
∂
∂

= + − = =
→ →

u
x

u h u
h

h
hh h

lim ( , ) ( , ) lim
0 0

20 0 0 0 0
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∂
∂

= + − = =
→ →

u
y

u k u
k

k
kk k

lim ( , ) ( , ) lim
0 0

20 0 0 0 0       

Also, 
∂
∂

= + − =
→

v
x

v h v
hh

lim ( , ) ( , )
0

0 0 0 0 0

 
∂
∂

= + − =
→

v
y

v k v
kk

lim ( , ) ( , )
0

0 0 0 0 0

Thus, 
∂
∂

= ∂
∂

∂
∂

= − ∂
∂

u
x

v
y

u
y

v
x

and .

Hence, C – R equations are satisfied at the origin.

 ′ = − = + −
+→ →

f f z f
z

x y
x iyz z

( ) lim ( ) ( ) lim ( )0 0 0
0 0

2 2

Let z → 0 along the line y = mx, then

 ′ = +
+

= +
+

=
→ →

f x m x
x imx

m x
imx x

( ) lim ( )
( )

lim ( )0 1
1

0
0

2 2 2

0

2

Therefore, f ′ (0) is unique. Hence the function  f (z) is analytic at z = 0. Ans.
Example 16. Show that the function f (z) = u + iv, where

   
f (z)

x (1 i) y (1 i)

x y
, z 0

z

3 3

2 2=
+ − −

+
≠

=







 0 0,          = 0,         z = 0

satisfies the Cauchy-Riemann equations at z = 0. Is the function analytic at z = 0 ?
Justify your answer. (MDU Dec 2009)

Solution.   f z x i y i
x y

u iv( ) ( ) ( )= + − −
+

= +
3 3

2 2
1 1

       u x y
x y

v x y
x y

= −
+

= +
+

3 3

2 2

3 3

2 2,  

[By differentiation the value of 
∂
∂

∂
∂

∂
∂

∂
∂

u
x

u
y

v
x

v
y

, , ,  at (0, 0) we get 
0
0

, so we apply first 

principle method]

At the origin

   
∂
∂

= + − = =
→ →

u
x

u h u
h

h
h
hh h

lim ( , ) ( , ) lim
0 0

3

20 0 0 0 1  (Along x- axis)

   
∂
∂

= + − =

−

= −
→ →

u
y

u k u
k

k
k
kk k

lim ( , ) ( , ) lim
0 0

3

20 0 0 0 1  (Along y- axis)

   
∂
∂

= + − = =
→ →

v
x

v h v
h

h
h
hh h

lim ( , ) ( , ) lim
0 0

3

20 0 0 0 1  (Along x- axis)

   
∂
∂

= + − = =
→ →

v
y

v k v
k

k
k
kk k

lim ( , ) ( , ) lim
0 0

3

20 0 0 0 1  (Along y-axis)

Thus we see that

   
∂
∂

= ∂
∂

u
x

v
y

  and 
∂
∂

= − ∂
∂

u
y

v
x
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Hence, Cauchy-Riemann equations are satisfied at z = 0.

Again           ′ =  + − =
− + +

+
−

+→ →
f f z f

z

x y i x y
x y

x iz z
( ) lim ( ) ( ) lim

( ) ( )
0 0 0 0

0 0

3 3 3 3

2 2

yy





















                  = − + +
+

⋅
+











→

lim ( )
z

x y i x y
x y x iy0

3 3 3 3

2 2
1

 

Now let z → 0 along  y = x, then

          ′ = − + +
+ +





→

f x x i x x
x x x ixx

( ) lim ( )0 1
0

3 3 3 3

2 2

        =
+

=
+

= −
+ −

= +
+

= +2
2 1 1

1
1 1

1
1 1

1
2

1i
i

i
i

i i
i i

i i
( )

( )
( )( )

( )  ... (1)

Again let z → 0 along y = 0, then

           ′ = + ⋅ = +
→

f x ix
x x

i
x

( ) lim ( )0 1 1
0

3 3

2                     [Increment = z] ... (2)

From (1) and (2), we see that f ′(0) is not unique. Hence the function f (z) is not analytic at 
z = 0.                  Ans.
Example 17. Show that the function 

            f z e z( ) = − −4
,      (z ≠ 0   and       

                                        f (0) =  0
 is not analytic at z = 0, 
 although, Cauchy-Riemann equations are satisfied at the point. How would you explain this.

Solution.             f z u iv e e ez x iy x iy( ) ( ) ( )= + = = =− − +
−

+
− −4 4 4

1

⇒           u + iv = e e
x iy

x y x y
x y x y i xy x y− −

+
−

+
+ − − −

=
( )

( ) ( )
[( ) ( )]

4

2 2 4 2 2 4
4 4 2 2 2 21 6 4

⇒                               u iv e e
x y x y

x y
i xy x y

x y+ =
− + −

+
− −

+

4 4 2 2

2 2 4

2 2

2 2 4
6 4

( )
( )

( ).

        ⇒           u iv e
x y x y

x y
xy x y
x y

i xy x

+ =
− + −

+
−

+
−

4 4 2 2

2 2 4

2 2

2 2 4

26 4 4
( )

cos ( )
( )

sin ( −−
+













y
x y

2

2 2 4
)

( )

Equating real and imaginary parts, we get

                u e v e
x y x y

x y
xy x y
x y

x y x

= =
− + −

+
−

+
− + −4 4 2 2

2 2 4

2 2

2 2 4

4 4 26 4 6
( )

cos ( )
( ) ,

yy
x y

xy x y
x y

2

2 2 4

2 2

2 2 4
4

( )
sin ( )

( )+
−

+

    At  z = 0           ∂
∂

= + − = =
→ →

−

→

−

u
x

u h u
h

e
h

he
h h

h

h
h

lim ( , ) ( , ) lim
0 0 0 1

0 0 0 0 1
4

4

Lim

                             =
+ + + +































=
→

Lim
h

x

h
h h h

e
0

4 8 12

1

1 1 1
2

1
3

1

! !
.....

, ++ + +








x x2

2!
.....
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                               =
+ + +































=
+ ∞

=
∞

=
→

Lim
h

h
h h h

0

3 7 11

1
1 1

2
1

6

1
0

1

.....
00

   
∂
∂

= + − = = =
→ →

−

→

−
u
y

u k u
k

e
k

k e
k k

k

k
k

lim ( , ) ( , ) lim lim
0 0 0 1

0 0 0 0 1 0
4

4

   
∂
∂

= + − = = =
→ →

−

→

−
v
x

v h v
h

e
h

h e
h h

h

h
h

lim ( , ) ( , ) lim lim

.
0 0 0 1

0 0 0 0 1 0
4

4

   

        
∂
∂

= + − = = =
→ →

−

→

−
v
y

v k v
k

e
k

k e
k k

k

k
k

lim ( , ) ( , ) lim lim

.
0 0 0 1

0 0 0 0 1 0
4

4

Hence   
∂
∂

= ∂
∂

∂
∂

= − ∂
∂

u
x

v
y

u
y

v
x

and  (C – R equations are satisfied at z = 0)

But           ′ = − =
→ →

− −

f f z f
z

e
zz z

z
( ) lim ( ) ( ) lim0 0

0 0

4

Along z re
i

=
π
4          ′ = ⋅ = ⋅

→

− −

−
















−

→

− − −

f e e

r e

e e
r

r

e
i

i r

r
( ) lim lim

co

0
0

4

4

4

4
0

4

π

π

ss sinπ π

π

4 4

4

4

+




−

i

i
r e

         = lim lim
cos

r

r

i r

r

i

e e

r e

e e

r e
→

− −

→

−− −

= ⋅ = ∞
0

4
0

4

4 4π

π π

Showing that f ′(z) does not exist at z = 0.  Hence f (z) is not analytic at z = 0. Proved.
Example 18. Examine the nature of the function

  f (z) = 
x y x iy

x y
z 0

2 5

4 10
( ) ;+

+
≠

  f (0) = 0
in the region including the origin.

 Solution. Here f (z) = u + iv = 
x y x iy

x y
z

2 5

4 10 0( ) ;+
+

≠

 Equating real and imaginary parts, we get

  u = x y
x y

v x y
x y

3 5

4 10

2 6

4 10+
=

+
,

  ∂
∂
u
x  = lim ( , ) ( , ) lim lim

h h h

u h u
h

h
h h→ → →

+ − = = =
0 0

4

0

0 0 0 0
0

0 0

  
∂
∂
u
y

 = lim ( , ) ( , ) lim lim
k k k

u k u
k

k
k k→ → →

+ − = = =
0 0

10

0

0 0 0 0
0

0 0
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∂
∂
v
x

 = lim ( , ) ( , ) lim lim
h h h

v h v
h

h
h h→ → →

+ − = = =
0 0

4

0

0 0 0 0
0

0 0

  
∂
∂
v
y

 = lim ( , ) ( , ) lim lim
k k k

v k v
k

k
k k→ → →

+ − = = =
0 0

10

0

0 0 0 0
0

0 0

From the above results, it is clear that

        ∂
∂

= ∂
∂

u
x

v
y    and    ∂

∂
= − ∂

∂
u
y

v
x

Hence, C-R equations are satisfied at the origin.

 But f ′(0) = lim ( ) ( ) lim ( )
z x

y

f z f
z

x y x iy
x y x→ →

→

+ − = +
+

−












⋅
+0 0

0

2 5

4 10
0 0 0 1

iiy  (Increment = z)

   = lim
x
y

x y
x y→

→ +0
0

2 5

4 10

 Let z → 0 along the radius vector y = mx, then

  f ′(0) = lim lim
x x

m x
x m x

m x
m x→ →+

=
+

= =
0

5 7

4 10 10 0

5 3

10 61
0
1

0  ... (1)

 Again let z → 0 along the curve y5 = x2

  f ′(0) = lim
x

x
x x→ +

=
0

4

4 4
1
2  ... (2)

(1) and (2) shows that f  ' (0) does not exist. Hence, f (z) is not analytic at origin although 
Cauchy-Riemann equations are satisfied there. Ans.

7.12 C–R EQUATIONS IN POLAR FORM

        
∂
∂

= ∂
∂

u
r r

v1
θ

       
∂
∂

= − ∂
∂

u r v
rθ

              (MDU, Dec. 2010, RGPV., K.U. 2009, Bhopal, III Sem. Dec. 2007)

Proof.  We know that x = r cos θ, and u is a function of x and y.
 z = x + iy = r(cos θ + i sin θ) = reiθ

               u + iv = f (z) = f (reiθ) ... (1)
Differentiating (1) partially w.r.t., “r”, we get

 
∂
∂

+ ∂
∂

= ′u
r

i v
r

f r e ei i( ).θ θ       ... (2)

Differentiating (1) w.r.t. “θ”, we get

  
∂
∂

+ ∂
∂

= ′u i v f r e r e ii i

θ θ
θ θ( )      ... (3)

Substituting the value of ′f r e ei i( )θ θ  from (2) in (3), we obtain

 
∂
∂

+ ∂
∂

= ∂
∂

+ ∂
∂







u i v r u
r

i v
r

i
θ θ

    or    
∂
∂

+ ∂
∂

= ∂
∂

− ∂
∂

u i v ir u
r

r v
rθ θ

Equating real and imaginary parts, we get
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∂∂
∂∂

== −−
∂∂
∂∂

u r v
rθθ

   ⇒ 
∂
∂

= − ∂
∂

v
r r

u1
θ

And            
∂∂
∂∂

==
∂∂
∂∂

u
r r

v1
θθ

  Proved.

7.13 DERIVATIVE OF W OR F (Z) IN POLAR FORM

We know that w = u + iv, 
∂
∂

= ∂
∂

+ ∂
∂

w
x

u
x

i v
x

But    
dw
dz

 = 
∂
∂

∂
∂

+ ∂
∂

∂
∂

= ∂
∂

− ∂
∂

+ ∂
∂







w
r

r
x

w
x

w
r

u i v
rθ

θ θ
θ θ

θcos sin

  = 
∂
∂

− − ∂
∂

+ ⋅ ∂
∂











w
r

r v
r

i r u
r r

cos sinθ θ
   

∂
∂

= − ∂
∂

u r v
rθ

  = 
∂
∂

− ∂
∂

+ ∂
∂







w
r

i u
r

i v
r

cos sinθ θ     
∂
∂

= ∂
∂

v r u
rθ

  = 
∂
∂

− ∂
∂

+ = ∂
∂

− ∂
∂

w
r

i
r

u iv w
r

i w
r

cos ( )sin cos sinθ θ θ θ   [ ... w = u + iv]

  = (cos sin )θ θ− ∂
∂

i w
r

 ... (1)

Second form of 
∂w
dz

          
dw
dz

 = 
∂
∂

∂
∂

+ ∂
∂

∂
∂

= ∂ +
∂

− ∂
∂

w
r

r
x

w
x

u iv
r

w
rθ

θ θ
θ

θ( ) cos sin
  [w = u + iv]

 = 
∂
∂

+ ∂
∂







− ∂
∂

u
r

i v
r

w
r

cos sinθ
θ

θ
 

 = 
1 1
r

v i
r

u w
r

∂
∂

− ⋅ ∂
∂









 − ∂

∂
⋅

θ θ
θ

θ
θcos sin

 

 = − ∂
∂

+ ∂
∂







− ∂
∂







i
r

u i v w
rθ θ

θ
θ

θcos sin

 = − ∂
∂

+ − ∂
∂







i
r

u iv w
rθ

θ
θ

θ( ) cos sin
 = − ∂

∂
− ∂

∂
i
r

w w
rθ

θ
θ

θcos sin
     [w = u + iv]

 =  − − ∂
∂

i
r

i w(cos sin )θ θ
θ

  ... (2)

   
dw
dz

i w
r

== −−
∂∂
∂∂

(cos sin )θθ θθ           − ∂
∂

= ∂
∂







i
r

w w
rθ  

  
dw
dz

i
r

i w
== −− −−

∂∂
∂∂

(cos sin )θθ θθ
θθ

  

These are the two forms for 
dw
dz

.
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EXERCISE 7.3

Determine which of the following functions are analytic:
 1. x2 + iy2     Ans. Analytic at all points y = x 2. 2xy + i(x2 – y2) Ans. Not analytic 

 3. 
x iy

x y
−
+2 2      Ans. Not analytic    4. 

1
1 1( ) ( )z z− +

 Ans. Analytic at all points, except z = ± 1

 5. 
x iy

x iy a
−

− +
    Ans. Not analytic   6. sin x cosh y + i cos x sinh y Ans. Yes, analytic 

 7. xy + iy2  Ans. Yes, analytic at origin
 8. Discuss the analyticity of the function f z zz z( ) = + 2  in the complex plane, where z  is the 

complex conjugate of z. Also find the points where it is differentiable but not analytic.
 Ans. Differentiable only at z = 0, No where analytic. 
 9. Show the function of z  is not analytic any where.  

 10. If f (z) = 
x y y ix

x y
z

z

2

4 2 0

0 0

( ) ,

,

−
+

≠

=









when

when

  prove that f z f
z

( ) ( ) ,− →0 0  as z → 0, along any radius vector but not as z → 0 in any 
manner. (AMIETE, Dec. 2010)

 11. If f (z) is an analytic function with constant modulus, show that f (z) is constant.
(AMIETE, Dec. 2009)

Choose the correct answer :
 12. The Cauchy-Riemann equations for f (z) = u (x, y) + iv (x, y) to be analytic are :

  (a) ∂
∂

+ ∂
∂

= ∂
∂

+ ∂
∂

=
2

2

2

2

2

2

2

20 0u
x

u
y

v
x

v
y

,  (b) ∂
∂

= − ∂
∂

∂
∂

= − ∂
∂

u
x

v
y

u
y

v
x

,

  (c)  ∂
∂

= ∂
∂

∂
∂

= − ∂
∂

u
x

v
y

u
y

v
x

,  (d) ∂
∂

= − ∂
∂

∂
∂

= ∂
∂

u
x

v
y

u
y

v
x

,  Ans. (b)

     (R.G.P.V., Bhopal, III Semester, Dec. 2006)
 13. Polar form of C-R equations are :

  (a)  ∂
∂

= ∂
∂

∂
∂

= ∂
∂

u
r

v
r

u
r

r v
θ θ

1 ,  (b) ∂
∂

= ∂
∂

∂
∂

= ∂
∂

u r v
r

u
r r

v
θ θ

, 1

  (c)  ∂
∂

= ∂
∂

∂
∂

= − ∂
∂

u
r r

v u r v
r

1
θ θ

,  (d) ∂
∂

= ∂
∂

∂
∂

= − ∂
∂

u
r

r v u r v
rθ θ

,  Ans. (c)

     (R.G.P.V., Bhopal, III Semester, June, 2007)
 14. The curve u (x, y) = C and v (x, y) = C' are orthogonal if

(a) u and v are complex functions (b) u + iv is an analytic function.
(c)  u – v is an analytic function. (d)  u + v is an analytic function 

Ans. (b)

 15. If f (z) = 1
2

2 2 1log ( ) tane x y i x
y

+ +










− α  be an analytic function α is equal to 
α, if

(a)  + 1 (b)  – 1  (c)  + 2  (d) – 2  (AMIETE, Dec. 2009)

7.14 ORTHOGONAL CURVES (U.P. III SEMESTER, JUNE 2009)
Two curves are said to be orthogonal to each other, when they intersect at right angle at each 

of their points of intersection.

∂
∂

= − ∂
∂

∂
∂

= ∂
∂



















u r v
r

v r u
r

θ

θ
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The analytic function f(z) = u + iv consists of two families of curves u (x, y) = c1 and  
v (x, y) = c2 which form an orthogonal system.

 u (x, y) = c1 ...(1)
 v (x, y) = c2 ... (2)

Differentiating (1), 
∂
∂

+ ∂
∂

=u
x

dx u
y

dy 0

⇒   
dy
dx

u
x
u
y

m= −

∂
∂
∂
∂

= 1 ( )say

Similarly from (2), 
dy
dx

v
x
v
y

m say= −

∂
∂
∂
∂

= 2 ( )

The product of two slopes

  m m

u
x
u
y

v
x
v
y

u
x
u
y

1 2 = −

∂
∂
∂
∂



















−

∂
∂
∂
∂



















= −

∂
∂
∂
∂



















−
− ∂

∂
∂
∂



















u
y

u
x

             (C – R  equations)

      = – 1
Since m1 m2 = – 1, two curves u = c1 and v = c2 are orthogonal, and c1, c2 are parameters,  

u = c1 and v = c2 form an orthogonal system.

7.15 HARMONIC FUNCTION  (U.P., III Semester 2009-2010)
Any function which satisfies the Laplace’s equation is known as a harmonic function.
Theorem. If f (z) = u + iv is an analytic function, then u and v are both harmonic functions.
Proof. Let f (z) = u + iv, be an analytic function, then we have

   

∂
∂

= ∂
∂

∂
∂

= − ∂
∂










−

u
x

v
y

u
y

v
x

C R
...( )

...( )

1

2
 equations.

Differentiating (1) with respect to x, we get 
∂
∂

= ∂
∂ ∂

2

2

2u
x

v
x y

 ... (3)

Differentiating (2) w.r.t. ‘y’ we have 
∂
∂

= − ∂
∂ ∂

2

2

2u
y

v
y x

  ... (4)

Adding (3) and (4)  we have 
∂
∂

+ ∂
∂

= ∂
∂ ∂

− ∂
∂ ∂

2

2

2

2

2 2u
x

u
y

v
x y

v
y x

    
∂
∂

+ ∂
∂

=
2

2

2

2 0u
x

u
y

   
∂

∂ ∂
= ∂

∂ ∂










2 2v
x y

v
y x

Similarly   
∂
∂

+ ∂
∂

=
2

2

2

2 0v
x

v
y

v (x, y) = c2

u (x, y) = c1

O

Y

X
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Therefore both u and v are harmonic functions.
Such functions u, v are called Conjugate harmonic functions if u + iv is also analytic 
function.
Example 19.  Define a harmonic function and conjugate harmonic function. Find the 
harmonic conjugate function of the function U (x, y) = 2x (1 – y). (U.P., III Semester Dec. 2009)
Solution. See Art. 4.15
 Here, we have U (x, y) = 2x (1 – y).   Let V be the harmonic conjugate of U.
 By total differentiation

  dV = 
∂
∂

+ ∂
∂

V
x

dx V
y

dy  

   = − ∂
∂

+ ∂
∂

U
y

dx U
x

dy

   = – (–2x) dx + (2 – 2y) dy + C 
   = 2x dx + (2 dy – 2y dy) + C
  V = x2 + 2y – y2 + C
Hence, the harmonic conjugate of U is x2 + 2y – y2 + C  Ans.

Example 20. Prove that u x y and v y
x y

= − =
+

2 2
2 2  are harmonic functions of (x, y), but        

are not harmonic conjugates.        
Solution. We have,        u = x2 – y2

  
∂
∂

= ∂
∂

= ∂
∂

= − ∂
∂

= −u
x

x u
x

u
y

y u
y

2 2 2 2
2

2

2

2, , ,

   
∂
∂

+ ∂
∂

= − =
2

2

2

2 2 2 0u
x

u
y

u (x, y) satisfies Laplace equation, hence u (x, y) is harmonic

         v y
x y

v
x

xy
x y

=
+

∂
∂

= −
+2 2 2 2 2
2,

( )

  
∂
∂

= + − − − +
+

2

2

2 2 2 2 2

2 2 4
2 2 2 2v

x
x y y xy x y x

x y
( ) ( ) ( ) ( )

( )

         = + − − −
+

= −
+

( ) ( ) ( )
( ) ( )

x y y xy x
x y

x y y
x y

2 2

2 2 3

2 3

2 2 3
2 2 4 6 2

    
∂
∂

= + ⋅ −
+

= −
+

v
y

x y y y
x y

x y
x y

( ) ( )
( ) ( )

2 2

2 2 2

2 2

2 2 2
1 2

 ... (1)

   
∂
∂

= + − − − +
+

= + −2

2

2 2 2 2 2 2 2

2 2 4

2 22 2 2v
y

x y y x y x y y
x y

x y( ) ( ) ( ) ( ) ( )
( )

( ) ( 22 42 2

2 2 3
y x y y

x y
) ( ) ( )

( )
− −

+

        = − − − +
+

= − +
+

2 2 4 4 6 22 3 2 3

2 2 3

2 3

2 2 3
x y y x y y

x y
x y y

x y( ) ( )
 ... (2)

On adding (1) and (2), we get 
∂
∂

+ ∂
∂

=
2

2

2

2 0v
x

v
y

v (x, y) also satisfies Laplace equations, hence v (x, y) is also harmonic function.

But   
∂
∂

≠ ∂
∂

u
x

v
y

  and  
∂
∂

≠ − ∂
∂

u
y

v
x

Therefore u and v are not harmonic conjugates. Proved.

U x xy
U
x

y

U
y

x

= −
∂
∂

= −

∂
∂

= −

























2 2

2 2

2
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Example 21. If u(x, y) and v(x, y) are harmonic functions in a region R, prove that the function

    
∂
∂

− ∂
∂









 + ∂

∂
+ ∂

∂




















u
y

v
x

i u
x

v
y

is an analytic function of z = x + iy. (R.G.P.V., Bhopal, III Semester, Dec. 2004)
Solution.  Since  u(x, y)and v(x, y) are harmonic functions in a region R, therefore

 
∂
∂

+ ∂
∂

2

2

2

2
u

x
u

y
 = 0    ... (1)     and 

∂
∂

+ ∂
∂

2

2

2

2
v

x
v

y
 = 0    ... (2)

Let F (z) = R iS u
y

v
x

i u
x

v
y

+ = ∂
∂

− ∂
∂









 + ∂

∂
+ ∂

∂










Equating real and imaginary parts, we get

 R = 
∂
∂

− ∂
∂

u
y

v
x

,

 
∂
∂
R
x

 = 
∂

∂ ∂
− ∂

∂

2 2

2
u

x y
v

x
     ... (3)     

∂
∂
R
y

 = 
∂
∂

− ∂
∂ ∂

2

2

2u
y

v
x y

          ... (4)

                                S u
x

v
y

= ∂
∂

+ ∂
∂

 
∂
∂
S
x

  = 
∂
∂

+ ∂
∂ ∂

2

2

2u
x

v
x y

 ... (5)     
∂
∂
S
y

 = 
∂

∂ ∂
+ ∂

∂

2 2

2
u

x y
v

y
           ... (6)

Putting the value of 
∂
∂

2

2
u

x
 from (1) in (5), we get

 
∂
∂
S
x

 = – 
∂
∂

+ ∂
∂ ∂

2

2

2u
y

v
x y

 ... (7)

Putting the value of 
∂
∂

2

2
v

y
 from (2) in (6), we get

 
∂
∂
S
y

 = 
∂

∂ ∂
− ∂

∂

2 2

2
u

x y
v

x
 ... (8)

From (3) and (8), 
∂
∂
R
x

 = 
∂
∂
S
y

 

From (4) and (7), 
∂
∂
R
y

 = – 
∂
∂
S
x

Therefore, C-R equations are satisfied and hence the given function is analytic. Proved.
7.16 APPLICATION TO FLOW PROBLEMS

Consider two dimensional irrotational motion in a plane parallel to xy-plane.
The velocity v of fluid can be expressed as
 v v i v jx y= +^ ^  ... (1)
Since the motion is irrotational, a scalar function f((x, y) gives the velocity components.

  V x y i
x

j
y

= ∇ = ∂
∂

+ ∂
∂









φ φ( , ) ^ ^  = i

x
j

y
^ ^∂
∂

+ ∂
∂

φ φ
 ... (2)

On comparing (1) and (2), we get
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  v
x

v
yx y= ∂

∂
= ∂

∂
φ φand  ... (3)

7.17 VELOCITY POTENTIAL FUNCTION
The scalar function f(x, y) which gives the velocity component is called the velocity potential 

function.
As the fluid is incompressible
  div v = 0

  ∇ = ⇒ ∂
∂

+ ∂
∂









 ⋅ + =v i

x
j

y
i v j vx y0 0^ ^ ^ ^( )

   
∂
∂

+
∂
∂

=
v
x

v
y

x y 0  ... (4)

Putting the values of vx and vy from (3) in (4), we get

   
∂
∂

∂
∂







+ ∂
∂

∂
∂









 = ⇒ ∂

∂
+ ∂

∂
=

x x y y x y
φ φ φ φ0 0

2

2

2

2

This is Laplace equation. The function f is harmonic and is a real part of analytic function 
  f (z) = f(x, y) + if(x, y)
We know that

  
dy
dx

x

y

y

x

= −

∂
∂
∂
∂

=

∂
∂
∂
∂

ψ

ψ

φ

φ   f (z) = y + f  [CR-equations]

        = 
v
v

y

x
 [Using (3)]

Here the resultant velocity v vx y
2 2+  of the fluid is along the tangent to  the curve 

   y(x, y) = C′
Such curves are known as stream lines and y(x, y) is known as stream function.
The curves represented by f(x, y) = c are called equipotential lines.
As f(x, y) and y(x, y) are conjugates of analytic function f(z). The equipotential lines  

f(x, y) = C and the stream potential line y(x, y) = C′ intersect each other orthogonally.

  ′ = ∂
∂

+ ∂
∂

f z
x

i
x

( ) φ ψ
 = 

∂
∂

− ∂
∂

φ ψ
x

i
y

 = vx – ivy

The magnitide of the resultant velocity = 
df
dz

 = v vx y
2 2+

The function f(z) which represents the flow pattern is called the complex potential.
7.18 METHOD TO FIND THE CONJUGATE FUNCTION

Case I. Given.  If  f(z) = u + iv, and u is known.
To find. v, conjugate function.

Method. We know that  dv v
x

dx v
y

dy= ∂
∂

⋅ + ∂
∂

⋅   ... (1)

        Replacing  ∂
∂

− ∂
∂

∂
∂

∂
∂

v
x

u
y

v
y

u
x

by and by  in (1), we get     [C-R equations]
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    dv u
y

dx u
x

dy= − ∂
∂

⋅ + ∂
∂

⋅

      v
u
y

dx u
x

dy= − ∂
∂

+ ∂
∂

⋅∫ ∫

⇒      v M dx N dy= +∫ ∫         ... (2)

where   M u
y

N u
x

= − ∂
∂

= ∂
∂

and

so that            
∂
∂

= ∂
∂

− ∂
∂









 = − ∂

∂
∂
∂

= ∂
∂

∂
∂







= ∂
∂

M
y y

u
y

u
y

N
x x

u
x

u
x

2

2

2

2and

since u is a conjugate function, so 
∂
∂

+ ∂
∂

=
2

2

2

2 0u
x

u
y

⇒           − ∂
∂

= ∂
∂

2

2

2

2
u

y
u

x
 ⇒ 

∂
∂

= ∂
∂

M
y

N
x

 ... (3)

Equation (3) satisfies the condition of an exact differential equation.
So equation (2) can be integrated and thus v is determined.
Case II. Similarly, if v = v(x, y) is given
To find out u.

 We know that du = ∂
∂

+ ∂
∂

u
x

dx i u
y

dy  ... (4)

 On substituting the values of ∂
∂
u
x  and ∂

∂
u
y  in (4) , we get

  du = ∂
∂

− ∂
∂

v
y

dx v
x

dy  

 On integrating, we get
  u  = ∂

∂
− ∂

∂∫ ∫v
y

dx v
x

dy  ...(5)

 (since v is already known so ∂
∂

∂
∂

v
y

v
x

,  on R.H.S. are also known)

 Equation (5) is an exact differential equation. On solving (5), u can be determined.
 Consequently f(z) = u + iv can also be determined.

Example 22. Prove that u = x2 – y2 – 2xy – 2x + 3y is harmonic. Find a function v such 
that f (z) = u + iv is analytic. Also express f (z) in terms of z.

(R.G.P.V., Bhopal, III Semester, June 2005)
Solution. We have,
 u = x2 – y2 – 2xy – 2x + 3y

 
∂
∂
u
x

 = 2x – 2y – 2           ⇒ ∂
∂

=
2

2 2u
x

 
∂
∂
u
y

 = –2y – 2x + 3         ⇒ ∂
∂

= −
2

2 2u
y

 
∂
∂

+ ∂
∂

2

2

2

2
u

x
u

y
 = 2 – 2 = 0

Since Laplace equation is satisfied, therefore u is harmonic. Proved.
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We know that dv = 
∂
∂

+ ∂
∂

v
x

dx v
y

dy

⇒ dv = − ∂
∂

+ ∂
∂

u
y

dx u
x

dy  ...(1)   Q
∂
∂

= − ∂
∂

∂
∂

= ∂
∂











v
x

u
y

v
y

u
x

and

Putting the values of 
∂
∂
u
y

 and 
∂
∂
u
x

 in (1), we get

 dv = – (– 2y – 2x + 3) dx + (2x – 2y – 2)dy
⇒ v = ( ) ( )2 2 3 2 2y x dx y dy C+ − + − − +∫∫  (Ignoring 2x)
Hence, v = 2xy + x2 – 3x – y2 – 2y + C Ans.
Now, f (z) = u + iv
  = (x2 – y2 – 2xy – 2x + 3y) + i (2xy + x2 – 3x – y2 – 2y) + iC
  = (x2 – y2 + 2ixy) + (ix2 – iy2 – 2xy) – (2 + 3i) x – i (2 + 3i) y + iC
  = (x2 – y2 + 2ixy) + i (x2 – y2 + 2ixy) – (2 + 3i) x – i (2 + 3i)y + iC
  = (x + iy)2 +i (x + iy)2 – (2 + 3i) (x + iy) + iC
  = z2 + iz2 – (2 + 3i) z + iC
  = (1 + i) z2 – (2 + 3i) z + iC 
Which is the required expression of f (z) in terms of z. Ans.
Example 23.   If w = f + iy represents the complex potential for an electric field and 

     ψ = − +
+

x y x
x y

2 2
2 2 ,

       determine the function f.

Solution.       w i x y x
x y

= + = − +
+

φ ψ ψand 2 2
2 2

    
∂
∂

= + + ⋅ − ⋅
+

= + −
+

ψ
x

x x y x x
x y

x y x
x y

2 1 2 2
2 2

2 2 2

2 2

2 2 2
( )

( ) ( )

    
∂
∂

= − −
+

= − −
+

ψ
y

y x y
x y

y xy
x y

2 2 2 2
2 2 2 2 2 2

( )
( ) ( )

 We know that, d
x

dx
y

dy
y

dx
x

dyφ φ φ ψ ψ= ∂
∂

+ ∂
∂

= ∂
∂

− ∂
∂

          = − −
+









 − + −

+









2 2 22 2 2

2 2

2 2 2y xy
x y

dx x y x
x y

dy
( ) ( )

      φ = − −
+









 +∫ 2 2

2 2 2y xy
x y

dx c
( )

This is an exact differential equation.

       φ = − +
+

+2 2 2xy y
x y

C  Ans.

Which is the required function.
Example 24. An electrostatic field in the xy-plane is given by the potential function  
 f = 3x2y – y3, find the stream function.          (R.G.P.V., Bhopal, III Semester, Dec. 2001)
Solution. Let y(x, y) be a stream function

 We know that dy = ∂
∂

+ ∂
∂

= − ∂
∂







+ ∂
∂







ψ ψ φ φ
x

dx
y

dy
y

dx
x

dy  [C-R equations]
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   = {– (3x2 – 3y2)} dx + 6xy dy
   = – 3x2 dx + (3y2 dx + 6xy dy)
   = – d (x3) + 3d (xy2)

  y = − + +∫ d x d xy c( ) ( )3 23
  y = – x3 + 3xy2 + c
 y is the required stream function. Ans.

Example 25.  Find the imaginary part of the analytic function whose real part is 
x xy x y3 2 2 23 3 3− + − .    (R.G.P.V., Bhopal, III Semester, Dec. 2008, 2005)
Solution. Let u(x, y) = x3 – 3xy2 + 3x2 – 3y2

 
∂
∂
u
x

 = 3x 2 – 3y2 + 6x

 
∂
∂
u
y

 = – 6xy – 6y             
We know that

 dv = 
∂
∂

+ ∂
∂

v
x

dx v
y

dy       ⇒     dv = − ∂
∂

+ ∂
∂

u
y

dx u
x

dy

⇒  dv =  (6xy + 6y) dx + (3x2 – 3y2 + 6x) dy 
This is an exact differential equation.
 v = ( )6 6 3 2x y y dx y dy C+ + − +∫∫
  = 3x2 y + 6xy – y3 + C
Which is the required imaginary part. Ans.
Example 26.   If u – v = (x – y) (x2 + 4 xy + y2) and f (z) = u + iv is an analytic function of  
       z = x + iy, find f (z) in terms of z.
Solution.     u + iv = f (z)     ⇒   iu – v = i f (z)
Adding these,  (u – v) + i (u + v)   =  (1 + i) f (z) 
Let U + iV = (1 + i) f (z)  where  U  = u – v and V = u + v
 F (z)  = (1 + i) f (z)  
 U  = u – v = (x – y) (x2 + 4 xy + y2)
  = x3 + 3 x2y – 3 xy2 –  y3 

                                         
∂
∂

= + −U
x

x xy y3 6 32 2

                                        
∂
∂

= − −U
y

x xy y3 6 32 2

We know that dV V
x

dx V
y

dy U
y

dx U
x

dy= ∂
∂

⋅ + ∂
∂

= − ∂
∂

⋅ + ∂
∂

⋅      [C-R equations]

On putting the values of 
∂
∂
U
x

 and 
∂
∂
U
y

, we get

     = (–3x2 + 6 xy + 3 y2) dx + (3 x2 + 6xy – 3 y2) . dy
Integrating, we get
           V x xy y dx y dy= − + + + −∫ ∫( ) ( )3 6 3 32 2 2

          
(y as constant)               (Ignoring terms of x)

    =  – x3 + 3 x2y + 3xy2 – y3 + c
         F(z) = U + iV
    = (x3 + 3 x2y – 3 xy2 – y3) + i (– x3 + 3 x2y + 3xy2 – y3) + ic
    = (1 – i) x3 + (1 + i) 3 x2y – (1 – i) 3 xy2 – ( 1 + i) y3 + ic
    = (1 – i) x3 + i (1 – i) 3 x2y – ( 1 – i) 3 xy2 – i (1 – i) y3 + ic

^
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    = (1 – i) [x3 + 3 ix2y – 3 xy2 – iy3] + ic
    = (1 – i) (x + iy)3 + iC = (1 – i) z3 + ic
         (1 + i) f (z) = (1 – i) z3 + ic,  [F (z) = (1 + i) f (z)]

        f z i
i

z ic
i

i i
i

z i i
i i

c iz( ) ( )
( )

( )
( ) ( )

= −
+

+
+

= − +
+

+ −
+ −

= − +1
1 1

1
1

1
1 1

3 3 3 11
2
+ i c      Ans.

Example 27.  If f (z) = u + iv is an analytic function of z = x + iy and 
                   u – v = e–x [(x – y) sin y – (x + y) cos y]
                   find f (z).         (U.P. III Semester, 2009-2010)
Solution. We know that,

 f (z) = u + iv ... (1)
 i f (z) = i u – v ... (2)
 F (z) =  U + iV
 U = u – v = e–x [(x – y) sin y – (x + y) cos y]

 
∂
∂
U
x

 = – e–x [(x – y) sin y – (x + y) cos y] + e–x [sin y – cos y]

 
∂
∂
U
y  = e–x [(x – y) cos y – sin y – (x + y) (– sin y) – cos y]

We know that,

 dV = 
∂
∂

+ ∂
∂

= − ∂
∂

+ ∂
∂

V
x

dx V
y

dy U
y

dx U
x

dy  [C – R equations]

  = – e–x [(x – y) cos y – sin y + (x + y) sin y – cos y] dx
    – e–x [(x – y) sin y – (x + y) cos y – sin y + cos y] dy
  =  – e–x x {(cos y + sin y) dx – e–x (–y cos y – sin y + y sin y – cos y) dx
    – e–x [(x – y) sin y – (x + y) cos y – sin y + cos y] dy
 V = (cos y + sin y) (x e–x + e–x) + e–x (–y cos y – sin y + y sin y – cos y) + C
 F (z) = U + iV
 F (z) = e–x [(x – y) sin y – (x + y) cos y] + i e–x [x cos y + cos y + x sin y + sin y
    – y cos y – sin y + y sin y – cos y] + iC
  = e–x [{x sin y – y sin y – x cos y – y cos y} + i {x cos y + x sin y – y cos y +  y sin y}] + iC
  = e–x [(x + i y) sin y – (x + i y) cos y + (– y + i x) sin y + (– y + i x) cos y] + iC
  = e–x [(x + i y) sin y – (x + i y) cos y + i (x + i y) sin y + i (x + i y) cos y] + iC
  = e–x (x + i y) [sin y – cos y + i sin y + i cos y] + i C
  = e–x (x + i y) [(1 + i) sin y + i (1 + i) cos y] + i C
 (1 + i) f (z) = e–x (x + iy) (1 + i) (sin y + i cos y) + i C

 f (z) = e–x (x + i y) (sin y + i cos y) + 
i C

i1+

  = i z e–x (cos y – i sin y) + 
i C

i1+

  = i z e–x e–i y = i z e–(x + i y) = i z e– z + 
i C

i1+
 Ans.

Let  f1 (x, y) = – e–x [(x – y) sin y – (x + y) cos y] + e–x [sin y – cos y]
 f1 (z, 0) = – e–z [z sin 0 – z cos 0] + e–z [sin 0 + cos 0]
  = – e–z [z – 1]
Let f2 (x, y) = e–x [(x – y) cos y – sin y + (x + y) sin y – cos y]
 f2 (z, 0) = e–z [(z) cos 0 – sin 0 + z sin 0 – cos 0]



Functions of a Complex Variable  531

  = e–z [z – 1]
 F (z) = U + i V

 F ́  (z) = 
∂
∂

+ ∂
∂

= ∂
∂

− ∂
∂

U
x

i V
x

U
x

i U
y

 = f1 (z, 0) – i f2 (z, 0)

  = e–z (z – 1) – i e–z (z – 1) = (1 – i) e–z (z – 1) = (1 – i) e–z (z – 1)

 F (z) = (1 – i) z e e dz C
z z− −

−
−

−








 +∫1 1

 = (1 – i) [–z e–z – e–z] + C

 (1 + i) f (z) = (–1 + i) (z + 1) e–z + C

 f (z) = 
( ) ( ) ( ) ( )

( ) ( )
( )− +

+
+ + = − + −

+ −
+ +− −1

1
1 1 1

1 1
1i

i
z e C i i

i i
z e Cz z

  = i (z + 1) e–z + C Ans.
Example 28.  Let f(z) = u (r, θ) + iv (r, θ) be an analytic function and u = – r3 sin 3θ. then 
construct the corresponding analytic function f (z) in terms of z. 
Solution.       u = – r3 sin 3θ

      
∂
∂

= − ∂
∂

= −u
r

r u r3 3 3 32 3sin , cosθ
θ

θ

We know that     dv v
r

dr v d= ∂
∂

+ ∂
∂θ

θ

          = − ∂
∂







+ ∂
∂







1
r

u dr r u
r

d
θ

θ  

C R
u
r r

v

u r v
r

−
∂
∂

= ∂
∂

∂
∂

= − ∂
∂





















 equations
1

θ

θ

           = − − + −1 3 3 3 33 2

r
r dr r r d( cos ) ( sin )θ θ θ

           = 3 3 3 32 3r dr r dcos sinθ θ θ⋅ −

        v = ∫ − = +( cos ) cos3 3 32 3r dr c r cθ θ

    f (z) = u + iv = − + + = + +r ir i c ir i i c3 3 33 3 3 3sin cos (cos sin )θ θ θ θ

           = i r e i c i r e i c i z i ci i3 3 3 3θ θ+ = + = +( )  Ans.

This is the required analytic function.
Example 29.  Find analytic function f (z) = u(r, θ) + iv (r, θ) such that
             v r r r( , ) cos cos .θ θ θ= − +2 2 2

Solution.  We have,     v r r= − +2 2 2cos cosθ θ  ... (1)

Differentiating (1), we get

   
∂
∂

= − +v r r
θ

θ θ2 22 sin sin  ... (2)

   
∂
∂

= −v
r

r2 2cos cosθ θ  ... (3)

 Using C – R equations in polar coordinates, we get

             r
u
r

v r r∂
∂

= ∂
∂

= − +
θ

θ θ2 22 sin sin   [From (2)]

⇒   
∂
∂

= − +u
r

r2 2sin sinθ θ  ... (4)
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         − ∂
∂

= ∂
∂

= −1 2 2
r

u v
r

r
θ

θ θcos cos  [From (3)]

⇒   
∂
∂

= − +u r r
θ

θ θ2 22 cos cos  ... (5)

By total differentiation formula

   du u
r

dr u d r dr r r d= ∂
∂

+ ∂
∂

= − + + − +
θ

θ θ θ θ θ θ( sin sin ) ( cos cos )2 2 2 22

         = – [( )sin ( cos )] [sin (cos )]2 2 2 22r dr r d dr r dθ θ θ θ θ θ+ + ⋅ +

         = − − + − +[( )sin sin ] [ cos cos ]2 2 2 22r dr dr r d r dθ θ θ θ θ θ

         = − +d r d r( sin ) ( sin )2 2θ θ  (Exact differential equation)
Integrating, we get
      u r r c= − + +2 2sin sinθ θ
Hence,             f z u iv( ) = +

        = − + + + − +( sin sin ) ( cos cos )r r c i r r2 22 2 2θ θ θ θ

        = + − + + +ir i ir i i c2 2 2 2(cos sin ) (cos sin )θ θ θ θ

        = − + + = − + +ir e ir e i c i r e r e i ci i i i2 2 2 22 2θ θ θ θ( ) .  Ans.
This is the required analytic function.
Example 30. Deduce the following with the polar form of Cauchy-Riemann equations :

(a)  
∂
∂

+ ∂
∂

+ ∂
∂

=
2

2 2

2

2
1 1 0u

r r
u
r r

u
θ

  (MDU, Dec. 2010, K.U. 2009)   (b)  ′ = ∂
∂

+ ∂
∂







f z r
z

u
r

i v
r

( )

Solution.   We know that polar form of C-R equations are

   
∂
∂

= ∂
∂

u
r r

v1
θ

 ... (1)

   
∂
∂

= − ∂
∂

u r v
rθ

 ... (2)

(a) Differentiating (1) partially w.r.t. r., we get

   
∂
∂

= − ∂
∂

+ ∂
∂ ∂

2

2 2

21 1u
r r

v
r

v
rθ θ

 ... (3)

Differentiating (2) partially w.r.t. θ, we have  

   
∂
∂

= − ∂
∂ ∂

2

2

2u r v
rθ θ

  ...(4)

Thus using (1), (3) and (4), we get
∂
∂

+ ∂
∂

+ ∂
∂

= − ∂
∂

+ ∂
∂ ∂

+ ∂
∂







+
2

2 2

2

2 2

21 1 1 1 1 1u
r r

u
r r

u
r

v
r

v
r r r

v
θ θ θ θ

11 02

2 2 2

r
r v

r
v

r
v
r

− ∂
∂ ∂









 = ∂

∂ ∂
= ∂

∂ ∂








θ θ θ

   

         Proved.

(b) Now,  r u
r

i v
r

r u
x

x
r

u
y

y
r

i v
x

x
r

v
y

∂
∂

+ ∂
∂







= ∂
∂

∂
∂

+ ∂
∂

∂
∂









 + ∂

∂
∂
∂

+ ∂
∂

∂yy
r∂





















 = ∂
∂

+ ∂
∂









 + ∂

∂
+ ∂

∂


















r u

x
u
y

i v
x

v
y

cos sin cos sinθ θ θ θ



Functions of a Complex Variable  533

 = ∂
∂

+ ∂
∂







+ ∂
∂

+ ∂
∂









r u

x
i v

x
r u

y
i v

y
cos sinθ θ

 = ∂
∂

+ ∂
∂







+ ∂
∂

− ∂
∂









x u

x
i v

x
iy v

y
i u

y
 (By C-R equations)

 = x f ' (z) + iy f ' (z)   = (x + iy) f ' (z) = z f ' (z).

∴  ′ = ∂
∂

+ ∂
∂







f r
z

u
r

i v
r

( )z      Proved.

7.19  MILNE THOMSON METHOD (TO CONSTRUCT AN ANALYTIC FUNCTION)
By this method f (z) is directly constructed without  finding v and the method is given below:
Since     z = x + iy and z x iy= −

∴     x z z y z z
i

= + = −
2 2

,

             f z u x y iv x y( ) ( , ) ( , )≡ +  ... (1)

             f z u z z z z
i

iv z z z z
i

( ) , ,≡ + −





+ + −



2 2 2 2

This relation can be regarded as a formal identity in two independent variables z and z . 
Replacing z  by z, we get

   f z u z iv z( ) ( , ) ( , )≡ +0 0
Which can be obtained by replacing x by z and y by 0 in (1)
Case I. If u is given
We have    f (z) = u + iv

∴            ′ = ∂
∂

+ ∂
∂

′ = ∂
∂

− ∂
∂

f z u
x

i v
x

f z u
x

i u
y

( ) , ( )  (C – R equations)

If we write    
∂
∂

= ∂
∂

=u
x

x y u
y

x yφ φ1 2( , ), ( , )

             ′ = − ′ = −f z x y i x y f z z i z( ) ( , ) ( , ) ( ) ( , ) ( , )φ φ φ φ1 2 1 20 0   or   

On integrating  f z z dz i z dz c( ) ( , ) ( , )= − +∫ ∫φ φ1 20 0
Case II. If v is given
   f (z) = u + iv

                         f ' (z) = 
∂
∂

+ ∂
∂

= ∂
∂

+ ∂
∂

u
x

i v
x

v
y

i v
x

 = y1 (x, y) + i y2 (x, y)

when         ψ ψ1 2( , ) , ( , ) .x y v
y

x y v
x

= ∂
∂

= ∂
∂

   f z z dz i z dz c( ) ( , ) ( , )= + +∫ ∫ψ ψ1 20 0

7.20 WORKING RULE: TO CONSTRUCT AN ANALYTIC FUNCTION BY MILNE 
THOMSON METHOD

Case I. When u is given

Step 1. Find ∂
∂
u
x  and equate it to f1(x, y).

Step 2. Find ∂
∂
u
y  and equate it to f2 (x, y).

Step 3. Replace x by z and y by 0 in f1(x, y) to get f1(z, 0).
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Step 4. Replace x by z and y by 0 in f2(x, y) to get f2(z, 0).
Step 5. Find f (z) by the formula f (z) = φ φ1 20 0( , ) ( , )z i z dz c−{ } +∫

Case II.  When v is given

Step 1. Find ∂
∂
v
x  and equate it to y2(x, y).

Step 2. Find ∂
∂
v
y  and equate it to y1(x, y).

Step 3. Replace x by z and y by 0 in y1(x, y) to get y1(z, 0).
Step 4. Replace x by z and y by 0 in y2(x, y) to get y2(z, 0).
Step 5. Find  f (z) by the formula
   f (z) = ψ ψ1 20 0( , ) ( , )z i z dz c+{ } +∫

Case III.  When u – v is given.
We know that  f (z) = u + iv ...(1)
 if(z) = iu – v ...(2) [Multiplying by i]
Adding (1) and (2), we get
 (1 + i) f (z) = (u – v) + i(u + v)
⇒ F (z) = U + iV

where F(z) = (1 + i) f (z) ...(3)  U = 
V

u v
u v

−
= +





Here,  U = (u – v) is given

Find out F(z) by the method described in case I, then substitute the value of F(z) in (3), we get

 f (z) = 
F z

i
( )

1+Case IV.  When u + v is given.
We know that  f (z) = u + iv ...(1)
 i f (z) = iu – v [Multiplying by i]...(2) 
Adding (1) and (2), we get
 (1 + i) f (z) = (u – v) + i(u + v)
⇒ F(z) = U + iV

where F(z) = (1 + i) f (z) ...(3)  U = 
V

u v
u v

−
= +





Here,  V = (u + v) is given

Find out F(z) by the method described in case II, then substitute the value of F(z) in (3), we get

 f (z) = 
F z

i
( )

1+
Example 31.   If u = x2 – y2, find a corresponding analytic function.

Solution.     
∂
∂

= = ∂
∂

= − =u
x

x x y u
y

y x y2 21 2φ φ( , ), ( , )

On replacing x by z and y by 0, we have
   f z z i z dz C( ) [ ( , ) ( , )]= − +∫ f f1 20 0

         = − + = + = +∫ ∫[ ( )]2 0 2 2z i dz c z dz c z C  Ans.

This is the required analytic function.
Example 32. Show that ex (x cos y – y sin y) is a harmonic function. Find the analytic  

                function for which ex (x cos y – y sin y) is imaginary part.
(U.P., III Semester, June 2009, R.G.P.V., Bhopal, III Semester, June 2004)

Solution.  Here  v = ex (x cos y – y sin y)
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Differentiating partially w.r.t. x and y, we have

   
∂
∂

= − + =v
x

e x y y y e y x yx x( cos sin ) cos ( , ),ψ2         (say) ... (1)

   
∂
∂

= − − − =v
y

e x y y y y x yx ( sin cos sin ) ( , )ψ1             (say) ... (2)

  
∂
∂

= − + +
2

2
v

x
e x y y y e y e yx x x( cos sin ) cos cos  

    = e x y y y yx ( cos sin cos )− + 2  ... (3)

and  
∂
∂

= − + −
2

2 2v
y

e x y y y yx ( cos sin cos )  ... (4)

Adding equations (3) and (4), we have

  
∂
∂

+ ∂
∂

=
2

2

2

2 0v
x

v
y

   ⇒ v is a harmonic function.

Now putting x = z, y = 0 in (1) and (2), we get
  ψ2 0( , )z ze ez z= +            ψ1 0 0( , )z =
Hence by Milne-Thomson method, we have
  f z z i z dz C( ) [ ( , ) ( , )]= + +∫ ψ ψ1 20 0   

     = + + + = − + + = +∫[ ( )] ( ) .0 i ze e dz C i ze e e C i z e Cz z z z z z  

This is the required analytic function. Ans.

Example 33. If u sin 2x
cosh 2y cos 2x

,=
+

 find f (z).    

(R.G.P.V., Bhopal, III Semester, Dec. 2003)

Solution. 
∂
∂

= + − −
+

u
x

y x x x x
y x

(cosh cos ) cos sin ( sin )
(cosh cos )

2 2 2 2 2 2 2
2 2 2

     = + +
+

=2 2 2 2 2 2
2 2

2 2 22 2

2
cosh cos (cos sin )

(cosh cos )
cosh cosy x x x

y x
y x ++
+

=2
2 2 2 1(cosh cos )

( , )
y x

x yφ

    y1 (z, 0) = 
2 2 2
1 2 2

cos
( cos )

z
z
+

+

          
∂
∂

= −
+

= −
+

u
y

x y
y x

x y
y

sin ( sinh )
(cosh cos )

sin sinh
(cosh c

2 2 2
2 2

2 2 2
22 oos )

( , )
2 2 2x

x y= φ

       y2 (z, 0) = 0

        f z z i z dz C z
z

dz C( ) [ ( , ) ( , )] ( cos )
( cos )

= − + = +
+

+ =
+∫ ψ ψ1 2 20 0 2 2 2

1 2
2 1

1 ccos 2z
dz C+∫∫

   = 2 1
2 2

2

cos
sec tan

z
dz C zdz C z C+ = + = +∫∫  Ans.

which is the required function.
Example 34.   Show that the function u e x yxy= −−2 2 2sin ( )  is harmonic. Find the 
conjugate function v and express u + iv as an analytic function of z.
    (R.G.P.V. Bhopal, III Semester, June, 2007, Dec. 2006)
Solution. We have,
  u e x yxy= −−2 2 2sin ( )  ... (1)
Differentiating (1), w.r.t. x, we get

 
∂
∂
u
x

 = 2 22 2 2 2 2 2x e x y y e x yxy xy− −− − −cos ( ) sin ( )
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⇒ 
∂
∂
u
x

 = e x x y y x y x yxy− − − − =2 2 2 2 2
12 2[ cos ( ) sin ( )] ( , )ψ  ... (2)

                   y1 (z, 0) = 2z cos z2 
Differentiating (1), w.r.t. y, we get

 
∂
∂
u
y

 = − − − −− −2 22 2 2 2 2 2y e x y x e x yxy xycos ( ) sin ( )

⇒ 
∂
∂
u
y

 = e y x y x x y x yxy− − − − − =2 2 2 2 2
22 2[ cos ( ) sin ( )] ( , )φ  ... (3)

                   y2 (z, 0) = – 2z sin z2 
Differentiating (2), w.r.t, ‘x’, we get

 
∂
∂

2

2
u

x
 = − − − −−2 2 22 2 2 2 2y e x x y y x yxy [ cos ( ) sin ( )]

 + − + − − − −−e x y x x x y y x x yxy2 2 2 2 2 2 22 2 2 2 2[ cos ( ) ( ) { sin ( )} ( ) cos ( )]

⇒  
∂
∂

2

2
u

x
  =  e xy x y y x y x yxy− − − + − + −2 2 2 2 2 2 2 24 4 2[ cos ( ) sin ( ) cos ( )

− − − −4 42 2 2 2 2x x y xy x ysin ( ) cos ( ) ]

=   e xy x y y x y x y x x yxy− − − + − + − − −2 2 2 2 2 2 2 2 2 28 4 2 4[ cos ( ) sin ( ) cos ( ) sin ( 22 )]  ...(4)
Differentiating (3), w.r.t. ‘y’, we get

 
∂
∂

2

2
u

y
 = − − − − −−2 2 22 2 2 2 2x e y x y x x yxy [ cos ( ) sin ( )]

 + − − + − − − − − 
−e x y y y x y x y x yxy2 2 2 2 2 2 22 2 2 2 2cos ( ) ( ) sin ( ) ( ) cos ( )

⇒   
∂
∂

2

2
u

y
 = e xy x y x x y x yxy− − + − − −2 2 2 2 2 2 2 24 4 2[ cos ( ) sin ( ) cos ( )

− − + −4 42 2 2 2 2y x y xy x ysin ( ) cos ( )]

      
∂
∂

2

2
u

y
 = e xy x y x x y x y y x yxy− − + − − − − −2 2 2 2 2 2 2 2 2 2 28 4 2 4[ cos ( ) sin ( ) cos ( ) sin ( ))]  ... (5)

Adding (4) and (5), we get 
∂
∂

+ ∂
∂

2

2

2

2
u

x
u

y
 = 0

Which proves that u is harmonic.
Now we have to express u + iv as a function of z 

 f (z) = ∫ [y1 (z, 0) – i y2 (z, 0)] dz  = ∫ [2z cos z2 – i (– 2z sin z2)] dz 

  = sin z2 – i cos z2 + C = – i (cos z2 + i sin z2) + C = – i ei z2
 + C Ans.

Example 35.   If u – v = (x – y) (x2 + 4 xy + y2) and f (z) = u + iv is an analytic function of  
       z = x + iy, find f (z) in terms of z by Milne Thomson method.
Solution. We know that
 f (z) = u + iv ... (1)
 i f (z)  = i u – v ... (2)
Adding (1) and (2), we get
 (1 + i) f (z) = (u – v) + i (u + v)
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 F (z) =  U + i V
 U = u – v = (x – y) (x2 + 4xy + y2)

 
∂
∂
U
x

 =  (x2 + 4xy + y2) + (x – y) (2x + 4y)
  = x2 + 4xy + y2 + 2x2 + 4xy – 2xy – 4y2 =  3x2 + 6xy – 3y2 
 f1 (x, y) =  3x2 + 6xy – 3y2

 f1 (z, 0) = 3z2 

 
∂
∂
U
y

 = – (x2 + 4xy + y2) + (x – y) (4x + 2y)
  =  – x2 – 4xy – y2 + 4x2 + 2xy – 4xy – 2y2  = 3x2 – 6xy – 3y2 
 f2 (x, y) = 3x2 – 6xy – 3y2 
 f2 (z, 0) = 3z2 
 F (z) = U + iV

 F´ (z) =  
∂
∂

+ ∂
∂

= ∂
∂

− ∂
∂

U
x

i V
x

U
x

i U
y

 =  f, (`, 0) – i f2 (z, 0) = 3z2 – i 3z2

  = 3 (1 – i) z2 
 F (z) = (1 – i) z3 + C
 (1 + i) f (z) = (1 – i) z3 + C

 f (z) =  
1
1 1

1 1
1 1

3 3
1

−
+

+
+

= − −
+ −

+i
i

z C
i

i i
i i

z C( ) ( )
( ) ( )

  = 
1 2

1 1
1 2 1

2

2
3

1
3

1
− + −

+
+ = − − +i i z C i z C( )

 = – i z3 + C1 Ans.

Note: This example has already been solved on page 162 as Example 33.

Example 36.   If f (z) = u + iv is an analytic function of  z and u – v = cos x + sin x e
2 cos x 2 cosh y

,
y−

−

−

prove that

    f (z) = 1
2

1
2 2

0−



 ( ) =cot .z when f π   (R.G.P.V. Bhopal, III Semester, Dec. 2007)

Solution.  We know that  f (z) = u + iv
∴ i f (z) = iu – v [Multiplying by i]  
On adding, we get (1 + i) f (z) = (u – v) + i(u + v) 
⇒ F (z) = U + iV

 
U = 
V

u v
u v

−
= +

⇒ (1 + i) f (z) = F(z)

We have,    U = u – v = cos sin
cos cosh

x x e
x y

y+ −
−

−

2 2

⇒ U = 
cos sin cosh sinh

cos cosh
x x y y

x y
+ − +

−2 2  [Q e–y = cosh y – sinh y]

  = 
cos cosh
(cos cosh )

sin sinh
(cos cosh )

sin six y
x y

x y
x y

x−
−

+ +
−

= + +
2 2

1
2

nnh
(cos cosh )

y
x y2 −  ...(1)

Differentiating (1) w.r.t. x partially, we get

 ∂
∂
U
x  = 1

2 2
(cos cosh ) cos (sin sinh )( sin )

(cos cosh )
x y x x y x

x y
− − + −

−













  = 1
2

2 2

2
(cos sin cosh cos sinh sin )

(cos cosh )
x x y x y x

x y
+ − +

−
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   =  1
2

1 1
2

− +
−













= − +cosh cos sinh sin
(cos cosh )

cos cos sy x y x
x y

iy x iin sin
(cos cosh )

iy x
x y− 2

  f1(x, y) = 
1

2
− +

−
cos( )

(cos cosh )
x iy

x y
 ...(2)

Replacing x by z and y by 0 in (2), we get

 f1(z, 0) = 1
2

1
1

1
2 12

−
−







=
−

cos
(cos ) ( cos )

z
z z

Differentiating (1) partially w.r.t. y, we get

 ∂
∂
U
y  = 1

2 2
(cos cosh ) . cosh (sin sinh )( sinh )

(cos cosh )
x y y x y y

x y
− − + −

−













  = 1
2

2 2

2
(cos cosh ) sin sinh (cosh sinh )

(cos cosh )
x y x y y y

x y
+ − −

−













  f2(x, y) = 1
2

1
2

cos cosh sin sinh
(cos cosh )

x y x y
x y

+ −
−









  ...(3) 

Replacing x by z and y by 0 in (3), we have

 f2(z, 0) = 1
2

1
1

1
2

1
12

cos
(cos )

.
cos

z
z z

−
−







= −
−( )

 F′(z) = ∂
∂

+ ∂
∂

= ∂
∂

− ∂
∂

U V U U
x

i
x x

i
y  [C–R equations]

  = f1(z, 0) – i f2(z, 0)
By Milne Thomson Method,
 F(z) = φ φ1 20 0( , ) ( , )z i z dz C−  +∫
  = 1

2
1

1 2
1

1
⋅

−
+ ⋅

−






+∫ ( cos ) cosz
i

z
dz C

  = 1
2

1
2 2

1
4

22
+ + = + +∫ ∫i

z
dz C i z dz C

sin /
( / )cosec2

  = 1
4 1

2

1
2 2

+( ) ⋅ −

( ) + = − +( ) +i z C i z C( cotcot /2)

⇒ (1 + i) f (z) = − +( ) +1
2 2

i z Ccot      ⇒   f (z) = − +
+

1
2 2 1

cot z C
i  ...(4)

On putting z = 
π
2

 in (4), we get

 f π
2( )  = − +

+
1
2 4 1

cot π C
i

 0 = − +
+

⇒
+

=1
2 1 1

1
2

C
i

C
i  [ f π

2( )  = 0, given]

On putting the value of C
i1+  in (4), we get

 f (z) = − +1
2 2

1
2

cot z
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Hence, f (z) = 1
2

1
2

−( )cot z , when f π
2

0





= .  Proved.

EXERCISE 7.4

Show that the following functions are harmonic  and determine the conjugate functions.
 1. u = 2 x (1 – y) Ans. v = x2 – y2 + 2 y + C  2.  u = 2x – x3 + 3xy Ans.  v = 2 y – 3 x2y + y3 + C
Determine the analytic function, whose real part is

 3.   log x y2 2+  (K.U., 2009)  Ans. log z + C                  4. cos x cosh y   Ans. cos z + c
 5. e–x (cos y + sin y) (AMIETE, June 2010)
 6. e x y y yx2 2 2( cos sin )−  Ans. z e iCz2 +    7. e x y y y f ix− + =( cos sin ) ( ) .and 0  Ans. ze iz− +  
Determine the analytic function, whose imaginary part is 

 8. v x y x y= + + −log( )2 2 2  Ans. 2 2i z i z Clog ( )− − +   9. v = sinh x cos y     Ans. sin iz + C

 10. v r
r

= −





1 sin θ  Ans. z
z

C+ +1

 11. Find the analytic function whose real part is 
sin

(cosh cos )
2

2 2
x

y x−
 (MDU Dec. 2010) 

  [Hint: See sloved Example 41 on page 168]        Ans. f(x) = cot z + c

 12. If f (z) = u + iv is an analytic function of  z = x + iy and u – v  = 
e x x

y x

y − +
−

cos sin
cosh cos

,  find  

f (z) subject to the condition that f iπ
2

3
2







= − .  Ans. f z z i( ) cot= + −
2

1
2

 13. Find an analytic function f (z) = u(r, θ) + iv(r, θ) such that V(r, θ) = r2 cos 2θ – r cos θ + 2.
   Ans. i [z2 – z + 2]
 14. Show that the function u = x2 – y2 – 2xy – 2x –  y – 1 is harmonic. Find the conjugate harmonic 

function v and express u + iv as a function of z where z = x + iy.
  Ans. (1 + i) z2 + (–2 + i) z – 1

 15. Construct an analytic function of the form f (z) = u + iv, where v is tan–1 (y/x), x ≠ 0, y ≠ 0
      Ans. log cz
 16. Show that the function u = e–2xy sin (x2 – y2) is harmonic. Find the conjugate function v and 

express u + iv as an analytic function of z. Ans.  v = e–2xy cos (x2 – y2) + C
            f (z) = – ieiz2 + C1
 17. Show that the function v (x, y) = ex sin y is harmonic. Find its conjugate harmonic function 

u (x, y) and the corresponding analytic function f (z). (AMIETE, June 2009)
Choose the correct answer:
 18. The harmonic conjugate of u = x3 – 3xy2 is
  (a) y3 – 3xy2 (b)  3x2 y – y3 (c) 3xy2 – y3 (d) 3xy2 – x3     (AMIETE, June 2010) 
7.21 PARTIAL DIFFERENTIATION OF FUNCTION OF COMPLEX VARIABLE

Example 37.   Prove that

         4
2 2

2

2

2
∂

∂ ∂
= ∂

∂
+ ∂

∂









z z x y

Solution. We know that
  x + iy = z   ... (1),   x iy z− =  ... (2)
From (1) and (2),  we get
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     x z z y i z z= + = − −1
2 2

( ), ( )

⇒   
∂
∂

=x
z

1
2

,    
∂
∂

= −y
z

i
2

 and              
∂
∂

=x
z

1
2

,    
∂
∂
=

y
z

i
2

We know that,

   
∂
∂

= ∂
∂

∂
∂







+ ∂
∂

∂
∂







= ∂
∂







+ ∂
∂

−





=
z x

x
z y

y
z x y

i1
2 2

1
22

∂
∂

− ∂
∂





x

i
y

      ...(3)

   
∂

∂
= ∂

∂
∂
∂







+ ∂
∂

∂
∂







= ∂
∂







+ ∂
∂







=
z x

x
z y

y
z x y

i1
2 2

1
2

∂∂
∂

+ ∂
∂









x

i
y

       ... (4)

From (3) and (4), we get

      
∂

∂ ∂
= ∂

∂
∂
∂







= ∂
∂

− ∂
∂











∂
∂

+ ∂
∂











2 1
4z z z z x

i
y x

i
y

   = 
1
4

1
4

2

2

2

2

2 2 2

2

2

2

∂
∂

+ ∂
∂

+ ∂
∂ ∂

− ∂
∂ ∂









 = ∂

∂
+ ∂

∂








x y

i
x y

i
x y x y

  

⇒            4
2 2

2

2

2
∂

∂ ∂
= ∂

∂
+ ∂

∂











z z x y

   Proved.

Example 38. If f (z) is a harmonic function of z, show that 

∂
∂









+ ∂
∂









= ′
x

f z
y

f z f z| ( ) | | ( ) | | ( ) |
2 2

2   (K.U., 2009, U.P. III Semester, June 2009)

Solution.  Since f (z) = u (x, y) + i v (x, y)

so                    | f (z) | = u v2 2+  ... (1)
Differentiating (1) partially w.r.t. ‘x’, we get

                
∂
∂

= ∂
∂

+
x

f z
x

u v| ( ) | ( )2 2

  = + ∂
∂

+ ∂
∂







=

∂
∂

+ ∂
∂

+
=

∂
∂

+ ∂
−1

2
2 22 2

1
2

2 2
( )u v u u

x
v v

x

u u
x

v v
x

u v

u u
x

v vv
x

f z
∂

| ( )|
 ... (2)

Similarly 
∂
∂

=

∂
∂

+ ∂
∂

y
f z

u u
y

v v
y

f z
| ( )|

| ( )|
 ... (3)

Squaring (2) and (3) adding, we get

  
∂
∂







+ ∂
∂









 =

∂
∂

+ ∂
∂







+ ∂
∂

x
f z

y
f z

u u
x

v v
x

u u
y

| ( )| | ( )|
2 2

2

++ ∂
∂









v v

y
f z

2

2| ( )|

 =

∂
∂







+ ∂
∂

∂
∂

+ ∂
∂







+ ∂
∂









 + ∂

∂
u u

x
uv u

x
v
x

v v
x

u u
y

u u
y

2 2 2

2 2 ..

| ( )|

v v
y

v v
y

f z

∂
∂

+ ∂
∂











2

2

By C-R equation    
∂
∂

= ∂
∂

∂
∂

= − ∂
∂

u
x

v
y

u
y

v
x

and   
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                2 2uv u
x

v
x

uv v
y

u
y

∂
∂

∂
∂

= ∂
∂









 − ∂

∂










Putting the value of 2 2uv u
x

v
x

uv v
y

u
y

∂
∂

∂
∂

= − ∂
∂

∂
∂

. .  in (4), we get

∂
∂







+ ∂
∂









 =

∂
∂







− ∂
∂

∂
∂

x
f z

y
f z

u u
x

uv v
y

u

| ( )| | ( )|
.2 2

2

2
yy

v v
x

u u
y

uv u
y

v
y

v v
y

f z

+ ∂
∂







+ ∂
∂









 + ∂

∂
∂
∂

+ ∂
∂











2 2 2

2 .

| ( ))|2

=

∂
∂







+ ∂
∂









 + ∂

∂






+ ∂
∂









u u

x
u u

y
v v

x
v v

y
f

2
2

2
2

2
2

2
2

| (( )|z 2  =

∂
∂







+ ∂
∂























+ ∂
∂







+ ∂
∂









u u

x
u
y

v v
x

v
y

2
2 2

2
2














2

2| ( )|f z

=

∂
∂







+ −∂
∂



















+ ∂
∂







+ ∂
∂




u u
x

v
x

v v
x

u
x

2
2 2

2
2














2

2| ( )|f z
 [C – R equations]

=

+ ∂
∂







+ ∂
∂



















=

∂
∂

( )

| ( )|

| ( ) |u v u
x

v
x

f z

f z u
x

2 2
2 2

2

2 





+ ∂
∂



















= ∂
∂







+ ∂
∂







2 2

2

2
v
x

f z
u
x

v
x| ( )|

22

  [ | f (x) |2 = u2 + v2 ]
= | f ´ (z) |2 Proved.

Example 39. Prove that 
∂
∂

+ ∂
∂









 = − ′−

2

2

2

2
2 21

x y
u P P u f zP P| | ( )| | | ( ) |

Solution. We know that 
∂
∂

+ ∂
∂

= ∂
∂ ∂

2

2

2

2

2
4

x y z z
 [Example 46, page 173]

 
∂
∂

+ ∂
∂









 = ∂

∂ ∂
+

2

2

2

2

21
2

4
x y

u
z z

f z f zP
P

P| | [ ( ) ( )]  Q u f z f z= +





1
2

[ ( ) ( )]

 = 
4

2
1

2
11

2
2

P
P

P
P

z
P f z f z f z P P f z f z f z∂

∂
+ ′ = − + ′ ′−

−
−[ ( ) ( )] ( ) ( )[ ( ) ( )] ( ) ff z( )

    = P P f z f z f z f z
P

( ) { ( ) ( )} [ ( ) ( )]− +





′ ′
−

1 1
2

2

  = P P u f zP( )| | | ( ) |− ′−1 2 2  Proved.

Example 40. Prove that

  
∂
∂

+ ∂
∂









 ′

2

2

2

2x y
f zlog | ( ) | = 0

Solution. We have, 
∂
∂

+ ∂
∂









 = ∂

∂ ∂

2

2

2

2

2

4
x y z z

 (Example 46 on page 173)

Hence 
∂
∂

+ ∂
∂









 ′ = ∂

∂ ∂
′ = ∂

∂ ∂

2

2

2

2

2 2

4 4 1
x y

f z
z z

f z
z z

{log | ( ) |} {log| ( ) |}
22

2log| ( ) |′f z

 = 2 2 2 0 12 2∂
∂ ∂

′ ′ = ∂
∂ ∂

′ + ′ = ∂
∂

+
′z z

f z f z
z z

f z f z
z

log{ ( ) ( )} [log ( ) log ( )]
ff z

f z
( )

( )′′
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 = 2 ∂
∂

′′
′z

f z
f z

( )
( )

 
z

w r t z
is constant in regards to

differentiation . . .










 = 2 × 0
 = 0 Proved.

Example 41.   Prove that 
∂
∂

+ ∂
∂









 = ′

2

2

2

2
2 22

x y
Rf z f z| ( ) | | ( ) |

Solution. f (z) = u + iv or R f (z) = u ⇒ Real part of f (z) = u

           
∂
∂

= ∂
∂x

u u u
x

2 2

         
∂
∂

= ∂
∂







+ ∂
∂

2

2
2

2 2

22 2
x

u u
x

u u
x

 ... (1)

Similarly,       
∂
∂

= ∂
∂









 + ∂

∂

2

2
2

2 2

22 2
y

u u
y

u u
y

 ... (2)

Adding (1) and (2), we get

        
∂
∂
+
∂
∂










=

∂
∂






 +

∂
∂










2

2

2

2
2

2

2
x y

u u
x

u
y 
















+

∂
∂
+
∂
∂











2 2

2

2

22u u
x

u
y

      = 2 0 2
2 2 2∂

∂






+ ∂
∂























+ = ∂
∂







+ − ∂
∂







u
x

u
y

u
x

v
x 













∂
∂

= − ∂
∂









 = ′

2
22u

y
v
x

f z| ( ) |

⇒           
∂
∂

+ ∂
∂









 = ′

2

2

2

2
2 22

x y
R f z f z| ( ) | | ( ) |  Proved.

Example 42.   If f (z) is regular function of z, show that

 
∂
∂

+ ∂
∂









 = ′

2

2

2

2
2 24

x y
f z f z| ( ) | | ( ) |  (R.G.P.V., Bhopal, III Semester, June 2004)

Solution.    f z u iv( ) = +

       | ( )|f z u v2 2 2= +  ... (1)
Let           φ = +u v2 2

Differentiating (1) w.r.t. x, we get

   
∂
∂

= ∂
∂

+ ∂
∂

φ
x

u u
x

v v
x

2 2

      
∂
∂

= ∂
∂

+ ∂
∂







+ ∂
∂

+ ∂
∂



















2

2

2

2

2 2

2

2

2φ
x

u u
x

u
x

v v
x

v
x

 ...(2)

Similarly,            
∂
∂

= ∂
∂

+ ∂
∂









 + ∂

∂
+ ∂

∂






















2

2

2

2

2 2

2

2

2φ
y

u u
y

u
y

v v
y

v
y

 ... (3)

Adding (2) and (3), we get

∂
∂

+ ∂
∂

= ∂
∂

+ ∂
∂









 + ∂

∂
+ ∂

∂










2

2

2

2

2

2

2

2

2

2

2

22φ φ
x y

u u
x

u
y

v v
x

v
y

 + ∂
∂







+ ∂
∂









 + ∂

∂






+ ∂
∂




















u
x

u
y

v
x

v
y

2 2 2 2
















 ... (4)

By C – R equations  
∂
∂







= ∂
∂











u
x

v
y

2 2

    
∂
∂









 = − ∂

∂






= ∂
∂







u
y

v
x

v
x

2 2 2

 ... (5)
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By Laplace equations   
∂
∂

+ ∂
∂

=
2

2

2

2 0u
x

u
y

      ⇒    
∂
∂

+ ∂
∂

=
2

2

2

2 0v
x

v
y

On putting the values of 
∂
∂

+ ∂
∂











∂
∂

+ ∂
∂











∂
∂

∂
∂

2

2

2

2

2

2

2

2
u

x
u

y
v

x
v

y
v
x

v
y

, , ,  from (5) in (4), we get

               
∂
∂

+ ∂
∂

= ∂
∂







+ ∂
∂























∂
∂

+ ∂
∂

2

2

2

2

2 2 2

2

2

24φ φ
x y

u
x

v
y x y

,








 = ∂

∂
+ ∂

∂
φ 4

2u
x

i v
x

        
∂
∂

+ ∂
∂









 = ′

2

2

2

2
2 24

x y
f z f z| ( )| | ( )|  Proved.

Example 43. If |f(z)| is constant, prove that f(z) is also constant.
Solution.         f (z) = u + iv
     | f (z) |2 = u2 + v2

       | f (z) | = constant = c (given)
     u2 + v2 = c2 ... (1)

Differentiating (1) w.r.t. x, we get 2 2 0u u
x

v v
x

∂
∂

+ ∂
∂

=       ⇒ ∂
∂

+ ∂
∂

=u u
x

v v
x

0  ... (2)

Differentiating (1) w.r.t. ‘y’, we get 2 2 0u u
y

v v
y

∂
∂

+ ∂
∂

=

                                  − ∂
∂

+ ∂
∂

=u v
x

v u
x

0  ... (3)

Squaring (2) and (3) and then adding, we get

 u u
x

v v
x

u v
x

v u
x

2
2

2
2

2
2

2
2

0∂
∂







+ ∂
∂







+ ∂
∂







+ ∂
∂







=

         ( )u v u
x

v
x

2 2
2 2

0+ ∂
∂







+ ∂
∂



















=

             
∂
∂







+ ∂
∂







=u
x

v
x

2 2

0  

As                  f z u iv f z u
x

i v
x

( ) ( )= + ⇒ ′ = ∂
∂

+ ∂
∂

                         ′ = ∂
∂

− ∂
∂

f z u
x

i v
x

( )

                      | ( ) |′ = ∂
∂







+ ∂
∂







=f z u
x

v
x

2
2 2

0

                                 | ( ) | ( )′ = ⇒f z f z2 0  is constant. Proved.

EXERCISE 7.5

 1. If f (z) = u + iv is an analytic function of z = x + iy, and y is any function of x and y with 
differential  coefficients of the first two orders, then

   ∂
∂







+ ∂
∂







ψ ψ
x y

2 2
 = ∂

∂






+ ∂
∂















 ′ψ ψ

u v
f z

2 2
2( )  

  and ∂
∂

+ ∂
∂

2

2

2

2
ψ ψ

x y
 = ∂

∂
+ ∂

∂









 ′

2

2

2

2
2ψ ψ

u v
f z( ) .
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 2. If | f ′(z)| is the product of a function of x and a function of y, then show that 
   f ′(z) = exp (α z2 + βz + γ)
  where α is a real and β and γ are complex constants.
Choose the correct alternative:
 3. If | f (z) | is constant then f (z) is
  (a) Variable          (b) Partially variable and constant  (c) Constant   (d) None of these Ans. (c)
 4. If f (z) = u + iv then |f (z)| is equal to

  (a) u v2 2+  (b) u2 + v2  (c) u + v (d) u v2 2−  Ans. (a)
 5. If z = r (cos θ + i sin θ) then | z |3 is equal to
  (a) (cos θ + i sin θ)3 (b) r3 (cos θ + i sin θ)3 (c) r3/2 (d) r3 Ans. (d)

7.22 INTRODUCTION (LINE INTEGRAL)

In case of real variable, the path of integration of f x dxa
b ( )∫  is always along the x-axis from 

x = a to x = b. But in case of a complex function f (z) the path of the def inite integral f z dz
a

b
( )∫  

can be along any curve from z = a to z = b.
 z = x + iy      ⇒ dz = dx + idy ... (1)   dz = dx if y = 0  ... (2) dz = idy if x = 0  ... (3)
In (1), (2), (3) the direction of dz are different. Its value depends upon the path (curve) of 

integration. But the value of integral from a to b remains the same along any regular curve from 
a to b.

In case the initial point and final point coincide so that c is a closed curve, then this integral 

is called contour integral and is denoted by 
C

f z dz( ) .
∫

If f (z) = u (x, y) + iv (x, y), then since dz = dx + idy,
we have

      f z dz u iv dx idy u dx v dy i v dx u dy
C C CC

( ) ( )( ) ( ) ( )
∫ ∫ ∫∫= + + = − + +

which shows that the evaluation of the line integral of a complex function can be reduced to the 
evaluation of two line integrals of real functions.

Let us consider a few examples:
Complex Integral (Line Integral)

Example 48. Evaluate ( )z dzi 2
0
2+

∫  along the real axis from z = 0 to z = 2 and then along 
a line parallel to y-axis from z = 2 to z = 2 + i. 

(R.G.P.V., Bhopal, III Semester, June 2005)        

Solution.  ( ) ( ) ( )z dz x iy dx idyi i2
0
2 2

0
2+ +

∫ ∫= − +

                             = ( ) ( )x dx i y idy
OA AB

2 22∫ ∫+ −

                              [Along OA, y = 0, dy = 0, x varies 0 to 2.  
       Along AB, x = 2, dx = 0 and y varies 0 to 1]

                              = x dx i y i dy2 2

0

1

0

2
2+ −∫∫ ( )

                           = 
x i i y y d y i y i y y3

0

2
2

0

1 2
3

0

1

3
4 4 8

3
4 2

3








 + − − = + − −









∫ ( )

                              = + − −





= + − = + + = +8
3

4 2 1
3

8
3 3

11 6 1
3

8 11 6 1
3

14 11i i i i i i( ) ( ) ( )  

Which is the required value of the given integral.  Ans. 

X

B

A

1
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X

Y

O 21

1

2

3

A (1, 1)

B (2, 3)

Example 49.  Evaluate ( ) ,x iy dz
i 2

0

1
−

+

∫  along the path

         (a)  y = x  (R.G.P.V., Bhopal, III Semester, Dec. 2007)        (b) y = x2. 
Solution.     (a) Along the line y = x,

  dy = dx so that dz = dx + idy
 ⇒                               dz = dx + idx = (1 + i) dx

 \ ( )x iy dz
i 2

0

1
−

+

∫   
 [On putting y = x and dz = (1 + i)dx]

   = ( )( )x ix i dx2

0

1
1− +∫

   = ( ) ( )1
3 2

1 1
3

1
2

3 2

0

1

+ −








 = + −





i x i x i i  = 
( )( ) .1 2 3

6
5
6

1
6

+ − = −i i i              

 Which is the required value of the given integral. Ans.
 (b) Along the parabola y = x2, dy = 2x dx so that
  dz = dx + idy ⇒ dz = dx + 2ix dx = (1 + 2ix) dx
and x varies from 0 to 1.

 \ ( )x iy d x
i 2

0

1
−

+

∫  = ( )( ) ( )( )x ix ix dx x i ix dx2 2

0

1 2

0

1
1 2 1 1 2− + = − +∫ ∫

   = ( ) ( ) ( )1 1 2 1
3 2

2

0

1 3 4

0

1

− + = − +








∫i x ix dx i x i x

                             = ( ) ( )( ) ( )1 1
3

1
2

1 2 3
6

1
6

2 3 2 3 5
6

1
6

− +





= − + = + − + = +i i i i i i i

 Which is the required value of the given integral. Ans.

Example 50.  Evaluate ( )12 42z iz dz
C

−∫ along the curve C 
joining the points (1, 1) and (2, 3)                                 (U.P., III Semester, Dec. 2009)
Solution. Here, we hae

   ( )12 42z iz
C

−∫ dz  = [ ( ) ( )] ( )12 42x iy i x iy dx i dy
C

+ − + +∫
   = ∫C

 [12 (x2 – y2 + 2i xy) – 4ix + 4y] (dx + i dy)

  = ∫C
(12 x2 – 12y2 + 24 ixy – 4ix + 4y) (dx + i dy) ... (1)

Equation of the time AB passing through (1, 1) and (2, 3) is

 y – 1 = −
−

−3 1
2 1

1( )x

 y – 1 =  2 (x – 1) ⇒  y = 2x – 1 ⇒ dy = 2 dx
Putting the values of y and dy in (1), we get
 = 

1

2
∫ (12x2 – 12 (2x – 1)2 + 24 ix (2x – 1) – 4ix + 

4 (2x – 1)] (dx + 2i dx)

 = 
1

2
∫ [12x2 – 48x2 + 48x – 12 + 48 ix2 – 24 ix – 4ix + 8x – 4] (1 + 2i) dx

 = (1 + 2i) 
1

2
∫ [–36 + 48i) x2 + (56 – 28i) x – 16] dx

 = (1 + 2i) ( ) ( )− + + − −












36 48
3

56 28
2

16
3 2

1

2

i x i x x

P(1, 1)

y
=

x

y
=

x
2

X

Y

O
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 = (1 + 2i) ( ) ( ) ( ) ( )− + + − − × − + − − +





36 48 8
3

56 28 2 16 2 36 48 1
3

56 28 1
2

16i i i i

 = (1 + 2i) (– 96 + 128 i + 112 – 56i – 32 + 12 – 16i – 28 + 14 i + 16
 = (1 + 2i) (– 16 + 70i) = – 16 + 70i – 32i – 140 = – 156 + 38i Ans.

Example 51. Evaluate ( )z a dzn−∫  where c is the circle with centre a and r. Discuss the  
    case when n = –1.                  
Solution. The equation of circle C is | |z a r z a rei− = − =or θ

  where θ varies from 0 to 2p
                       dz ire di= θ θ

      ( ) .z a dz r e ire dn n in i

C
− = ∫∫ θ θ

π

θ
0

2



               

               = =
+











+ + +
+

∫ir e d ir e
i n

n i n n
i n

1 1

0

2
1

1

0

2

1
( )

( )

( )
θ

π θ π

θ   [Q n ≠ –1]

 =
+

−
+

+r
n

e
n

i n
1

2 1

1
1[ ]( ) π  =

+
+ + + − =

+
+ −

+ +r
n

n i n r
n

i
n n1 1

1
2 1 2 1 1

1
1 0 1[cos ( ) sin ( ) ] [ ]π π

 =  0.  [When n ≠ –1]

        Which is the required value of the given integral.
When n = –1,

            
dz

z a
ire d

re
i d i

i

iC −
= = =∫∫∫

θ

θ

ππ θ θ π2
0

2

0

2

.


 Ans.

Example 52. Evaluate ( ) ,z z dz
C

−∫ 2  where C is the upper half of the circle |z – 2| = 3. 

What is the value of the integral if C is the lower half of the above given circle?
(MDU, Dec 2009)

Solution. Put z = reiθ = 3eiθ  ⇒  dz = 3i.eiθ dθ
Upper Circle

( ) ( )z z dz e e ie d
C

i i i− = −∫ ∫2 2

0
3 9 3θ θ θπ

θ

    = −∫ [ ]9 272 3

0
ie ie di iθ θπ

θ  = −





9
2

27
3

2 3

0
e ei iθ θ

π

    = −





− −





9
2

9 9
2

92 3e ei iπ π

    = 
9
2

2 12 3e ei iπ π− +   
e i

e e

i

i i

θ

π π

θ θ= +

∴ = = −











cos sin

,2 31 1
    = 

9
2

1 2 1 18[ ]+ + =  Ans. 
Lower Circle

 ( ) ( )z z dz ie ie d
C

i i− = −∫ ∫2 2 32
9 27θ θ

π

π
θ

        = 
9
2

9 9
2

9 9
2

92 3
2

4 6 2 3e e e e e ei i i i i iθ θ

π

π
π π π π−





= −





− −





        = 
9
2

9 9
2

9 18−





− +





= −  Ans.

C

r

z = re
i�

�
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EXERCISE 7.6

 1. Integrate f (z) = x2 + ixy from A (1, 1) to B (2, 8) along

  ( i) the straight line AB; ( ii) the curve C, x = t, y = t3.   Ans. (i) − −1
3

147 71( ) i  (ii) − −





1094
21

124
5

i

 2. Evaluate 1
2 2 1−

+
∫ + +i

i x iy dz( )  along 

  (i) x t y t= + = −1 2 12, ; (ii) the straight line joining 1 – i and 2 + i. Ans. (i) 4 25
3

+ i  (ii) 4 + 8i

(R.G.P.V., Bhopal, Dec. 2008)
 3. Evalute the line integral z dz

C

2∫  where C is the boundary of a triangle with vertices  

0, 1 + i. –1 + i clockwise. Ans. 0
 4. Evaluate ( )z dz

C
+∫ 1 2  where C is the boundary of the rectangle with vertices at the points 

a + ib, – a + ib, – a – ib, a – ib. Ans. 0

 5. Evaluate the integral | |z dz
c∫ , where C is the straight line from z = – i to z = i. Ans. i

 6. Evaluate the integral | | ,z dz
c∫  where C is the left half of the unit circle |z| = 1 from z = –i 

to z = i. Ans. 2i

 7. Evaluate the integral log ,z dz
c∫  where C is the unit circle |z| = 1. Ans. 2pi

 8. Integrate xz along the straight line from A (1, 1) to B (2, 4) in the complex plane. Is the value 
the same if the path of integration from A to B is along the curve x = t, y = t2 ?

Ans. − +151
15

45
4

i

 9. Evaluate ( )z dzi 2
0
2+

∫ , along 
  (i) the real axis to 2 and then vertically to 2 + i, (ii) the line y = x/2.

(U.P., III Semester, June 2009)   Ans. (i) 1
3

14( )+ i ,   (ii) 
5
3

2( )− i
Choose the correct answer:

 10. The value of 
4 5

4

2z z
z

dz
C

+ +
−∫ ,  where C : 9x2 + 4y2 = 36

  (i) – 1              (ii) 1              (iii) 2             (iv) 0   (AMIETE, June 2009) Ans. (iv)
 
7.23 IMPORTANT DEFINITIONS

 (i) Simply connected Region. A connected region is said to be a simply connected if all the 
interior points of a closed curve C drawn in the region D are the points of the region D.

(ii) Multi-Connected Region. Multi-connected region is bounded by more than one curve. We 
can convert a multi-connected region into a simply connected one, by giving it one or more cuts.

Note. A function f (z) is said to be meromorphic in a region R if it is analytic in the region 
R except at a finite number of poles.

Multi-Connected Region Simply Connected Region Simply Connected Region
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(iii) Single-valued and Multi-valued function
If a function has only one value for a given value of z, then it is a single valued function.
For example   f (z) = z2

If a function has more than one value, it is known as multi-valued function,

For example   f (z) = z
1
2

(iv) Limit of a function
A function f (z) is said to have a limit l at a point z = z0, if for a given an arbitrary chosen 
positive number ε, there exists a positive number d, such that
   | ( ) | | |f z l z z− < − <ε δfor 0

It may be written as lim ( )
z z

f z l
→

=
0

(v) Continuity
A function f (z) is said to be continuous at a point z = z0 if for a given an arbitrary positive 
number ε, there exists a positive number d, such that
   | ( ) | | |f z l z z− < − <ε δfor 0

In other words, a function f (z) is continuous at a point z = z0 if
   (a)  f(z0) exists                 (b) lim ( ) ( )

z z zf z f z
→ ==

0
0

 (vi) Multiple point. If an equation is satisfied by more than one value of the variable in the 
given range, then the point is called a multiple point of the arc.

 (vii) Jordan arc. A continuous arc without multiple points is called a Jordan arc.
  Regular arc. If the derivatives of the given function are also continuous in the given 

range, then the arc is called a regular arc.
 (viii) Contour. A contour is a Jordan curve consisting of continuous chain of a finite number 

of regular arcs.
  The contour is said to be closed if the starting point A of the arc coincides with the end 

point B of the last arc.
(ix)    Zeros of an Analytic function.
  The value of z for which the analytic function f (z) becomes zero is said to be the zero 

of f (z). For example,   (1) Zeros of z2 – 3z + 2 are z = 1 and z = 2.

                                   (2) Zeros of cos z is ± ( ) , , , ..........2 1
2

1 2 3n n− =π where

7.24 CAUCHY’S  INTEGRAL  THEOREM    
(AMIETE, Dec. 2009, U.P. III Semester, 2009-2010, R.G.P.V., Bhopal, III Semester, Dec. 2002)

If a function f(z) is analytic and its derivative f ′(z) continuous at all points inside and on a 
simple closed curve c, then  f z dzc ( )∫ = 0 .

Proof. Let the region enclosed by the curve c be R and let
  f(z) = u + iv,   z = x + iy, dz = dx + idy

       f z dz u iv dx idy u dx v dy i v dx u dy
c c c c

( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫= + + = − + +

         = − ∂
∂

− ∂
∂









 + ∂

∂
− ∂

∂








∫∫ ∫∫v

x
u
y

dx dy i u
x

v
y

dx dy
R c

     (By Green’s theorem)

Replacing − ∂
∂

∂
∂

∂
∂

∂
∂

v
x

u
y

v
y

u
x

by and by  we get

    f z dz
c

( )∫  = 
∂
∂

− ∂
∂









 + ∂

∂
− ∂

∂






∫∫ ∫∫
u
y

u
y

dx dy i u
x

u
x

dx dyR c  = 0 + i0 = 0  

A

B D
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O–1

y

x

1

2
x�

y�

 ⇒    f z dz
C

( ) =∫ 0  Proved.

Note. If there is no pole inside and on the contour then the value of the integral of the 
function is zero.

Example 53. Find the integral c
z z

z
dz∫

+ +
+

3 7 1
1

2
,  where C is the circle | z | = 

1
2

.

Solution. Poles of the integrand are given by putting the denominator equal to zero.
z + 1 = 0 ⇒ z = – 1

The given circle | z | = 
1
2

 with centre at z = 0 and radius 
1
2

   

does not enclose any singularity of the given function.

C
z z

z
dz∫

+ +
+

=3 7 1
1

0
2

 (By Cauchy Integral theorem)   Ans.

Example 54. Evaluate 
dz

zC 2 9+∫ ,


 where C is

   (i)  | z + 3i | = 2  (ii) | z | = 5 (M.D.U. May 2009)

Solution. Here f (z) = 
1

92z +
The poles of f (z) can be determined by equating the 
denominator equal to zero.

(i)  \   z2 + 9 = 0                   ⇒     z = ± 3i  
     Pole at z = – 3i lies in the given circle C.

          f z dz
z

dz
C C

( ) =
+∫ ∫
1

92  = 
1

3 3( ) ( )z i z i
dz

C + −∫

   = −
+∫
1

3
3

z i
z i

dz
C

   = 2 1
3 3

π i
z i z i−





 = −

   = 2 1
3 3

2
6 3

π π πi
i i

i
i− −







= − = −    Ans.

(ii)  Both the poles z = 3i and z = – 3i 
    lie inside the given contour

            f z dz
z

dz
C C

( ) =
+∫ ∫
1

92  =
+ −∫

1
3 3( ) ( )z i z i

dz
C

   = −
+∫
1

3
31

z i
z i

dz
C

 + 

1
3
32

z i
z i

dz
C

+
−∫

   =
−







+
+





= − =

2 1
3

2 1
33 3

π πi
z i

i
z iz i z i

   =
− −







+
+







= − + =2 1
3 3

2 1
3 3 3 3

0π π π πi
i i

i
i i

                Ans.
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C2 C1

A
B

7.25 EXTENSION OF CAUCHY’S THEOREM TO MULTIPLE CONNECTED REGION
If f (z) is analytic in the region R between two simple closed curves c1 and c2 then
       

f z dz f z dz
c c

( ) ( )
1 2∫ ∫=

Proof.  f z dz( )∫ = 0
where the path of integration 
is along AB, and curves c2 in 
clockwise direction and along 
BA and along c1 in anticlock-
wise direction.

f z dz f z dz f z dz f z dzc cBAAB ( ) ( ) ( ) ( )− + + =∫ ∫∫∫ 2 1
0

⇒  − + =∫ ∫f z dz f z dz
c c

( ) ( )
2 1

0  as f z dz f z dz
BAAB

( ) ( )= −∫∫
  f z dz f z dzc c( ) ( )

1 2∫ ∫=  Proved.

Corollary.  f z dz f z dz f z dz f z dzc c c c( ) ( ) ( ) ( )
1 2 3 4∫ ∫ ∫ ∫= + +

7.26 CAUCHY INTEGRAL FORMULA      
If f (z) is analytic within and on a closed curve C, and if a is any point within C, then

         f a
i

f z
z a

dzz( ) ( )=
−∫

1
2π

  

(AMIETE June 2010, U.P., III Semester Dec. 2009 R.G.P.V., Bhopal, III Semester, June 2008)

Proof. Consider the function 
f z
z a

( )
−

, which is analytic at all points 

within C, except z = a. With the point a as centre and radius r, draw a 
small circle C1 lying entirely within C.

Now 
f z
z a

( )
−

 is analytic in the region between C and C1; hence by 

Cauchy’s Integral Theorem for multiple connected region, we have

    
f z dz
z a

f z
z a

dz f z f a f a
z a

dz
c c c

( ). ( ) ( ) ( ) ( ) .
−

=
−

= − +
−∫ ∫ ∫

1 1

        = 
f z f a

z a
dz f a dz

z ac c

( ) ( ) ( )−
−

+
−∫ ∫

1 1

 ... (1)

For any point on C1

Now, 
f z f a

z a
dz f a re f a

re
ire d

c

i

i
i( ) ( ) ( ) ( )−

−
= + −∫ ∫

1 0

2 θ

θ

π θ θ     [ z a r ei− = θ  and dz ir e di= θ θ ]

         = [ ( ) ( )]f a re f a idi+ − =∫ θ
π

θ
0

2
0  (where r tends to zero).

       
dz

z a
ir e d

r e
id i i

c

i

i−
= = = [ ] =∫ ∫ ∫

1 0

2

0

2

0
2 2

θ

θ

π π πθ
θ θ π

Putting the values of the integrals in R.H.S. of (1), we have

  
f z dz
z a

f a i f a
i

f z
z a

dzc c
( ) ( ) ( ) ( ) ( )

−
= + ⇒ =

−∫ ∫0 2 1
2

π
π

  Proved.

Z

a C

C1
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7.27 CAUCHY INTEGRAL FORMULA FOR THE DERIVATIVE OF AN ANALYTIC  
 FUNCTION                        (R.G.P.V., Bhopal, III Semester, Dec. 2007)

If a function f (z) is analytic in a region R, then its derivative at any point z = a of R is also 
analytic in R, and is given by

   ′ =
−∫f a

i
f z

z a
dzc( ) ( )

( )
1

2π 2

where c is any closed curve in R surrounding the point z = a.
Proof. We know Cauchy’s Integral formula

   f a
i

f z
z a

dzc( ) ( )
( )

=
−∫

1
2π

 ... (1)

Differentiating (1) w.r.t. ‘a’, we get

             ′ = ∂
∂ −







∫f a
i

f z
a z a

dzc( ) ( )1
2

1
π

             ′′ ==
−−∫∫f a

i
f z
z a

dz
c

( ) ( )
( )

1
2 2ππ

Similarly,            ′′′′ ==
−−∫∫f a

i
f z dz
z ac

( ) ! ( )
( )

2
2 3ππ

       ⇒     f a n
i

f z dz
z a

n
nc

( ) ! ( )
( )

==
−− ++∫∫2 1ππ

Example 55. Evaluate 
e

z
dz

z

C

3

42( log )
,

−∫  where C is the square with vertices at ± 1, ± i

(M.D.U. Dec. 2009)

Solution. Here we have  
e

z
dz

z

C

3

42( log )−∫
The pole is found by putting the denominator 
equal to zero
(z – log 2)4 = 0  ⇒   z = log 2
The integral has a pole of fourth order.

    
e

z
dz i d

dz
e

z

C
z

z

3

2
4

3

3
3

2
2
3( log ) !

( ) log−
=∫ =

π

     [By Cauchy formula]

                           = 
2
3

3 3 3 9 9 9 2 723
2

3 2 2 33π π π π πi e i e i e i iz
z!

. . ( ) ( )log
log log

= = = = =  Ans.

Example 56. Prove that 
d z

z a
i

C −
=∫ 2π , where C is the circle | z – a |  = r

(R.G.P.V., Bhopal, III Semester, Dec. 2006)
Solution.  We have,
 

d z
z aC −∫ ,  where C is the circle with centre (a, 0) and radius r.

By Cauchy Integral Formula

 
f z
z a

dz i f a
C

( ) ( )
−

=








∫ 2π

 
d z

z a
i

C −
=∫ 2 1π ( )

⇒ 
dz

z a
i

C −
=∫ 2π  Proved.              

y�

z = log2

z = 1 + i

z = 1 – iz = –1 – i

z = –1 + i

x� x

CD

A B

O

y

r
c

Y

O ( ,0)a
X
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O

–1

Y

2

XX�

Y�

C

O–1

Y

X
1
2

X�

Y�

Example 57.  Use Cauchy’s integral formula to evaluate 
z

z z
d z

c ( )2 3 2− +∫
       where c is the circle | |z − =2 1

2
                (U.P. III Semester, June 2009)

Solution. Here, we have

 
z

z z
d z

c ( )2 3 2− +∫
The poles are determined by putting the denominator equal to zero
i.e.;  z2 – 3z + 2 = 0    ⇒ (z – 1)   (z – 2) = 0
 ⇒           z = 1, 2
So, there are two poles z = 1 and z = 2.
There is only one pole at z = 2 inside the given circle.

z
z z

d z z
z z

d z
c c( ) ( ) ( )2 3 2 1 2− +

=
− −∫ ∫

 = 

z
z
z

d z
c

−
−∫ 1

2
                     

f z
z a

dz i f a
c

( ) ( )
−

=



∫ 2π

 =
−







=
−





=

2
1

2 2
2 12

π πi z
z

i
z

 = 4 p i  Ans.

Example 58. Use Cauchy’s integral formula to calculate

  
2z 1
z z

dz2C

+
+∫   where C is | | .z 1

2
=        (AMIETE, Dec. 2009)

Solution.  Poles are given by
  z2 + z = 0
 ⇒ z(z + 1) = 0 ⇒ z = 0, –1

| |z = 1
2  is a circle with centre at origin and radius 1

2 . 

Therefore it encloses only one pole  z = 0.

 \  
2 1

1

2 1
1 2 2 1

1
2

0

z
z z

dz

z
z

z
dz i z

z
i

C z

+
+

=

+
+ = +

+






=∫ ∫
=( )

π π
C

 Ans.

Example 59. Evaluate: 
e

z z
dz

z

C ( ) ( )− −∫ 1 4
 where C is the circle | z | = 2 by using Cauchy’s 

        Integral Formula. (R.G.P.V., Bhopal, III Semester, June 2006)
Solution.  We have,

e
z z

dz
z

C ( ) ( )− −∫ 1 4
  where C is the circle with centre at origin and radius 2.

Poles are given by putting the denominator equal to zero.
 (z – 1)(z – 4) = 0
⇒ z  =  1, 4
Here there are two simple poles at z = 1 and z = 4.
There is only one pole at z = 1 inside the contour. Therefore

e
z z

dz

e
z
z

dz i e
z

z

C

z

z

z
( ) ( )

( )
( )− −

= −
−

=
−









∫ ∫

=
1 4

4
1

2
4

1

π    (By Cauchy Integral Theorem)

X
O 1 2
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C1
C2

Y�

X
X�

O 2

Y

C

1

1

Y

Y�

XX�
O

i

–1

–i

         =
−









 = −2

1 4
2

3
π πi e i e

 

Which is the required value of the given integral.  Ans.

Example 60.  State the Cauchy’s integral formula. Show that 
e

z
dz t

z t

C 2 1+
=∫ sin

 if t > 0 and C is the circle | z | = 3 (U.P., III Semester, Dec. 2009)

Solution. Here, we have 
e

z
dz

zt

C 2 1+∫
The poles are determined by putting the denominator equal to zero.
      i.e., z2 + 1 = 0  
     ⇒         z2 = – 1              
     ⇒         z i= ± − = ±1
     ⇒         z = i, – i
The integrand has two simple poles at z = i and 
at z = – i. Both poles are inside the given circle 
with centre at origin and radius 3.

Now,  
e

z
dz

i
e
z i

e
z i

dz
zt z t z t

CC 2 1
1
2+

=
−

−
+









∫∫   [By partial fraction]

 =
−

−
+













= −∫∫ =
1
2

1
2

2 2
21i

e
z i

dz e
z i

dz
i

i e i e
z t z t

CC
zt

z i
z tπ π( ) ( ))z i=−





 = −



 =−2

2
2π πi

i
e e i tt i t i sin

Example 61. Evaluate the following integral using Cauchy integral formula

   
4 3
1 2
−

− −∫ z
z z z

dz
c ( ) ( )

 where c is the circle |z| = 
3
2

.

 (AMIETE, Dec. 2009, R.G.P.V., Bhopal, III Semester, June 2008)
Solution. Poles of the integrand are given by putting the 
denominator equal to zero.
  z(z – 1)(z – 2)     or    z = 0, 1, 2
The integrand has three simple poles at z = 0, 1, 2.

The given circle | z | = 
3
2

 with centre at z = 0 and 

radius = 
3
2

 encloses two poles z = 0, and z = 1.

   
4 3

1 2
−

− −∫
z

z z z
dz

C ( ) ( )
 = 

4 3
1 2

4 3
2

11 2

−
− − +

−
−

−∫ ∫
z

z z
z

dz

z
z z

z
dz

c c

( ) ( ) ( )

          = 2 4 3
1 2

2 4 3
20 1

π πi z
z z

i z
z zz z

−
− −









 + −

−










= =( ) ( ) ( )

          = 2 4
1 2

2 4 3
1 1 2

2 2 1π π πi i i.
( ) ( ) ( )

( )
− −

+ −
−

= −  = 2pi 

Which is the required value of the given integral.  Ans.
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O

Y

X� X

Y´

–2i

–1

2i

10

Example 62.  Evaluate 
z z

z z
dz

c

2

2 2
2

1 4
−

+ +∫ ( ) ( )
 where c is the circle | z | = 10.                 (U.P. III Semester, June 2009)
Solution. Here, we have

 
z z

z z
dz

c

2

2 2
2

1 4
−

+ +∫ ( ) ( )
The poles are determined by putting the 
denominator equal to zero.
i.e.; (z + 1)2 (z2 + 4) = 0  
⇒ z = – 1, – 1 and z = ± 2 i
The circle | z | = 10 with centre at origin and radius = 10.
encloses a pole at z = – 1 of second order and simple poles z = ± 2 i
The given integral = I1 + I2 + I3 

I z z
z z

dz

z z
z
z

i d
d z

z z
zc c1

2

2 2

2

2

2

2

2
2

1 4

2
4

1
2 2

1 1
= −

+ +
=

−
+

+
= −

∫ ∫( ) ( ) ( )
π

++











= −4 1z

= + − − −
+









 = + − −

= −

2 4 2 2 2 2
4

2 1 4 2 22 2

2 2
1

π πi z z z z z
z

i
z

( ) ( ) ( )
( )

( ) ( ) −− + −
+











( ) ( )
( )

1 2 2 1
1 4 2

= −





= −2 14
25

28
25

π πi i

I

z z
z z i

z i
i z z

z z ic
z

2

2

2 2

2

2
1 2

2
2 2

1 22
=

−
+ +

−
= −

+ +









∫

=

( ) ( )
( ) ( ) ( )

π
22

22 4 4
2 1 2 2

2 1
4 3

i

i i
i i i

i i
i

= − −
+ +









 = +

+
π π

( ) ( )
( )

I

z z
z z i

z i
dz i z z

z z ic3

2

2 2

2

2
1 2

2
2 2

1 23
=

−
+ −

+
= −

+ −









∫

( ) ( )
( ) ( ) ( )

π
zz i= −2

         = − +
− + − −









 = −

−
2 4 4

2 1 2 2
2 1

3 42π πi i
i i i

i i
i( ) ( )

( )
( )

        
z z

z z
dz

c

2

2 2
2

1 4
−

+ +∫ ( ) ( )
 = I1 + I2 + I3 

   = − + +
+









 + −

−










28
25

2 1
4 3

2 1
3 4

π π πi i i
i

i i
i

   = − + +
+

+ −
−









2 14

25
1
4 3

1
3 4

π i i
i

i
i( )

( )
( )

   = − + + − + − +
− −









2 14

25
1 3 4 1 4 3

9 16
π i i i i i( ) ( ) ( ) ( )

( )

   =
−
2

25
π i

 [14 + (3i – 4 – 3 – 4i) + (4i – 3 – 4 – 3i)]

   = 0 Ans.
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1X´

Y´

O 1
—
2

–1
—
2

y

y�

x� x

Example 63. Find the value of 
3

1

2

2
z z
z

dz
C

+
−∫ .    

                  If c is circle | z – 1 | = 1     (R.G.P.V., Bhopal, III Semester, June 2007)
Solution. Poles of the integrand are given by putting the 
denominator equal to zero.
  z2 – 1 = 0, z2 = 1, z = ±1
The circle with centre z = 1 and radius unity encloses a 
simple pole at z = 1.
By Cauchy Integral formula

    
3

1

3
1
1

2

2

2

z z
z

dz

z z
z
z

dz
C C

+
−

=

+
+
−∫ ∫  = 2 3

1
2 3 1

1 1
4

2

1

π π πi z z
z

i i
z

+
+









 = +

+






=
=

 

Which is the required value of the given integral.  Ans.
Example 64. Use Cauchy integral formula to evaluate.

   
sin z cos z

z z
dz

C

π π2 2

1 2
+

− −∫ ( ) ( )
where c is the circle | z | = 3.  
       (AMIETE, Dec. 2010, R.G.P.V., Bhopal, 
       III Semester, June 2003)

Solution. 
sin cos

( ) ( )
π πz z
z z

dz
2 2

1 2
+

− −∫
Poles of the integrand are given by putting the 
denominator equal to zero.
   (z – 1)(z – 2) = 0   ⇒   z = 1, 2
The integrand has two poles at z = 1, 2.
The given circle | z | = 3 with centre at z = 0 and radius 3 encloses 
both the poles z = 1, and z = 2.

sin cos
( ) ( )

sin cos
( )
( )

π π
π π

z z
z z

dz

z z
z
z

dzC C

2 2

2 2

1 2
2
11

+
− −

=

+
−
−

+∫ ∫

ssin cos
( )
( )

π πz z
z
z

dzC

2 2

1
22

+
−
−∫

  = 2
2

2
1

2 2

1

2 2

2

π π π π π πi z z
z

i z z
z

z z

sin cos sin cos+
−









 + +

−










= =

    

 = 2
1 2

2 4 4
2 1

π π π π π πi isin cos sin cos+
−







+ +
−







  = 2 1
1

2 1
1

4π π πi i i−
−







+ 





=  

Which is the required value of the given integral.  Ans.

Example 65.  Derive Cauchy Integral Formula.

   Evaluate  
e

z
dz

iz

C

3

3( )+∫ π
   where C is the circle |z – p| = 3.2 

Solution. Here, I e
z

dz
iz

C
=

+∫
3

3( )π
Where C is a circle | | .z − ={ }π 3 2  with centre ( p, 0) and radius 3.2.

XX�

Y

Y´

�O– �
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y

0.5 (1, 0) 1.5
x

y�

Poles are determined by putting the denominator equal to zero.
   ( ) , ,z z+ = ⇒ = − − −π π π π3 0
There is a pole at z – p of order 3.  But there is no pole within C.

By Cauchy Integral Formula 
e

z
dz

iz

C

3

3 0
( )+

=∫ π
   Ans.

Example 66.  Evaluate, using Cauchy’s integral formula,

  
log

( )
| | .z

z
dz where C is z

C −
− =∫ 1

1 1
23  (MDU. Dec. 2010)

Solution.  Using Cauchy’s Integral formula,
log

( )
: | |z

z
dz C z

C −
− =3∫ 1

1 1
2

Poles are determined by putting denominater equal to zero.
  (z – 1)3 = 0      ⇒      z = 1, 1, 1
There is one pole of order three at z = 1 which is inside the circle C.

 
f z

z a
dz if a( )

( )
( )

−
=∫ 3

22π

       =










=

2
2

2
1

πi d
dz

z
z

log  = 













=
2 1

1
πi d

dz z z

       = −



 =

2 1
2

1
πi

z z
 = –2pi

Example 67. Verify, Cauchy theorem by integrating eiz along the boundary of the triangle 
with the vertices at the points 1 + i, –1 + i and – 1 – i. 

Solution.   e dziz

AB∫  = 
e
i

iz

i

i









+

− +

1

1

 = 1 1 1

i
e ei i i i( ) ( )− + +−[ ]

  =  1 1 1

i
e ei i− − −−[ ]     ...(1)

 e dziz
BC∫  = e

i i
e e

iz

i

i
i i i i





= −[ ]
− +

− −
− − − +

1

1
1 11 ( ) ( )

  = 1 1 1

i
e ei i− + − −−[ ]  ...(2)

 e dziz
CA∫  = e

i i
e e

i
e e

iz

i

i
i i i i i i





= −[ ] = −[ ]
− −

+
+ − − − − +

1

1
1 1 1 11 1( ) ( )  ...(3)

On adding (1), (2) and (3), we get

e dz e dz e dziz
AB

iz
BC

iz
CA∫ ∫ ∫+ +  = 1 1 1 1 1 1 1

i
e e e e e ei i i i i i− − − − + − − − − +−( ) + −( ) + −( ) 

⇒ e dziz
ABC∆∫   = 0 ...(4)

The given function has no pole. So there is no pole in ∆ ABC.
The given function eiz is analytic inside and on the triangle ABC.
By Cauchy Theorem, we have e dziz

C∫  = 0 ...(5)

From (4) and (5) theorem is verified.

O

Y

XX�

Y�

B A

C

(–1 + )i (1 + )i

(–1 – )i
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EXERCISE 7.7
Evaluate the following:

 1. 
1
−∫ z a

dzC ,  where c is a simple closed curve and the point z = a is

  (i) outside c;    (ii) inside c. Ans. (i) 0 (ii) 2pi

 2. 
e

z
dz

z

c −∫ 1
, where c is the circle | z | = 2. Ans. 2pie

 3. 
cos πz
z

dzC −∫ 1
, where c is the circle | z | = 3. Ans. –2pi

 4. 
cos

( ) ( )
πz

z z
dzC

2

1 2− −∫ , where c is the circle |z| = 3. Ans. 4pi

 5. 
e

z
dz

z

C

−

+∫ ( )2 5 , where c is the circle |z| = 3. Ans. 
πie2

12
 6. 

e
z

dz
z

C

2

41( )+∫ , where c is the circle |z| = 2. Ans. 
8
3

2π ie−

 7. 
2

1

2

2

z z
z

dz
C

+
−∫  where c is the circle |z – 1| = 1   Ans. 3pi

 8. 
e

z z
dz

z

C 2 31( )
,

+∫  C : | z | = 2.        (AMIETE, June 2009) Ans. ???

 9. Evaluate 
z z

z z
dz

C

3

2
1

3 2
+ +

− +∫ , where C is the ellipse 4x2 + 9y2 = 1.

(M.D.U. Dec. 2005, May 2008)  Ans. 0

 10. Evaluate 
sin ,

2

3

6

z

z
dz

C
−





∫ π
 where C is |z| = 1.  (M.D.U. May 2006, Dec. 2006) Ans. pi

 11. Evaluate 
sin6

3

6

z

z
dz

−





∫ π

, where C is the circle |z| = 1.     (M.D.U. May 2005)   Ans. 
21
16

πi

 12. If f z z
z

dz
C

( ) ,ξ
ξ

= + +
−∫ 4 52



 where C is the ellipse 
x y2 2

4 9
1+ = ,  find f(1), f(i), f ′(–1) and f ′′ (–i). 

(J.N.T.U. 2005; M.D.U., Dec. 2007)  Ans. 20pi, 2p(i – 1), –14pi, 16pi

 13. 
z

z z
dz

C 2 3 2− +∫ ,  where C is |z – 2| = 
1
2

.                   (U.P.T.U. 2009; M.D.U. 2007)   Ans. 4pi

 14. 
e dz
z

z

C ( )
,

+∫ 1 2  where C is |z – 1| = 3.                                        (M.D.U. Day 2006)   Ans. 
2πi
e

Choose the correct alternative:

   15.   The value of the integral 
z

z z
dz

C

2 1
1 2

+
+ +∫ ( ) ( )

,  where C is | z | = 
3
2

 is

  (i) pi (ii) 0 (iii) 2 p i (iv) 4 p i       Ans. (iv)
(AMIETE, June 2010)

 16. Cauchy’s Integral formula states that if f (z) is analytic within a and on a closed curve C 
and if a is any point within C then f (a) = :      (R.G.P.V., Bhopal, III Semester, June 2007)

  (i) 
1

2πi
f z dz
z a
( )
−∫   (ii) 

1
2πi

f z dz( )
∫  (iii) 

1
2πi

d z
z a−∫    (iv) none of these.   Ans. (i)
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 17. The value of 
z z

z
dz C

C

2 1
1

− +
−∫ ,  being | z | = 

1
2

 is :

  (i) 2πi (ii) 
1

2πi
 (iii) 0   (iv) πi  (R.G.P.V., Bhopal, III Sem., Dec. 2006) Ans. (iii) 

 18. If f z z
z z

( )
( ) ( )

=
− +

2

21 2
, then Res. f (–2) is :

  (i) 
5
9

 (ii) 
4
9

 (iii) 
1
9

 (iv) 
3
9

  (RGPV, Bhopal, III Sems, Dec. 2006) Ans. (ii) 

 19. Let f z
z z

( )
( ) ( )

,=
− +

1
2 34 6  then z = 2 and z = –3 are the poles of order :  

(i) 6 and 4 (ii) 2 and 3   (iii) 3 and 4 (iv) 4 and 6  (RGPV, Bhopal, III Sem., June 2006) Ans. (iv)  

 20. The value of the integral 
z

z z
dz

C

+
−∫

1
23 2 , where C is the circle | z | = 1 is equal to.

  (i)  2πi (ii)  − 2
3

πi  (iii) zero (iv) − 3
2

πi  (AMIETE, Dec. 2010) Ans. (iv)

7.28 GEOMETRICAL REPRESENTATION
To draw a curve of complex variable (x, y) on z-plane we take two axes i.e., one real axis 

and the other imaginary axis. A number of points (x, y) are plotted on z-plane, by taking different 
value of z (different values of x and y). The curve C is drawn by joining the plotted points. The 
diagram obtained is called Argand diagram in z-plane.

But a complex function w = f (z) i.e., (u + iv) = f (x + iy) involves four variables x, y and u, v.
A figure of only three dimensions (x, y, z) is possible in a plane. A figure of four 

dimensional region for x, y, u, v is not possible.
So, we choose two complex planes z-plane and w-plane. In the w-plane we plot the 

corresponding points w = u + iv. By joining these points we have a corresponding curve C′ in  
w-plane.
7.29 TRANSFORMATION

For every point (x, y) in the z-plane, the relation w = f (z) defines a corresponding point  
(u, v) in the w-plane. We call this “transformation or mapping of z-plane into w-plane”. If a point 
z0 maps into the point w0, w0 is also known as the image of z0.

If the point P (x, y) moves along a curve C in z-plane, the point P'(u, v) will move along a 
corresponding curve C′ in w-plane, then we say that a curve C in the z-plane is mapped into the 
corresponding curve C′ in the w-plane by the relation w = f (z).

Example 64. Transform the rectangular region ABCD in z-plane bounded by x = 1, x = 3; 
y = 0 and y = 3. Under the transformation w = z + (2 + i).

 Solution. Here,  w = z + (2 + i)
 ⇒ u + iv = x + iy + (2 + i)
   = (x + 2) + i(y + 1)

By equating real and imaginary quantities, we have u = x + 2 and v = y + 1.

z-plane w-plane          z-plane  w-plane
x u = x + 2   y v = y + 1
1   = 1 + 2 = 3   0    = 0 + 1 = 1
3   = 3 + 2 = 5   3    = 3 + 1 = 4
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Ans.

Here the lines x = 1, x = 3; y = 0 and y = 1 in the z-plane are transformed onto the line  
u = 3, u = 5; v = 1 and v = 4 in the w-plane. The region ABCD in z-plane is transformed into the 
region EFGH in w-plane.

O
X

Y

A
1 3

1

2

3 D C

B

y = 3

y = 0 O U

V

1 2 3 4 5

1

2

3

4 H G

E F

u
=

5

u
=

3

v = 4

v = 1

x
=

3

x
=

1

Example 65. Transform the curve x2– y2 = 4 under the mapping w = z2.
Solution.   w = z2 = (x + y)2,  u + iv = x2 – y2 + 2ixy
This gives   u = x2 – y2   and  v = 2xy

Table of (x, y) and (u, v)

x 2 2.5 3 3.5 4 4.5 5

y x= ± −2 4
0 ± 1.5 ± 2.2 ± 2.9 ± 3.5 ± 4.1 ± 4.6

u = x2 – y2 4 4 4 4 4 4 4

v = 2xy 0 ± 7.5 ± 13.2 ± 20.3 ± 28 ± 36.9 ± 46

Y
5

4

3

2

1

1 2

(2.5, 1.5)

(2.5, –1.5)

(3, – 2.2)
(3.5, – 2.9)

(4, – 3.5)
(4.5, – 4.1)

(5, – 4.6)

(3, 2.2)

(3.5, 2.9)

(4, 3.5)
(4.5, 4.1)

(5, 4.6)

3 4 5 6
X

0

– 5
z-Plane

– 4

– 3

– 2

– 1

Y�

V

50

40

30

20

10

0

– 50

– 40

– 30

– 20

– 10

(4, 20.3)

(4, 46)

(4, 36.9)

(4, 28)

(4, 13.2)

(4, 7.5)

1 2 3 5 6 U

V�
w-plane

(4,– 46)

(4, –13.2)

(4, –20.3)
(4, –28)

(4, –36.9)

(4, –7.5)

Image of the curve x2 – y2 = 4 is a straight line, u = 4 parallel to the v-axis in w-plane. Ans.

7.30 CONFORMAL TRANSFORMATION  (U.P. III Semester Dec., 2006, 2005)
Let two curves C, C1 in the z-plane intersect at the point P and the corresponding curve  

C', C′1 in the w-plane intersect at P′. If the angle of intersection of the curves at P in z-plane is 
the same as the angle of intersection of the curves of w-plane at P' in magnitude and sense, 
then the transformation is called conformal:

conditions: (i) f (z) is analytic. (ii) f (z) ≠ 0       Or
If the sense of the rotation as well as the magnitude of the angle is preserved, the 

transformation is said to be conformal.
If only the magnitude of the angle is preserved, transformation is Isogonal.
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7.31 THEOREM. If f(z) is analytic, mapping is conformal  (U.P. III Semester Dec. 2005)
Proof. Let C1 and C2 be the two curves in the z-plane intersecting at the point z0 and let the 

tangents at this point make angles a1 and a2 with the real axis. Let z1 and z2 be the points on the 
curves C1 and C2 near to z0 at the same distance r from z0, so that we have

   z z re z z rei i
1 0 2 0

1 2− = − =θ θ,
As   r → → →0 1 1 2 2, θ α θ αand
Let the image of the curves C C C C1 2 1 2, be and′ ′  in w-plane and images of z0, z1 and z2 be 

w0, w1 and w2.
Let   w w r e w w r ei i

1 0 2 0
1 2− = − =. , .φ φ

    ′ =
−
−→

f z
w w
z zz z

( ) lim0
1 0

1 01 0

Y

P

     Re limi
r

i

i
r e
re

λ
φ

θ=
→0

1
1

1
 (since ′ =f z i( ) Re0

λ )

     Re ( )i i i ir
r

e r
r

eλ φ θ φ θ= =− −1 11 1 1 1

Hence            lim
0r

r
r

R f z
→







= = ′1
0( )  and lim ( )φ θ λ1 1− =

⇒  lim φ θ λ β α λ1 1 1 1− = − =lim or  i.e., β α λ1 1= +
Similarly it can be proved β α λ2 2= +  curve ′C1  has a definite tangent at w0 making angles 

α λ α λ1 2+ +and  so curve ′C2 .
Angle between two curves ′ ′C C1 2and
    = β β α λ α λ α α1 2 1 2 1 2− = + − + = −( ) ( ) ( )

so the transformation is conformal at each point where ′ =f z( ) 0
Note 1. The point at which f ′(z) = 0 is called a critical point of the transformation. Also 

the points where 
dw
dz

≠ 0  are called ordinary points.

2. Let φ α α α α φ= − = +1 2 1 2or  shows that the tangent at P to the curve is rotated through 
an ∠φ  = amp { ( )}′f z  under the given transformation.

    Angle of rotation = tan−1 v
u

.

3. In formal transformation, element of arc passing through P is magnified by the factor 

′f z( ) . The area element is also magnified by the factor ′f z( )  or J u v
x y

= ∂
∂

( , )
( , )

 in a conformal 

transformation.

   J u v
x y

u
x

u
y

v
x

v
y

u
x

v
x

v
x

u
x

u
x

= ∂
∂

=

∂
∂

∂
∂

∂
∂

∂
∂

=

∂
∂

− ∂
∂

∂
∂

∂
∂

= ∂
∂




( , )
( , ) 

+ ∂
∂







2 2v
x
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      = ∂
∂

+ ∂
∂

= ′ = ′ +u
x

i v
x

f z f x iy
2

2 2( ) ( )

′f z( )  is called the coefficient of magnification.
4. Conjugate functions remain conjugate functions after conformal transformation. A function 

which is the solution of Laplace’s equation, its transformed function again remains the solution of 
Laplace’s equation after conformal transformation.
7.32 THEOREM 

 Prove that an analytic function f (z) ceases to be conformal at the points where          
f´ (z) = 0.                                       (U.P. III Semester, Dec. 2006)

Proof.  Let f ́ (z) = 0  and f ́ (z0) = 0 at z = z0

Suppose that f ́ (z0) has a zero of order (n – 1) at the point z0, then first (n – 1) derivatives of
f (z) vanish at z0 but f n (z0) ≠ 0, hence at any point z in the neighbourhood of z0, we have by 
Taylor’s Theorem.

  f z f z a z zn
n( ) ( ) ( ) ........= + − +0 0

where            a
f z

nn

n
=

( )
!

,0   so that an ≠ 0.

Hence,         f z f z a z zn
n( ) ( ) ( ) ......1 0 1 0− = − +

i.e.              w w a z zn
n

1 0 1 0− = − +( ) ....

or               ρ φ θ λ
1

1 1e a r ei
n

n i n= ++| | . .......( )              where λ = amp an

Hence,                  Lim  φ θ λ α λ1 1 1= + = +Lim ( )n n
Similary,     Lim φ α λ2 2= +n .
Thus the curves g1 and g2 still have definite tangents at w0.
But the angle between the tangents
   = Lim Limφ φ2 1 2 1− = −n d d( )
So magnitude of the angle is not preserved.
Also the linear magnification R r= =Lim ( / ) .ρ1 0
Hence, the conformal property does not hold good at a point where f ́ (z) = 0. 

Example 66. If u = 2x2 + y2 and v y
x

=
2

,  show that the curves u = constant and v= constant 

cut orthogonally at all intersections but that the transformation w = u + iv is not conformal.
(Q. Bank U.P. III Semester 2002)

 Solution. For the curve, 2x2 + y2 = u
  2x2 + y2 = constant = k1 (say) ...(1)
 Differentiating (1), we get

  4 2x y dy
dx

+  = 0  ⇒  dy
dx

x
y

= − 2  = m1 (say) ...(2)

  y
x

2

 = v

 For the curve, y
x

2

= constant = k2 (say),
 ⇒ y2 = k2x. ...(3)
 Differentiating (3), we get

  2y dy
dx  = k2  ⇒  dy

dx
k
y

y
x y

y
x

= = × =2
2

2
1

2 2  = m2 (say) ...(4)
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 From (2) and (4), we see that

  m1m2 = 
−











= −2
2

1x
y

y
x

 Hence, two curves cut orthogonally.
 However, since ∂

∂
u
x  = 4x,           ∂

∂
=u

y
y2

  ∂
∂
v
x  = − y

x

2

2 ,       ∂
∂

=v
y

y
x

2

The Cauchy-Riemann equations are not satisfied by u and v.
Hence, the function u + iv is not analytic. So, the transformation is not conformal. Proved
Example 67.   For the conformal transformation w = z2, show that

                  (a) The coefficient of magnification at z = 2 + i is 2 5
                  (b) The angle of rotation at z = 2 + i is tan–1 0.5. 
                  (c) The co-efficient of magnification at z = 1 + i is 2 2 .

                  (d) The angle of rotation at z = 1 + i is 
π
4

.
(Q. Bank U.P. III Semester 2002)

 Solution. (i) Let w = f (z) = z2

 ∴ f ′(z) = 2z
  f ′(2 + i) = 2(2 + i) = 4 + 2i.
 (a) Coefficient of magnification at z = 2 + i is = ′ + = + = + =f i i( ) .2 4 2 16 4 2 5

 (b) Angle of rotation at z = 2 + i is = amp. f ′(2 + i) = (4 + 2i) = 





=− −tan tan ( . ).1 12
4

0 5
 and f ′(1 + i) = 2(1 + i) = 2 + 2i
 ∴  (c) The co-efficient of magnification at z = 1 + i is ′ + = + = + =f i i( )1 2 2 4 4 2 2

 (d) The angle of rotation at z = 1 + i is amp. ′ + = + = =−f i i( ) tan1 2 2 2
2 4

1 π   Ans.
Standard transformations

7.33 TRANSLATION   w = z + C,
where            C = a + ib
            u + iv = a + iy + a + ib
               u = x + a and v = y + b
On substituting the values of x and y in the equation of the curve to be transformed, we get 

the equation of the image in the w-plane.
The point P (x, y) in the z-plane is mapped onto the point P′(x + a, y + b) in the w-plane. 

Similarly other points of z-plane are mapped onto w-plane. Thus if w-plane is superimposed on 
the z-plane, the figure of w-plane is shifted through a vector C.

D C

A B

Y

O X

D' C'

A' B'

V

O U

In other words the transformation is mere translation of the axes.
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7.34 ROTATION        w = zeiθ

The figure in z-plane rotates through an angle θ in anticlockwise in w-plane.
Example 68. Consider the transformation w = zeiπ/4 and determine the region R′ in w-plane 
corresponding to the triangular region R bounded by the lines x = 0, y = 0 and x + y = 1 
in z-plane.

 Solution. w = zeiπ/4

  w = ( ) cos sinx iy i+ +





π π
4 4

 ⇒ u + iv = ( ) [ ( )]x iy i x y i x y+ +





= − + +1
2

1
2

 Equating real and imaginay parts, we get

 ⇒ u = 1
2

( ),x y−      v x y= +1
2

( )  ... (1)

 (i) Put x = 0, u y= − 1
2

,  v y v u= = −1
2

or

 (ii) Put y = 0, u x= 1
2

,  v x v u= =1
2

or

 (iii) Putting x + y = 1 in (1), we get v = 1
2

Y

X
O

B

A

V

U

D C
v

=
–u v

=
u

v = 1/ 2

U�
O�

Hence the triangular region OAB in z-plane is mapped on a triangular region O′CD of 

w-plane bounded by the lines v = u, v = –u, v = 1
2

.

  f ′(z) = 1
2

1( )+ i

  f (z) = 1
2

[( ) ( )]x y i x y− + +

Amp. ′ = =−f z( ) tan ( )1 1
4
π

The mapping w = zeiπ/4 performs a rotation of R through an angle π/4.       Ans.
7.35 MAGNIFICATION 
  w cz==
 where c is a real quantity.

 (i) The figure in w-plane is magnified c-times the size of the figure in z-plane.
 (ii) Both figures in z-plane and w-plane are singular.
Example 69. Determine the region in w-plane on the transformation of rectangular region 
enclosed by x = 1, y = 1, x = 2 and y = 2 in the z-plane. The transformation is w = 3z.
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 Solution. We have, w = 3z
  u + iv = 3(x + iy)
 Equating the real and imaginary parts, we get
    u = 3x  and  v = 3y

z-plane w-plane
x y u = 3x v = 3y
1 1 3 3
2 2 6 6

O
X

Y

1

1

2 D Cy=2

A B

x
=

2

x
=

1

y=1

2 O
U

V

1 2 3 4 5

1

2

3

4

6

5

6 H G

E F

u
=

3

u
=

6

v = 6

v = 3

7.36 MAGNIFICATION AND ROTATION 
                             w = c z         ... (1)

where c, z, w all are complex numbers.
       c ae z re w Rei i i= = =α θ φ, ,
Putting these values in (1), we have
   Re ae re arei i i iφ α θ θ α= = +( ) ( ) ( )

i.e.       R ar= = +and φ θ α
Thus we see that the transform w = c z corresponding to a rotation, together with  

magnification.
Algebraically   w = c z     or    u iv a ib x iy+ = + +( ) ( )

⇒           u iv ax by i ay bx+ = − + +( )
   u ax by v ay bx= − = +and
On solving these equations, we can get the values of x and y.

   x au bv
a b

y bu av
a b

= +
+

= − +
+2 2 2 2,

D C

A B

Y

O X

D'

C'A'

B'

V

O U

On putting values of x and y in the equation of the curve to be transformed we get the 
equation of the image.

Example 70. Find the image of the triangle with vertices at i, 1 + i, 1 – i in the z-plane, 
under the transformation
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(i) w = 3z + 4 – 2i,    (ii) w e z i
i

= − +
5
3 2 4
π

.
Solution. (i)  w = 3z + 4 – 2i
⇒        u + iv = 3(x + iy) + 4 – 2i ⇒ u = 3x + 4, v = 3y – 2

S. No. x y u = 3x + 4 v = 3y – 2
1. 0 1 4 1
2. 1 1 7 1
3. 1 –1 7 – 5

O u

v

1 2 3 4 5 6

–1

–2

–3

–4

–5

7

A (4, 1)� B (7, 1)�

(7, –5) C�
v �

O X

Y

B
A

C

1

(ii)           w e z i
i

= − +
5
3 2 4
π

.

 ⇒    u + iv = cos sin ( )5
3

5
3

2 4π π+





+ − +i x iy i   

   = 
1
2

3
2

2 4−








 + − +i x iy i( )

   = 
x y i x y
2

2 3
2

3
2 2

4− + + − + +








    

                 ⇒            u x y= − +
2

2 3
2     and   v x y= − + +3

2 2
4

S.No.     z-Plane w-plane
x y

u x y= − +
2

2 3
2

v x y= − + +3
2 2

4

1. 0 1
− +2 3

2
9
2

2. 1 1
− +3

2
3

2
− +3

2
9
2

3. 1 –1
− −3

2
3

2
− +3

2
7
2
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7.37 INVERSION AND REFLECTION

    w
z

= 1
 ... (1)

If    z r e w R ei i= =θ φand
Putting these values in (1), we get

           Rei
i

i

r e r
eφ

θ
θ= = −1 1

On equating,  R
r

= = −1 and φ θ

Thus the point P(r, θ) in the z-plane is mapped onto the point ′ −





P
r
1 , θ  in the w-plane.

Hence the transformation is an inversion of z and followed by reflection into the real axis.
The points inside the unit circle (| z | = 1) map onto points outside it, and points outside the 
unit circle into points inside it.

Algebraically  w
z

= 1
 or z

w
= 1

         x iy
u iv

+ =
+
1

⇒         x iy u iv
u iv u iv

u iv
u v

+ = −
+ −

= −
+( ) ( ) 2 2

   x u
u v

y v
u v

=
+

= −
+2 2 2 2,

Let the circle x y gx fy c2 2 2 2+ + + +  = 0 ... (1) be in z-plane.
On substituting the values of x and y in (1), we get

  
u

u v
v

u v
g u

u v
f v

u v
c

2

2 2 2

2

2 2 2 2 2 2 22 2 0
( ) ( )

( )
+

+
+

+
+

+ −
+

+ =

This is the equation of circle in w-plane. This shows that a circle in z-plane transforms to 
another circle in w-plane.
But a circle through origin transforms into a straight line.

Example 71. Under the transformation w
z

= 1 ,  find the image of 
  y – x + 1 = 0 (PTU May 2007)
Solution. Here the equation of straight line may be given
  y – x + 1 = 0

  w
z

z
w

= ⇒ =1 1

⇒  x iy
u iv

u iv
u v

+ =
+

= +
+

1
2 2

so that x u
u v

=
+2 2   and y v

u v
= −

+2 2   

Putting the values of x, y in terms of u, v, we get

   −
+

−
+

+ =v
u v

u
u v2 2 2 2 1 0

⇒   – u – v + u2 + v2 = 0
⇒   u2 + v2 – u – v = 0

Y, V

P

X, U

P' , –�1

r

O

r
�

–�
1/r

u

(½, ½)

w-plane

v

O
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This is the equation of a circle with centre at 
1
2

1
2

,





 and radius = 
1
2

  Ans.

Example 72. Find the image of | z – 3i | = 3 under the mapping w
z

= 1 .

 (Uttarakhand, III Semester 2008)

Solution.   w
z

= 1
    ⇒  z

w
= 1

⇒        x iy
u iv

u iv
u iv u iv

u iv
u v

+ =
+

= −
+ −

= −
+

1
2 2( ) ( )

⇒   x u
u v

=
+2 2  and  y v

u v
= −

+2 2  ... (1)

The given curve is | z – 3i | = 3
⇒          | x + iy – 3i | = 3   ⇒   x2 + (y – 3)2 = 9 ... (2)
On substituting the values of x and y from (1) into (2), we get

     
u

u v
v

u v

2

2 2 2 2 2

2

3 9
( )+

+ −
+

−





=

   
u

u v
v u v

u v

2

2 2 2

2 2 2

2 2 2
3 3 9

( )
( )

( )+
+ − − −

+
=

⇒   u v u v u v2 2 2 2 2 2 23 3 9+ − − − = +( ) ( )

⇒   u v u v u v v u v u u v v2 2 4 4 2 3 2 2 4 2 2 49 9 6 6 18 9 18 9+ + + + + + = + +

⇒    u v u v v2 2 2 36 6 0+ + + =

⇒   u v v u v2 2 2 26 0+ + + =( )

⇒   ( ) ( )u v v2 2 6 1 0+ + =
⇒   6 1 0v + =  is the equation of the image. Ans.

Second Method.       | | ,z i z
w

− = =3 3 1

     
1 3 3
w

i− =   ⇒ 

⇒  1 3 3− + = +i u iv u iv( )   ⇒ 1 3 3 3+ − = +v iu u iv

⇒  ( ) ( )1 3 9 92 2 2 2+ + + +v u u v  ⇒ 1 6 9 9 92 2 2 2+ + + = +v v u u v( )
⇒  1 + 6v = 0           Ans.
Third Method. z i− =3 3  ⇒ z i ei− =3 3 θ  ⇒ z i ei= +3 3 θ

   w
z i ei= =

+
1 1

3 3 θ   ⇒ 3 1w
i ei=
+ θ

   3 1( )
cos sin

u iv
i i

+ =
+ +θ θ

⇒            ( ) cos ( sin )
cos ( sin )

3 3 1
12 2u iv i+ = − +

+ +
θ θ
θ θ

 ⇒ 3 1
2 2

1
2

v = − +
+

= −sin
sin

θ
θ

     6v + 1 = 0 Ans.
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Example 73. Image of |z + 1| = 1 under the mapping w
z

= 1
 is

(a) 2v + 1 = 1   (b) 2 v – 1 = 1  (c) 2u + 1 = 0    (d) 2u – 1 = 0  (AMIETE, June 2009)

Solution. w
z

u iv
x iy

x iy
x y

= ⇒ + =
+

= −
+

1 1
2 2

⇒           u x
x y

v y
x y

=
+

= −
+2 2 2 2,

Given |z + 1| = 1   ⇒   |x + iy + 1| = 1     ⇒    (x + 1)2 + y2 = 1

⇒  x2 + y2 + 2x = 0  ⇒   x2 + y2 = – 2x  ⇒   
1
2 2 2= −

+
= −x

x y
u

⇒  
1
2

2 1 0= − ⇒ + =u u

Hence (c) is correct answer. Ans.

Example 74. Show that under the transformation w
z

= 1 ,  the image of the hyperbola  
x2 – y2 = 1 is the lemniscate R2 = cos 2f.
Solution.   x2 – y2 = 1
Putting          x = r cos θ  and        y = r sin θ
⇒  r2 cos2 θ – r2 sin2 θ = 1 ⇒ r2(cos2 θ – sin2 θ) = 1
⇒     r2 cos 2θ = 1 ... (1)

And w
z

z
w

r e
R e

r e
R

ei
i

i i= ⇒ = ⇒ = ⇒ = −1 1 1 1θ
φ

θ φ  

Equating real and imaginary parts, we get

∴    r
R

= 1
  and θ = – f

Putting the values of r and θ in (1), we get

   
1 2 12R

cos ( )− =φ           ⇒  R2 = cos 2f  Proved.

EXERCISE 7.8

 1. Find the image of the semi infinite, strip x > 0, 0 < y < 2 under the transformation  
w = iz + 1.

   Ans. Strip –1 < u < 1, v > 0
 2. Determine the region in the w-plane in which the rectangle bounded by the lines x = 0,  

y = 0, x = 2 and y = 1 is mapped under the transformation w e zi= 2 4π/ .
 (Q. Bank U.P. III Semester 2002)

   Ans. Region bounded by the lines v = –u, v = u, u + v = 4 and v – u = 2.
 3. Show that the condition for transformation w = a2 + blcz + d to make the circle | w| = 1 

correspond to a straight line in the z-plane is (a) = (c).
 4. What is the region of the w-plane in two ways the rectangular region in the z-plane bounded 

by the lines x = 0, y = 0, x = 1 and y = 2 is mapped under the transformation w = z + (2 – i) ?
   Ans. Region bounded by u = 2, v = – 1, u = 3 and v = 1.

 5. Find the image of |z – 2i| under the mapping w
z

= 1
 Ans. v + =1

4
0
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 6. For the mapping w (z) = 1/z, find the image of the family of circles x2 + y2 = ax, where a is real.

   Ans. u
a

= 1
 is a straight line || to v-axis.

 7. Show that the function w
z

= 4
 transforms the straight line x = c in the z-plane into a circle 

in the w-plane.

 8. If ( ) ,w
z

+ =1 42  then prove that the unit circle in the w-plane corresponds to a parabola in 

the z-plane, and the inside of the circle to the outside of the parabola.

 9. Find the image of | z – 2i| = 2 under the mapping w
z

= 1

(Q. Bank U.P. 2002)  Ans. 4v + 1 = 0

 10. The image of the circle |z – 1| = 1 in the complex plane, under the mapping w = u + iv = 
1
z

 
is

  (i) |w – 1| = 1    (ii) u2 + v2 = 1   (iii) u = 
1
2

   (iv)  v = 
1
2

 Ans. (iii)

 11. Inverse transformation w = 
1
z

 transforms the straight line ay + bx = 0 into
    (i) Circle (ii) straight line through the origin
  (iii) straight line (iv) none of these
 12. The analytic function f (z), which maps the angular region 0 4≤ ≤θ π /  onto the region 

π φ π/ /4 2≤ ≤  is
(i) zeiπ/4   (ii) z + π/4  (iii) iz  (iv) ez i+ π/4  Ans. 

7.38 BILINEAR TRANSFORMATION (Mobius Transformation)

  w = az + b
cz + d

         ad – bc ≠ 0       ... (1)

(1) is known as bilinear transformation.

If    ad – bc ≠ 0 then 
dw
dz

≠ 0  i.e. transformation is conformal.

From (1),            z
dw b

cw a
= − +

−
            ...(2)

This is also bilinear except w a
c

= .

Note. From (1), every point of z-plane is mapped into unique point in w-plane except z d
c

= −
.

From (2), every point of w-plane is mapped into unique point in z-plane except w a
c

= .

7.39 INVARIANT POINTS OF BILINEAR TRANSFORMATION

We know that         w
az b
cz d

= +
+

 ... (1)

If z maps into itself, then w = z

(1) becomes           z = 
az + b
cz + d

 ... (2)

Roots of (2) are the invariants or fixed points of the bilinear transformation.
If the roots are equal, the bilinear transformation is said to be parabolic.
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7.40 CROSS-RATIO

If there are four points z1, z2, z3, z4 taken in order, then the ratio 
( )( )
( )( )
z z z z
z z z z

1 2 3 4

2 3 4 1

− −
− −  is called 

the cross-ratio of z1, z2, z3, z4.

7.41 THEOREM
A bilinear transformation preserves cross-ratio of four points

 Proof. We know that w = 
az + b
cz + d

.

 As w1, w2, w3, w4 are images of z1, z2, z3, z4 respectively, so

  w1 = 
az b
cz d

w
az b
cz d

1

1
2

2

2

+
+

=
+
+

,

 ∴ w1 – w2 = 
( )

( )( )
( )ad bc

cz d cz d
z z−

+ +
−

1 2
1 2  ...(1)

 Similarly w2 – w3 = 
ad bc

cz d cz d
z z−

+ +
−

( )( )
( )

2 3
2 3  ...(2)

  w3 – w4 = 
ad bc

cz d cz d
z z−

+ +
−

( )( )
( )

3 4
3 4  ...(3)

  w4 – w1 = 
ad bc

cz d cz d
z z−

+ +
−

( )( )
( )

4 1
4 1  ...(4)

 From (1), (2), (3) and (4), we have

             
(w w )(w w )
(w w )(w w )

1 2 3

3 2 1

−− −−
−− −−

==
−− −−
−− −−

(z z )(z z )
(z z )(z z )

1 2 3

3 2 1

 ⇒ (w1, w2, w3, w4) = (z1, z2, z3, z4).

7.42 PROPERTIES OF BILINEAR TRANSFORMATION
1. A bilinear transformation maps circles into circles.
2. A bilinear transformation preserves cross ratio of four points.
If four points z1, z2, z3, z4 of the z-plane map onto the points w1, w2, w3, w4 of the w-plane 

respectively.

⇒          
( ) ( )
( ) ( )

( )( )
( ) ( )

w w w w
w w w w

z z z z
z z z z

1 2 3 4

1 4 3 2

1 2 3 4

1 4 3 2

− −
− −

=
− −
− −

Hence, under the bilinear transform of four points cross-ratio is preserved.

7.43 METHODS TO FIND BILINEAR TRANSFORMATION

1. By finding a, b, c, d for 
az b
cz d

+
+

 with the given conditions.

2. With the help of cross-ratio

       
(w w )(w w )
(w w )(w w )

(z z )(z z )
(z z )(z z )

1 2 3 4

1 4 3 2

1 2 3

3 2 1

− −
− −

=
− −
− −

Example 75. Find the bilinear transformation which maps the points z = 1, i, – 1 into the 
points w = i, 0,– i.

Hence find the image of | z | < 1. (U.P., III  Semester, 2008, Summer 2002) 
(U.P. (Agri. Engg.) 2002)

Solution. Let the required transformation be w az b
cz d

= +
+
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    or w

a
d

z b
d

c
d

z

p z q
r z

=
+

+
= +

+1 1
                 ... (1) p a

d
q b

d
r c

d
= = =





, ,

  On  substituting the values of z and corresponding values of w in (1), we get

      i p q
r

= +
+1

   ⇒ p + q = ir + i ... (2)

     0 = 
pi q
ri

+
+1

   ⇒  pi + q = 0 ... (3)

   – i = 
− +
− +
p q
r 1

   ⇒ –p + q = ir – i ... (4)

On subtracting (4) from (2), we get 2p = 2i or p = i
On putting the value of p in (3) , we  have i (i) + q = 0 or q = 1
On substituting the values of p and q in (2), we obtain
  i + 1 = i r + i or 1 = i r    or  r = – i
Putting the values of  p, q, r in (1), we have 

   w iz
iz

= +
− +

1
1

         u iv i x iy
i x iy

ix y ix y
ix y ix y

+ = + +
− + +

= − + + +
− + + + +

( )
( )

( ) ( )
( ) ( )

1
1

1 1
1 1

== − − + +
+ +

x y ix
x y

2 2

2 2
1 2
1( )

Equating real parts, we get

  u x y
x y

= − − +
+ +

2 2

2 2
1

1( )
  ... (5)

But  | |z x y< ⇒ + <1 12 2  ⇒ 1 02 2− − >x y
From (5)   u > 0 As denominator is positive. Ans.

 Example 76. Find the bilinear transformation which maps the points z = 0, –1, i onto  
w = i, 0, ∞. Also find the image of the unit circle | z | = 1. 

[Uttarakhand, III Semester 2008, U.P. III semester (C.O.) 2003]
Solution. On putting z = 0, – 1, i into w = i, 0, ∞ respectively in

  
( )( )
( )( )
w w w w
w w w w

− −
− −

1 2 3

3 2 1
 = 

( )( )
( )( )
z z z z
z z z z

− −
− −

1 2 3

3 2 1
 ...(1)

   ⇒ 
( )

( )

w w w
w

w
w

w w

− −







−





 −

1
2

3

3
2 1

1

1
 = 

( )( )
( )( )
z z z z
z z z z

− −
− −

1 2 3

3 2 1

 ⇒ ( )( )
( ) ( )
w i

i
− −

− −
1

1 0  = 
( )( )
( )( )

( )z i
z i

w i
i

z i
z i

− − −
− − −

⇒ −
−







= +
−

0 1
1 0

1
 

 ⇒   w – i = 
( )− +

−
i z
z i

1
    ⇒   w = 

( ) ( )1 1 1−
−

+ = − + +
−

i z
z i

i i z iz
z i

 ⇒ w = 
z
z i

+
−

1
 ...(2) Ans.

 From (2) z = 
iw
w

+
−

1
1  ...(3)   

Inverse transformation is
z dw b

cw a
= − +

−













z w
1 i
i 0
–1 –i

z w
0 i
–1 0
i ∞
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 And | z | = 1

 ⇒ 
iw
w

+
−

1
1  = 1                  ⇒   | 1 + iw| =  |w – 1|

 ⇒ | 1 + i(u + iv)| = |u + iv – 1|    ⇒  | 1 – v + iu| = | u – 1 + iv |
 ⇒ (1 – v)2 + u2 = (u – 1)2 + v2   ⇒  1 + v2 – 2v + u2 = u2 + 1 – 2u + v2

 ⇒ u – v = 0 ⇒ v = u Ans.
Example 77. Find the fixed points and the normal form of the following bilinear  
transformations.

(a)  w z
z

= −
−

3 4
1

 and (b) w z
z

= −
+

1
1

Discuss the nature of these transformations.
Solution. (a) The fixed points are obtained by

  z z
z

= −
−

3 4
1

 or  z2 – 4z + 4 = 0 or  (z – 2)2 = 0 ⇒  z = 2

z = 2 is the only fixed point. This transformation is parabolic.
Normal Form 
 w z

z w z
z

z
z z

z
z

= −
−

⇒
−

=
−
−

−
= −

− − +
= −

−
3 4

1
1

2
1

3 4
1

2

1
3 4 2 2

1
2

and   1
2

1
2

1
w z−

=
−

+

(b) The fixed points are obtained by

   z z
z

= −
+

1
1

 ⇒ z2 + z = z – 1   ⇒   z2 = –1  ⇒  z = ±i

Hence ± i are the two fixed points.
Normal Form

      w = 
z
z

−
+

1
1

  w i z
z

i z i z
z

− = −
+

− = − − +
+

1
1

1 1
1
( )

    ... (1)

and           w i z
z

i z i z
z

+ = −
+

+ = − + +
+

1
1

1 1
1
( )

     ...(2)

On dividing (1) by (2), we get

  w i
w i

z i z i
z i z i

i z i
i z i

i i z i−
+

= − − −
− + +

= − −
+ +

= − − −1
1

1
1

2( ) ( )
( ) ( )

( ) ( )
(11+ +i z i) ( )

  
w
w

i z i
z i

k z i
z i

−
+

= − −
+







= −
+







1
1

 where k = – i

The transformation is elliptic.          Ans.

Example 78. The fixed points of the transformation w = 
2 5

4
z

z
−

+
 are given by:

  (a) 
5
2

0,





     (b)  (–4, 0)     (c)  (–1 + 2i,  – 1 – 2i)  (d) ( , )− + − −1 6 1 6

(AMIETE, Dec. 2010)
Solution.  Here f (z) = 

2 5
4

z
z

−
+
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  In the case of fixed point z z
z

= −
+

2 5
4

  ⇒  z2 + 4z = 2z – 5         ⇒    z2 + 2z + 5 = 0

  ⇒  z = − ± − = − ±2 4 20
2

2 4
2

i
 = – 1 ± 2i 

  Thus,  z = –1 ± 2i are the only fixed points.
  Hence (c) is correct answer. Ans.

Example 79. Show that the transformation w i z
z

= −
+

1
1

 transforms the circle |z| = 1 onto the 

real axis of the w-plane and the interior of the circle into the upper half of the w-plane.
 (U.P., III Semester, Dec. 2003)
Solution. w i z

z
= −

+










1
1

 ( ) ( )
( )

( )
( )

( )
u iv i x iy

x iy
i i x y

x iy
x iy

+ = − +
+ +









 = − +

+ +[ ]
+ −[1

1 1
1 ]]

+ −[ ]( )1 x iy
 (Rationalizing)

        = + + − − − + + −
+ +

= − + + + + − − −i ix y i x ix xy y xy iy
x y

y xy y xy i ix ix ix2 2

2 2

2

1( )
iiy

x y

2

2 21( )+ +

        = + − −
+ +

2 1
1

2 2

2 2
y i x y

x y
( )

( )
Equating the real and imaginary parts, we get
  u y

x y
=

+ +
2

1 2 2( )
           ... (1)      

 and          v x y
x y

= − +
+ +

1
1

2 2

2 2
( )

( )
 ... (2)

when x2 + y2 = 1, then v
x y

= −
+ +

=1 1
1

02 2( )
v = 0 is the equation of the real axis in the w – plane.   Proved.
(b)   Now the equation of the interior of the circle is x2 + y2 < 1.
Dividing (1) by (2), we get

  
u
v

y
x y

=
− +

2
1 2 2( )

,       u – u(x2 + y2) = 2vy,         u(x2 + y2) = u – 2vy

  x y vy
u

2 2 1 2+ = − ,  1 2 1− <vy
u

  [as x2 + y2 < 1]

  − <2 0vy
u

,     2vy > 0

  v > 0
v > 0 is the equation of the upper half of w-plane. Proved.

Example 80. Show that ω = −
+

i z
i z

 maps the real axis of the z-plane into the circle  

| w | = 1 and (ii) the half-plane y > 0 into the interior of the unit circle |w| < 1 in the  

w-plane.      (U.P., III Semester, Dec. 2005, 2002)

Solution. We have   ω = −
+

i z
i z
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  | | | |
| |

| |
| |

ω = −
+

= −
+

= − −
+ +

i z
i z

i z
i z

i x iy
i x iy

  | | ( )
( )

, | |
( )

( )
ω ω= − + −

+ +
=

+ −

+ +

x i y
x i y

x y

x y
1
1

1

1

2 2

2 2

Now the real axis in z-plane i.e.i y = 0, transform into

  | |ω =
+

+
=

x

x

2

2

1

1
1 ,              |w| = 1   | z | = 1

Hence the real axis in the z-plane is mapped into the circle |w| = 1. 
(ii) The interior of the circle i.e. |w| < 1 gives.

  
x y

x y

2 2

2 2

1

1

+ −

+ +

( )

( )
 < 1   ⇒  

x y
x y

2 2

2 2

1
1

1+ −
+ +

<( )
( )

        ⇒   x y x y2 2 2 21 1+ − < + +( ) ( )

⇒  1 2 1 22 2+ − < + +y y y y   ⇒  − <4 0y    ⇒    y > 0.
Thus the upper half of the z-plane corresponds to the interior of the circle |w| = 0. Proved..

Example 81. Show that the transformation w z
z

= −
−

3
2

 transforms the circle with centre 
5
2

0,





 and radius 
1
2

 in the z-plane into the imaginary axis in the w-plane and the interior 

of the circle into the right half of the plane. (A.M.I.E.T.E. Summer 2000)

Solution. w z
z

= −
−

3
2

   ⇒   u iv x iy
x iy

+ = − −
+ −

3
2

   ⇒   (u + iv) (x + iy – 2) = 3 – x – iy

⇒  ux + iuy – 2u + ivx – vy – 2iv = 3 – x – iy
⇒  ux – 2u – vy + i(uy + vx – 2v) = 3 – x – iy
Equating real and imaginary quantities, we have
  ux – vy – 2u = 3 – x   and   vx – 2v + uy = –y
⇒   (u + 1)x – vy = 2u + 3 and vx + (u + 1)y = 2v
On solving the equations for x and y, we have

     x u v u
u v u

y v
u v u

= + + +
+ + +

= −
+ + +

2 2 5 3
2 1 2 1

2 2

2 2 2 2,

Here, the equation of the given circle is   x y−





+ =5
2

1
4

2
2  ... (1)

Putting the values of x and y in (1), we have

  
2 2 5 3

2 1
5
2 2 1

1
4

2 2

2 2

2

2 2

2u v u
u v u

v
u v u

+ + +
+ + +

−








 + −

+ + +






=

    ⇒        
− − +

+ + +










+

−

+ + +









u v

u v u
v

u v u

2 2

2 2

2

2 2
1

2 2 1 2 1( )

=

2
1
4

 ⇒ ( ) ( )− − + + = + + +u v v u v u2 2 2 2 2 2 21 4 2 1

 ⇒    ( ) [( ) ( )]u v v u v u2 2 2 2 2 2 21 4 1 2 2+ − + = + − + +
 ⇒    ( ) ( ) ( ) ( )( )u v v u v u u v u2 2 2 2 2 2 2 2 2 21 4 1 2 2 2 1 2 2+ − + = + − + + + + − +
 ⇒    v u u v u2 2 2 21 1 1= + + + − +( ) ( ) ( )
 ⇒    v u u u uv u u v2 2 3 2 2 22 1 1= + + + + − + + −
 ⇒      0 23 2 2= + + +u u u uv
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 ⇒     u u u v( )2 22 1+ + +  = 0   ⇒   u = 0 i.e., equation of imaginary axis.

Equation of the interior of the circle is x y−





+ <5
2

1
4

2
2 .

Then corresponding equation in u, v is
  u u u v( )2 22 1 0+ + + >     or   u u v[( ) ]+ + >1 02 2

As ( )u v+ + >1 02 2  so u = 0 i.e., equation of the right half plane. Ans.

7.44 INVERSE POINT WITH RESPECT TO A CIRCLE

Two points P and Q are said to be the inverse points with  
respect to a circle S if they are collinear with the centre C on the same 
side of it, and if the product of their distances from the centre is equal 
to r2 where r is the radius of the circle.

Thus when P and Q are the inverse points of the circle, then the 
three points C, P, Q are collinear, and also CP.CQ = r2

Example 82. Show that the inverse of a point a, with respect to the circle |z – c| = R is the 

point c R
a c

+
−

2

Solution. Let b be the inverse point of the point a′ with respect to the circle |z – c| = R.
Condition I. The points a, b, c are collinear. Hence
  arg arg arg            ( ) ( ) ( )b c a c a c− = − = − −  (since arg z = – arg z )
⇒  arg b c arg a c( ) ( )− + − = 0    or   arg ( ) ( )b c a c− − = 0
∴   ( ) ( )b c a c− −  is real, so that
            ( ) ( ) | ( ) ( ) |b c a c b c a c− − = − −

Condition II. | | | | | | | |b c a c R b c a c R− − = ⇒ − − =2 2  {| | | |}z z=

  | ( ) ( ) | ( ) ( )b c a c R b c a c R− − = ⇒ − − =2 2    ⇒   b c R
a c

− =
−

2

                 ⇒      b c R
a c

= +
−

2

. Proved.

Example 83. Find a Mobius transformation which maps the circle |w| < 1 into the circle 

|z – 1| < 1 and maps w = 0, w = 1 respectively into z = 
1
2

,  z = 0.
Solution. Let the transformation be,

            w
az b
cz d

= +
+

 ... (1)

  Since,   w = 0 maps into z = 1
2

, 
  From (1), we get

            0 2

2
2

=
+

+
⇒ +

a b

c d

a b  = 0     ⇒   b = 
−a
2

 ... (2)

Since w = 1 maps into z = 0, from (1), we get

             1
0
0

= +
+

⇒ =b
d

b d  ... (3)
Here           |w| = 1 corresponding to |z – 1| = 1

Therefore points w
w

, 1
 inverse with respect to the circle |w| = 1 correspond to the points 

C P

S

Q

z w
½ 0
0 1
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z
z

, 1 1
1

+
−

 inverse with respect to the circle |z – 1| = 1

[z and a R
z a

+
−

2

 are inverse points on the circle |z – a| = R]
Particular w = 0 and ∝ correspond to

            z z= +
−

⇒ = −1
2

1 1
1
2

1

1
2

1, ,

Since w = 0 maps into      z = – 1, from (1), we get

           ∝ = − +
− +

⇒ − +a b
c d

c d  = 0   ⇒   c = d  ... (4)

From (2), (3) and (4),         b = – 
a b c d
2

, = =

From (1)            w az b
cz d

bz b
bz b

z
z

= +
+

= − +
+

= − +
+

2 2 1
1

 Ans.

Example 84. Show that bilinear transformation of a circle of z-plane into a circle of w-plane 
and inverse points are transformed into inverse points.

In particular case in which the circle in the z-plane transform into a straight line in the w-plane, 
the inverse points transform into points symmetrical about this line.

Solution. The equation of a circle is

   
| |
| |
z p
z q

k−
−

=  ... (1) with inverse points p, q, k ≠ 1.

Let the bilinear transformation is w az b
cz d

= +
+

 ... (2)

Under this transformation points p, q in the z-plane map into 
aq b
cq d

aq b
cq d

+
+

+
+

and  in the w-plane.

From (2), we get    z dw b
cw a

= −
− +

 ... (3)

Putting the value of z from (3) into (1), we get

  

dw b
cw a

p

dw b
cw a

q
k

w ap b
cp d

w aq b
cq d

k cq d
cp d

−
− +

−

−
− +

−
= ⇒

− +
+

− +
+

= +
+

| |
| ||

 ... (4)

This is the equation of circle in w-plane. Its inverse points are

  
c p b
c p d

aq b
cq d

+
+

+
+

and .

Particular case. If k cp d
cq d

| |
| |

+
+

= 1

then equation (4), becdomes

   
w ap b

cp d

w aq b
cp d

− +
+

− +
+

= 1 ... (5)
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  (5) is the equation of a line bisecting at right angles to the join of the points 
ap b
cp d

+
+

 and 
aq b
cq d

+
+

.

Example 85. Find two bilinear transformations whose fixed points are 1 and 2.
 (Q. Bank U.P.T.U. 2002)

 Solution. We have,          w
az b
cz d

= +
+

 ... (1)

 Fixed points are given by

              z az b
cz d

= +
+

 ⇒ cz2 – (a – d) z – b = 0   ⇒    z a d
c

z b
c

2 0− − − =( )
 ... (2)

 Fixed points are 1 and 2, so
  (z – 1) (z – 2) = 0
 ⇒ z2 – 3z + 2 = 0 ... (3)
 Equating the coefficeints of z and constants in (2) and (3), we get

 ∴ 
a d

c
−

 = 3  and  − =b
c

2

 ⇒ b = – 2c and  d = a – 3c
 Putting the values of b and d in (1), we get

                                    w az c
cz a c

= −
+ −

2
3  has its fixed points at z = 1 and z = 2.

 Taking a = 1, c = – 1 and a = 2, c = – 1, we have

  w = 
z

z
+
−

2
4   and  w z

z
= +

−
2 1
5
( )

 Ans.

Example 86. Show that the transformation w z
z

= +
−

2 3
4  maps the circle x2 + y2 – 4x = 0 onto 

the straight line 4u + 3 = 0.

 Solution. We have, w = 
2 3

4
z

z
+

−  

 The inverse transformation is z w
w

= +
−

4 3
2  ... (1)

 Now the circle x2 + y2 – 4x = 0 can be written as zz z z− + =2 0( )  z x iy
z x iy

= +
= −







 Substituting for z and  from (1), we get

  
4 3

2
4 3

2
2 4 3

2
4 3

2
w

w
w

w
w

w
w

w
+

−
+

−
− +

−
+ +

−






.  = 0

⇒ 16 12 12 9 2 4 3 8 6 4 3 8 6 0ww w w ww w w ww w w+ + + − + − − + + − − =( )  

⇒  22 33( )w w+ +  = 0  ⇒  22 2 33 0 4 3 0( )u u+ = ⇒ + =  w u iv
w u iv

= +
= −







 Thus, circle is transformed into a straight line. Ans.

Example 87. If a is any real positive number, show that the transformation w z a
z a

= −
+

 transforms 

conformally the plane x > 0 to the unit circle |w| < 1. What are the transforms of |w| = constant and 
arg w = constant in z-plane? (Q. Bank U.P. III Semester 2002)

Solution. We have,    w z a
z a

= −
+

(i)                  |w| < 1
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⇒            
z a
z a

−
+

< 1

⇒             |z – a| < |z + a|
⇒      |x – a + iy| < |x + a + iy|
⇒   (x – a)2 + y2 < (x + a)2 + y2

⇒             – 2ax < 2ax
⇒                4ax > 0
⇒                    x > 0
(ii) Hence the transformation (1) transforms conformally the plane x > 0 to the unit circle |w| < 1.
The circle  |w| = k transform into

   
z a
z a

k x a iy
x a iy

k x a y
x a y

k−
+

= ⇒ − +
+ +

= ⇒ − +
+ +

=( )
( )

2 2

2 2
2

   ( ) [( ) ]x a y k x a y− + = + +2 2 2 2 2

⇒   x y a ax k
k

2 2 2
2

22 1
1

0+ + − +
−









 =  ... (2)

There is a series of coaxal circles is z-plane.
(iii) From (1), we have

   Rei z a
z a

φ = −
+

⇒   Re ( )
( )

i x a iy
x a iy

φ = − +
+ +

 ... (3)

Take logarithm of both sides of (3), we get
   log R + if = log {(x – a) + iy} – log {(x + a) + iy}

∴   φ =
−







−
+







− −tan tan1 1y
x a

y
x a

⇒   tan ( ) ( )φ = −
−

+

+
−

= + − −
− +

y
x a

y
x a

y
x a

y x a y x a
x a ya

1
2

2 2

2 2

So, the lines f = a transform into

   tan α =
+ −

2
2 2 2

ay
x y a

⇒ x2 + y2 – a2– 2ay cot a = 0 which are coaxal circles orthgonal to (2). Ans.

EXERCISE 7.9

 1. Find the bilinear transformation that maps the points z1 = 2, z2 = i, z3 = – 2 into the points 

w1 = 1, w2 = i and w3 = –1 respectively. Ans. w z i
iz

= +
+

3 2
6

 2. Determine the bilinear transformation which maps z1 = 0, z2 = 1, z3 = ∞ onto w1 = i, 

w2 = – 1, w3 = – i respectively. Ans. w z i
iz

= −
−1

 3. Verify that the equation w iz
z

= +
+

1
1  maps the exterior of the circle | z | = 1 into the upper 

half plane v > 0.
 4. Find the bilinear transformation which maps 1, i, – 1 to 2, i, – 2 respectively. Find the fixed 
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and critical points of the transformation. Ans. i, 2i

 5. Show that the transformation w i z
z

= −
+

( )1
1  maps the circle | z | = 1 into the real axis of the 

w-plane and the interior of the circle | z | < 1 into the upper half of the w-plane.

 6. Show that the transformation w iz
z i

= +
+
2

4
 transforms the real axis in the z-plane into circle 

in the w-plane. Find the centre and the radius of this circle. (A.M.I.E.T.E., Winter 2000)

Ans. 0 7
8

9
8

, ,





 7. Show that the transformation w z
z

= +
−

2 3
4

 maps the circle x2+ y2 – 4x = 0 onto the straight 
line 4u + 3 = 0

 8. If z0 is the upper half of the z-plane show that the bilinear transformation

              w e
z z
z z

i=
−
−











α 0

0

  maps the upper half of the z-plane into the interior of the unit circle at the origin in the  
w-plane.

 9. Find the condition that the transformation w az b
cz d

= +
+

 transforms the unit circle in the  

w-plane into straight line in the z-plane. Ans. If c
a

a c= =1 or | | | |

 10. Prove that w z
z

=
−1  maps the upper half of the z-plane onto the upper half of the w-plane. 

What is the image of the circle | z | = 1 under this transformation ?
Ans. Straight line 2u + 1 = 0

 11. Show that the map of the real axis of the z-plane on the w-plane by the transformation  is a 

circle and find its centre and radius. Ans. Centre 0 1
2

1
2

, ,−





=Radius

 12. Find the invariant points of the transformation w z i
iz

= − +
+







2 4
1 . Prove also that these two 

points together with any point z and its image w, form a set of four points having a constant 
cross ratio. Ans. 4i and – i

 13. Show that under the transformation w z i
z i

= −
+

,  the real axis in z-plane is mapped into the 

circle| w | = 1. What portion of the z-plane corresponds to the interior of the circle ?
   Ans. The half z-plane above the real axis corresponds to the interior of the circle | w | = 1.

 14. Discuss the application of the transformation w iz
z i

= +
+

1
 to the areas in the z-plane which 

are respectively inside and outside the unit circle with its centre at the origin.
 15. What is the form of a bilinear transformation which has one fixed point a and the other fixed 

point ∞?

 16. Prove that, in general, in the bilinear transformation w az b
cz d

= +
+

,  there are two values of z 

(invariant points) for which w = z but there is only one value if (a – d)2 + 4bc = 0.
Choose the correct alternative:
 17. The fixed points of the mapping w = (5z + 4)/(z + 5) are

 (i) – 4/5, –5 (ii) 2, 2 (iii) – 2, – 2 (iv) 2, –2     Ans. (iv)

  18.   The fixed points of the mapping f z iz
z i

( ) = +
−

3 13
3

 are

 (i) 3i ± 2 (ii) 3 ± 2i (iii) 2 ± 3i (iv) –2 ± 3i Ans. (i)
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7.45 TRANSFORMATION:  w = z2

Solution.               w = z2

         u + iv = (x + iy)2 = x2 – y2 + 2ixy
Equating real and imaginary parts, we get u = x2 – y2, v = 2xy
(i) (a) Any line parallel to x-axis, i.e., y = c, maps into
   u = x2 – c2,   v = 2cx
Eliminating x, we get v2 = 4c2 (u + c2) ... (1) which is a parabola.
(b) Any line parallel to y-axis, i.e., x = b, maps into a curve
       u = b2 – y2, v = 2by
Eliminating y, we get v2 = –4b2(u – b2),  ... (2) which is a parabola.
(c) The rectangular region bounded by the lines x = 1, x = 2, and y = 1, y = 2 maps into the 

region bounded by the parabolas.
By putting x = 1 = b in (2) we get v2 = – 4(u – 1),,
By putting x = 2 = b in (2) we get v2 = – 16(u – 4)
By putting y = 1 = c in (1) we get v2 = 4(u + 1),
By putting y = 2 = c in (1) we get v2 = 16(u + 4)

(ii) (a) In polar co-ordinates: z = reiθ, w = Reif

              w = z2

          Reif = r2 e2iθ

Then   R = r2, f = 2θ
In z-plane, a circle r = a maps into R = a2 in w-plane.
Thus, circles with centre at the origin map into circles with centre at the origin.
(b) If θ = 0, f = 0 i.e., real axis in z-plane maps into real axis in w-plane

If , θ π φ π= =
2

,  i.e., the positive 
imaginary axis in z-plane maps into 
negative real axis in w-plane.

Thus, the first quadrant in  

z-plane 0
2

≤ ≤θ π
, maps into upper 

half of w-plane 0 ≤ ≤φ π .
The angles in z-plane at origin maps into double angle in w-plane at origin.
Hence, the mapping w = z2 is not conformal at the origin.

It is conformal in the entire z-plane except origin. Since 
dw
dz

 = 2z = 0 for z = 0, therefore, 
it is critical point of mapping.

Y

O
X

x
=

2

x
=

1

y = 1

y = 2

v
=

16
(u

+
4)

2

v

=
4

(u
+

1)

2

v
=

–4
(u

–
1)

2

v
=

–16
(u

–
4)

2

V

U
O

U�

V�
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Example 88. For the conformal transformation w = z2, show that

(a) the coefficient of magnification at z = 2 + i is 2 5
(b) the angle of rotation at z = 2 +i is tan–1 (0.5).
Solution.            z = 2 + i
        f (z) = w = z2

               = (2 + i)2 = 4 – 1 + 4i = 3 + 4i
                 f '(z) = 2z = 2(2 + i) = 4 + 2i
(a) Coefficient of magnification = |f ′(z)| = 4 2 20 2 52 2+ = =   Proved.

(b)   The angle of rotation = tan tan tan− − −= =1 1 12
4

v
u

 (0.5) Proved.

Example 89. For the conformal transformation w = z2, show that the circle |z – 1| = 1 
transforms into the cardioid R = 2(2 + cos f) where Reif in the w-plane.
Solution.        |z – 1| = 1 ... (1)
Equation (1) represents a circle with centre at (1, 0) and radius 1.
Shifting the pole to the point (1, 0), any point on (1) is 1 + eiθ

Transformation is under   w = z2.
                  Reif = (1 + eiθ)2

               = e e ei
i i

θ
θ θ
2 2

2

+












−

               = e ei iθ θθ θ2
2

4
2

2
2cos cos





=

This gives           R = 4
2

2cos ,θ

⇒           R = 





2 2
2

2cos φ    [f = θ]

⇒           R = +2 1(cos )φ  Proved.

7.46 TRANSFORMATION:     w = z n  
       R e re r ei i n n inφ θ θ= =( )
Hence,           R r nn= =, φ θ

Mapping of simple figures

z-plane w-plane
             Circle, r = a                Circle, R = an

       The initial line, θ = 0   The initial line, f = 0

The straight line, θ = θ0    The straight line, f = n θ0

7.47 TRANSFORMATION:  w = z +
z
1

        
dw
dz z

= −1 1
2         

At z dw
dz

= ±1,  = 0, so transformation is not conformal at z = ±1.

O
1

1

(1, 0) �
X

Pole

(1, ) or e�
i�

Y

Y�
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            w z
z

r i
r i

= + = + +
+

1 1(cos sin )
(cos sin )

θ θ
θ θ

                = r i
r

i(cos sin ) (cos sin )θ θ θ θ+ + −1

       u iv r
r

i r
r

+ = +





+ −





1 1cos sinθ θ

             u r
r

v r
r

= +





= −





1 1cos sinθ θand

       
u

r
r

v

r
r

+
=

−
=

1 1
cos sinθ θand

sin cos2 2
2

2

2

21 1
θ θ+ =

+





+
−





u

r
r

v

r
r

     ⇒ 1
1 1

2

2

2

2=
+





+
−





u

r
r

v

r
r

z-plane w-plane
Circle, r = r    Ellipses
Circle, r = 1 Lines u = 2 

Lines, θ θ= 0
Hyperbola :   

u v2

2

2

24 4
1

cos sinθ θ
− =

7.48 TRANSFORMATION:  w = ez

       u + iv = ex + iy = ex.eiy = ex (cos y + i sin y)
Equating real and imaginary parts, we have
             u = ex cos y,  v = ex sin y
Again            w = ez

        R e e e ei x iy x iyφ = =+ .

Hence            R e x R yx
e= = =or andlog φ

Mapping of simple figures

z-plane w-plane
The straight line x = c Circle R = ec

y-axis (x = 0) Unit Circle R = e0 = 1

Region between y = 0, y = π Upper half plane
Region between y = 0, y = – π Lower half plane
Region between the lines y = c and y = c + 2 π Whole plane

Example 90. Find the image and draw a rough sketch of the mapping of the region  
1 < x < 2 and 2 < y < 3 under the mapping w = ez.
Solution.    z = x + iy
Let               w = Reif ... (1)
But              w = ez + ex + iy ... (2)
From (1) and (2);         Reif = ex + iy = ex.eiy

Equating real and imaginary parts, we get R = ex  ... (3)  and f = y
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Y

Y'

C

B

XOX'

A

D

y = 1

y = 2

X = –
�
2

X =
�
2

(i) Here 1 < x, then R = e1 is circle of radius e1 = 2.7
  x = 2, then R = e2 represents a circle of radius e2 = 7.4

Y y = 3

y = 2

x
=

1

x
=

2

X
O

U' U

R
=

e 2

R
=

e

�
=

2

� =3

O

V

V'

(ii) y = 2 and f = 2 represents radial line making an angle of 2 radians with the x-axis.  
y = 3, then f = 3 represents radial line making an angle 3 radians with x-axis.
Hence, the mapping of the region 1 < x < 2 and 2 < y < 3 maps the shaded sectors in the 
figure. Ans.

Example 91. Find the image of the strip − < < < <π π
2 2

1 2x y,  under the mapping  
w(z) = sin z.
Solution. w (z) = sin z = sin (x + iy)
       = sin x cos iy + cos x sin iy
      u + iv = sin x cosh y + i cos x sinh y

    u = sin x cosh y   ⇒ sin
cosh

x u
y

=  ...(1)

    v = cos x sinh y   ⇒ cos
sinh

x v
y

=          ...(2)

Eliminating x from (1) and (2), we get

  sin cos
cosh sinh cosh sinh

2 2
2

2

2

2

2

2

2

21x x u
y

v
y

u
y

v
y

+ = + ⇒ = +

Hence        y = 2, maps into the ellipse

         u v u v2

2

2

2

2 2

2 2
1

14 15 13 15
1

cosh sinh . .
+ = ⇒ + =

Also    y = 1, maps into the ellipse.

   
u v u v

cosh sinh . .2

2

2

2 2

1 1
1

2 38 1 38
1+ = ⇒ + =

U�
D' A' B' C'

V

O

(– cosh 2, 0) (– cosh 1,0) (cosh 1,0) (cosh 2,0)
U

The image of A −





π
2

1,  in z-plane is (– cosh 1, 0) i.e. (– 1.543, 0) in w-plane
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The image of the point D −





π
2

2,  in z-plane is (– cosh 2, 0) i.e., (– 3.762, 0).

Hence, AD line in z-plane maps into A'D' line in w-plane.

The image of B π
2

1,





 is (cosh 1, 0) i.e., (1.543, 0) in w-plane.

The image of C π
2

2,





 is (cosh 2, 0) i.e., (3.762, 0) in w-plane.

Hence, BC line maps into B'C' line in w-plane.

Hence, the strip 
− < < < <π π
2 2

1 2x y,  maps into the shaded region of w-plane bounded by 
the ellipses and u-axis. Ans.

7.49 TRANSFORMATION:
   w = cosh z

         u iv x iy i x iy ix y+ = + = + = −cosh ( ) cos ( ) cos( )

       = cos cos sin sin cosh cos sinh sinix y ix y x y i x y+ = +

So     u x y v x y= =cosh cos , sinh sin

⇒  cosh
cos

sinh
sin

x u
y

x v
y

= =and

On eliminating x, we get 
u

y
v

y

2

2

2

2 1
cos sin

− =  ... (1) (cosh sinh )2 2 1x x− =  

On eliminating y, we get 
u

x
v

x

2

2

2

2 1
cosh sinh

+ =  ... (2)  (cos sin )2 2 1y y+ =

(a) On putting y = a (constant) in (1), we get

   
u

a
v

a

2

2

2

2 1
cos sin

− =  i.e., Hyperbola.

It shows that the lines parallel to x-axis in the z-plane map into hyperbola in the w-plane.
(b) On substituting x = b (constant) in (2), we obtain

   
u

b
v

b

2

2

2

2 1
cosh sinh

+ =

Y

y = d

y = c

x
=

a

x
=

b

O
X

V

O U

V�

U�

a b

c

d

It means that lines parallel to y-axis in the z-plane map into ellipses in w-plane.
(c) The rectangular region a x b c y d≤ ≤ ≤ ≤,  in the z-plane transforms into the shaded 

portion in the w-plane.
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EXERCISE 7.10

 1. Determine the region of the w-plane into which the region bounded by x = 1, y = 1,  
x + y = 1 is mapped by the transformation w = z2. (U.P. III Semester Dec. 2004) 

 Ans. 4 4 4 4 2 12 2 2 2u v u v u v+ = − = − − =, ,
 2. By the transformation w = z2, show that the circle | z – a | = c in the z-plane correspond to 

the limacon in the w-plane. Ans. R c a c= +2 ( cos )φ

7.50 ZERO OF ANALYTIC FUNCTION
 A zero of analytic function f (x) is the value of z for which f (z) = 0.
Example 92. Find out the zeros and discuss the nature of the singularities of

                  f z z
z z

( ) ( ) sin= −
−











2 1
12            (R.G.P.V. Bhopal, III Semester, Dec. 2004)

Solution. Poles of f (z) are given by equating to zero the denominator of f (z) i.e. z = 0 is a 
pole of order two. 

zeros of f (z) are given by equating to zero the numerator of f (z) i.e., (z – 2) sin 1
1

0
z −









 =

⇒ Either z – 2 = 0   or sin 1
1

0
z −









 =

⇒ z = 2     and  1
1z

n
−

= π

⇒ z = 2,    z
n

n= + = ± ±1 1 1 2
π

, , , .........

Thus, z = 2 is a simple zero. The limit point of the zeros are given by

 z
n

= +1 1
π

  ( , , ...........)n = ± ±1 2  is z = 1.

Hence z = 1 is an isolated essential singularity. Ans.
7.51 PRINCIPAL PART

  If f z a z z b z zn
n

n
n

n

n( ) ( ) ( )= − + −
=

∞

=

∞
−∑ ∑

0
0

1
0

then the term 
n

n
nb z z

=

∞
−∑ −

1
0( )  is called the principal part of the function f (z) at z = z0

7.52 SINGULAR POINT
A point at which a function f (z) is not analytic is known as a singular point or singularity 

of the function.

For example, the function 
1

2z −
 has a singular point at z – 2 = 0 or z = 2.

Isolated singular point. If z = a is a singularity of f (z) and if there is no other singularity 
within a small circle surrounding the point z = a, then z = a is said to be an isolated singularity of 
the function f (z); otherwise it is called non-isolated.

For example, the function 
1

1 3( ) ( )z z− −
 has two isolated singlar points, namely z = 1 and  

z = 3.  [ ( )( ) , ].Put z z z− − = ⇒ =1 3 0 1 3
Example of non-isolated singularity. Function 

1

sin π
z

 is not analytic at the points where 
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sin π
z

 = 0, i.e., at the points 
π π
z

n=  i.e., the points z
n

n= =1 1 2 3( , , ,...) . Thus z z= 1 1
2

1
3

, , ,..., = 0 

are the points of singularity. z = 0 is the non-isolated singularity of the function 
1

sin π
z

 because 

in the neighbourhood of z = 0, there are infinite number of other singularities z
n

= 1
, where n is 

very large.
Pole of order m. Let a function f (z) have an isolated singular point z = a, f(z) can be expanded 

in a Laurent’s series around z = a, giving
       f z a a z a a z a( ) ( ) ( ) ...= + − + − +0 1 2

2

   + 
b

z a
b

z a
b

z a
b

z a
b

z a
m

m
m

m
m

m
1 2

2
1

1
2

2−
+

−
+ +

−
+

−
+

−
++

+
+

+( )
...

( ) ( ) ( )
... ... (1)

In some cases it may happen that the coefficients b b bm m m+ + += =1 2 3  = 0, then (1) reduces to        

f z a a z a a z a b
z a

b
z a

b
z a

m
m( ) ( ) ( ) ...

( ) ( )
...

( )
= + − + − + +

−
+

−
+ +

−0 1 2
2 1 2

2

  f (z) = a0 + a1 (z – a) + a2 (z – a)2 + ..... +
−
1

( )z a m {b1 (z – a)m–1 + b2 (z – a)m–2

+ b3 (z – a)m–3 + .... + bm}
then z = a is said to be a pole of order m of the function f (z), when m = 1, the pole is said to be 
simple pole. In this case

           f z a a z a a z a
b

z a
( ) ( ) ( ) ...= + − + − + +

−0 1 2
2 1

If the number of the terms of negative powers in expansion (1) is infinite, then z = a is called 
an essential singular point of f (z).
7.53 REMOVABLE SINGULARITY

If f z a z an
n

n

( ) ( )= −
=

∞

∑
0

⇒   f (z) = a0 + a1 (z – a) + a2 (z – a)2 + ..... + an(z – a)n + .....
Here the coefficients of negative powers are zero i.e. Laurent series does not contain 

negative power of (z – a) then z = a is called a removable signularity i.e., f (z) can be made ana-
lytic by redefining f (a) suitably i.e. if lim ( )

x
f z

→0
 exists.

Remark. This type of singularity can be made to disappear by defining the function suitably 

e.g.,  f z z a
z a

( ) sin( )= −
−

 has removable singularity at z = a because

sin ( ) ( ) ( )
!

( )
!

......z a
z a z a

z a z a z a−
−

=
−

− − − + − ∞











=1

3 5
1

3 5
−− − + − ∞( )

!
( )

!
.....z a z a2 4

3 5
has no term containing negative powers of (z – a). However this singularity can be rermoved 

and the function can be made analytic by defining f z z a
z a

z a( ) sin ( )= −
−

= =1 at

7.54 WORKING RULE TO FIND SINGULARITY
Step 1. If Lt

z a
f z

→
( )  exists and is finite then z = a is a removable singular point.
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Step 2. If Lt
z a

f z
→

( )  does not exist then z = a is an essential singular point.

Step 3. If Lt
z a

f z
→

( )  is infinite then f (z) has a pole at z = a. The order of the pole is same          

as the number of negative power terms in the series expansion of f(z).
Example 93. Define the singularity of a function. Find the singularity (ties) of the functions

 (i)     f (z) = sin 1
z     (ii)  g (z) = e

z

z
1

2  (U.P. III Semester, 2009-2010)

Solution. See Art. 8.2 on page 254 for definition.
(i)  We know that
       sin

! !
.......... ( )

( ) !
1 1 1

3
1

5
1 1

2 13 5 2 1z z z z n z
n

n= − + + + −
+ +

Obviously, there is a number of singularity.

          sin 
1
z

 is not analytic at z = 0. 1 0
z

z= ∞ =( )at

Hence,  sin 
1
z

 has a  singularity at z = 0.

(ii)   Here, we have g z e
z

z
( ) =

1

2

We know that, 1 1 1 1 1
2

1
3

1
2

1

2 2 3z
e

z z z z n z
z

n



















 = + + + + + +



 ! !
....

!
....






                               = + + + + ++
1 1 1

2
1

3
1

2 3 4 5 2z z z z n zn! !
........

!
......

Here, f (z) has infinite number of terms in negative powers of z.
Hence, f (z) has essential singularity at z = 0. Ans.

Example 94.  Find the pole of the function 
e

z a

z a−

−( )2

 Solution. e
z a z a

z a z az a−

−
=

−
+ − + − +











( ) ( )

( ) ( )
!

...2 2

21 1
2

The given function has negative power 2 of (z – a). 
So, the given function has a pole at z = a of order 2. Ans.

Example 95. Find the poles of f (z) = sin 1
z a−







 Solution. sin
! ( ) ! ( )

.....1 1 1
3

1 1
5

1
3 5z a z a z a z a−







=
−

−
−

+
−

−

The given function f (z) has infinite number of terms in the negative powers of z – a.
So, f (z) has essential singularity at z = a. Ans.

Example 96. Discuss singularity of 1
1 ez−

 at z = 2π i.

 Solution. We have, f (z) = 1
1 − ez

The poles are determined by putting the denominator equal to zero.
 i.e., 1 – ez = 0
 ⇒ ez = 1 = (cos 2nπ + i sin 2nπ) = e2nπi
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 ⇒ z = 2nπi  (n = 0, ± 1, ± 2, ......)
 Clearly z = 2πi is a simple pole. Ans.

 Example 97.  Discuss singularity of 
cot πz
z a( )− 2  at z = a and z = ∞.

(R.G.P.V., Bhopal, III Semester, Dec. 2002)

 Solution.  Let f (z) = 
cot

( )
cos

sin ( )
π π

π
z

z a
z

z z a−
=

−2 2

 The poles are given by putting the denominator equal to zero.
 i.e., sin π z (z – a)2 = 0 ⇒ (z – a)2 = 0 or sin π z = 0 = sin nπ
 ⇒ z = a,  π z = n π,   (n ∈ I)
 ⇒ z = a, n
 f (z) has essential singularity at z = ∞.
 Also, z = a being repeated twice gives the double pole. Ans.

Example 98. Determine the poles of the function

  f (z) = 1
z 14 +

 (R.G.P.V., Bhopal, III Semester, June 2003)

 Solution. f (z) = 1
14z +

 The poles of f (z) are determined by putting the denominator equal to zero.
 i.e., z4 + 1 = 0  ⇒  z4 = – 1

          z = ( ) (cos sin )− = +1
1
4

1
4π πi

   = [cos( ) sin ( ) ]2 1 2 1
1
4n i n+ + +π π  [By De Moiver’s theorem]

   = cos ( ) sin ( )2 1
4

2 1
4

n i n+ + +





π π

 If n = 0, Pole at  z = cos sinπ π
4 4

1
2

1
2

+





= +





i i

 If n = 1, Pole at  z = cos sin3
4

3
4

1
2

1
2

π π+





= − +





i i

 If n = 2, Pole at z = cos sin5
4

5
4

1
2

1
2

π π+





= − −





i i

 If n = 3, Pole at  z = cos sin7
4

7
4

1
2

1
2

π π+





= −





i i  Ans.

Example 99. Show that the function ez has an isolated essential singularity at z = ∞.
(R.G.P.V., Bhopal, III Semester, Dec. 2003)

Solution.   Let  f(z) = ez

Putting   z = 
1
t

, we get f
t

e
t t t

t1 1 1 1
2

1
3

1

2 3






= = + + + +
! !

.....

Here, the principal part of f
t
1





;

 1 1
2

1
32 3t t t

+ + +
! !

...

Contains infinite number of terms.

Hence t = 0 is an isolated essential singularity of et
1

 and z = ∞ is an isolated essential  
singularity of ez.                           Ans.
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EXERCISE 7.11
Find the poles or singularity of the following functions:

 1. 1
2 3( ) ( )z z− −   Ans. 2 simple poles at z = 2 and z = 3.

 2. e
z

z

( )− 2 3  Ans. Pole at z = 2 of order 3.

 3. 1
sin cosz z−  Ans. Simple pole at z = π

4

 4. cot 1
z  Ans. Essential singularity at z = 0

 5. z cosec z Ans. Non-isolated essential singularity

 6. sin 1
z  Ans. Essential singularity

Choose the correct alternative :

 7. Let  f (z) = 
1

2 34 6( ) ( )
,

z z− +
 then z = 2 and z = – 3 are the poles of order :

  (a)  6 and 4 (b) 2 and 3 (c) 3 and 4 (d) 4 and 6 Ans. (d)
(R.G.P.V., Bhopal III Semester, June 2007)

7.55 THEOREM
If f (z) has a pole at z = a, then | ( ) | .f z z a→ ∞ →as
Proof. Let z = a be a pole of order m of f (z). Then by Laurent’s theorem

      f (z) =  a z a b z an
n

n
n

m
( ) ( )− + −

∞
−∑ ∑

0 1

   = a z a
b

z a
b

z a
b

z an
n m

m( )
( )

.....
( )

− +
−

+
−

+ +
−

∞

∑ 1 2
2

0

   = a z a
z a

b z a b z an
n

m
m m( )

( )
[ ( ) ( )− +

−
− + −− −

∞

∑ 1
1

1
2

2

0
 + ...... + bm–1(z – a) + bm]

   = a z a z
z an

n
m( ) ( )

( )
− +

−

∞

∑ ϕ

0

 Now ϕ(z) → bm as z → a.
 Hence | f(z) | → ∞ as z → a. Proved.

Example 100.  If an analytic function f(z) has a pole of order m at z = a, then 
1

f z( )  has a 
zero of order m at z = a.
Solution. If f(z) has a pole of order m at z = a, then

  f (z) = 
ϕ ( )

( )
z

z a m−
 where ϕ(z) is analytic and non-zero at z = a.

 ∴ 1
f z( )  = 

( )
( )

z a
z

m−
ϕ

 Clearly, 1
f z( )  has a zero of order m at z = a, since φ (a) ≠ 0. Proved.

7.56 DEFINITION OF THE RESIDUE AT A POLE 
Let z = a be a pole of order m of a function f (z) and C1 circle of radius r with centre at  

z = a which does not contain any other singularities except at z = a then f (z) is analytic within 
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the annulus r < | z – a| < R can be expanded within the annulus. Laurent’s series:

  f (z) = a z a b z an
n

n
n

n

n
( ) ( )− + −

=

∞
−

=

∞

∑ ∑
0 1

 ...(1)

where  an = 1
2 1πi

f z
z a

dznC
( )

( )− +∫  ...(2)

and  bn = 1
2 1

1πi
f z

z a
dznC

( )
( )− − +∫  ...(3)

  | z – a| = r being the circle C1.

 Particularly, b1 = 1
2 1πi

f z dz
C

( )∫
The coefficient b1 is called residue of f (z) at the pole z = a. It is denoted by symbol  

                         Res. (z = a) = b1.
7.57 RESIDUE AT INFINITY

Residue of f (z) at z = ∞ is defined as − ∫1
2πi

f z dz
C

( ) where the integration is taken round 
C in anti-clockwise direction.
where C is a large circle containing all finite singularities of f (z).
7.58 METHOD OF FINDING RESIDUES

(a) Residue at simple pole
    (i) If f (z) has a simple pole at z = a, then
                  Res  f (a) = lim( ) ( )

z a
z a f z

→
−

Proof.                f (z) = + − + − + +
−

a a z a a z a b
z a0 1 2

2 1( ) ( ) ...

⇒   ( ) ( ) ( ) ( ) ( ) ...z a f z a z a a z a a z a b− = − + − + − + +0 1
2

2
3

1

⇒               b z a f z a z a a z a a z a1 0 1
2

2
3= − − − + − + − +( ) ( ) [ ( ) ( ) ( ) ...]

Taking limit as z → a, we have b z a f z
z a1 = −
→

lim( ) ( )  

   Res (at z = a) = lim
z a→

 (z – a) f (z)   Proved.

(ii) If f (z) is of the form f z z
z

a a( ) ( )
( )

( ) , ( )= = ≠φ
ψ

ψ φwhere but0 0

          Res (at z = a) = 
φ
ψ
(
(
a
a
)
)′

Proof .          f z z
z

( ) ( )
( )

= φ
ψ

            Res (at z = a) = lim( ) ( ) lim( ) ( )
( )z a z a

z a f z z a z
z→ →

− = − φ
ψ

   = lim ( )[ ( ) ( ) ( ) ...]

( ) ( ) ( ) ( )
!

z a

z a a z a a

a z a a z a→

− + − ′ +

+ − ′ + − ′′

φ φ

ψ ψ
2

2
ψψ ( ) ...a +

 (By Taylor’s Theorem)

   = lim ( ) [ ( ) ( ) ( ) ...]

( ) ( ) ( )
!

( )
z a

z a a z a a

z a a z a a
→

− + − ′ +

− ′ + − ′′ +

φ φ

ψ ψ
2

2
....

 [since Y(a) = 0]

R

ra

C1

C2Annulus
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   = lim ( ) ( ) ( ) ...

( )
!

( ) ...z a

a z a a

a z a a→

+ − ′ +

′ + − ′′ +

φ φ

ψ ψ
2

          Res (at z = a) = 
φ
ψ
( )
( )
a
a′

 Proved.

(b) Residue at a pole of order n. If f (z) has a pole of order n at z = a, then

          Res (at z = a) = 
1
1

1

1( )!
[( ) ( )]

n
d
dz

z a f z
n

n
n

z a
−−

−−












−−

−−
==

Proof. If z = a is a pole of order n of function f (z), then by Laurent’s theorem

           f z a a z a a z a b
z a

b
z a

b
z a

n
n( ) ( ) ( ) ...

( )
...

( )
= + − + − + +

−
+

−
+ +

−0 1 2
2 1 2

2

Multiplying by (z – a)n, we get
               ( ) ( ) ( ) ( ) ( ) ...z a f z a z a a z a a z an n n n− = − + − + − ++ +

0 1
1

2
2  

+  b z a b z a b z a bn n n
n1

1
2

2
3

3( ) ( ) ( ) ...− + − + − + +− − −

Differentiating both sides w.r.t. ‘z’ n – 1 times and putting z = a, we get

   
d
dz

z a f z n b
n

n
n

z a

−

−
=

−











= −

1

1 11[( ) ( )] ( )!

⇒           b n
d
dz

z a f z
n

n
n

z a
1

1

1
1

1
=

−
−









−

−
=

( )!
[( ) ( )]

       Residue f(a) = 
1
1

1

1( )!
[( ) ( )]

n
d
dz

z a f z
n

n
n

z a
−−

−−












−−

−−
==

 Proved.

(c) Residue at a pole z = a of any order (simple or of order m)

               Res f (a) = coefficient of 
1
t

Proof. If f (z) has a pole of order m, then by Laurent’s theorem

           f z a a z a a z a b
z a

b
z a

b
z a

m
m( ) ( ) ( ) ...

( )
...

( )
= + − + − +

−
+

−
+ +

−0 1 2
2 1 2

2

If we put          z – a = t        or     z = a + t, then

       f a t a a t a t b
t

b
t

b
t

m
m( ) ... ...+ = + + + + + + +0 1 2

2 1 2
2

Res f (a) = b1, Res f (a) = coefficient of 
1
t

 Proved.

Rule. Put z = a + t in the function f(z), expand it in powers of t. Coefficient of 
1
t

 is the 

residue of f (z) at z = a.  

(d) Residue of f (z) (at z =  ∞) = lim { ( )}
z

z f z
→∞

−

      or      The residue of f (z) at infinity = – 1
2πi

f z dz
c

( )∫
7.59 RESIDUE BY DEFINITION

Example 101. Find the residue at z = 0 of z cos 1
z

.
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Solution. Expanding the function in powers of 
1
z

,  we have

  z
z

cos 1  = z
z z

z
z z

1 1
2

1
4

1
2

1
242 4 3− + −













= − + −
! !

..... ......

 This is the Laurent’s expansion about z = 0.

 The coefficient of 
1
z

 in it is − 1
2

.  So the residue of z
z

cos 1  at z = 0 is − 1
2

.  Ans.

Example 102. Find the residue of f z z
z

( ) =
−

3

2 1
 at z = ∞.

 Solution. We have, f (z) = z
z

3

2 1−

  f (z)  = z

z
z

z
z

z
z z

z
z

3

2
2

2

1

2 4
1 1

1 1 1 1 1 1

−





= −





= + + +





= +
−

..... ++ +1
3z

.....

  Residue at infinity  = − 





= −coeff. of 1 1
z

.  Ans.

7.60 FORMULA: RESIDUE = −
→
lim z a f(z)
z a

( )

Example 103. Determine the pole and residue at the pole of the function f z z
z

( ) =
− 1

Solution. The poles of f(z) are given by putting the denominator equal to zero.
 ∴ z – 1 = 0 ⇒ z = 1
 The function f(z) has a simple pole at z = 1.
 Residue is calculated by the formula
  Residue = lim ( ) ( )

z a
z a f z

→
−

 Residue of f (z) (at z = 1) = lim ( ) lim ( )
z z

z z
z

z
→ →

−
−







= =
1 1

1
1

1  

Hence, f (z) has a simple pole at z = 1 and residue at the pole is 1. Ans.

Example 104. Evaluate the residues of 
z

z z z

2

1 2 3( ) ( ) ( )− − −
 at z = 1, 2, 3 and infinity and 

show that their sum is zero.   (R.G.P.V., Bhopal, III Semester Dec. 2002)

Solution.  Let f (z)  = 
z

z z z

2

1 2 3( ) ( ) ( )− − −
The poles of f (z) are determined by putting the denominator equal to zero.
 ∴ (z – 1) (z – 2) (z – 3) = 0  ⇒   z = 1,  2,  3

Residue of f (z) at (z = 1)  =  lim ( ) ( ) lim ( ).
( ) ( ) ( )z z

z f z z z
z z z→ →

− = −
− − −1 1

2
1 1

1 2 3

   =  lim
( ) ( )z

z
z z→ − −

=
1

2

2 3
1
2

Residue of f(z) at (z = 2)  = lim ( ) ( ) lim ( )
( ) ( ) ( )z z

z f z z z
z z z→ →

− = −
− − −2 2

2
2 2

1 2 3
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   = lim
( ) ( ) ( ) ( )z

z
z z→ − −

=
−

= −
2

2

1 3
4

1 1
4

Residue of f(z) at (z = 3)  = lim ( ) ( )
z

z f z
→

−
3

3

     =   lim ( )
( ) ( ) ( )

lim
( ) ( )z z

z z
z z z

z
z z→ →

−
− − −

=
− −

=
3

2

3

2
3

1 2 3 1 2
9
2

 

Residue of f (z) at (z = ∞)  = lim ( ) ( )
( ) ( ) ( )z

z f z z z
z z z→ ∞

− = −
− − −

2

1 2 3
   = lim

z

z z z
→∞

−

−





−





−





= −1

1 1 1 2 1 3
1

Sum of the residues at all the poles of f (z) = 
1
2

4 9
2

1 0− + − =  
Hence, the sum of the residues is zero. Proved.

7.61 FORMULA: RESIDUE OF f a n
d
dz

z a f z
n

n
n

z a

( )
( )!

[( ) ( )]=
−

−












−

−
=

1
1

1

1

 Example 105. Find the residue of a function

  f (z) = z
z 1 z 2

2

2( ) ( )+ −
 at its double pole.

 Solution. We have, f(z) = z
z z

2

( ) ( )+ −1 22

 Poles are determined by putting denominator equal to zero.
 i.e.; (z + 1)2 (z – 2) = 0
 ⇒ z = –1, –1 and z = 2
 The function has a double pole at z = –1

  Residue at (z = –1) = lim
( )!

( )
( ) ( )z

d
dz

z z
z z→− −

+
+ −























1

2
2

2
1

2 1
1

1 2

 = =
−























= − − ⋅
−











=− =

d
dz

z
z

z z z
z

z z

2

1

2

22
2 2 1

2
( )

( ) −− =−

= −
−









 = − − −

− −1

2

2
1

2

2
4
2

1 4 1
1 2

z z
z z( )

( ) ( )
( )

  Residue at (z = – 1) = 
1 4

9
5
9

+ =  Ans.

 Example 106. Find the residue of 1
z 1

at z i2 3( )
.

+
=

 Solution. Let f (z) = 1
12 3( )z +

 The poles of f (z) are determined by putting denominator equal to zero.
 i.e.; (z2 + 1)3 = 0
 ⇒ (z + i)3 (z – i)3 = 0
 ⇒ z = ± i
 Here, z = i is a pole of order 3 of f (z).
 Residue at z = i:

   = lim
( )!

( )
( )

lim
z i z

d
dz

z i
z→

−

− →−
−

+

















=1

3 1
1

1

3 1

3 1
3

2 3 ii

d
dz z i

1
2

12

2 3! ( )+
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   = lim
( ) ( )z i z i i i i i

i
→

×
+









 = ×

+
= = = −1

2
3 4 1

2
12 6

32
3

16
3
165 5  

 Hence, the residue of the given function at z = i is − 3
16

i . Ans.

7.62 FORMULA: RES. (AT z = a) = φφ
ψψ
( )
( )
a
a′

Example 107.  Determine the poles and residue at each pole of the function f (z) = cot z.

Solution.   f z z z
z

( ) cot cos
sin

= =

The poles of the function f (z) are given by
              sin , , , , , ...z z n n= = = ± ± ±0 0 1 2 3π where

Residue of f (z) at z = nπ is = 
cos

(sin )

cos
cos

( ) ( )
( )

z
d
dz

z

z
z

z a a
a

= = = =
′









1 Res. at φ

ψ
 Ans.

Example 108. Determine the poles of the function and residue at the poles.

  f (z) = z
zsin

 Solution. f (z) = z
zsin  

 Poles are determined by putting sin sinz n z n= = ⇒ =0 π π

  Residue = z
z z ncos





 = π

 Residue = ′






φ
ψ

( )
( )
a
a

   = n
n

n
n

π
π

π
cos ( )

=
−1

  

 Hence, the residue of the given function at pole z = nπ is n
n

π
( )−1

. Ans.

7.63 FORMULA: RESIDUE = COEFFICIENT OF 1t

   where z = 1
t

Example 109. Find the residue of 
z

z z z

3

41 2 3( ) ( ) ( )− − −
 at a pole of order 4.

Solution.  The poles of f (z) are determined by putting the denominator equal to zero.
∴  (z – 1)4 (z – 2) (z – 3) = 0    ⇒  z = 1, 2, 3
  Here       z = 1 is a pole of order 4.

   f z z
z z z

( )
( ) ( ) ( )

=
− − −

3

41 2 3
 ...(1)

Putting z t z t− = = +1 1or  in (1), we get

          f t t
t t t t

t t t t t( ) ( )
( ) ( )

( ) ( )1 1
1 2

1 3 3 1 1 1
2

1
2

3

4 4
3 2 1+ = +

− −
= + + + − −


− 


−1

  = 
1
2

1 3 3 1 1 1
2 4 82 3 4

2 3
2 3

t t t t
t t t t t t+ + +





+ + + + × + + +






( ...) ...
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  = 
1
2

1 3 3 1 1 3
2

7
4

15
8

1
2

1 9
22 3 4

2 3

t t t t
t t t

t t
+ + +





+ + + +





= + +... 221
4

1 15
8

1
t t

+





+ ...

  =  1
2

1 9
2

21
4

15
8

1+ + +( ) t   Res coeffi. off a
t

( ) =





1

Coefficient of 
1 1

2
1 9

2
21
4

15
8

101
16t

= + + +





= ,

Hence, the residue of the given function at a pole of order 4 is 
101
16

. Ans.

Example 110.  Find the residue of f (z) = 
z e

z a

z

( )− 3  at its pole.

Solution. The pole of f (z) is given by ( )z a− =3 0  i.e., z = a
Here        z = a is a pole of order 3. 
Putting z – a = t where t is small. 

f z ze
z a

z
( )

( )
=

− 3   ⇒ f z a t e
t

a
t t

e e a
t t

e
a t

a t a t( ) ( )= + = +





= +





+
+

3 3 2 3 2
1 1  (z = a + t)

  = e a
t t

t t e a
t

a
t

a
t t t

a a
3 2

2

3 2 2
1 1

1 2 2
1 1+





+ + +








 = + + + +

! !
... ++ +





1
2

...

  =  e a
t

a
t

a
t

a 1
2 2

1 1 1 1 1
2 3+ +





+ + + +





( ) ( ) ...

Coefficient of 
1

2
1

t
e aa= +





Hence the residue at z a e aa= +





is
2

1 . Ans.

EXERCISE 7.12
 1. Determine the poles of the following functions. Find the order of each pole.

 (i) 
z

z a z b z c

2

( ) ( ) ( )− − −
 Ans. Simple poles at z = a, z = b, z = c

 (ii) 
z

z z
−

− +
3

2 12( ) ( )
 Ans. Pole at z = 2 of second order and z = – 1of first order.

 (iii) 
z e

z a

iz

2 2+
 Ans. Poles at z = ± ia, order 1.

 (iv) 
1

1 2( ) ( )z z− −
 Ans. z = 2, z = 1 

Find the residue of

 2. 
z

z z

3

2 3( ) ( )− −
 at its poles.       Ans. 19  3. 

z
z a

2

2 2+
 at z = ia. Ans. 

1
2

ia

 4. 
1

2 2 2( )z a+
 at z = ia Ans. − i

a4 3
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 5. tan z at its pole. Ans. f n +





π
2

 = – 1 at its pole

 6. z e z2 1/  at the point z = 0. Ans. 
1
6

  7. z
z

z2 1 0sin 





=at       Ans. − 1
6

 8. 
1

2z z i( )−
   at   z = i Ans. –1  9. 

e
e

z

z

2

1+
 at its pole Ans. – 1

 10. 
1+

+
e

z z z

z

sin cos
 at z = 0 Ans. 1 11. 

1
1z ez( )−

 at its poles  Ans. − 1
2

7.64 CAUCHY’S RESIDUE THEOREM (MDU, DEC. 2008)
If f (z) is analytic in a closed curve C, except at a finite number of poles within C, then 

f (z) dz = 2π i
c∫  (sum of residues at the poles within C).

Proof. Let C C C Cn1 2 3, , ....,  be the non-intersecting circles with 
centres at a a a an1 2 3, , ,...,  respectively, and radii so small that they lie 
entirely within the closed curve C. Then f(z) is analytic in the multiple 
connected region lying between the curves C and C C Cn1 2, ,..., .

Applying Cauchy’s theorem
  f z dz f z dz f z dz f z dz f z dzc c ccc n

( ) ( ) ( ) ( ) ... ( ) .∫ ∫ ∫∫∫= + + + +
321

    = 2πi [Res f a f a f a f an( ) ( ) ( ) ... ( )1 2 3+ + + +Res Res Res ] Proved.

Example 111.  Evaluate the following integral using residue theorem

   
1
2
+
−∫ z

z z
dz

c ( )
                    where c is the circle |z| = 1.
Solution.  The poles of the integrand are given by  
putting the denominator equal to zero.
   z z z( ) ,2 0 0 2− = =or
The integrand is analytic on | z | = 1 and all points inside 
except z = 0, as a pole at z = 0 is inside the circle | z | = 1.
Hence by residue theorem

          1
2

2 0+
−

=∫ z
z z

dz i f
c ( )

( )]π [Res  ... (1)

Residue f (0) = lim .
( )

lim
z z

z z
z z

z
z→ →

+
−

= +
−

=
0 0

1
2

1
2

1
2

Putting the value of Residue f (0) in (1), we get

  
1
2

2 1
2

+
−

= 





=∫
z

z z
dz i ic ( )

π π  Ans.

Example 112. Determine the poles of the following function and residue at each pole:

            f z z
z z

( )
( ) ( )

=
− +

2

21 2
 and hence evaluate  

             
z dz

z zc

2

21 2( ) ( )− +∫    where c: | z | = 3.       (R.G.P.V. Bhopal, III Sem. Dec. 2007)

C3

C1

C2

Cn

a3 a1

a2

an

O 1

Y�

Y

X� X
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Solution.            f z z
z z

( )
( ) ( )

=
− +

2

21 2
Poles of f (z) are given by ( ) ( )z z− +1 22  = 0 i.e. z = 1, 1, – 2
The pole at z = 1 is of second order and the pole at z = – 2 is simple.

Residue of f (z) (at z = 1) = lim
( )!

( )
( ) ( )z

d
dz

z z
z z→ −

−
− +1

2 2

2
1

2 1
1

1 2

           = lim lim ( ) .
( )z z

d
dz

z
z

z z z
z→ →+

= + −
+1

2

1

2

22
2 2 1

2

           = lim
( ) ( )z

z z
z→

+
+

= +
+

=
1

2

2 2
4
2

1 4
1 2

5
9

Residue of f (z) (at z = – 2) = lim ( )
( ) ( )

lim
( ) ( )z z

z z
z z

z
z→− →−

+
− +

=
−

=
− −

=
2

2

2 2

2

2 2
2

1 2 1
4

2 1
4
9

    Ans.

  
z dz

z z
i ic

2

21 2
2 5

9
4
9

2
( ) ( )− +

= +





=∫ π π  Ans.

Example 113.  Using Residue theorem, evaluate 1
2 2 22π i

e dz
z z

zt

C ( )+ +∫

 where C is the cirlce | z | = 3. (U.P., III Semester, Dec. 2009)
Solution. Here, we have

 1
2 2 22 2π i

e dz
z z z

z t

C ( )+ +∫
Poles are given by
 z = 0 (double pole)
 z = – 1 ± i (simple poles)
All the four poles are inside the given circle.

 1
2 2 22 2π i

e dz
z z z

z t

( )+ +∫

Residue at z = 0 is lim
( )z

z td
d z

z e
z z z→ + +0

2
2 2 2 2

 = lim
z

z td
d z

e
z z→ + +0 2 2 2

 = lim ( ) ( )
( )z

z t ztz z t e z e
z z→

+ + − +
+ +0

2

2 2
2 2 2 2

2 2

 = 
2 2

4
1

2

0 0t e e t− = −( )

Residue at   z  = – 1 + i    

 = lim ( )
( ) ( )

lim
( )z i

z t

z i

z tz i e
z z i z i

e
z z i→ − + → − +

+ −
+ − + +

=
+ +1 2 1 2

1
1 1 1

 =
− + − + + +

=
− −

=
− + − + − +e

i i i
e

i i
ei t i t i t( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

1 1

1 1 1 1 2 1 2 4  

z z
z z

z
z i

z i

2

2

2

2 2 0
2 1 1
1 1

1
1

+ + =
⇒ + + = −
⇒ + = −
⇒ + = ±
⇒ = − ±

( )

–1 – i

–3 3

Y´

Y

X´ X

–1 + i
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4 XX�

Y�

Y

O

�i

��i

          e
z z z

dz i
z t2

2 2 2 2
2

( )+ +
=∫ π    (Sum of the Residues)

⇒   1
2 2 2

1
2 4 4

2

2 2

1 1

π i
e

z z z
dz t e ez t i t i t

( )

( ) ( )

+ +
= − + +∫

− + − −

     = − + + = − +
−

−
−t e e e t e t

t
i t i t

t1
2 4

1
2 4

2( ) ( cos )

     = − +
−t e t

t1
2 2

cos  Ans.

Example 114. Evaluate 
1

sinh z
dz

C
,

∫  where C is the circle | z | = 4.

 Solution. Here, f (z) = 1
sinh

.
z

 Poles are given by
  sinh z = 0
 ⇒ sin iz = 0
 ⇒ z = nπi where n is an integer.

 Out of these, the poles z = – πi, 0 and πi lie inside the circle | z | = 4.

 The given function 1
sinh z  is of the form φ

ψ
( )
( )
z
z  

 Its pole at z = a is φ
ψ

( )
( )
a
a′ .

           Residue (at z  =  –πi) 

      = 1 1 1 1
1

1
cosh( ) cos ( ) cos−

=
−

= =
−

= −
π π πi i i

  Residue (at z = 0) = 1
0

1
1

1
cosh

= =

  Residue (at z = π i) = 1 1 1
cosh ( ) cos ( ) cos ( )π π πi i i

= =
−

   = 1 1
1

1
cos π

=
−

= −

 Residue at – πi, 0, πi are respectively –1, 1 and –1.
 Hence, the required integral = 2πi (–1 + 1 – 1) = – 2πi. Ans.

Example 115. Evaluate 
dz

z z
cc sin

:∫  is the unit circle about origin.

Solution. 
1 1

3 5

1

1
3 5

3 5
2

2 4z z
z z z z z z zsin

! !
...

! !
...

=
− + −











=
− + −











         = 
1 1

6 120
1 1

6 1202

2 4 1

2

2 4

z
z z

z
z z− −























= + −










−

... ++ −






















z z2 4 2

6 120
... ...

         = 
1 1

6 120 36
1 1

6 120 362

2 4 4

2

2 2

z
z z z

z
z z+ − + +









 = + − +... ...  = 

1 1
6

7
3602

2

z
z+ + ...
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This shows that z = 0 is a pole of order 2 for the function 
1

z zsin
 and the residue at the pole 

is zero, (coefficient of 
1
z

).

Now the pole at z = 0 lies within C.

∴   
1 2

z z
dz i

sin
=∫ π  (Sum of Residues) = 0 Ans.

Example 116. Evaluate 
e

z

z

C cos
,

π∫  where C is the unit circle |z| = 1.   (M.D.U. 2005, 2007,2008)

Solution. Here f z e
z

z
( )

cos
=

π

   = 
e

z z

z

1
2 4

2 4
− + −











( )
!

( )
!

...π π

It has simple poles at z = ± ± ±1
2

3
2

5
2

, , ,......,  of which 

only z = ± 1
2

 lie inside the circle | z | = 1.

Residue of f(z) at z = 1
2

 is

  lim ( ) lim
cosz z

z

z f z
z e

z→ →
−





=
−





1
2

1
2

1
2

1
2

π
 Form 0

0






    = lim
sinz

z zz e e

z→

−





+

−1
2

1
2
π π

       [By L’ Hopital’s Rule]

    = 
e1 2/

.
−π

Similarly, residue of f(z) at z = −
−1

2

1 2
is e /

.
π

∴  By residue theorem 
e

z
dz i

z

C cos π
π

∫ = 2  (sum of residues)

    = 2 4
2

4 1
2

1 2 1 2 1 2 1 2
π

π π
i e e i e e i− +








 = − −







 = −

− −/ / / /
sinh .      Ans.

EXERCISE 7.13

Evaluate the following complex integrals :

 1. 
1 2

1 2
−

− −∫
z

z z z
dzc ( ) ( )

, where c is the circle | z | = 1.5  (MDU Dec. 2006) Ans. 3πi

 2. 
z e
z

dz
z t

c

2

2 1+∫ ,  where c is the circle | z | = 2 Ans. −2πi tsin
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0

1 z = e
i�

�

Y

XX´

Y´

 3. 
z

z z
dzc

−
+ −∫

1
1 22( ) ( )

, where c is the circle | z – i | = 2. Ans. – 
2
9
πi

 4. 
2

1

2

2

z z
z

dz
c

+
−∫ , where c is the circle | z – 1 | = 1.  Ans. 3πi

 5. 
e z

z
dz

z

c

2 2

51
+

−∫ ( )
, where c is the circle | z | = 2 Ans. 

4
3

2πe i

 6. 
dz

z zc ( )( )
,2 21 4+ −∫  where c is the circle | z | = 1.5 Ans. 0

 7. 
4 4 1

2 4

2

2
z z

z zc

− +
− +∫ ( ) ( )

 dz, where c is the circle | z | = 1  Ans. 0

 8. 
sin ,z
z

dz
c 6∫ where c is the circle | z | = 2   Ans. 

πi
60

 9. Let 
P z
Q z

( )
( )







, where both P(z) and Q(z) are complex polynomial of degree two.  

If f (0) = f (–1) = 0 and only singularity of f(z) is of order 2 at z = 1 with residue –1, then 
find f (z). 

Ans. f (z) = − +
−

1
3

1
1 2

z z
z
( )

( )

 10. 
sin cos

( ) ( )
,π πz z

z z
dz

C

2 2

21 2
+

− −∫  where C is the circle |z| = 3   (MDU. Dec. 2008) Ans. 4πi(π + 1)

 11. 
1 2 3

3 3
− −

−∫ cos ( )
( )

z
z

dz
C

, where C: |z – 3| = 1. (MDU. Dec. 2004) Ans. 4πi

7.65 EVALUATION OF REAL DEFINITE INTEGRALS BY CONTOUR INTEGRATION
A large number of real definite integrals, whose evaluation by usual methods become 

sometimes very tedious, can be easily evaluated by using Cauchy’s theorem of residues. For finding 
the integrals we take a closed curve C, find the poles of the function f (z) and calculate residues 
at those poles only which lie within the curve C.

  C f z dz i∫ =( ) 2π  (sum of the residues of f (z) at the poles within C)
We call the curve, a contour and the process of integration along a contour is called contour 

integration.
7.66 INTEGRATION ROUND UNIT CIRCLE OF THE TYPE

  f d(cos , sin )θ θ θ
π

0

2

∫
where f (cos q, sin q) is a rational function of cos q and sin q.

Convert sin q, cos q into z.
Consider a circle of unit radius with centre at origin, as contour.

sin q = 
e e

i i
z

z
z re e e

i i
i i i

θ θ
θ θ θ− = −





= = =
−

2
1
2

1 1, .

 cos θ
θ θ

= + = +





−e e z
z

i i

2
1
2

1

As we know

        z e dz e i d z i d d dz
i z

i i= = = =θ θ θ θ θ, or
The integrand is converted into a function of z.
Then apply Cauchy’s residue theorem to evaluate the integral.
Some examples of these are illustrated below.
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Example 117. Evaluate the integral:

 
d θ

θ
π

5 30

2

−∫ cos
 (R.G.P.V., Bhopal, III Semester, June 2007)

Solution. 
d θ

θ
π

5 30

2

−∫ cos
 =

− +









−∫
d
e ei i

θ
θ θ

π

5 3
2

0

2

 =
− − −∫

2
10 3 30

2 d
e ei i

θ
θ θ

π
                                 

e z i e d dz

d dz
iz

i iθ θ θ

θ

= ⇒ =

=

















. .

 =
− −

∫
1

10 3 3z
z

d z
i zC

 =
− −∫

1
10 3 32i

dz
z zC

                         [C is the unit circle | z | = 1]

 = −
− +∫

1
3 10 32i

dz
z zC

  

 = −
− −

=
− −∫ ∫

1
3 1 3 3 1 3i

dz
z z

i dz
z zC C( ) ( ) ( ) ( )

Let         I dz
z zC

=
− −∫ ( ) ( )3 1 3

Poles of the integrand are given by

 ( ) ( ) ,3 1 3 0 1
3

3z z z− − = ⇒ =

There is only one pole at z = 1
3

 inside the unit circle C.

Residue at z =





1
3

 = −





=
−





− −
=

→ → →
lim ( ) lim

( ) ( )
lim

z z z
z f z

z

z z1
3

1
3

1

1
3

1
3

3 1 3
33

1
3 3( )z −

   = 
1

3 1
3

3

1
8−





= −

Hence, by Cauchy’s Residue Theorem

 I = 2πi (Sum of the residues within Contour) = 2 1
8 4

π πi i−





= −

 
d i iθ

θ
π ππ

5 3 4 40 −
= −





=
2

∫ cos
 Ans.

Example 118.  Evaluate 
d

a b
θ

θ
π

+∫ sin0

2
 if a > | b |           (U.P. III Semester 2009-2010)

Solution.  Let  I = 
d

a b
θ

θ
π

+∫ sin0

2

  = 1

2
0

2

a b e e
i

di i
+ − −∫ θ θ

π
θ  Writing e z d d z

i z
i θ θ= =





,

Y´

Y

XX´
O 31

3
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  = 1

2
1a b

i
z

z

d z
i zC

+ −( )∫  (where C is the unit circle | z | = 1)

  = 1
2

1 2
2 1

2 2i a z bz b
dz

b z aiz
b

c + −
=

+ −
∫ ∫  dz

  = 2
22b z ai z b

d z
c + −∫

  = 1 2
b z z

d z
c ( ) ( )− −∫ α β           [bz2 + 2aiz – b = + −










b z a i z

b
2 2 1

Where  α + β = − 2 a i
b      

 α β =  – 1  
| α | < 1 then | β | > 1
i.e.; Pole lies at z = α in the unit circle.

Residue (at z = a) = lim ( )
( ) ( )z

z
z z→

−
− −α

α
α β

2

        =
−

=
−

=
−

2
2 2 2 2α β
b

b a
b

i a b
1 1 2

2 1
2 2

0

2

2 2 2 2 2a b
d

b z a i z
b

d z i b
b i a b a bc+

=
+ −

=
−

=
−

∫ ∫sin θ
θ π ππ

 Ans.

Example 119.  Use the complex variable technique to find the value of the integral :

    
dθ

θ
π

20

2

+∫ cos
.   (R.G.P.V., Bhopal, III Semester, Dec. 2003)

Solution.  Let I d d
e e

d
e ei i i i=

+
=

+ +
=

+ +− −∫∫∫
θ

θ
θ θ

θ θ θ θ

πππ

2 2
2

2
40

2

0

2

0

2

cos

Put e ziθ =  so that e i d dz i z d dz d dz
iz

i θ θ θ θ( ) = ⇒ = ⇒ =

   I

dz
iz

z
z

C
=

+ +
∫

2

4 1   where c denotes the unit circle | z | = 1.

    =
+ +∫

1 2
4 12i
dz

z zc

The poles are given by putting the denominator equal to zero.

  z z z2 4 1 0
4 16 4

2
4 2 3

2
2 3+ + = =

− ± −
= − ± = − ±or

The pole within the unit circle C is a simple pole at z = − +2 3.  Now we calculate the 
residue at this pole.

Residue at ( ) lim ( )
( ) ( )( )

z
i

z
z zz

= − + = + −
+ − + +→ − +

2 3 1 2 3 2
2 3 2 32 3

         =
+ +

=
− + + +

=
→ − +

lim
( ) ( )( )z i z i i2 3

2
2 3

2
2 3 2 3

1
3

( ) ( )α β α β αβ

α β

− = + −

= − +

− = −



























2 2

2

2

2 2

4

4 4

2

a
b

b a
b
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Hence by Cauchy’s Residue Theorem, we have

   
d iθ

θ
π

π

2
2

0

2

+
=∫ cos

 (sum of the residues within the contour)

          = =2 1
3

2
3

π πi
i

 Ans.

Example 120.  Using complex variable techniques evaluate the real integral

   
sin

5 4 cos
d

2

0

2 θ
θ

θ
π

−∫  

Solution. If we write z =  eiq

    cos , sin ,θ θ θ= +





= −





=1
2

1 1
2

1z
z i

z
z

d dz
iz

and so   I d d=
−

= −
−∫ ∫

sin
cos

cos
cos

2

0

2

0

2

5 4
1
2

1 2
5 4

θ
θ

θ θ
θ

θ
π π

          I = Real part of 
1
2

1 2 2
5 40

2 − −
−∫

cos sin
cos

θ θ
θ

θ
π i d   

where  is a circle of unit
radius with centre  = 0

c
z











            = Real part of 
1
2

1
5 4

2

0
2 −

−∫
e d

iθ
π

θ
θ

cos

            = Real part of 
1
2

1

5 2 1

2−

− +







∫
z

z
z

dz
izc

( )
  = Real part of 

1
2

1
5 2 2

2

2i
z

z zc
−

− −∫ dz

  = Real part of 
1
2

1
2 5 2

2

2i
z

z zc∫
−

− +
dz 

Poles are determined by 2 5 2 02z z− + =  or ( ) ( )2 1 2z z− −  = 0   or    z = 1
2

2,

So inside the contour c there is a simple pole at z = 1
2

Residue at the simple pole z z z
z zz

=





−





−
− −→

1
2

1
2

1
2 1 21

2

2

= lim
( ) ( )

          = lim
( )z

z
z→

−
−

=
−

−





=
1
2

2 1
2 2

1
4

1

2 1
2

2

1
4

I = Real part of 
1
2

1
2 5 2

1
2

2
2

2i
z

z z
dz

i
ic

( )−
− +

=∫ π  (sum of the residues)

⇒             
sin

cos

2

0
2

5 4
1
4 4

θ
θ

θ π ππ

−
= 





=∫ d  Ans.

Example 121.  Using contour integration, evaluate the real integral

     
1 2
5 40

+
+∫

cos
cos

θ
θ

θ
π

d  (R.G.P.V., Bhopal, III Semester, Dec. 2004)
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Solution. Let       I d d= +
+

= +
+∫ ∫

1 2
5 4

1
2

1 2
5 40 0

2cos
cos

cos
cos

θ
θ

θ θ
θ

θπ π

   = Real part of 
1
2

1 2
5 40

2 +
+∫

e d
iθ

π

θ
θ

cos

   = Real part of 
1
2

1 2
5 20

2 +
+ + −∫

e
e e

d
i

i i

θ

θ θ
π θ

( )

writing  e z d dz
iz

iθ θ= =,  where C is the unit circle |z| = 1.

  = Real part of 
1
2

1 2

5 2 1
+

+ +





∫
z

z
z

dz
izC  = Real part of 

1
2

1 2
2 5 22
− +

+ +∫
i z

z z
dzC

( )

  = Real part of 
1
2

2 1
2 1 2

− +
+ +∫
i z

z z
dzC

( )
( ) ( )

 = Real part of −
+∫

i
z

dzC2
1

2
Pole is given by z + 2 = 0 i.e. z = – 2.
Thus there is no pole of f (z) inside the unit circle C. Hence f (z) is analytic in C.

By Cauchy’s Theorem f z dz
C

( )∫  = 0 if f (z) is analytic in C.
∴             I = Real part of zero = 0 
Hence, the given integral = 0  Ans.

Example 122. Using complex variables, evaluate the real integral

  
d

p p
θ

θ
π

1 2 20
2

− +∫ sin
,  where p2 < 1. (Kerala 2005; MDU Dec. 2008)

Solution. 
d

p p
d

p e e
i

p
i i

θ
θ

θπ
θ θ

π

1 2 1 2
2

20
2

2
0
2

− +
=

− − +
∫ ∫ −sin ( )

Let                     I d
ip e e pi i=

+ − +−∫
θ

θ θ
π

1 20
2

( )

Writing              z e dz ie d i z d d dz
z i

i i= = = =θ θ θ θ θ, ,

          I
i p z

z
p

dz
z iC

=
+ −





+
∫ 1

1 1 2
 where c is the unit circle | z | = 1.

  = 
dz

zi pz p p z i
dz

pz ip z zi p
dz

iz p izpC C C− + +
=

− + + +
=

+ +∫ ∫ ∫2 2 2 2 1( ) ( )

Poles are given by ( ) ( )iz p ipz+ +1  = 0

⇒          z p
i

ip z
pi

i
p

= − = = − =and 1
 | |ip i

p
p< > <1 1 12and as

pi is the only pole inside the unit circle.

Residue ( ) lim ( )
( ) ( )

lim
( )

z p i z pi
iz p i z p i i z pz pi z pi

= = −
+ +

=
+







=
→ →1

1
1

1
ii p

1
12( )− +
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Hence by Cauchy’s residue theorem

  
d

p p
i

i p p
θ

θ
π ππ

1 2
2 1 1

1
2

120
2

2 2− +
=

−









 =

−∫ sin
 Ans.

Example 123. Apply calculus of residue to prove that :

 
cos

cos
, ( )2

1 2
2
1

12

2

2
2

0

2 θ θ
θ

ππ d
a a

a
a

a
− +

=
−

<∫
 (MDU. May 2007, 2003, R.G.P.V., Bhopal, III Semester, June 2003)

Solution.  Let I  =  
cos

cos
cos
( )

2
1 2

2
120

2

20

2θ θ
θ

θ θπ

θ θ

πd
a a

d
a e e ai i− +

=
− + +∫ ∫ −

 =  Real part of 
e

ae ae
d

i

i i

2

0

2

1 1

θ

θ θ

π
θ

( ) ( )− − −∫

 =  Real part of 
z

az a
z

d z
i zC

2

1 1( )− −





∫  [ Put eiq so that d d z
i z

θ =





 =  Real part of 
−

− −∫
i z

az z a
dz

C

2

1( ) ( )

 [C is the unit circle | z | = 1]

Poles of 
−

− −
i z

a z z a

2

1( ) ( )  are given by

                                ( ) ( )1 0− − =az z a

Thus, z
a

= 1
 and z = a are the simple poles. Only z = a lies within the unit circle C as  

a < 1.

The residue of f (z) at (z = a)   = − −
− −

= −
−

= −
−→ →

lim ( )
( ) ( )

lim
( )z a z a

z a i z
az z a

i z
a z

i a
a

2 2 2

21 1 1
Hence, by Cauchy’s Residue Theorem, we have

        f z dz i
C

( ) =∫ 2π


  [Sum of residues within the contour]

 = 2
1

2
1

2

2

2

2π πi i a
a

a
a

−
−









 =

−
 which is purely real.

Thus,             I  = Real part of f z dz a
aC

( ) =
−∫

2
1

2

2
π



Hence,   
cos

cos
.2

1 2
2
12

2

20

2 θ
θ

ππ

− +
=

−∫ a a
a
a

  Proved.

Example 124.  Evaluate:  
cos

cos
2

5 40

2 θ
θ

θ
π

+∫ d  by using contour integration.
(R.G.P.V., Bhopal, III Semester, June 2007)

Solution. 

Let  I  = 
cos

cos
2

5 40

2 θ
θ

θ
π

+∫ d
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 =  Real part of  
cos sin

cos
2 2

5 40

2 θ θ
θ

θ
π +

+∫
i d

 =  Real part of  
e
e e

d
i

i i

2

0

2

5 2

θ

θ θ

π
θ

+ + −∫ ( )
  

e z

i e d dz

d dz
ie

dz
iz

i

i

i

θ

θ

θ

θ

θ

=

⇒ =

⇒ = =























. .

 =  Real part of  
z

z
z

dz
i zC

2

5 2 1+ +





∫  [C is the unit circle | z | = 1]

 =  Real part of 
z

z z
d z
iC

2

25 2 2+ +∫

 =  Real part of 
−
+ +∫
i z

z z
dz

C

2

22 5 2

 =  Real part of 
−

+ +∫
i z

z z
dz

C

2

2 1 2( ) ( )

Poles are determined by putting denominator equal to zero.

 ( ) ( ) ,2 1 2 0 1
2

2z z z+ + = ⇒ = − −

The only simple pole at z = − 1
2

 is inside the contour.

Residue at   z z f z z i z

z z
= −





= +





= +





−

→− →−

1
2

1
2

1
21

2
1
2

2
lim ( ) lim

(22 1 2z z+ +) ( )

    = lim
( )z

i z
z

i
i

→−

−
+

=
− −





− +





= −
1
2

2

2

2 2

1
2

2 1
2

2 12

By Cauchy’s Integral Theorem
    f z dz i

C
( ) =∫ 2π  (Sum of the residues within C )

            = −





=2
12 6

π πi i
,  which is real

          
cos

cos
2

5 4 60

2 θ
θ

θ ππ

+
=∫ d   Ans.

Example 125. Evaluate contour integration of the real integral

    
0

2 3
5 4

π θ
θ

θ∫ −
cos

cos
.d    (U.P., III Sem., 2009, R.G.P.V., Bhopal, III Semester, Dec. 2007)

(MDU, Dec. 2010)

Solution.  
cos

cos
3

5 40
2 θ

θ
θπ

−∫ d  = Real part of 
e d

i3

0

2

5 4

θπ

θ
θ

−∫ cos

  = Real part of 
e
e e

d
i

i i

3

0

2

5 2

θ

θ θ

π
θ

− + −∫ ( )
 On writing z e d dz

iz
i= =θ θand

Y´

Y

XX´
O1

2
–2 –
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  = Real part of 
z

z
z

dz
izc

3

5 2 1− +





∫  c is the unit circle.

  = Real part of 
1

5 2 2

3

2i
z

z z
dzc − −∫   = Real part of −

− +∫
1

2 5 2

3

2i
z

z z
dz

  = Real part of i z
z z

dz
3

2 1 2( ) ( )− −∫

Poles are given by ( ) ( )2 1 2 0z z− − =  i.e. z z= =1
2

2,

              z = 1
2

 is the only pole inside the unit circle.

Residue at z
i z z

z zz
=





=
−





− −→

1
2

1
2

2 1 21
2

3

lim
( ) ( )

             = lim
( )z

iz
z

i i

→ −
=

−





= −
1
2

3

2 2

1
8

2 1
2

2 24

  
cos

cos
3

5 40
2 θ

θ
θπ

−∫ d  = Real part of 2
24 12

π πi i−





=  Ans.

Question. Evaluate : cos
cos
3

5 40

θ
θ

θ
+

∞

∫ d    (U.P. III Semester, Dec. 2008, 2006)

Example 126.  Use the residue theorem to show that

                 
d

a b
a

a b
θ

θ
ππ

( cos ) ( ) /+
=

−∫ 20
2

2 2 3 2
2

 where a b a b> > >0 0, , .

(R.G.P.V., Bhopal, III Semester, June 2004)

Solution. 
d

a b
d

a b e ei i

θ
θ

θπ

θ θ

π

( cos )+
=

+ ⋅ +









∫ ∫ −20

2

20

2

2

               Put     eiq = z, so that e id dziθ θ( ) =    ⇒   izd dz d dz
iz

θ θ= ⇒ =

               = 
1

2
1 2

a b z
z

dz
izc

+ +













∫  where c is the unit circle |z| = 1.

 
1

2 2

4

2 2
22 2 2

a bz b
z

dz
iz

iz

a bz b
z

dz
zc c

+ +





= −

+ +





∫ ∫ ( )

     = 
−
+ +

= −

+ +





∫ ∫
4
2

4
2 1

2 2 2
2

2
izdz

bz az b
i

b
z dz

z az
b

c c( )

The poles are given by putting the denominator equal to zero.

O

Y

1
—
2

X

Y´

X´
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i.e.,         z a
b

z2
22 1 0+ +





=

⇒                    ( ) ( )z z− − =α β2 2 0

where   α =
− + −

= − + −
2 4 4

2

2

2 2 2
a

b
a

b a a b
b

   β =
− − −

= − − −
2 4 4

2

2

2 2 2
a

b
a

b a a b
b

There are two poles, at z = α and at z = β, each of order 2.
Since      | |αβ = 1  or | | | |α β = 1  if | |α < 1  then | |β > 1 .
There is only one pole [| α | < 1] of order 2 within the unit circle c.

Residue (at the double pole z d
dz

z iz
b z zz

= = − −
− −→

α α
α βα

) lim ( ) ( )
( ) ( )

2
2 2 2

4

     =
−

−→
lim

( )z

d
dz

iz
b zα β

4
2 2

     = − − − −
−

= − − −
−→ →

4 1 2 4 2
2

2

4 2 3
i

b
z z z

z
i

b
z z

zz z
lim ( ) . ( )

( )
lim

( )α α

β β
β

β
β

== − − +
−→

4
2 3
i

b
z

zz
lim ( )

( )α

β
β

                          = 
4 4

4

4
2

2
2 3 2

2
3
2

2

i
b

i
b

i
b

a
b

a
b

( )
( )

[ ( ) ]

α β
α β

α β

α β αβ

+
−

=
+

+ −
=

−

−






 −

















2 3
24 1( )

                         =
−

−
= −

−

8

4 42 2
3
2 2 2

3
2

a i

a b

ai

a b( ) ( )

Hence, 
d

a b
i ai

a b
a

a b
θ

θ
π ππ

( cos ) ( ) ( )/ /+
= × −

−
=

−∫ 2 2 2 3 20
2

2 2 3 22 2
 Proved.

Example 127.  Evaluate by Contour integration:

      e n dcos cos (sin )θπ
θ θ θ

0

2
∫ − .

Solution.  Let I = e n i n dcos [cos(sin ) sin(sin )]θπ
θ θ θ θ θ

0

2
∫ − + −

  = e e d e e di n i nicos (sin ) cos sinθπ θ θ θ θ θπ
θ θ

0

2

0

2
∫ ∫− + −= ⋅

  = e e de iniθπ θ θ⋅∫ −
0

2
 ...(1)

Put eiq = z so that dq = dz
iz  then,

 I = e
z

dz
iz

i e
z

dzz
n

z

nCC
⋅ ⋅ = − +∫∫ 1

1

O

Y

Z

� �
XX´

Y´
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X� X

CR

O– R R

Y

Pole is at z = 0 of order (n + 1). 
It lies inside the unit circle.
Residue of f (z) at z = 0 is

=  1
1 1

1
1

0
( )! !

( )
n

d
dz

z ie
z

i
n

d
dz

e
n

n
n

z

n
z

n

n
z

+ −
⋅ −
















 = − 


+

+
=





 = − ( ) = −

=
=

z

z

z

i
n

e i
n

0
0! !

∴ By Cauchy’s Residue theorem,

 I = 2 2π πi i
n n
−( ) =

! !

Comparing real part of e n i n d
n

cos [cos (sin ) sin (sin )]
!

θπ
θ θ θ θ θ π− + − =∫

2
0

2
, 

we have
   e n d

n
cos cos(sin )

!
θπ

θ θ θ π− =∫0

2 2  Ans.

EXERCISE 7.14
Evaluate the following integrals:

 1. 
sin

cos

2

0

2 θ
θ

θ
π

a b
d

+∫  (R.G.P.V., Bhopal, III Semester, June 2008)  Ans. 
2 02

2 2π
b

a a b a b{ },− − > >

 2. 
( cos ) cos

cos
1 2

3 20

2 +
+∫

θ θ
θ

θ
π n n d   Ans. 

2
5

3 5 0π ( ) ,− >n n  3.  
dθ

θ
π

20

2

+∫ cos
         Ans.  2

3
π

 4. 
4

5 40

2

+∫ sin θ
θ

π
d               Ans. 

8
5
π

        5.   
dθ

θ
π

17 80 −∫ cos
      Ans. 

π
15

 6. 
d

a b
θ

θ
π

+∫ cos
,

0
 where a > |b|. Hence or otherwise evaluate dθ

θ
π

20

2

−∫ cos
.  Ans.  π π

a b2 2−
;

7.67  EVALUATION  OF  
f x
f x

dx1

2

( )
( )−∞

∞
∫  where f x f x1 2( ) ( )and  are polynomials in x.

Such integrals can be reduced to contour integrals, if
 (i) f x2 ( )  has no real roots.
(ii) the degree of f x2 ( )  is greater than that of f x1( )  by at least two.

Procedure: Let f x f x
f x

( )
( )
( )

= 1

2

Consider f z dzC ( )∫
where C is a curve, consisting of the upper half CR of the circle | z | = R, and part of the real axis 
from – R to R.

If there are no poles of f (z) on the real axis, the circle | z | = R which is arbitrary can be 
taken such that there is no singularity on its circumference C

R
 in the upper half of the plane, but 

possibly some poles inside the contour C specified above.
Using Cauchy’s theorem of residues, we have
         f z dz i

C
( )∫ = ×2π  (sum of the residues of f (z) at the poles within C )

i.e.   f x dx f z dz i
CRR

R
( ) ( )+ =∫∫−

2π (sum of residues within C )

⇒          f x dx f z dz i
CRR

R
( ) ( )= − +∫∫−

2π  (sum of residues within C )



610  Functions of a Complex Variable

∴              lim ( ) lim ( )
R RR

R

CR
f x dx f z dz i

→∞ →∞−
= − +∫ ∫ 2π  (sum of residues within C ) 

... (1)

Now,           lim ( ) ( )
R CR

i if z dz f R e Ri e d
→∞∫ ∫= θ

π
θ θ

0

                       = 0 when R → ∞
 (1) reduces    f x dx i( ) =−∞

∞
∫ 2π  (sum of residues within C)

Example 128. Evaluate 
cos
( )

mx
x

dx20 1+
∞

∫ . (R.G.P.V., Bhopal, III Semester, Dec. 2006)

Solution. 
cosmx
x

dx20 1+
∞

∫
Consider the integral f z dzC ( )∫ , where

f z e
z

imz
( ) =

+2 1
, taken round the closed contour c consisting of the upper half of a large circle 

| z | = R and the real axis from – R to R.

Poles of f (z) are given by
    z2 + 1 = 0 i.e. z2 = –1 i.e. z = ±i
The only pole which lies within the contour is at z = i.
The residue of f(z) at z = i

   = lim ( )
( )

lim
z i

imz

z i

imz mz i e
z

e
z i

e
i→ →

−−
+

=
+

=2 1 2
Hence by Cauchy’s residue theorem, we have
            f z dz i

C
( )∫ = ×2π  sum of the residues

⇒          
e
z

dz i e
i

imz

C

m

2 1
2

2+
= ×∫

−
π       ⇒   

e
x

dx e
imx

R
R m

2 1+
=−

−∫ π

Equating real parts, we have

      
cos cosmx
x

dx e mx
x

dx em
m

2 201 1 2+
= ⇒

+
=

−∞

∞
−

∞ −

∫ ∫p
p

 Ans.

Example 129. Evaluate 
x x

x x
dxsin π

2 2 5+ +− ∞

∞
∫  (U.P. III Semester 2009-2010) 

Solution.  Here, we have 
x x

x x
dxsin π

2 2 5+ +− ∞

∞
∫

Let us consider 
z z

z z
dz

c
sin π

2 2 5+ +∫
The pole can be determined by putting the denominator equal to zero.

 z z2 2 5 0+ + =        ⇒        z = − ± −2 4 20
2         ⇒   z i= − ±1 2

Out of two poles, only z = –1 + 2i is inside the contour.
Residue at  z = – 1 + 2i

        = + −
+ +

= + −
→ − + → − +
lim ( ) sin lim ( ) sin

(z i z i
z i z z

z z
z i z z

1 2 2 1 2
1 2

2 5
1 2π π

zz i z i+ − + +1 2 1 2) ( )

X

CR

O

z = i

– R +R

Y
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       =
+ +

= − + − +
− + + +→ − +

lim sin
( )

( ) sin ( )
( )z i

z z
z i

i i
i i1 2 1 2

1 2 1 2
1 2 1 2

π π

       = 
( ) sin ( )− + − +1 2 1 2

4
i i

i
π

z z
z z

dz
R

R sin π
2 2 5+ +−∫  =  2πi (Residue)

  = 2πi 
( ) sin ( )− + − + =1 2 1 2

4 2
i i

i
π π  (2i – 1) sin (– π + 2πi)

  = π π
2

2 1 2( ) ( sin )i i− −                      sin ( ) sin ( )
sin

− + = − −
= −




π θ π θ
θ

  = π π π π
2

1 2 2
2

1 2 2( ) sin ( ) sinh− = −i i i i

  = π π
2

2 2( ) sinhi +          (Taking real parts)

Hence 
x x

x x
sin π

2 2 5+ +− ∞

∞
∫  = π sinh 2π  Ans.

Example 130.  Evaluate 
x dx

x x

2

2 21 4( ) ( )+ +−∞
∞

∫ . (MDU, Dec. 2006)

Solution. We consider 
z dz

z z
f z dzC C

2

2 21 4( ) ( )
( )

+ +
=∫ ∫

where C is the contour consisting of the semi-circle C
R
 of radius R together with the part of the 

real axis from – R to + R.
The integral has simple poles at
          z i z i=± =±, 2

of which z = i, 2 i only lie inside C.

The residue (at  z = i)  = lim( )
( ) ( ) ( )z i

z i z
z i z i z→

−
+ − +

2

2 4

       = lim
( ) ( ) ( )z i

z
z i z i i→ + +

= −
− +

= −2

2 4
1

2 1 4
1

6

The residue (at z  = 2i) = lim ( ).
( ) ( ) ( )z i

z i z
z z i z i→

−
+ + −2

2

22
1 2 2

       = lim
( ) ( )

( )
( ) ( )z i

z
z z i

i
i i i→ + +

=
− + +

=
2

2

2

2

1 2
2

4 1 2 2
1
3

By theorem of residue;

              f z dz i f i f i i
i iC ( ) [ ( ) ( )]∫ = + = − +





=2 2 2 1
6

1
3 3

π π πRes Res

i.e.      f x dx f z dz
CR

R

R
( ) ( )+ =∫∫−

π
3  ... (1)

Hence by making R → ∞, relation (1) becomes

    f x dx f z dz
z CR

( ) lim ( )+ =
→∞−∞

∞
∫ ∫ π

3

Now  R f z dzCR
→ ∞ ∫, ( )  vanishes.

CR

O

–1 + 2i

– R R

Y

–1
–

(–1 – 2i)

CR

O

z = i

z = 2i

– R +R

Y

X� X
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For any point on CR as |z| → ∞ =, ( )f z 0

  lim ( ) , ( )
| |z C

f z dz f x dx
R→∞ −∞

∞
= =∫∫ 0

3
π

⇒  
x dx

x x

2

2 21 4 3( ) ( )+ +
=−∞

∞
∫

π
 Ans.

Example 131. Using the complex variable techniques, evaluate the integral

   
1

14x
dx

+−∞

∞
∫   (AMIETE, June 2010, U.P. III Semester, Dec. 2006)

Solution. 
1

14x
dx

+−∞

∞
∫

Consider  f z dz
C

( )∫ , where f (z)  =  
1

14z +
taken around the closed contour consisting of real axis and upper half C

R
, i.e. | z | = R.

Poles of f (z) are given by
   z i e z i4 41 0 1+ = = − = +. . (cos sin )π π
⇒      z n i n4 2 1 2 1= + + +[cos ( ) sin ( ) ]π π

        z n i n n i n= + + + = + + +





[cos ( ) sin ( ) ] cos ( ) sin ( )2 1 2 1 2 1
4

2 1
4

1
4π π π π



If  n = 0, z i i e
i

1
4

4 4
1
2

1
2

= +





= +





 =cos sinπ π π

 n = 1, z i i e
i

2

3
43

4
3
4

1
2

1
2

= +





= − +





 =cos sinπ π π

 n = 2, z i i3
5
4

5
4

1
2

1
2

= +





= − −





cos sinπ π

 n = 3, z i i4
7
4

7
4

1
2

1
2

= +





= −





cos sinπ π

There are four poles, but only two poles at z1 and z2 lie within the contour.

Residue at z e d
dz

z z

i

z e
i

=












= +



















=












=

π

π

4 4 3

1

1
1

4
4

( )
zz e i i

i

e e=

=












=
π π π
4

1

4

1

44

3 3
4

          = = − 3





= − −





−1
4

1
4

3
4 4

1
4

1
2

1
2

3
4e i i

i π π πcos sin

Residue at 4z e
d
dz

z z

i

z e
z i

i

=












=
+

















=

=
=

3

4 3 3
4

1

1

1
43

4

π

π
π( ) [ ]

==












=1

4

1

4
3
4

3 9
4e ei iπ π

CR

X

– R

2 2

+R

Y

1– 1+
2 2

1
+

1i i

O
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CR

XX�
– R +R

Y

i
—
2

O

3
2

i
2

+
3
2

i
2

+–

       = = −





= −







−1
4

1
4

9
4

9
4

1
4

1
2

1
2

9
4e i i

i π π πcos sin

 f z dz i
C

( ) =∫ 2π  (sum of residues at poles within c)

 f z dz f z dz i
CR

R

R
( ) ( )+ =∫∫−

2π  (sum of the residues)

 
1

1
1

1
24 4x

dx
z

dz i
CR

R

R+
+

+
=∫∫−

π  (sum of the residues)

Now, 
1

1
1

14 4z
dz

z
dz

C CR R+
≤

+∫ ∫ | |
| |

     ≤
−∫

1
14(| | )

| |
z

dz
CR

   [Since z R e dz R e i d Rdi i= = =θ θ θ θ, | | | | ]

      ≤
−

≤
− ∫∫

1
1 14 4 00 R

R d R
R

dθ θ
ππ

      ≤
−

=
−

R
R

R
R

π π
4

3

41 1 1
/
/

 which → 0 

      as  R → ∞.

Hence,   
1

1
24x

dx i
R

R

+
=

−∫ π  (Sum of the residues within contour)

           As   R → ∞

Hence,  
1

1
24x

dx i
+

=
−∞

∞
∫ π   (Sum of the residues within contour) ... (1)

  
1

1
2 1

4
1
2

1
2

1
4

1
2

1
24x

dx i i i
+

= − −





 + −
















−∞

∞
∫ π

                     = − − + −





 = −






 =π π π

2
1
2

1
2

1
2

1
2 2

2
2 2

i i i i i

Hence, the given integral =  
π
2

 Ans. 

Example 132.  Using complex variable techniques, evaluate the real integral

   
dx

x1 60 +
∞

∫  (MDU May, 2006)

Solution. Let  f z
z

( ) =
+
1

1 6

We consider  
1

1 6+∫ z
dz

C

where C is the contour consisting of the semi-circle CR of radius R together with the part of 
real axis from – R to R.

Poles are given by 1 + z6 = 0
   z i n i n6 1 2 2= − = + = + + +cos sin cos( ) sin( )π π π π π π
        = e n i( )2 1+ π

      z e
n i

=
+2 1

6
π

 = cos sin2
6

2
6

n i nπ π π π+ + +





 where n = 0, 1, 2, 3, 4, 5
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If        n = 0,        z e i ii

= = + = +
π π π6

6 6
3

2 2
cos sin

If         n z e i i
i

= = = + =1
2 2

2, cos sin
π π π

If         n = 2,         z e i ii
= = + = − +

5
6 5

6
5
6

3
2 2

π π πcos sin

If        n = 3,         z e i ii
= = + = − −

7
6 7

6
7
6

3
2 2

π π πcos sin

If       n = 4,         z e i i
i

= = + = −
3
2 3

2
3
2

π π πcos sin

If       n = 5,         z e i ii
= = + = −

11
6 11

6
11

6
3

2 2

π π πcos sin

Only first three poles i.e., e e e
i i iπ π π
6 2

5
6, ,  are inside the contour.

Residue    at z e
d
dz

z z
e

i

z e z e

i

i i
=









 =

+
= =

→ →

−π π

π π

6

6
5

5
6

6 6

1

1

1
6

1
6

lim
( )

lim

Residue  at z e
d
dz

z z
e

i

z e z e

i

i i
=













=
+

= =
→ →

−π π

π π
2

6 5

5

2 2

1

1

1
6

1
6

lim
( )

lim 22

Residue     at z e
d
dz

z z
e

i

z e z e
i i

=












=
+

= =
→ →

−5
6

6 55
6

5
6

1

1

1
6

1
6

π

π π
lim

( )
lim

ii25
6

π

 Sum of the residues =  1
6

1
6

3
2 2

0 3
2 2

1
5
6

5
2

25
6e e e i i ii i i− − −

+ +












= − − + − + −








 =

π π π

66
2

3
( )− = −i i

⇒        
dz

z
iC 1

26+
=∫ π  (Residue) = 2

3
2
3

π πi i−





=

⇒      
dx

x1
2
36+

=−∞
∞

∫
π

    ⇒  
dx

x1 360 +
=∞

∫
π

 Ans.

Example 133. Using complex variables, evaluate the real integral

  
cos

( ) ( )
3

1 42 20

x dx
x x+ +

∞

∫  

Solution. Let  f z e
z z

iz

( )
( ) ( )

=
+ +

3

2 21 4
Poles are given by
          ( ) ( )z z2 21 4 0+ + =

i.e.,             z2 1 0+ =  or z i= ±
           z z i2 4 0 2+ = = ±or
Let C be a closed contour consisting of the upper half C

R
 of a large circle | z | = R and the 

real axis from – R to + R. The poles at z = i and z = 2i lie within the contour.

XX�

CR

O

z = i

z = 2i

– R R

Y
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Residue (at z = i) = lim ( )
( ) ( )

lim
( ) ( )z i

iz

z i

izz i e
z z

e
z i z

e
i→ →

−−
+ +

=
+ +

=
3

2 2

3

2

3

1 4 4 6

Residue (at z = 2i) = lim ( )
( ) ( )

lim
( ) ( )z i

iz

z i

izz i e
z z

e
z z i

e
→ →

−−
+ +

=
+ +

=
−2

3

2 2 2

3

2

62
1 4 1 2 112i

By theorem of Residue        f z dz iC ( ) =∫ 2π  [Sum of Residues]

e dz
z z

e dz
z z

i e
i

eiz

R

R iz

CR

3

2 2

3

2 2

3 6

1 4 1 4
2

6( ) ( ) ( ) ( )+ +
+

+ +
= +

−−

− −

∫ ∫ π
112i











  
e dz

z z
z R e R

i z
i

CR

3

2 21 4
0

( ) ( )+ +
= = → ∞









∫ as andθ

         
e

x x
dx e eix

R

R 3

2 2

3 6

1 4 3 6( ) ( )+ +
= −









−

− −

∫ π

                  
cos

( ) ( )
3

1 42 20

x dx
x x+ +

∞

∫  = Real part of 
1
2 1 4

3

2 2
e dx

x x

ix

( ) ( )+ +−∞
∞

∫  

                = Real part of 
π
2 3 6

3 6e e− −

−










 Hence,                   given integral = 
π
2 3 6

3 6e e− −
−









  Ans.

Example 134. Evaluate: 
dx

a x( )2 2 20 +

∞

∫  (MDU. Dec. 2009)

Sol. Consider the integral f z dz
C

( )∫  where f z
a z

( )
( )

=
+
1

2 2 2

Poles of f(z) are given by putting denominator equal to zero.
  (a2 + z2)2 = 0   ⇒   a2 + z2 = 0   ⇒    z = ± ai   each repeated twice
Sine there is no pole on the real axis, therefore we may take the contour C consisting of 

the semicirle CR which is the upper half of a large circle |z| = R, and the real axis from – R to R.
Here by Cauchy’s residues theorem we have

   f z dz f x dx f z dz i
CR

R

C R
( ) ( ) ( )= + =∫∫∫ −

2π  (sum of residues)

or   
1 22 2 2 2 2 2( ) ( )a x

dx dz
a z

i
CR

R

R+
+

+
=∫∫−

π  (sum of residues) ... (1)

The only pole within the contour C is z = ai, and is of order 2.

Here       f(z) = 
1

2 2 2( ) ( )
( )

( )z ai z ai
z

z ai− +
=

−
φ

where        φ φ( )
( )

( )
( )

z
z ai

z
z ai

=
+

⇒ ′ = −
+

1 2
2 3

∴  Residue at the double pole (z = ai) = 
′φ ( )

!
a i

1
 = − = −2

2 43 3( )ai
i
a

and 
1

2 2 2 2 2 2 2 2 2 2 2( )
| |

| |
| |

(| | ) (a z
dz dz

a z
dz

z a
Rd

R aC C CR R R+
≤

+
≤

−
=

−∫ ∫ ∫ θ
))20

π

∫

–R RR

y

CR

ai



616  Functions of a Complex Variable

     = 
πR

R a( )2 2 2 0
−

→  and R → ∞ since z = Reiq

Hance when R → ∞, relation (1) becomes 

  
1 2 2

4 22 2 2 3 3( )
( )

a x
dx i i i

a a+
= = −





=
−∞

∞

∫ π π πresidue

⇒  
1

42 2 2 30 ( )a x
dx

a+
=

∞

∫ π
 Ans.

Example 135.  Using complex variable techniques, evaluate the real integral

  
cos 2 x

x 9 x 16
dx2 2 2( ) ( )+ +

∞
∫0

Solution. Consider the integral f z dz
C

( )∫ ,

where   f z e
z z

iz
( )

( ) ( )
=

+ +

2

2 2 29 16
,

taken around the closed contour C consisting of the upper half of a large circle | z | = R and the 
real axis from – R to R.

Poles of f (z) are given by
   ( ) ( )z z2 2 29 16 0+ + =

i.e.    ( ) ( ) ( )( )z i z i z i z i+ − + − =3 3 4 4 02 2

i.e.    z i i i i= − −3 3 4 4, , ,
The poles which lie within the contour are z = 3i of the second order and z = 4 i simple pole.
Residue of f (z) at z = 3i

 = 
1
1

3
3 3 16

2
2

2 2 2!
( )

( ) ( ) ( )
d
dz

z i e
z i z i z

iz

z

−
− + +























 =33

2

2 2
3

3 16
i

iz

z i

d
dz

e
z i z

=
+ +























 =

( ) ( )

 = 
( ) ( ) [ ( )( ) ( ) ]

( )
z i z ie e z i z z z i

z i

iz iz+ + − + + + +
+

3 16 2 2 3 16 2 3
3

2 2 2 2 2 2

4 (( )z z i
2 2

316+











=

 = 
( ) ( ) [ ( ) ( )]

( ) ( )
z i z i e e z z z i

z i z

iz iz+ + − + + +
+ +

3 16 2 2 16 2 3
3 16

2 2 2 2

3 2 2











=z i3

 = 
6 7 2 2 7 6 6

6 7
84 22

216 49

6 6

3 2

6 6i i e e i i
i

e i e× × − × + × = − +
×

=
− − − −( )
( ) ( )

[ ] (−−
×

= −
×

−62
216 49

31
108 49

6)i i e

Residue of f (z) at (z = 4i) = lim ( )
( ) ( ) ( )z i

iz
z i e

z z i z i→
−

+ − +4

2

2 24
9 4 4

            = 
e

i i
e

i
ie− − −

− + +
=

×
= −8

2

8 8

16 9 4 4 49 8 392( ) ( )

      Sum of the residues = −
×

−
− −i e ie31

108 49 392

6 8

Hence by Cauchy’s Residue Theorem, we have
         f z dz i

C
( )∫ = ×2π Sum of the residues within C

i.e.  f x dx f z dz i
CR

R

R
( ) ( )+ =∫∫−

2π  × sum of residues

X

CR

O

3i

4i

– R +R

Y
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or  
e

x x
dx e

z z
dz i

ix

R

R iz

CR

2

2 2 2

2

2 2 29 16 9 16
2

( ) ( ) ( ) ( )+ +
+

+ +
= ×

−∫ ∫ π  Sum of residues ... (1)

Now let R → ∞, so as to show that the second integral in above relation vanishes. For any 
point on CR , as |z| → ∞

Let    F z
z

e

z z

iz
( ) =

+





+





1

1 9 1 166

2

2

2

2

         lim ( )
| |z

F z
→∞

= 0   or  
e

z z
dz

iz

CR

2

2 2 29 16( ) ( )+ +∫  = 0 as z → ∞

Hence by making R → ∞, relation (1) becomes

∴      
e

x x
dx i i e i eix2

2 2 2

6 8

9 16
2 31

108 49 392
2

( ) ( )+ +
= −

×
−









 =

−∞

∞ − −

∫ π π
1196

31
27 2

6 8e e− −

+










Equating real parts, we have

   
cos

( ) ( )
2

9 16 98
31

27 22 2 2

6 8xdx
x x

e e
+ +

= +








−∞

∞
− −

∫
π

  
cos

( ) ( )
2

9 16 196
31

27 22 2 20

6 8x
x x

dx e e
+ +

= +










∞ − −

∫
π

  
 f x dx f x dx

f x

( ) ( )

( )

=











∞

−∞

∞
∫∫ 2
0

If is even function.
            Ans.

EXERCISE 7.15
Evaluate the following :

 1. 
1

1 20 +

∞

∫ x
dx                             Ans. 

π
2

 2. 
1

12 2( )x
dx

+−∞

∞

∫         Ans. 
π
2

 3. 
x x

x a x b
dx

3

2 2 2 20

sin
( ) ( )+ +

∞

∫          Ans. 
π

2 2 2
2 2

( )
[ ]

a b
a e b ea b

−
−− −

 4. 
cos

( ) ( )
,x

x a x b
dx a b2 2 2 2 0

+ +
> >

−∞

∞

∫          Ans. 
π

a b
e
b

e
a

b a

2 2−
−











− −

 5. Show that 
0 2 2 2
∞ −

∫ +
=cos x

x a
dx e

a

aπ
 

 6. Show that 
x x
x a

dx a a aa
3

2 2
0 4

2 0sin
( )

( ) ,
+

= − − >−
∞

∫
π

 

Evaluate the following :

 7. 
sin
( )

, ,mx
x x a

dx m a2 2 0 0
+

> >
−∞

∞

∫          Ans. 
π
a

e ma
2 2( )− −

 8. 
0

2

6 1
∞

∫ +
x

x
dx   (MDU, 2008, 2005) Ans. 

π
2

     9.   
x ax
x a

dxsin
4 40 +

∞

∫      Ans. 
π

2 2
2 2

2 2

a
e

a a− sin

 10. 
x

a x
dx

6

4 4 20 ( )+

∞

∫     Ans. 
3 2
16

0π
a

a, >   11. 
cos sinx x

x
dx

2 2

20

1+ −∞

∫

 12. 
cos mx

x x
dx4 20 1+ +

∞

∫       Ans. π π
3

1
2 3

1
2

3
sin m e

m
+





−
 13. 

log( )1
1

2

20

+
+

∞

∫
x

x
dx     Ans. π log 2
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8
Special Functions

8.1. SPECIAL FUNCTIONS

Algebraic, trigonometric, exponential and logarithmic functions are the elementary functions.
Bessel and Legendre functions are the special functions of mathematics.
8.2. POWER SERIES SOLUTIONS OF DIFFERENTIAL EQUATIONS

We know that the solution of the differential equation

   
d y
dx

y
2

2 0 

are y e x x xx    1
1 2 3

2 3

! ! !
...   and y e x x xx      1

1 2 3

2 3

! ! !
...

These are power series solution of the given differential equation.
Another example of the differential equation

   
d y
dx

y
2

2 0 

is satisfied by the power series

y x x x x x
     sin

! ! !
...

3 5 7

3 5 7
This idea leads to the methods of obtaining the solution of a linear differential equation of

second order in series form.
If the solution of a differential equation involves log x, ex etc. which cannot be expanded in

the series of ascending power of x, but they can be expanded in descending powers of x.
Then the solution of the differential equation will be a series of descending powers of x, the

infinite series solution obtained will have its own region of convergence or validity.
8.3 ORDINARY POINT

Consider the equation

P d y
dx

P dy
dx

P y0

2

2 1 2 0  

where P0, P1, P2 are polynomials in x.
x = a is an ordinary point of the above equation if P0 does not vanish for x = a.
Singular point. If P0 vanishes for x = a, then x = a is a singular point of the above equation.
The general solution of a linear differential equation of second order will consist of two

series say y1 and y2. Then the general solution will be y = ay1 + by2, where a and b are arbitrary
constants. The two infinite series are said to be linearly dependent if one is multiple of the other,
otherwise they are said to be linearly independent.

4.3 Solution of the differential equation when x = 0 is an ordinary point i.e. when P0 does
not vanish for x = 0.

618
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(i) Let y = a0 + a1x + a2x
2 + a3x

3 + ....... + akx
k + .... = a xk

k

k




0

 be the solution of the given
differenftial equation.

(ii) Find 
dy
dx

d y
dx

,
2

2  etc.

dy
dx

 = a1 + 2a2x + 3a3x
2 + .... + kak x

k–1 + ... + ... = ka xk
k

k




1

d y
dx

2

2  = 2a2 + 2.3 a3x + ..... + ak k(k – 1) xK – 2 + .... = 
k 




2

ak . k (k – 1) . xk–2

(iii) Substitute the expressions of y dy
dx

d y
dx

, ,
2

2  etc. in the given differential equation.

(iv) Calculate a0, a1, a2 .... coefficients of various powers of x by equating the coefficients to
zero.

(v) Substitute the values of a0, a1, a2 ... in the differential equation to get the required series
solution.

Example 1. Solve in series the equation  
d y
dx

x y
2

2
2 0  .        (A.M.I.E.T,.E., Winter 1995)

Solution.
d y
dx

x y
2

2
2 0  ... (1)

Let   y = a0 + a1x + a2x
2 + a3x

3 + a4x
2 + a5x

5 + a6x
6 + a7x

7 + a8x
8 + ... + anxn + ... ... (2)

Since x = 0 is the ordinary point of the equation (1).

Then  
dy
dx

 = a1 + 2a2 x + 3 a3 x2 + 4 a4 x3 + 5 a5 x4 + 6 a6 x5 + 7 a7 x6 + 8 a8 x7 + ...

d y
dx

2

2  = 2a2 + 2 . 3 a3 x + 3 . 4 a4 x2 + 4 . 5 a5 x3 + 5 . 6 a6 x4 + 6 . 7 a7 x5 + 7 . 8 a8 x6 +

...
Substituting in (1), we get

2 a2 + 2.3 a3 x + 3.4 a4 x2 + 4.5 x5 x3 + 5.6 a6 x4 + 6.7 a7 x5 + 7.8 a8 x6 + ...
+ x2 (a0 + a1 x + a2 x2 + a3 x3 + a4 x4 + a5 x5 + a6 x6 + a7 x7 + ...) = 0

2 a2 + 6 a3 x + (a0 + 12 a4) x
2 + (a1 + 20a5) x

3 + (a2 + 30 a6) x
4 + ...

+ [an – 2 + (n + 2) (n + 1) an + 2] x
n + ... = 0

Equating to zero the coefficients of the various powers of x, we obtain

a2 = 0,  a3 = 0

a0 + 12a4 = 0  i.e.  a4 = 
1

12 0a

a1 + 20 a5 = 0  i.e.  a5 = 
1

20 1a

a2 + 30 a6 = 0   i.e.  a6 = 
1

30
a2 = 0 (a2 = 0)

and so on. In general      an – 2 + (n + 2) (n + 1) an + 2 = 0           or      an + 2 = – a
n n

n

 
2

1 2( )( )
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Putting n = 5, a a
7

3

6 7
0 


 (a3 = 0)

Putting n = 6, a a a
8

4 0

7 8 12 7 8
 




 

Putting n = 7, a a a
9

5 1

8 9 20 8 9
 




 

Putting n = 8, a a
10

6

9 10
0 


 (a6 = 0)

Putting n = 9, a a
11

7

11 10
0 


 (a7 = 0)

Putting n = 10, a a a
12

8 0

12 11 12 8 7 11 12
 


 

   
Substituting these values in (2), we get

y a a x a x a x a x a x a x    
 


 


   

0 1 0
4 1 5 0 8 1 9 0 121

12 20 12 7 8 20 8 9 12 8 7 11 12
...

y a x x x a x x x
  

 


   


F
HG

I
KJ   

 

F
HG

I
KJ0

4
8 12

1

5 9
1 1

12 12 7 8 12 8 7 11 12 20 20 8 9
... ... Ans.

Example 2. Find the power series solution of (1 – x2) y  – 2 x y  + 2 y = 0 about x = 0.
(A.M.I.E.T.E., Winter 2000)

Solution. Let y = a0 + a1 x + a2 x2 + a3 x3 + ... + anxn + ... be the required solution. Since
x = 0 is an ordinary point of the given equation, this can be written as

  y a xk
k

k







0

Then
dy
dx

a k xk
k

k

  





 1

1

, d y
dx

a k k xk
k

k

2

2
2

2

1   





 ( )

Substituting the values of y dy
dx
 , and 

d y
dx

2

2  in the given equation we get

( ) ( )1 1 2 2 02 2 1       x a k k x x a k x a xk
k

k
k

k
k  

    a k k x a k k x a k x a xk
k

k
k

k
k

k
k       ( ) ( ) .1 1 2 2 02

  a k k x k k k a xk
k

k
k       ( ) [ ( ) ]1 1 2 2 02

  a k k x k k a xk
k

k
k      ( ) ( )1 2 02 2

where the first summation extends over all values of k from 2 to   and the second from k = 0
to  .

Now equating the coefficient of xk equal to zero, we have

 ( ) ( ) ( )k k a k k ak k     2 1 2 02
2

 a k k
k k

a k k
k k

ak k k 
 

 


 
 2

2 2
2 1

2 1
2 1( )( )

( ) ( )
( ) ( )

 a k
k

ak k 

2

1
1
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For k = 0 a a a a
a a

a a2 0 3 4
2 0

5 30
3 3

2
4

0       , , ,

For k = 4 a a a a a a6 4
0 0

7 5
3
5

3
5 3 5

4
5

0  FHG
I
KJ    , , etc.

   y a a x a x a x a x a x a x a x        0 1 2
2

3
3

4
4

5
5

6
6

7
7 ...

     y a a x a x a x a x        0 0 0
2 0 4 0 60

3
0

5
0 ...

     y a x x x a x    
L
NMM

O
QPP
0

2
4 6

11
3 5

... Ans.

Example 3. Solve

(1 x ) d y
dx

x dy
dx

y 02
2

2    ... (1)

Solution. Let the solution of the given differential equation be

    y a a x a x a x    0 1 2
2

3
3 ...

Since    x = 0 is the ordinary point of the given equation.

  
dy
dx

a a x a x a x    1 2 3
2

4
32 3 4 ....

d y
dx

a a x a x a x
2

2 2 3 4
2

5
32 6 12 20    ...

Substituting for y, 
dy
dx

,  and 
d y
dx

2

2  in the given differential equation, we have

(1 + x2) (2 a2 + 6 a3 x + 12 a4 x2 + 20 a5x
3 + ...) + x (a1 + 2 a2 x + 3 a3 x2 + 4 a4 x3 + ...)

– (a0 + a1 x + a2x
2 + a3 x3 + ...) = 0

(2a2 – a0) + (6a3 + a1 – a1) x + (2 a2 + 12 a4 + 2 a2 – a2) x2

+ (20 a5 + 6 a3 + 3a3 – a3) x
3 + ... = 0

Equating the coefficients of various powers of x to zero, we obtain

2 02 0a a  or a a2 0
1
2

 (Constant term)

6 03a  or a3 0 (Coefficient of x)

12 3 04 2a a  or a a a4 2 0
1

4
1
8




  (Cofficient of x2)

20 8 05 3a a  or a a5 3
2
5

0   (Coefficient of x3)

So solution is y a x x a x  
L
NMM

O
QPP
0

2 4

11
2 8

.... Ans.

Note. In the above examples we get found the solutions about x = 0, which are valid in the
finite region around x = 0.

We can also find the solution about a point other than x = 0, say about x = c. In this case we
have to find out the series solution of powers of (x – c), and the series in valid (convergent) around
the point x = c.

In this method first we shift the origin to the point x = c, by putting x = t + c. The differential
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equation so obtained is solved by the method already discussed.

EXERCISE 8.1

Solve the following differential equation by power series method :

1.
d y
dx

x y
2

2 0  Ans.
3 6 9 4 7

0 1
4 7.4 2 5.21 ... ...

3! 6! 9! 4! 7!
x x x x xy a a x

   
              

2.     y xy x y2 0 Ans. y a x a x x x  
F
HG

I
KJ   

F
HG

I
KJ0

4
1

3 51 1
12

1
6

1
40

... ...

3. ( )x y xy xy2 1 0      Ans. y a x x a x x x x   
F
HG

I
KJ    

F
HG

I
KJ0

3
5

1

3 4
51

6
3

40 6 12
3

40
... ....

4.       y x y xy x x2 4 2 42 2

Ans. y a x x x a x x x x   
F
HG

I
KJ    

F
HG

I
KJ0

2 6 9
1

4 7 101 2
3

2
45

2
405

1
6

1
63

1
567

.... ...

       2 1
3

1
12

1
45

1
126

1
405

1
1134

2 3 4 6 7 9 10x x x x x x x ....

5.  
2

2
21 4 0

d y dyx x y
dx dx

     ( ) Ans.  
4 6

290 (1 2 ) 91 (1 ......
8 16
x xy x x     

6. 2( 2) (1 ) 0x y xy x y      Ans. y a x x x a x x   
F
HG

I
KJ   

F
HG

I
KJ0

2 3 4
1

41 1
4

1
12

1
32

1
24

... ....

8.4 SOLUTION ABOUT SINGULAR POINTS
There are two types of singular points. (1) Regular singular point, (2) Irregular singular points.
Definition. Consider the equation
(1)     y P x y P x y1 2 0( ) ( ) ... (i)

and assume that at least one of the functions P1 and P2 is not analytic (P1 =   or P2 =  ) at
x = a, so that x = a is a singular point of (i)

Consider

Q x x a P x1 1( ) ( ) ( )  , 2
2 2( ) ( ) ( )Q x x a P x 

If Q1 and Q2 are analytic (not  ) at x = a, then x = a is called a regular singular point, other
irregular.

Example 4.  Find regular singular points of the defferential equation.

2 3 4 02
2

2
2x d y

dx
x dy

dx
x y   ( ) ... (1)

Solution.
d y
dx x

dy
dx

x
x

2

2

2

2
3

2
4

2
 


 y = 0

P1 = 
3

2x
  and P2 = 

x
x

2

2
4

2


          1 1
3 3

2 2
Q x P x

x
       ,      Q x P x x

x
x2

2
2

2
2

2
24

2
1
2

4  


 ( )

Since both P1 and P2 are not analytic (P1 =  , P2 =  ) at x = 0 therefore x = 0 is a singular
point of (1). Moreover both Q1 and Q2 are analytic ( , )Q Q1 2     at x = 0. Hence x = 0 is a
regular singular point of (1).

Example 5.  Find regular singular points of the differential equation.

x x y x y x y2 22 2 2 3 0( ) ( ) ( )          ... (1)
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Solution. 1 22 2 2 2 2
2( 2) 2 3and

( 2) ( 2) ( 2)
x xP P

x x x x x x
 

  
  

P1 and P2 are not analytic (P1 =  , P2 = ) at x = 0. and x = 2. Hence both these points are
singular points of (1).

(i) At x = 0 Q x P
x x1 1

2
2

  
( )

Q x P x x
x x

x
x2

2
2

2
2 2 2

3
2

3
2

 







. . ( )
( ) ( )

Since Q1 is not analytic (Q1 =  ) at x = 0, so x = 0 is an irregular singular point.
(ii) At x = 2

Q x P x x
x x x1 1 2 2 22 2 2 2

2
2

    



( ) ( ) ( )

( )

          Q x P x x
x x

x
x2

2
2

2
2 2 22 2 3

2
3

   





( ) ( ) ( )
( )

Since both Q1 and Q2 are analytic ( , )Q Q1 2     at x = 2, so x = 2 is a regular singular
point.

The solution of a differential equation about a regular singular point can be obtained.
The cases of irregular singular points are beyond the scope of this book.

8.5    FROBENIUS  METHOD : If x = 0 is a regular singularity of the equation.
d y
dx

P x dy
dx

P x y
2

2 1 2 0  ( ) ( ) ... (1)    [P (0) = 0]

Then the series solution is y x a x a x a x a xm
k

m k

k

      





( . . . )0 1 2
2

3
3

0

a

The value of m will be determined by substituting the expressions for y dy
dx

d y
dx

, ,
2

2  in (1), we

get the identity.
On equating the coefficient of lowest power of x in the identity to zero, a quadratic equation

in m (indicial equation) is obtained.
Thus, we will get two values of m. The series solution of (1) will depend on the nature of the

roots of the indicial equation.
(i) Case 1 : When roots m

1
, m

2
 are distinct and not differing by an integer) m1 – m2



0 or a positive integer. e g m m. ., ,1 2
1
2

2  .

The complete solution is   y c y c ym m 1 21 2
( ) ( )

(ii) Case 2 : When roots m1, m2 are equal i.e. m
1
 = m

2

y c y c y
mm

m
 




F
HG

I
KJ1 21

1

( )

(iii) Case 3 : When roots m
1
, m

2
 are distinct and differ by an integer (m1 < m2)

e.g., m1 = 
3
2

, m2 = 
5
2

 or m1 = 2, m2 = 4.

If some of the coefficients of y series become infinite when m = m1, to overcome this diffi-
culty, replace a0 by b0 (m – m1). We get a solution which is only a constant multiple of the first
solution.

Complete solution is 1
2

1 2( )m
m

yy c y c
m
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(iv) Case 4 : Roots are distinct and differing by an integer, making some coefficient
indeterminate

Complete solution is y c y c (y)1 m 2 m1 2
 ( )

if the coefficients do not become infinite when m = m2.
Case I : When the roots are distinct and not differing by an integer.
Example 5. Find solution in generalized series form about x = 0 of the differential equation

3 2 0
2

2x d y
dx

dy
dx

y  

Solution.            3 2 0
2

2x d y
dx

dy
dx

y   ... (1)

Since x = 0 is a regular singular point, we assume the solution in the form

                                              y a xk
m k

k

 






0

Such that
dy
dx

a m k xk
m k

k

   





 ( ) 1

0
,       

2
2

2
0

( )( 1) m k
k

k

d y a m k m k x
dx


 


   

Substituting for y, 
dy
dx

d y
dx

and
2

2  in the given equation (1) we get

3 1 2 01 1  a m k m k x a m k x a xk
m k

k
m k

k
m k( ) ( ) ( )          

or  a m k m k m k x a xk
m k

k
m k[ ( ) ( ) ( )]3 1 2 01         ... (2)

The coefficient of the lowest degree term xm – 1 in the identity (2) is obtained by putting k
= 0 in first summation only and equating it to zero. Then the indicial equation is

a0 [3 m (m – 1) + 2 m] = 0    or   a0 [3 m2 – m] = 0       or    a0m (3 m – 1) = 0

Since   a m0 0 0 1 3 , , /or

The coefficient of next lowest degree term xm in the identity (2) is obtained by putting
k = 1 in first summation and k = 0 in the second summation and equating it to zero.

a1 [3 (m + 1) m + 2 (m + 1)] + a0 = 0
or a1 [3 m2 + 5m + 2] + a0 = 0   or  a1 (3m + 2) (m + 1) + a0 = 0

        a
m m

a1 0
1

3 2 1
 

 ( ) ( )
Equating to zero the coefficient of xm + k, the recurrence relation is given by

ak + 1 [3 (m + k + 1) (m + k) + 2 (m + k + 1)] + ak = 0.

or ak + 1 (m + k + 1) (3 m + 3k + 2) + ak = 0   or   ak + 1 = 


   
1

1 3 3 2( ) ( )m k m k
ak

This gives

For  k = 0, a
m m

a1 0
1

1 3 2



 ( )( )

For k = 1, a
m m

a
m m m m

a2 1 0
1

2 3 5
1

1 2 3 2 3 5



 


   ( ) ( ) ( )( ) ( )( )

For k = 2, a
m m

a3 2
1

3 3 8



 ( )( )
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1

1 2 3 3 2 3 5 3 8 0( ) ( )( )( )( )( )m m m m m m
a

For  m = 0

 a1 = 
1
2 0a , a a2 0

1
20

 , a a3 0
1

480
 

Hence for    m = 0,   y a x x x1 0
2 31

1
2

1
20

1
480

    F
HG

I
KJ...

For m = 
1
3

a1 =   1
4 0a , a a2 0

1
56

 , a a3 0
1

1680




Hence for    m = 
1
3

, the second solution is

y a x x x x2 0

1
3

4
3

7
3

10
31

4
1

56
1

1680
    

F
HG

I
KJ

...

Thus the complete solution is
y Ay By 1 2

  y a x x x b x x x x
    

F
HG

I
KJ     

F
HG

I
KJ0

2 3

0
1 3

2 3
1

2 20 480
1

4 56 1680
... .../

  Ans.

Example 6. Solve x (x – 1)      y x y y( )3 1 0 (A.M.I.E.T.E., Summer 2004)

Solution.   x x y x y y( ) ( )      1 3 1 0 ... (1)
Since, x = 0 is a regular singular point, we assume the solution in the form

    y a x
k

k
m k






0

such that
dy
dx

a m k x
k

k
m k 




 

0

1( ) ,      
d y
dx

a m k m k x
k

k
m k

2

2
0

21   



  ( ) ( )

Substituting the expressions for y dy
dx

d y
dx

, ,
2

2  in (1) we have

 x (x – 1) ak (m + k) (m + k – 1) xm + k – 2

+ (3x – 1)  ak (m + k) xm + k – 1 +  ak x
m + k = 0

or  ak (m + k) (m + k – 1) xm + k –  ak (m + k) (m + k – 1) xm + k – 1

 + 3  ak (m + k) xm + k –  ak (m + k) xm + k – 1 +  ak x
m + k = 0

or  ak [(m + k) (m + k – 1) + 3(m + k) + 1] xm + k

–  ak [(m + k) (m + k – 1) + (m + k)] xm + k – 1 = 0

or  ak [(m + k) (m + k + 2) + 1] xm + k –  ak (m + k)2 xm + k – 1 = 0 ... (2)
The coefficient of lowest degree term xm – 1 in (2) is obtained by putting k = 0 in the second

summation only of (2) and equating it to zero. Then the indicial equation is
a0 (m + 0)2 = 0     m = 0,  0  as a0   0

The coefficient of the next lowest degree term xm in (2) is obtained by putting k = 0 in the
first summation and k = 1 in the  second summation only of (2) and equating it to zero, we get
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a1 [(m + 0) (m + 2) + 1] – a0 (m + 0)2 = 0
a1 – a0 = 0  a1 = a0 (as m = 0)

Equating the coefficient of xm + k to zero, the recurrence relation is given by
ak [(m + k) (m + k + 2) + 1] – ak + 1 (m + k + 1)2 = 0
ak (m + k + 1)2 – ak + 1 (m + k + 1)2 = 0

Hence ak + 1 = ak
y = xm [a0 + a1 x + a2 x2 + .........]
y = a0 xm [1 + x + x2 + x3 + ........]
(m = 0)

when m = 0, 0, this gives only one solution instead of two.
Second solution is given by




F
HG

I
KJ 

y
m m 0

and y1 = a0 (1 + x + x2 + x3)




y
m  = a0 xm log x [1 + x + x2 + x3 + .....]

y2 = a0 log x [1 + x + x2 + x3 + .......] m = 0
y1 = a0 [1 + x + x2 + x3 + .......] m = 0
y = A y1 + B y2
y = A [1 + x + x2 + x3 + ......] + B log x (1 + x + x2 + x3 + .......) Ans.

Example 7. Using extended power series method find one solution of the differential equa-
tion xy y x y 0.2      Indicate the form of a second solution which is linearly independent of
the first obtained above.

Solution. x d y
dx

dy
dx

x y
2

2
2 0  

Let    y =  ak xm + k ... (1)

dy
dx

a m k xk
m k    ( ) 1 ,     

d y
dx

a m k m k xk
m k

2

2
21      ( )( )

Substituting the values of y, 
dy
dx

 and 
d y
dx

2

2  in (1), we get

x  ak (m + k) (m + k – 1) xm + k – 2 +  ak (m + k) xm + k – 1 + x2   ak x
m + k =

0
or  ak (m + k) (m + k – 1) xm + k – 1 +  ak (m + k) x m + k – 1 +  ak x

m + k + 2 = 0
or  ak [(m + k) (m + k – 1) + (m + k)] xm + k – 1 +  ak x

m + k + 2 = 0
or  ak (m + k)2 xm + k – 1 +  ak x

m + k + 2 = 0
The coefficient of lowest degree term xm – 1 in (2) is obtained by putting k = 0 in first summa-

tion of (2) only and equating it to zero. Then the indicial equation is

           a m m m0
2 20 0 0 0   or ,

The coefficient of the next lowest degree term xm in (2) is obtained by putting k = 1 in first
summation only and equating it to zero.

a m a1
2

11 0 0( )  or
Equating the coefficient of xm + 1 for k =2 we get
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a m a2
2

22 0 0( )   
Equating the coefficient of xm + k + 2 to zero, we have

ak + 3 (m + k + 3)2 + ak = 0

ak + 3 = – 2( 3)
ka

m k 

k = 0, a
m

a3 2 0
1

3
 

( )

k = 1, a
m

a a a4 2 1 7 10
1

4
0 0 0 


  

( )
, ,

k = 2, a
m

a a a5 2 2 8 11
1

5
0 0 0 


  

( )
, ,

k = 3, a
m

a
m m

a6 2 3 2 2 0
1

6
1

3 6
 




 ( ) ( ) ( )
a

m
a

m m m
a9 2 6 2 2 2 0

1
9

1
3 6 9

 


 
  ( ) ( ) ( ) ( )

y x a x
m

x
m m

x
m m m

m 



 


  


L
NMM

O
QPP0

3

2

6

2 2

9

2 2 21
3 3 6 3 6 9( ) ( ) ( ) ( ) ( ) ( )

...

... (3)
To get the first solution, let m = 0 in (3), then

y a x x x
1 0

3

2

6

2 2

9

2 2 21
3 3 6 3 6 9

  



 


L
NMM

O
QPP

... ... (4)

To get the second independent solution, differentiate (3) w.r.t. m. Then

   



 



 


  


L
NMM

O
QPP

y
m

x x a x
m

x
m m

x
m m m

m( log )
( ) ( ) ( ) ( ) ( ) ( )

...0

3

2

6

2 2

9

2 2 21
3 3 6 3 6 9





 


 

L
NMM

x a
x

m
x

m m
x

m m
m

0

3

3

6

3 2

6

2 3
2

3
2

3 6
2

3 6( ) ( ) ( ) ( ) ( )


  


  

2
3 6 9

2
3 6 9

9

3 2 2

9

2 3 2
x

m m m
x

m m m( ) ( ) ( ) ( ) ( ) ( )


  


O
QPP

2
3 6 9

9

2 2 3
x

m m m( ) ( ) ( )
... .... (5)

Putting m = 0 in (5), we get

     y x a x x x
2 0

3

2

6

2 2

9

2 2 21
3 3 6 3 6 9

  



 


L
NMM

O
QPP

(log ) ...

      






 


 


 


L
NMM

O
QPP

a x x x x x x
0

3

3

6

3 2

6

2 3

9

3 2 2

9

2 3 2

9

2 2 3
2
3

2
3 6

2
3 6

2
3 6 9

2
3 6 9

2
3 6 9

...  ... (6)

hence the general solution is given by (4) and (6)
y = c1 y1 + c2 y2

3 6 9

1 0 2 2 2 2 2 21 ...
3 3 6 3 6 9
x x x

y c a
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L
NMM

O
QPP

c x a x x x
2 0

3

2

6

2 2

9

2 2 21
3 3 6 3 6 9

(log ) ...

 


F
HG

I
KJ   

 F
HG

I
KJ

L
NMM

O
QPP

c a x x x
2 0

3

3

6

2 6

9

2 2 2
2
3

2
3 6

1
3

1
6

2
3 6 9

1
3

1
6

1
9

...

  
3 6 9

1 2 0 2 2 2 2 2 2( log ) 1 ...
3 3 6 3 6 9
x x xc c x a

 
         

 


F
HG

I
KJ  

 F
HG

I
KJ

L
NMM

O
QPP

2
3 3 2

1 1
2

2
3 2

1 1
2

1
32 0

3

3

6

5 2

9

9 2c a x x x ...   Ans.

Case III : When m
1
 and m

2
 are distinct and differing by an integer, then

y c y c y
mm

m
 




F
HG

I
KJ1 2( )

1

2

If coefficient =
  when 




L
NM

O
QPm m2

Example 9. Solve

x d y
dx

x dy
dx

(x 4) y 02
2

2
2    ... (1) (A.M.I.E.T.E. Summer 1997)

Solution. Let y a xk
m k 

dy
dx

a m k xk
m k    ( ) 1 ,           

d y
dx

a m k m k xk
m k

2

2
21      ( )( )

Substituting the values of 
d y
dx

dy
dx

2

2 ,  and y in (1) we get

x a m k m k x x a m k x x a xk
m k

k
m k

k
m k2 2 1 21 4 0  ( ) ( ) ( ) ( )           

 a m k m k m k x a xk
m k

k
m k[( )( ) ( ) ]         1 4 02

 a m k m k x a xk
m k

k
m k( ) ( )       2 2 02 ... (2)

The coefficient of lowest degree term xm in (2) is obtained by putting k = 0 in first summa-
tion only and equating it to zero. Then the indicial equation is

a m m m0 2 2 0 2 2( )( ) ,     
The coefficient of next lowest term xm + 1 in (2) is obtained by putting k = 1 in first summa-

tion only and equating it to zero.
a m m a1 13 1 0 0( )( )    

Equating the coefficient of xm + k + 2

ak + 2 (m + k + 4) (m + k) + ak = 0   or   a
a

m k m kk
k

  
  2 4( ) ( )

a1 = a3 = a5 = ... = 0

          a
a

m m2
0

4
 

( )

           a
a

m m
a

m m m m4
2 0

2 6 2 4 6
 

 


  ( )( ) ( ) ( ) ( )
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          a a
m m

a
m m m m m6

4 0
24 8 2 4 6 8

 
 

 
   ( ) ( ) ( ) ( ) ( )( )

Hence y a x x
m m

x
m m m m

m 



  

L
NMM0

2 4
1

4 2 4 6( ) ( )( )( )


   


O
QPP

x
m m m m m

6

22 4 6 8( )( ) ( )( )
... ... (3)

Putting m = 2 in (3), we get

  
2 4 6

2
1 0 21 ...

2 6 2 4 6 8 2 4 6 8 10
x x xy a x

 
             

... (4)

Coefficient of x4, x6 etc. in (3) becomes infinite on putting m = –2. To overcome this diffi-
culty we put

a b m0 0 2 ( )  in (3) and we get

y b x m m x
m m

x
m m m

x
m m m m

m  




 


  


L
NMM

O
QPP0

2 4 6

22 2
4 4 6 4 6 8

( ) ( )
( ) ( )( ) ( ) ( )( )

...    ... (5)

On differentiating (5) w.r.t. ‘m’, we get




   




 


  


L
NMM

O
QPP

y
m

b x x m m x
m m

x
m m m

x
m m m m

m
0

2 4 6

22 2
4 4 6 4 6 8

( log ) ( ) ( )
( ) ( )( ) ( ) ( )( )

...

 

 

 


F
HG

I
KJ   

 





F
HG

I
KJ

L
NMM

O
QPP

b x m x
m m m m m

x
m m m m m m

m
0

2 4
1 2

4
1

2
1 1

4 4 6
1 1

4
1

6
( )

( ) ( )( )
...

On replacing m by – 2, we get

            



F
HG

I
KJ   







L
NMM

O
QPP

y
m

b x x x x

m 2
0

2
4 6

20 0
2 2 4 2 2 4 6

( log )
( )( )( ) ( )( ) ( )( )

...

  


F
HG

I
KJ

L
NMM

O
QPP

b x x x
0

2
2

2

4

21
2 2 4

1
4

...

or

y b x x x x
2 0

2
2

2

3

4

3 2
1

2 4 2 4 6 2 4 6 8
 




 


  


F
HG

I
KJlog ...   




F
HG

I
KJ

b x x x
0

2
2

2

4

2 21
2 2 4

...

General solution is y = c1 y1 +c2 y2

  y c x x x x
 




  


   


F
HG

I
KJ1

2
2 4 6

21
2 6 2 4 6 8 2 4 6 8 10

...

 



 


  


F
HG

I
KJ   




F
HG

I
KJ

L
N
MM

O
Q
PP

c x x x x x x x
2

2
2

2

3

4

3 2
2

2

2

4

2 2
1

2 4 2 4 6 2 4 6 8
1

2 2 4
log ... ...

Ans.
Case IV. If the roots differ by an integer such that one or more coefficients are indeter-

minate.
Example 10. Find the extended power series solution of the differential equation
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x y 4xy (x 2) y 02 2      ... (1)

Solution. Let y a xk
m k   be the required solution of the given equation.

The
dy
dx

a m k xk
m k    ( ) 1

d y
dx

a m k m k xk
m k

2

2
21      ( )( )

Substituting the value of y, 
dy
dx

 and 
d y
dx

2

2  in the given equation.

x a m k m k x x a m k x x a xk
m k

k
m k

k
m k2 2 1 21 4 2 0  ( ) ( ) ( ) ( )           

   a m k m k x a m k x a x a xk
m k

k
m k

k
m k

k
m k( )( ) ( )           1 4 2 02

 a m k m k m k x a xk
m k

k
m k[( ) ( ) ( ) ]         1 4 2 02

 a m k m k x a xk
m k

k
m k[( ) ( ) ]       2 23 2 0 ... (2)

The coefficient of lowest degree term xm  in (2) in obtained by putting k = 0 in first summa-
tion only and equating it to zero. Then the indicial equation is

a m m0
2 3 2 0( )  

a m m m m m0
20 3 2 0 1 2 0 1 2         , ( )( ) , ,or

The coefficient of next lowest degree term xm + 1 in (2) is obtained by putting k = 1 in first
summation only and equating it to zero.

2
1 1 1

0[ 5 6] 0 or ( 2) ( 3) 0
( 2) ( 3)

a m m a m m a
m m

       
 

when m = – 2, a1 becomes indeterminate 0
0

F
HG

I
KJ . But in this case we get the identity a1 (0) = 0 which

is satisfied by every value of a1. Therefore in this case we can take a1 as  arbitrary constant
Equating the coefficient of xm + k + 2

a m k m k k ak k          2
2 22 4 3 2 3 2 2 0[ ( ) ( ) ( ) ]

a m k m k k ak k       2
2 22 7 7 12 0[ ( ) ]

a
m k m k k

ak k  
    

2 2 2
1

2 7 7 12( )

For k = 0, a
m m

a
m m

a2 2 0 0
1
7 12

1
3 4

 
 

 
 ( )( )

k = 1   a
m m

a
m m

a3 2 1 1
1

9 20
1

4 5
 

 
 

 ( )( )

a
m m

a
m m m m

a4 2 2 0
1

11 30
1

3 4 5 6
 

 


   ( ) ( ) ( ) ( )

5 3 12

1 1
13 42 ( 4)( 5)( 6)( 7)

a a a
m m m m m m

 
    

      
For   m = – 1
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   a a2 0
1
6

  , 3 1
1

,
12

a a a a4 0
1

120
 , a a5 1

1
360



Hence for     m = – 1,

   y x x x a x x a1
1 2 4

0
2

4

11 1
6

1
120

1 1
12 360

   L
NM

O
QP    

L
NMM

O
QPP

 ... ...

For     m = – 2

   a a2 0
1
2

  , a a3 1
1
6

  , a a4 0
1

24
 , a a5 1

1
120



Hence for m = – 2, second solution is

  y x x x a
x

x x a2
2

2 4

0

3

11
2 24

1
6 120

   
L
NMM

O
QPP

   
L
NMM

O
QPP

 ... ...

  y x x x a x x x a2
2

2 4

0

3 5

11
2 4 3 5

   
RS|T|

UV|W|
   
RS|T|

UV|W|
L
N
MM

O
Q
PP

 ... ...

  y x a x a x2
2

0 1  cos sin

Thus the complete solution is y = Ay By1 2 Ans.

EXERCISE 8.2

Solve the following differential equations by power series method :

1. x y xy x y2 26 6 0    ' ( ) . (A.M.I.E.T.E., Dec. 2005)

Ans. y = Ay1 + By2 when y a x x x a x x x x
1 0

2
2 4

1
2

3 5
1

3 5 3 4 3 4 5 6
   

L
N
MM

O
Q
PP    

L
N
MM

O
Q
PP

 ......
. . . .

.....

y a x x x a x x x x
2 0

3
2 4

1
3

3 5
1

2 4 3 5
   

L
N
MM

O
Q
PP    

L
N
MM

O
Q
PP

 .... ....

2. 2 1 02
2

2
2x d y

dx
x dy

dx
x y   ( ) Ans. y a x x x a x x x

   
F
HG

I
KJ    

F
HG

I
KJ0

2 4

0
1 2

2 4
1

10 360
1

6 168
... .../

3. 2 1 5 7 3 0
2

2x x d y
dx

x dy
dx

y( ) ( )     Ans. a x x x b x0
2 3

0
3 21 3

5
3
7

3
9

   
F
HG

I
KJ 

... /

4. 2 1 1 3 0
2

2x x d y
dx

x dy
dx

y( ) ( )     Ans. y a x x a x x x x
      

F
HG

I
KJ0 1

2 3 4
1 1 3 3

13
3
3 5

3
5 7

( )
. . .

...

5. x d y
dx

dy
dx

x y
2

2
33 4 0   Ans. a x x x a x x x x

0
2

4 8

2
2 2

6 10
1

2 4 3 5
   

F
HG

I
KJ   

F
HG

I
KJ... ...

6. xy x y y     ( )1 0 Ans. A x x x B x x x x1
2 3

2
3

2
4

2
5

2 3
2

3 4 5
   

F
HG

I
KJ    

F
HG

I
KJ.... ...

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



�� � ��� � �� � �� � � ����� � � �
���� � � �

�
�
�
� �

�

�
�
�
�
�

�
�

�
�
� �

�
�

�
�

�
�

� �
�

� �
�
� ������

�
�
�

� �
�
�
�
�� ��� � � ��

�
�
�

�
�

�
�
�

�

�
�

� �
�

�
�
�
� �

�

�

�
�
�
�
�
�

�

�
�

� �
�

� �
�

�
�
�
� �

�

�
�
�

�

�
�
�
�
�
� ������

�
�
�

�
�
�

�� � �� � �� ��� � ��� � �� � � �������������� �	

�� ���� ����

���� �� � ��

�
�
�
� �

�

�
�

�
�

��

�
�
�

� �� � �� �
�� � � � �� � �� �

�
� �� �

�
� ��

�
� �

� �

�� �
� �

��

���
� ��

��

��
� �

�
� � � �������������� �	

�� ���� ���� ������ ����

����� � � � �� �� � �� �� � � � �� �
� � �

� ��� �
� � � � ��

�������� 
�� �� � �� � �� � �

���� � ��

�
�
�
� �

�
�

��
�

�
�

���
� �����

�
�
�
� �� �

�� ��� �

�
�
�
� �

�
�

��
�

�
�

��
���������

�
�
�

� ���
�

�
�
�
�

�

�
�

�
�

��
����

�
�
�

��� �������� ������	


��� �������	
��� ���
��	

�
�
� �

�

�� �
� �

��

��
� �� �

� �
�� � � �

�� ������ 	
� �������� ��������	�
� ��
	���� ��� �����	
��� ��
���� � ���� ��
���� ��� 	����� ����

����� ������	�� 	� 	
��
 ��

��� ����	
�� �� ������� ������	


�
� �

�
�

�� �
� �

��

��
� �� �

� �
�� � � �� ������

��� � � � �
�
�
� � �

�� � � �� �
�
� �� �

� � �
� �� �

� � �
�� ������

�� ����
��

��
� � �

�
�� � �� �� � � � �

���
�
�
�

�� �
� � �

�
�� � �� �� � � � �� �� � � � �

������������ �
��� ����� �� �
� �������� �� 
��

�
�
� �

�
�� � �� �� � � � �� �� � � � �

� � � �
�
�� � �� �� � � � �

� �� �
� �

�� � �
�
�
� ���

� �

�� � �
�
�� � �� �� � � � �� �� � �

� � �
�
�� � �� �� � �

� � �
�
�
� � � � �

� �
�
� �

�
�
� � �

� �

�� � �
�
��� � �� �� � � � �� � �� � �� � �

�� �� � �
� � �

�
�
� � � � �

� �

�� � �
�
��� � �� � � �

�� �� � �
� � �

�
�
� � � � �

� ��

�������� �
� ���������� � �
� �� ����� �� 	��

�� ��� � �� � � �
�� � �� �� � ��

�� �
�
� �

�
���� � � � �� � �

�������� �
� ���������� � �
���

� � �

�� ��� � �� � � �
�� � � ���� �� � �� ����� �� � �� � � �

�
� �

�������� �
� ���������� � �
� � � � � �� ����� �� �	
� ����	�
 	
 �������	�� �����	�	�
��� ��

���

�
� � � ��� � � � �� � � �

�� � �
�
� � �� �

� � � � �
�

�� � � � �� � � �
�

� �
�

��� ������� 	
������



��������� �� � �� � �� � � � �� ����� �� � �

�� � � �� �� � �
�

�� � �� � � �
�
��

�� � � �� �� � �
�

�� � �� � � �
�
�� �

�

��� � �� � � �
�� ��� � �� � � �

���
�� ��� �� ��

�� �����������	 �
� ����� �� �
� ������������ �� ��� �� 
��

� � ���
�
�

��

�� � �� � � �
�
�
� � �

�

��

��� � �� � � �
�� ��� � �� � � � ��

�
� � �

��

� � �� �
� �

�
�
� �

�

�� � �� � � �
�
�
�
�

�

��� � �� � � �
�� ��� � �� � � �

��
�
�
��

�
�
�

��� � � �

� � �� �
� �
�
�
� �

�

� �� � ��
�
�
�

�

�
�

� � � �� � �� �� � ��
�
�
��

�
�
�

����� �� �� �� ��������	 
��������

��� � � � �

� � �� �
� � �

�
�
� �

�

� � � � � ��
�
�
�

�

�
�

� � � � � � � �� � � � � ��
�
�
��

�
�
�

��� ������ �	
���
�� �� ���

��� �������� ������	
 �� �
� �

��

�� �
� �

��

��
� �� �

� �
�� � � � ������

�������� �	 
�� �

� � �� �
�
�
�
�
� �

�
�

� � � �� � ��
�

�
�

����� � �� � �� �� � ��
� �

� � � ���
�
� �

���
� �� � �� �� � �� �� � ��� �� � ��

� �
�
�
�

� �� �
� �

� � �

�

� � ���
�
� �

�� �
� � � �� � �� �� � ��� �� � ��

����� �� �� �� ��������	 
��������

�� �� �

�

�� ��� � ��

��� ����� 	�
���� 	 ��

�� ��		�
��� �����	
� ���
��� � �
�
����

���� �
�
��� �

�

�� ��� � ��
� � � ���

�
� � � �

�� �
� � � �� � �� �� � ��� �� � ��

��� � � � � ��

�
�
��� � �

�
�

�

�

��

�

� �
�
�

�

� �� � ��
�

�

��� ��� � ��

�
�
�

�

�

�

�
�

�

�
�

��� ��� � ��
�
�
�

�

�

�
�
�

�

�

�

�� ��� � ��

�
�
�

�

�

��

�

�

��

�
�
�

�� �
�
��� � �

� � �

�

� � ���

� � �� � �� �

�
�
�

�

�

�
��

� � � �

������

������� 	
������ ���



�� � � ���� ��� � �
� � ���

�� ���
�
�
�

�

�

�
�
�

� �

�� �� ��� � � �
�
�

� �
�

�
�

� �
� � �

�

�
�

� �
� � �

� � �
��

�� � � �� �� ��� �
�

�
�

�
�

� �
� �

�
�
�

� �
� � �

� �
��

�� ���� �	� 
���	� � �	��� �� ��������� ��	 �	� �������� ��� ��������� ���	 �

������� 	
���� ��� � �
�
����� ��	�����
�

��������	 � �� � � �� ���� �	 
	�

�
� �

��� � �
� � �

�

� � ���

� � � � � � � � � ��

�

�
�

�

�

�

�
�

� � � � �

������� �	�
��	� 	 �������� ������	
 ��

� � ��
�
��� � ��

� �
���

������� 	
� ����� ����

	
� �

��� � � � ��� �
�
���

����� � �� 	 
������ �������� �������������� �	
�� �����

��������� �
� �

��� � �
� � �

�

� � ���
�

� � ���� � � � ��
�
�
�

�

�

�
�
�

� � � � �

� �
� � �

� � � �� ��� �
�
�

�

�

�
�
�

� � � � �

� � �� � � � � � ��
��

� � �

� �� ��� �
�
�

�

�

�
�
�

� � � � �

� � �� � � � � � ��

� � � �
� � �

� �� ��� �
�
�

�

�

�
�
�

� � � � �

� � �� � � � � � ��
����� � � �� ������� � �

�� ������� � � � � �

�
��

��� � �
� � �

� � � ��� � � �
�
�

�

�

�
�
�

� � � �

�� � �� � ��� � ��

� � � ��� �
� � �

� � � ��� �
�
�

�

�

�
�
�

� � � �

�� � �� � � �

� � � ��� �
�
��� �������

��� ������� 	
������



������� 		
 ����� ����

��� ���� ��� � ������
�

�

� �

�
�� ��� � ��� �

� ��� ��� � ����
�

�
�

�

� �

�

�
�

��� �

��������� �� ���� �	
�

�
�
��� �

�
�

�� �� � �
��

�
�
�
� �

�
�

��� �� � ��
�

�
�

����� � �� � �� �� � ��
��
�
�
������

��� ������������ � �

�

�
�� ��� �� 	
����

���� ��� �

�
���

���� ��
�
� �

���

�

�

�

�

�

� �
�
�

����
�
�
�

�

�
��

�
�
�

�
�
�

����� � �
�
�

�

�
� �

�
�
�

�
�
�

�

�
� �

�
�
�

�

�

�

�

�

�

�

����

���� �� � �

��

�
�
�
� �

�
�

��� �
�

�
�

�������
�

�
�
�

�
����

���� �

�

�
��
�

�

�

�

�
�
�
� �

�
�

� �
�

�
�

� �
��

�
�
�

�

�

����� � �

�

�
����

��� � � ������
�

�

� �

�

�
�

��� �
�
�
�
�����

��
�
� ����

�

�
�
�������

��� ����� ��	�
�
�
��� � � �

�

�
�� ���� �	 
��	

�
� ��� ��� �

�
� ���

� � ��� � � �

�
� �

����

�

�

�

�

�

� �
�
�

����

�

�
�
�

�

�
� �

�
�
�

�
�

�
�

����� � �
�
�
�
�

�
� �

�

�
�

�
�
�
�

�

�
� �

�
�
�

� �
�

�

	

�

�



����

���� ��
�

�

�
�
�
� �

�
�

� �
�

�
�

� �
��

�
�
�
� ������

�

�

� �

�

�
�
��� �

�
�
�
����� �

�

�
� ���� �

�
�

�������

��� �������	�� 
������

������� 	
 � �
�
� � � �

�
� � �

� � �

������ �� ���� �	
�

�
�
� �

� � �

�

� � ���

� � ��� � � � ��

�
�
�

�

�

�
�
�

� � � �

��������������	 ���� ������ �� �� �� ���

�
�
� � �

� � ��� �� � � ��

� � ��� � � � ��
�
�
�

�

�

�

�
�

� � � � � �

�

�
�

� �
�
� � � �

� � ���

� � ��� � � � ��
�
�
�

�

�

�

�
�

� � � �

� � �
� � ��� � � �

� � � � ��� � � � ��

�
�
�

�

�

�
�
�

� � � � � �

� � �
�
� � �

� � �

�

� � ���

�� � �� � ��� � � � ��
�
�
�

�

�

�

�
�

� � � � � �

������� 	
������ ���



� � �
�
� ��

� � �

�

� � ��� � �

� � ��� � � � ��
�
�
�

�

�

�

�
�

� � � � � �

������� � � � � �

� � �
�
� � �

� � �

�

� � ���

� � ���� � �� � � � ��

�
�
�

�

�

�

�
�

�� � �� � � �

� � �
�
� � �

� � � �������

���	
�� ��� � �
�
� � � � �

�
� � �

� � �

������ �� ���� �
�
� �

� � �

�

� � ���

� � ��� � � � ��
�
�
�

�

�

�
�
�

� � � �

��������������	 ������ ��� �� ��� �
�
� � �

� � �

�

� � ��� �� � � ��
� � ��� � � � ��

�
�
�

�

�

�

�
�

� � � � � �

�

�

� �
�
� � �

� � �

�

� � ��� �� � � ��
� � ��� � � � ��

�
�
�

�

�

�

�
�

� � � �

� �
� � �

�

� � ��� ��� � � � �� � ��

� � ��� � � � ��
�
�
�

�

�

�

�
�

� � � �

� �
� � �

�

� � ��� �� � � � ��
� � ��� � � � ��

�
�
�

�

�

��

�

� � � �

� ��
� � �

�

� � ���

� � ��� � � � ��

�
�
�

�

�

�

�
�

� � � �

� �
� � �

�

� � ��� �

� � ��� � ��
�
�
�

�

�

�
�
�

� � � �

� � �
�
� � �

� � �

�

� � ���

� � ���� � �� � � � ��

�
�
�

�

�

�
�
�

�� � � � � ��

� � �
�

� � �
� � � � � �

�
�������

���	
�� ���� � �
�
� � �

� � � � �
� � �

������ �� ���� �	
�

� �
�
� � � �

�
� � �

� � � ������ ���������� �	�
��� �

� �
�
� � � � �

�
� � �

� � � ������ ���������� �	�
��� ��

������ ��	 
�� ��	� � ���

� � �
�
� � � � �

� � � � � �
� � � �� � �

�
� � �

� � � � �
� � � �������

���	
�� ��� � � �
�
� � ��

� � � � �
� � ��

������ �� ���� �	
�

� �
�
� � � �

�
� � �

� � � ���������� �	�
��� 

� �
�
� � � � �

�
� � �

� � � ���������� �	�
��� 

���������	
 �� ���� ���� �� 
��

� � � � �
�
� � �

� � � � � �
� � � �� � � �

�
� � ��

� � � � �
� � �� �������

���	
�� ��
�

��
�� � �

� �
�
� � � �

� � �
� � �

������ �� ���� �	
�

��� ������� 	
������



� �
�
� � � �

�
� � �

� � � ���������� �	�
��� �

����������	 �� �
� � � �� �� �����	

�
� � �

�
� � � �

� � � � �
�
� �

� � �
� � �

����� �
� �

�
�
� � � �

� � � �
�
�
� � �

� �
�
� � �

��

�

��
�� � �

�
�
� � � �

� �
�
� � � �������

���	
�� ���
�

��
��� �

�
� � �

� �
� � �

������ �� ���� �	
�

� �
�
� � � � �

�
� � �

� � � ���������� �	�
��� ��

����������	 �� �
� � �

� �� ����

�
� �

�
� � � � �

� � � �
�
� �

� �
� � �

����� �� �
�
� � � �

� � �
�
�
� �

�
�
� � �

��

�

��
��� �

�
� � �

�
�
� � � �������

�	
��� ��� ����� ���� 	�� ��� � �
�
�
� �

�

� �

�
�
�
�� ��� �

�

�
�� ��� ����� �

�
��� �� ��� ������ �	
��

���� �� ����� 	��
� ����� ��� ����	
��� ����� �����

��������� �� ���������� 	
���� ��

� �
�
� � � � �

�
� � �

� � � ������

�� ������� � � �� �� ��� �� 	
�� � ��� � � � �� � � ��

�� ��� � �
�

�

�� � �� ������

�� ���������� 	
���� �

� �
�
� � � �

�
� � �

� � � ������

���� ��� 	
� ��� � �	�� � � �
�
� � �

� � � � � �
�
� � �

� � �

�� ������� � � �� � �� � � �� � �� � � ��

�� �

�

�

�� � �� �

�

�

�� � �� �� �� �

�

�

�� � �� ������

������� ��	 
���	 � �� ���� ��� 	
 ��� � ��

��� � �
�

�

�
�
�

�

�

�� � ��

�

�
�
� �� � �

�

�
�
�� �

�

�

�� � ��

�

�
�
�
� �

�

�
�

�

�
�
�� �

�

�

�� �������

�	
��� ��� ����� ��	 
	��

	��	 
	������� ���� ����

� �
�
�� ��� � �

� � � ��� � � �
�
��� � �

� � � ����

��������� �� ���� �	
� �	� ��������� �����


� �
�
� � �

� � � � �
� � � ������

�� ��������	�
	��� 
�
��� � �
��

������� 	
������ ���



� �
�
�� � � �

� � � � � �
� � � ������

�����	
�� � �� � � � ��� � �� � � � �� ��� �	 
��	

� � �
� � � � �

� � � � �
�

�� � �
� � � �

�

�
�
� � � �

�

�
�
�

������

� � �
� � � � �

�
� �

� � � �� � �
� � � �

�

�
�
�
�

�

�
�
� � � ������

������� ��	 
���	 �� � �
� � � ��� � �

� � � ���� ��� 	
� ��� 
 ��� �� ���

� �
�
�� �

�

�
�
�
�
� � � � �

�
�
�
�
�

�
�
�
�
�
� �

� � � �
�

�� � �
�
�� � �

� � � � �
�
� �

�
� �

� � �

�� � �
�
�� � �

� � � � � �
�
� �

� � � �������

�	
��� ��� ����� ����
	

	

��� �

�
���� � �� �

� � � ��� �������������� �	

�� ���

��������� �
� �

�
��� � �

� �
� � �

�

� � ���

� � ��� � � � ��
�
�
�

�

�

�

�
�

� � � �

� �
� � ��� �� � � � �

� � ��� � � � �� � �� � � �

�

��
��� �

�
���� � �

� � ��� �� � � � �� �� � � � � � �

� � ��� � � � �� � �
� � � �

� �
� �

� � ��� �� � ��

� � ��� � � � ��
�
�
�

�

�

�

�
�

� � � � � �

� � �
� � ���

� � ��� � ��

�
�
�

�

�

�

�
�

� � � � � �

� �
� �

� � ���

� � ��� � � � � � ��
�
�
�

�

�

�
�
�

� � �

�����

� � �

� �
�
�
� � � ��� �������

��������� 	
 ��� ���
 ����

�

��
�� � � �

�
���� � � �

� � �
� � � ���

������� 	
� ����� ����
	

	

�� �

�
�
� � �� � � ��

�

� � �
� � �
� �

���������
�

��
�� �

�
�
� � �� � �

�
�
� � � � �

�

��
��

�
�
� � ��

� �
�
�
� � � � � ��

�
� �

� � � � �
�
� �

� � ��

� �
�
�
� � � � �� �

�
�� �

� � � � �
�
�� � �

� � �� ������

���������� �	�
��� ��� �
�
� � � �

�
� � �

� � � ������

���������� �	�
��� ���� �
�
� � � � �

�
� � �

� � �

������� � � � ��� ��� � �
� � � � � �� � �� �

� � � � � �
�

������

������� ��	 
���	 �� � �
�
� ��� � � �

� � � ���� ��� 	
� ��� 
 ��� �� ���	


�

��
�� �

�
�
� � �� � �

�
�
� � � � �� �

�
� � �

� � �� �� � � � �
�
� � �� � �� �

� � � � � �
�
�

� �� � � � � � �� �
�
�
� � � � � ��

�

�
� �

� � �
� �

��� ������� 	
������



� � ��
�

�
� �

� � �
� � �������

�	
��� ��� ����� ����
	

	

��� �

�
���� � �

� �
� � � ���

�������� �
� �

�
��� � �

� �
� � �

�

�����

� � �
�

�� � � � ��

�
�
�

�

�

�

�
�

� � ��

� �
����� ������

� � �
�

�� � � � ��� �� � ��

�

��
��� �

�
���� � �

����� ��� � ��� ��� � ����

� � �
�

�� � � � �� � �����

� �
� �

����� �� � ��

� � �
�
�� � � � �� � �����

�
�
�

�

�

�
�
�

������

� �
� �

�����

� � �
�

�� � ��

�

�
�

�

�

�

�
�

������

� �
� �

�����

� � �
�

�� � � � � � ��

�

�
�

�

�

�

�
�

� � �

�����

���

� �
� �

� �� ��� �������

��������� 	
 ��� ���
 ����

�

��
���� �

�
���� � ���� �

� � ����

�� ��� � � ��� ��� � � ����� ��� � �

������� 	
� ����� ����

� �� ��� �� � �� ��� �
�

�

�� ��� � � �������������� �	

�� ����

��������	 �� ���� �	
�

�

��
��� �

�
�
���� � � �

� �
�
� � � ��� ����������� ��	
��� ��

����������� �
��� �������� �� ���

�
� �

�
�
��� � � � �

� �
�
� � � ��� �� ��� ���

�� ������ � � � �� ���� �	 
��	

� �
� �

�� ��� �� � � �
� �

�� ��� ��� ���

����� � �� ��� �� � � �� ��� �� �� ��� ��

� �
� � ��� �� �� ��� �� � � �� � ��� �

�� �� �� ��� ���

������� ��	 
���	 � � �
� � �� ��� �� ���� ��� 	
 ���� � ���

� �� ��� �� � �
� �� �

� � ��� � � �� �� �
� � ��� ��

� � �� � � � �
� � �� �� � � �� � � �� �

� � ���

�� ����� �	
� ������ ��� � � �

������� 	
������ ���



����� � �� ��� �� � �� �
�

�

�� � � �������

���� ���	
��� ��������� 
� �������� ������	


����� ��� ��	� 
���������� �������� ����� �� �� ��
���
 �� �������� ������	
 �
��

���������� 	
� �� ������

��� �� ����� ��	
�� ��� �������� 	��������� ��
����� �� �������� ������	
�

�
� �

��

�� �
� �

��

��
� �� �

�
�
� �

�� � � � ������

��� � � ���

��

��
� ��

��

��
�

��

��

��

��
� �

��

��

� ��

�� �
�

�

��

�
�
�
�
��

��
�
�
�
�

�

��
�
�
�
�
��

��
��

�

��

��
� � �

� �
�

�� �

���� ��� 	
��
�

�
�
�

�
�

�
�

�

�
�

�
�
�
�
� �

�
�

�� �

�

�
�
�

�

�
�

�

�

�

�
�

�
�
�
�
��

��

�

�
�
� �� � � �

�� � � � �� �
� �

��

�� �
� �

��

��
� �� � � �

�� � � �

� ��� �������	 �� � � �� �� ��� � �� �� �
����

����� ���	
��� �� �� ��� � �� �� �� �� � �� �� �
�� ���

��� ��� �� ����	� �
� ������� ����������� �������� �� ������� ������	
�

�

�
�
�

�� �
� �

��

��
� � �

�� � � ������

��� � � �
�
��

��

��
� �

�
��

��
� � �

� � �
� �

� �
�

�� �
� �

�
� �

�

�� �
� � �

� � �
��

��
� � �

� � �
��

��
� � �� � �� � �� � �

� �

� �
�
� �

�

�� �
� � � �

� � �
��

��
� � �� � �� �� � �

� ��

���� ��� 	�
���

�

�
�
�
�
�
�
�
�

�� �
� � � �

� � � ��

��
� � �� � �� �� � �

�
�
�
�
� �

�
�
�
�
�
��

��
� � �

� � �
�
�
�
�
� �

�
� � � �

�
� � �

�� �
� � � �

��

�� �
� �� � � �� ��

��

��
� �� �

�
�
� �

�
� �� � �� �� �� � �

� � � ������

�������� �	
 �� �
� � �

� �� ���

�
� � ��

�� �
� �� � � �� �

��

��
� �� �

�
�
� �

�
� �� � �� �� � � �

��� �� ��� � � � � � �� ���� �
�
� ��

�� �
� �

��

��
� �� �

�
�
� �

�� � � �

��� �������	 �� � � �� �� �� �� � �� �� �
�� ��

����� ��� �	
���	� 	 ��� ��� � �
� ��� �� �� �� � �� �� �

�� ��� � � �

����� � �

� � �

�

��� �� ������ 	
� �������� ��������	��� ����	��� 	� �������� ������	
�

��� ������� 	
������



�

� ��

�� �
� �

��

��
� � �

�
�
� � � ������

��� � � �
�
� � � �

���

�� ����
��

��
�

��

��

��

��
�

��

��
�
�
�

�

�

�
� � �

�

�
�

� �
�

�� �
�

�

��

�
�
�

�

�

�
� � �

��

��

�
�
�
�

�

��

�
�
�

�

�
�� � �

��

��

�

�
�

��

��

�
�
�
�

�

�

�
� � � �

��

�� �
�
�

�

�� � �� �
� �

��

��

�
�
�

�

�

�
� � �

�

�

�
�

�
� � � � �

��

�� �
�
� � ��

�
�

�
� � � ��

��

��� ��� �	
��	�

�
�
�
�
�

�

�

�
� � � � �

�
�

�� �
�
� � �

�
�

�
� � �� ��

��

�
�
�
� �

�

�
�
� �� ��

��
� � �

�
��

� � �

��
�

�
�

�
� �� �

�
�

�� �
�
� �� � � �

�
�

�
� � � ��

��
� � �

�
��

� � �

�� �����	�
��� �

�

�

�
� � �

�
� ��

�� �
� �� � � � ���

��

��
� ���� � �

�� � � � �
� � � ������

��� �� ��� � � � � � � �� ��� � �

�

� � �
� �� � � � � �

�

� ��
�

�

� � �
� � � �

���� ��� 	
��
� �
� ��

�� �
� �

��

��
� ���� � � � �

��� �������	 �� � � �
� ��� �� ��� �� � �� �� �

��� ���

�������� �	 
�� � � � �
��� ��� �� ��� �

���� � �� �� �
��� �

����� ����

���� �����	�
���� �� ������ ��
���
�

�
�

�

� �
�
�� �� � �

�
���� �� � �

����� � ��� � ��� ��� ����� �	 �
�
��� � ��

������ �� ���� �	
�

�
� �

��

�� �
� �

��

��
� �� �

�
�
� �

�� � � � ������

�
� �

��

�� �
� �

��

��
� �� �

�
�
� �

�� � � � ������

��������� �
 �� ��� �� ��� � � �
�
�� ��� � � �

�
�� �� ��������	�
��

����������	 �� ��
�

�
��� ��� �	 �

�

�
��� ���� �� ��	

�

�
�
�
�
� �

�

�� �
� �

� �
�

�� �

�

�
�
� �
�
�
�
��

��
� �

��

��

�

�
�
� �� �

� � �� ��� � ��

�

��
�
�
�
�
�
�
�
�
��

��
� �

��

��

�

�
�

�
�
�
� �� �

� � �� ��� � � ������

������� 	
������ ���



����������� 
�� ����� ��� ������� ��� �	
	�� � �� �� �� ���

�
�
�
�
�
�
�
�
��

��
� �

��

��

�

�
�

�
�
� �

�

� �� � � � �� �
�

�

��� �� � �

�� �
� �

�� �
�

�

��� �� �

�
�
�
�
�
�
�
�
��

��
� �

��

��
�
�
�

�
�
� �

�

�

�
�
�
�
��

��
� �

��

��

�
�
�� � �

������

������� ��	 
���	 �� � � �
�
�� ���

��

��
� � �

�
� ����� � � �

�
�����

��

��
� �� �

�
� �� �� �� ���

�� 	�


�� �
� � �� �

�

�

� �
�
�� �� � �

�
�� �� �� � �

�
� �

�
� �� �� �

�
�� �� � � �

�
� �� �� �

�
�� �� �

�� � �

� � �
�
� ��� �

�
��� � � �

�
� ��� �

�
��� ������

����� �� � ��� ��� ����� �	 �
�
��� � �� �� �

�
��� � �

�
��� � ��

������� ��	 
���	 �� �
�
��� � �

�
��� � � �� ���� �	 
	�

�� � � � �� �
�

�

� �
�
�� �� � �

�
���� �� � �

�� �
�

�

� �
�
���� � �

�
�� �� �� � � �������

�	
��� ��� ����� ����

�
�

�

� ��
�
�� ��� � �� �

�

�
��

� � � ���� �
�

��������� ����� ��� �	 
������ ����� �� ���� ��
�

�� � � � �� �
�

�

� �
�
���� � �

�
���� �� � � �

�
� ��� � �

�
��� � ��

�
� ��� � �

�
���

���� � � �

�� ���� �	�
 ���� �
�
��� � �� ��� � �� � ������	
���� ��
� 	� �� ����� ���	
 �� ��

����

���

�� �
�
�

�

� �
�
�� �� �

�
�� �� �� � ���

� � �

� � � �
�
� ��� � �

�
� ���

� �
� �

�

�� ��� ��	�� �� 
� ��� �
�	
�

�
� �� ����� �� ��������� ����

�
�

�

� �
�

� �� �� �� � ���

� � �

� � � �
�
� ��� � �

�
� ���

� �
�

�

�
��

�
� ���� � �������

���� � ��	�
���	� �	����	 �
 �
�
�����

����� ��	� �
�
��� �� ��� ���		����
� �	 �

� �� ��� ���	�
��� �� �

�

�

�
�
�
� �

�

�

�
�
�
�

������ �� ���� �	
� �
�
� � � � �

�
�

� �
�

�
�

� �
��

��� ������� 	
������



�

��

�
� � � �

�
�

��

�

�

�
�
�

�

� �

�
�
�

��

�

�

�
�

�

�
�

� �

�
�
�

��

�

�

�
�

�

�� ������

�

�

�

� �
� � �

�
�
�

�

� �

�

�
�
�

�

� �

�
�
�

�

� �

�

�
�

�

�

�

� �

�
�
�

�

� �

�
��

�

�� ������

�� �����	�
��� �� ��� ���� �� ���

�

�

�

�
�
�
� �

�

�

�
�
� �

�
�
�
� �

�
�
�

��

�

�
�
�
�

�

� �

�
�
�

��

�

�
�
�

�

�
�

� �

�
�
�

��

�

�
�
�

�

��
�
�
�
�

�
�
�
� �

�

� �
�

�

� �

�
�
�

�

� �

�
�
�

�

�

�

� �

�
�
�

�

� �

�
�
�

�

��
�
�
�

������

��� ���������	
 �� �
� �� ��� ��	
��� 	 ���

�

�

� �

�
�
�

�

�

�

�
�

�

�
�

�� � �� �

�

�
�

�

�

�

�
�

� � �

�
�

� � �� � �� �

�

�
�

�

�

�
�
�

� � �

�

� �
�
���

��������� 	
����	��� 
� �
� � �� ��� ��	
��� �� � �

� �
���

� �

�

�

�
�
�
� �

�

�

�
�
� � �� � � �� � �

�
�� � �

�
�� �� � �

� �
�
� � � �

� �
�
� � � �

� �
�
� � ��

� �
� � � �

�

�
� �

�
���

��� ���� �	
��� �

�

�

�
�
�
� �

�

�

�
�
� �� ����� �� 	
� �����	��� ����	��� �� ������ ����	�����

���� �� ��� ���	�
��� � ���� ��������� � �
�

� � �
�
�

� �
�

�
�

� �
� � �

�� �� �� � � �
�
�

� �
�

�
�

� �
� � �

��

���� ���	
�
����� ������
� ���
����	 ���� ������
��

�� ���� �	
�

�

�

�

�
�
�
� �

�

�

�
�
�
� �� � ��� � �

�
�� � �

�
�� �� � �

� �
�
� � � �

� �
�
� � � �

� �
�
� � �� ������

����	
� � � �
� � �� ���� �	 
	�

�

�

�
��

� �
� �

� � ��
� �� � �� �

� �
� �� �

� � �
� �� �

� � �
��

� �
� � �

� � �
� �

� � �
� � � �

� �
� � �

� � � �
��

�
�
�
�����

�
� �
� �

� � �

� �
� ��� �

�
��

�
�� ��� �

� �� � �� �
� �
� ���

� � �
� ���

� � �
�� � �� �

� � �
� ���

� � � �
� �� �

� � � �
��

�
�
����� �

� �
� � � ��� �

�
�
�

�� ��� �� ��� �� � � ��� �� ��� �� � �� � �� ��� �
� �

� � �� � �� ��� � �
� �

� � � ��

� �� ��� � �
� �

� � � �� ��

�� ��� �� ��� �� � � ��� �� ��� �� � �� � �� �� � ��� �� � �� �� ��� � �� � �� �� � ��� � �� ��

��� ����	
�� ��� ��� 
���
��� ��	�� �� ��	

������� 	
������ ���



��� �� ��� �� � �� � � �� ��� � � � � �� ��� � � �� ������

��� �� ��� �� � � �� ��� � � � �� ��� � � � � �� ��� � � �� ������

�� ������� � �

�

�
� � �� ��� ��� �	� 
� ��

��� �� ����� � �� � � �� ��� � � � � �� ��� � � � �

��� �� ����� � � �� ��� � � � �� ��� � � � � �� ��� � � ��

������� 	
� ����� ����

	�
 � � �� � � �� � � �� ��

��� � � � �� � � �� � � �� �� �������������� �	
� ����

��������� �� ���� �	
�

��� �� ��� �� � �� � � �� ��� � � � � �� ��� � � � � ������

��� �� ��� �� � � �� ��� � � � �� ��� � � � � �� ��� � � �� ������

������	 � �

�

�
�� ��� ��� �	�
 �� �� ��� � � �� � � �� � � �� ��

��� ��� � � � �� � � �� � � �� �� �������

�	
��� ��� ����� ����

	 ��� � � � �� � �� � � ��� � � ��� � ����

� ��� � � � �� ��� � � ��� � � ��� � ����

��������� �� ���� �	
�

��� �� ��� �� � �� � � �� ��� � � � � �� ��� � � � � ������

��� �	� �� ��� �� � � �� ��� � � � �� ��� � � � � �� ��� � � �� ������

��������������	 �� ������ ��� �� ���

� � ��� �� ��� ��� � ��� � � � � � �� ��� � � � � �� ��� � � �� ������

����� ����	
	�������� �� ��
���� ��� �� ���

� � ��� �� ��� ��� � � � ��� �� � � � ��� �� ��� �� �� ��� ��� � ��� �

� � � �� ��� � � � �� �� ��� � � �� ������

��� �����	
 � �
�

�
�� ��� �� 	�


� ��� � � � �� � �� �� �� � � �� ��� � � ��� � � ��� � ����

��������� 	�

��������� ��� ���� ��	 ����� � �
�

�
� �� �����

� ��� � � � �� �
�� � �

�
�� � �

�
�� � ���� �������

������� 	
� ����� ���� ��
�
� � ��

�
� � ��

�
�� � �

��������� �� � � �� ���� � � � �� ��� � � � � � � � ��� �� ��� �� ����� ���	
 �����


� �� ��� � � � �� ��� � � � � �� ��� � � � � � ��� �� ��� �� ������

��� ������� 	
������



��� ����	
�� �� ��� 
����	��
�� ��	��� ���

������� ��� �	
	�� � �� �� �� ���

��
�
� � � ��

�
� � � ��

�
� ��

� �
�

�

���
� �� ��� �� �� ������

�
�

�

� ���
�
�� �� � �

�
�

�

� ���
�
�� �� � �

�
�

�

� ��� �� ��� �� �� � �

�
�

�

� ��� �� ��� �� �� � ���������������������������

���� ����	
�� �� ��� 
����	��
�� ��	��� ���� ������� ��� 	
�
��  ��� ��� �� ���

� ��
�
� � � ��

�
� � � ��

�
� �� � �

�

�

��� � �� ��� �� ��� ������

������ ��	 
�� ��	 � ��

� ���
�
� � ��

�
� � ��

�
� � ��

�
� ���� � �

�

�

���
� �� ��� �� �� � �

�

�

��� � �� ��� �� �� � �
�

�

�� � �

�� ��
�
� � ��

�
� � ��

�
� � ��

�
�� � � �������

���� �����	�� ������	


�� ����� �	
�

��� �� ��� �
�

�
�
�

�

��� �� ��� �� �� ��� �
�
��� �

�

�
�
�

�

��� ��� � � ��� �� �� ������ ���	�

������ �� ���� �	
�

��� �� ��� �� � �� � � �� ��� �� � � �� ��� �� � � ������

��� �� ��� �� � � �� ��� � � � �� ��� �� � � �� ��� �� � � ������

��� ����������� 
�� ������ ��� ������ � ��� ��� �� ����

�
�

�

��� �� ��� �� �� � �
�

�

��� � � �� ��� �� � � �� ��� �� � ���� ��

� �� �
�

�

�� � � �� �
�

�

��� �� �� � � �� �
�

�

��� �� �� ��

� �� � � � � �

���� �� �

�

�
�
�

�

��� �� ��� �� �� �������

��� ����������	 �� �� ��� �� ��� �����	����� 
������ ��� ����� � ��� �� �� ����

�
�

�

��� �� ��� �� ��� �� �� � �
�

�

��� ��� �� � � �� ��� �� ��� �� � � �� ��� �� ��� �� � ���� ��

� � �� �
�

�

��� �� �� � � �� �
�

�

��� �� ��� �� �� � �

� � �� � �� ��� ������

� � �
�

�� � �� ���� ������

����� ��	
��	���� �� �� ��� �� ��� �����	����� 
������ ��� ����� � ��� �� �� ����

������� 	
������ ���



�
�

�

��� �� ��� �� ��� �� �� � �
�

�

�� �� ��� � ��� �� � � �� ��� �� ��� �� � ���� ��

� � �� �
�

�

��� � ��� �� �� � � �� �
�

�

��� �� ��� �� �� ��� � �� � �� ���� ������

� � �
�

�� � �� ��� ������

������ ��	 
�� ��	 � ��	 
�� ��	� �� ���

�
�

�

���� �� ��� �� ��� �� � ��� �� ��� �� ��� ��� �� � � �
�

�� �
�

�

��� ��� � � ��� �� �� � � �
�
� �� �

�
�

�

�
�
�

�

��� ��� � � ��� �� �� �������

�	��
��� ���

����� ��	�

�� ������
�

� �

�

�
�
�

���� ��� �
��� �

�

� ��� � �������������� �	
� ���

�� ������
�

��
�

�
�
�

�
� ��� ��� � � ��� � �

��� �

�

� �� �� ��� � �
�
�

��

�
�
�

�

�

�
�
�
�� ��� �

�
�
�
� �

��

�
�

�
�
�
��� ����

�� ��� �� ��� �
�

�
�

�
�

�
�

� � � � �
�

�
�

�
�

� � � � �
�

�
�

�
�

� � � � �
� �

��� �� ��� � � ��� ��� � � ����� ��� � � �������������� �	

�� ����

�� ��� �� ��� � ������ ��� �� � �����

�� ��� ��� ��� � � �� ��� ��� ���� ��� �
�

�
��� ��� � �� ����� ��� �� � � ��� �����

� �

�
�
�

� � �
�

�
�

��� � �

� ��� �

�

�
�
�

��
�

��
�� �� ���� � � �� ���� ��

�

��
��

�

� ��� � �
� � �

� ���� � �
�
�
�

�

�

�
�

� ��� �
� � �

�

�
� � �

� ���
�
�
�

�� ��� �
�

�

�
� � �

�
�
��� �� � �

� � �
�
� � � ���� � � � �

��� �
�

�

�
�� �

� � � ��� �� �
�

�
� ������� � �

� �
�� �

�
���� � � �� �������������� �	
�� �����

��� �
�
�
�
�� ��� � ��� � � � �

�� �
�
��� � � �

� � ���� �������������� �	

�� ����

��� � �
�
���� �� �

�

�
�
�
��� � � ��� ���� ��� ��� � � �

� ��� ��� ��� ��� �

���� �

�
�

��� ���� �
�
�
�

�

�
�
� �

�
�
�
�� ��� �

�

�

�� ��� ��� � ����� ��� � � �� ��� � �� ��� � �

��� �� �� ��� � �� �� ��� � � ���� �� ���� ��� ���� ��� ��� �� ����� 	
 � ���  ����� �
�
��� �� ��� ������ 	
�����

�� ����� ��	
�
�������������� �	

�� ���� ���� �� ��� � � � �� ��� ��� � � �

�

�
� ��� ��� � �

��� ��� ��������� � �� �� ��� ��� ����� �
�
��� �� ��� ������ 	
����� 	 	���� ����� �� ����� �� �� ���� �� ��� ��� �� ����

��� ������� ����� �� ����� 	
 �� ��� ��� �� ���� �������������� �	

�� ���� ���

��� ����� ��	� 
�� � �� ��� �� � � � �� ��� �
�

�

�� ���

��� � � � �

� ��� �� �

�

�
�
� �� �

� ��� � � �

� ���� ����������� ��	
�� ����

��� ���� ���� �
�

�

�
���

�� ���� �� �

�

��������
�
� �

�
��� ����� ������ 	��	 �

�

�

�� ���� �� �

�

�

�

��� ������� 	
������



��� ������� � �
��

�� ��� �� ������������� ��	� 
���� ���� � �

��� ������ ��� ��		��� �	 ��� 
��� �� ��� ����	����������� ���� � ��� �������� ��	���

��� �� �� ��� �� ��� ������ �	
���
� ���
 ��� ��� �� ����� �	


�� �� ��� �
�

�

�� ���� ���� � ��� ����� �� ��� �
�

�

�� ���� ���� �� ��� �
�

�
�
�� ����

��� ��
�

��� �� ����� �	


�� ���������� � � �� ��� �� ���� ���������� � � �� ��� �� ����� ���������� � � �� ��� �� ���� ���������� � � �� ��� ��

��� ��� ����� 	
 ������� �
�

�

��
� � ��� � �� ���� ��� ����� �

� ��� �� ��� ������ 	
����� 	 ��� 	���� ���� 	

���� �� �� ����� 	


��� � ���� � � ����� � ���� �

��� �
�

�

�� ��� �� ��

��� � �� ��� � � ����
�

�
�� ��� � � ����� � � �� ��� � � ���� �

�

�

�� ��� � � �������������� �	
� ���

��� ��� �����	
� � � �� ��� �� �� ����� 	


��� � �� ��� � �� ���� ���� � �� ���� ����� �� ���� ���� �
�
�� ����

��� �� �� ��� �� ��� ������ 	
����� 	 ��� 	���� ����� ���� � �
� �

�� ��� ��� ��

��� �
� �

�� ��� � �� ���� �
�
�� ��� � �� ����� � �

� �
�� ��� � �� ���� � �

� �
�� ��� � ��

��� �� �
� � ���� �

�

�

����� � ����� ����� �� �� ��� ������ �	
����
 �� ���� ��
� ��� �� ���� � ��

��� �� ���� �� ����� ��� ���� ���� �� ���	� 
������������� �	
�� �����

��� ��� ������ � �

�
�

�
� �����

�
�
�

�
� �����

�
�
�

�
� �����

�������������� ������

��	 ���� ��� ���� ����� ����� � �� ��� ���� � �� � � ��� �������������� �	
�� �����

��� ��� ����� 	
 ������ 
����	 �� ��� �� ���� �	 �� ��� ��� �� ��� ��

��� � �� ��� � � �� ��� ����
�

�
�� ��� � �� ���

�����
�

�

�� ��� �

�

�

�� ��� ����
�

�
�� ��� � �� ��� �������������� �	
� ����

���� ��� ���� ��� ����� ��� ���� ��� ���� � ��� ����� ��� ���� ��� ����� ��� ������ ��� ������

����� ���	
�	������� ����	�
�	

�� � �����	
� � ��� �� ���������� 	�
 �	� 	 ����� ����� �� ������	����� �� �� �����	�

� � � � �� ���� � ��� ��� �� �����	�	 
� � ���
��

� ��� � �� �� ��� �� � �� �� ��� �� � �� �� ��� �� �� � �
�
�
�
��

�
�� ���� � ��� � �

� � �

�

�� �� ��� �� �

����� ��� ��� �� ��� ��� ����� �	 ��� �
����� �
�
��� � ��

��������� ���� �����	�
�� ������ �� ������ ��
����
� �
����� �� �� ���
� � ��
����


�� ����� 	
 ������ 
����	���

��� � ��� � �
� � �

�

�� �� ��� �� ��� ���

����������	 ��� ����� �� ��� �� � �
�
��� ��� �� ���

������� 	
������ ���



� � ��� �
�
��� �� � �

� � �

�

�� � �� ��� �� � �
�
��� �� ��� ���

����������� 
��� ��� �� ��� ���� � � � �� � � �� �� ����

�
�

�

� � ��� � �
�
��� �� �� � �

� � �

�

�� �
�

�

� �
�
��� �� � �

�
��� �� �� ��� ���

�� �������	
� ������� �� ������ ������	�
 �� �	� ����

�
�

�

� �
�
��� �� � �

�
��� �� �� �

�

�

�

�

�

� �� � � �

�
�

�
��� � ��
� ��� �� �� � � �

�� �������	 
��� ����
� �� 
�� �	�
����� ���� �� ���� ������ 
�

�
�

�

� � ��� �
�
��� �� �� � �� �

�
�

�
�
� � �
� ��� ��

�� �� �

� �
�

�

� � ��� �
�
��� �� ��

�
�

� �
� � �
� ��� ��

�� ������	 �
� ����� �� �
� ������������ ��� �� ���� 	
 �
� �
 �����
���
��
� ����������� ����

����	
� � ���� ���� �
� � �

�

� �� ��� ��

�� �� ��� ��
� �� ����� ��� ��� �� ����� ��� ��� ����	 �
 �� ��� �

��������� ��� � ��� � �
� � �

�

�� �� ��� ��� ��� ���

���	 �
�
�

�

�
� � �
� ����

�
�

�

� �
�
��� �� � ��� �� ��� ���

������� � ��� � � ��� � � � �� ���� �	 
	�

� � �
� � �

�

�� �� ��� ��

�� �

�

��
� ����

�
�

�

� �� ��� �� �� �

�

��
� ����

�
�
�

�� ����

��

�
�
�
�

�

�� �� ����

������������ �	
 ���
 �� �� � ��� ��� � �� ���� �	 
����

� � �
� � �

�

�

�� �� ����
�� ��� ��

�� �
� �� ��� ��

�� �� ����
� � �������

�	
��� ��� ������ � ��� � �
�

�� ��� ������	
 � � � � � �� ����� �	 
� ��
�
�� ����� �

�
���

��� ����� �� 	� �� �
�
� � ��

��������� � ��� � �
�

�
�
� �

� � �

�

�� �� ��� �� ��� ���

����������	 ��� ����� �� ��� �� � �� ��� ��� �� ���

��� ������� 	
������



�
�
�� ��� � �� � �

� � �

�

�� � �� ��� �� � �� ��� � �� ��� ���

����������� 
�� ����� � ���� � � � �� � � �� �� ���

�
�

�

�
�

� �� ��� �� �� � �
� � �

�

�� �
�

�

� �� ��� �� � �� ��� � �� ��

�
�
�

�
�

� �� ��� ��

��

�
�
��

�

� �� �
�

�

� �
�

�
��� �� �� �� � �� ������ �	��
��� ��� �����

� �� �� ���

��

� ��

��

�
�
�

� �� ���

�� �

� �� �� ���

��

�

� �
�

� �� ���
�

�

�� �� �� ���

�� ������� �	
 ���
� �� ��
�����
��� �� �� ���� �	 
	�

�	�	 �
�
� �

� � �

�

� �� ��� ��

�� �� �� ���
����

�������� 	
�

�� ������ � ��� � �
�
�� ��� ������	
 � � � � � �� ����� 	
 ������ 
����	�� �� ��

�
�� ����� �

�
��� ��� �����

�	 �� �� �� � ��

���� �
�
� �

� � �

�

�

��

�

�

��
� �� ���

�
�
�
� �� �� �� ��� � � �� �� ���

�
�
�

�� ���� ���� ��� 	�
���������� ������ �� �� ��� �� ��� � ��� � ��� �� � � � �� ����� �� ��� ����	�
� ���	�

�� �� ��� � � ��

�
�
� � �

� �
� � �

�

�� ��� ��

� �� �� ��� ��

����� ��� 	
� ��� �
����
�

��� ������	
� �	����
�	�� �����	�
 	� ������ 	
 ����	
 ������� 	
 �����	��� �
�	
�������

�

�
�
�

���
�
��

��
� ��� � � ��� ���

���� ���	
��� �� �� 	 �	� 
����	� �	�� �� 
�� ��������
�	� ���	
��� �� �� 	� 
���� ��� �� ���� �		


�� ������� � � �� �� � � � �� ������	� 
�� 	 ������� ����

�

���

���
�
��

��
� ��� � �

��� �������	� � � �� �� �� � �� ��� ��� � �
�� � �� ��� � �

��

� � �� ��� � �
�� � � �

�
�
�
�

��
�

�
�
�
�

����� ��
�

�
�
�
�

��� �� ��
�

�
��

�
�

����� ��
������

�

�
�
�
� �

�
�

�
�

� �
�
�

�
�

�
�

� �
�

� �
�

� �
�

������

�
�
�
� �

�
�
�

�
�

�
�
�

�
�

�
�

� �
�

� �
�
�

�
��

�
�

� �
�

� �
�

� �
�

� ��
�

������

�
�
�

� � ��
� � �

�

�� ���
�
��

�
�

� �
�

� �
�

������ �����
� �

�

�

�

�

�
��

� � �

�

�� ��� ��� � �

�
�

� �
�

� �
�

� �
�

������ ��� � ���

�

�

�

�

�

������� 	
������ ���



�� ��� ��
�� � ��� ������� ����� � ��� ������� ����������

	
� � � � ��
� � �

�

�� ���
�
��

�� � �� � �� ������ �����

��� � � ��
� � �

�

�� ��� ��� � �

�� � �� � �� ������ ��� � ���

������� 	
� ���� ����
�

��
�� ���� �� � � � ��� ��

��������� �� ���� �	
�

��� � � � �
�
�

�� � ��
�

�
�

�� � �� � �� � ��
� �������

�� ��������	�
	���� ��� �� � �

� �
�

�� � ��
�

� �
�

�� � �� � �� � ��
� � � � �

�� ��� ��� � �

�
�

�� � �
�

�
�

�� � �� � �� � ��
� � � � �

�

��
�� ���� �� � �

�
�

��
�

�
�

�� � �� � ��
� �������

� � �
�
�
�

�
�

��
�

�
�

�� � �� � ��
� �������

�
�
�
� � � ��� �

������� 	
� ���� ����
�

�	
�� ���� �� � � ��� ��

��������� �� ���� �	
� ��� � �

�
�

��
�

�
�

�� � �� � ��
�

�
��

�� � �� � �� � �� � ���
� � � � � � ��� ���

�� ��������	�
	��� �� ����	� ���� �� ���

���� � �

�

�
�

�
�

�� � �� � �
�

�
�

�� � �� � �� � �� � ��
� �������

�� ���� �� �
�
�

�
�

�
�

�� � �� � �
�

�
��

�� � �� � �� � �� � ��
� �������

�

��
�� ��� �� � � �

�
�

�� � ��
�

�
�

�� � �� � �� � ��
� �������

� �
�
�
�
� �

�
�

�� � ��
�

�
�

�� � �� � �� � ��
� �������

�
�
�

� � ��� �

������� 	
� ���� ����

�
�

�

� ����� � � ���� �� �� � � ���� � ���� � � ��� � ���� ��

���������
�

��
�� ���� �� � � ��� � ������ ���� ��	
��� ��

���
�

��
�� ���� �� � � � ��� � ��� ��� ���� ��	
��� ��

����������	 �� �� ��� � ��� ��� �	 
�� � ��� ����	�
���� �� ���

��� �
�

��
�� ���� �� � ��� �

�

��
�� ���� �� � � ���

�
� � � ���

�
� ��� ���

����������� 
��� ��� �� ��� ���� � �� �� �� ���

��� ������� 	
������



�
�

�

�
�
�
��� �

�

��
�� ���� �� � ��� �

�

��
�� ���� ����

�
�� � �

�

�

�� ���� � � � ���
�
�� ��

�� � � ����� � � ���
�
�� �� � �

�

�

�
�
�
��� �

�

��
�� ���� �� � ��� �

�

��
�� ���� ��

�
�
�
��

�� ������ ��� �	
������� ���� �
�

��
�� ��� �� �� ������

� �
�

�

�
�
�
��� �

�

��
�� ���� �� � � ���� �

�

��
���� �� � ��� �

�

��
�� ���� �� � � ���� �

�

��
���� ��

�
�
�
��

� �
�

�

�

��
�� ���� � ���� � � ��� � ���� ��� �� � �� ���� � ���� � � ��� � ���� ���

�

�

� � ���� � ���� � � ��� � ���� �� �������

���� ����	
���� ������	


��� �������	
��� ���
��	 �� � �
��
� �

�

���
� � �

��

��
� � �� � �� � � � ������

�� ����� �� 	
�
��
�� ������	
� �� ��	�� ������	
 ��
 ���	 �� ������
 ��

�

��

�
�
�

�� � �
��
��

��

�
�
�
� � �� � �� � � � � � �

���� ���	
��� 	� �� ��
���	
�� �� ������ �� 	������� �� ��������� ������ �� �� �����

������ �� �����	��
 �� 	�����	��
 ����� �� � ��� �� ��	�
 ���� ������ ��� ��	���� ����

��� ��� ������ �	 
����	
�	� ����� �� � ��

� � �
� ��� � �� �

� �
� �� �

� �
� ���� ������

�� � � �
� � �

�

�
�
�
� � �

�� ����
��

��
� �

� � �

�

�
�
�� � ��� � � � �

���
�
��

���
� �

� � �

�

�
�
�� � �� �� � � � �� �� � � � �

������������ �
��� �� ��� �� 
���

�� � �
���

� � �

�

�
�
�� � �� �� � � � �� �� � � � �

� � ��
� � �

�

�
�
�� � �� �� � � � �

� � �� � ���
�

�

�
�
�
� � �

� �

�� �
� � �

�

�
�
�� � �� �� � � � �� �� � � � �

� �� �� � �� � � �� � �� � �� � �� �� � � � �� � �
� � �

�
�
� �

�� �
� � �

�

��� � �� �� � � � �� �� � � � �
� �� �� � �� � �� � �� �� � � � �� � �

� � �� �
�
� � ������

��� �����	
� �� 	� �� 	����	�� ��� ������
�� �
���	�	���� 
� ���	
�� �
���� 
� � ����

������� 	
� ������� �
 ���
 ��� �
���������� 
� �
� ���� ��� 	
��� �� �	�� � � ��

�� � � �� � �� �� �� � �� � � �

������� 	
������ ���



��� �� � �� �� �� �� ��� �	�

������ 	
 ��� ��� 
� �� ��� �� ��� �� ����

������ �� � �� � � �� � �� � � �������

����� �
�
� � � �

�
� � � � �� ��� � ��� � �� � �� � �

�� �� � �� �� � � � �� � �

����� ����	 � � � �� � � � � � � ������

���� �� ����	
��
 �� �
 �
�	����� 
�� �����

����� ���	�
�� � ��� ��� ����
�
��� � �
� � � �� ������	 � � ��

�� �� �� � �� � �� � �� �� � �

�� �� ��� � �� �� � � � �� � �

����� ����	 �� � � ������

����	 �� � �� �� � � � �� � �� �� ���

����� �� 	��
 � ������� �� ���������� ���		������� �
�
� ����� ���	�
�� �� �����
�
��� ��

�
� � � � � �� ����� �� 	��

�� � �� �� � � � �� �
�
� �� �� � �� � �� � � � �� �� � � � ��� �

� � � � �

��� � �� � �� � �� � � � �� �� � � � �� � �
�
� � � �� � � � � � �� �� � � � ��

� � ��� � � � ��� � �� � � � �� � �
�
� ��

� � ��� � � � � � �� �� � � � � � �� � �� � � � � � ���

� � ��� � � � � � �� �� � � � � � � � ���

� �� � � � � � �� �� � � � � � ��

�� �� � �� �� � � � �� �
�
� �� � � � � � �� �� � � � � � �� �

� � � � �

�� �
� � � �

�� � �� �� � � � ��

�� � � � � � �� �� � � � � � ��
�
�

������

��� ����	 �� � �� � �� � �� � � � �

��� ��� ��� 	
��� ��	�� �� ��� ����� 
� �� ��������� ��� �
��

���� �� ���� � � �

�
� � � � �

�� � �� �� � � � ��

��� � � � �� �� � ��
�
�

���� ���

�� ����� �� � �

� �� � ��

�� � � �� �
���

�� � �
�� � �� �� � ��

�� � � �� � �
�� �

� �� � �� �� � �� �� � ��

�� � � �� �� � � �� ���
��

��� �� �� ��� �� � �� � �� � � � �

����� ��� ��	
�� �� �������

� � ��

�
�
�
�
�
�

� �� � ��

�� � � �� � �
�
� � �

�
� �� � �� �� � �� �� � ��

�� � � �� �� � � �� ���
� �� � � ��

�
�
�

������

����� �� � ��	
���� � ���

���� ��� ���� � �� �� ��� �� ���� �� ����

�
� � � �

�� � � � �� �� � � � ��

�� � �� �� � � � � ��
�
�

���� ���

��� ������� 	
������



�� ���� �� �

�� � �� �� � ��

� �� � � ��
���

�� �

�� � �� �� � �� �� � �� �� � ��

��� �� � � �� �� � � ��
�� ��� �� ���

����� ��� ��	
�� �� 
� ��
� ���� �������

� � ��

�
�
�
�
� � � �

�
�� � �� �� � ��

� � �� � � ��
�
� � � �

�

�
�� � �� �� � �� �� � �� �� � ��

��� �� � � �� �� � � ��
� � � �� �

��
�
�
�

������

���� ����� 	
���� �������
 �� ��� �
 	 ����� �� �����
��
� ����� �� ��

����� �� �� ���� �	 
�������� �� ���������� ������	
 �
 � ������ 	� ��������� 
���� �� �� �� ���

������� �	 
����

� � �� �
�
� �� �

� � �
� �� �

� � �
�� � �

�

�

�
�
�
� � �

��� �����	
���� �� ��������� ����	 �� � �� ���� �����	
�	 	�
� 	�
	 �� 
������� ������ �� ��

���� �����	
��� �������	
� �� ����

�����������

��� ������	��� ������	
 ��

�� � �
��
� �

�

���
� � �

��

��
� � �� � �� � � � ������

��� ����	
�� �� 	�� ���� ���	
�� 
� 	�� ���
�� �� �������
�� ������ �� � ��

� � ��

�
�
�
�
�
�

� �� � ��

�� � � �� �
�
� � �

�
� �� � �� �� � �� �� � ��

�� � � �� �� � � �� ���
�
� � �
�

�
�
�

����� �� �� �� ��������	 
��������

��� �� � �� � �������	 �
�	�	� �
 �� �

����� ���� �� � � ��

� �
��� ����� 	�
���� �	 �

�
���� ��

����

�
�
��� �

����� ���� �� � � ��

� �

�
�
�
�
�
�

� �� � ��

�� � � �� � �
�
� � �

��
�
�
�

���� �� ���� �� � ��	
������� ��	���

���� � �� ����� �� 	
������
�

�
� � � ������ ��� 	
�� ���� ����

� � ��
�

�
� � �� � �� �� � �� ���� �

�� � � �� �� � � �� � �� � �� ������ �

��� ���� � �� ��� �� ����	���



�
�� � �� ����� ��	 �
� ���� ���� �� �
�� ��� ��

� � ��
�

�
�� � �� � �� � �� � ���

�� � � �� �� � � �� � �� � �� ���� �� � ��
�

�
�
��� �� ������ 	
� ���������� ������	�� 	� �
� ����� ����

����� �
�
��� �� ���� ���	���
 �� ��
���� ������	
 �� ����� �� ����� �	 �
��� ���
 � � ��

���� ����	
���� ������	�	� �
� ���	����� ���� �
�
����

������� 	�
����� � ���������� ������	


������� 	
������ ���



�� � �
��
� ��

���
� � �

��

��
� � �� � �� � � �

���� � �� � �������	 �
�	�	�

� � ��

�
�
�
�
� � � �

�
�� � �� �� � ��

� � �� � � ��
�
� � � �

��
�
�
�

�� �� ���� �� �

� �

������ �� � � ��

��� ����� 	�
���� �	 ��

�� �
�
���� �� ����

�
�
����� ��

� �

������� ��� �
��
���

����

��
�
�� � �� �

��
���
��
��� ���

��
���

� �� ��� ��� ���
�
�� � �� �

��
�

����

��
��� ������ �	� �

�
��� �� � �����	
�������� �	
�	�

���� ����	
� ������ � ������	��� ������	


����� �
�
��� ��� �

�
��� ��� ��� �	
���	
�	� ������	� �� ����	
���� ������	
� �����	�

��� ���� ��	�
�� ������	 �� ����	�
��� ������	
 ��

� � ��
�
��� � � �

�
���

����� � ��� � ��� ��� ���	����
 ��������

���� ����	
���� ������	

�
�
��� �

�

�� � � �

� �

���
��� � ��� ������������� �	
�� �����

������ ��� � � ��� � ��� ������

����
��

��
� � ��� � ��� � � �� ��

����������	 ��� ����� �� ��� � ��� �� ���

��� � ��
��

��
� � � ��� � ��� ��

�� ��� � ��
��

��
� � � � � ������

��� �����	�
�����
 ���� �� � �� ����� �� 	���
����� �������	 
� ����

��� � ��
�
� � �

�

��
� � �

�
�� � ��

�� ����
�
� � �

�

��� � �
�

�� � ��
�� ���

�
�
�

��
�
� � �

�
�
�
�

�
� � �

�

��
� � �

�
�� � ��

�� ���
�
�
�

��
�

�
�
�

�� ��� � ��
�
� � �

�

��
� � �

� � � � � � �
�� � ��

�
� � �

�

��� � �
� � � � � �

�� � ��

�� � ��
���

�
�
�

��
�
� �

�� ��� � ��
�
� � �

�

��
� � �

� � �

�
� � �

�

��
� � �

� � �� � ��
�
�
�

��
�
� � ������

�� �� ���
�� �

���
� �� ��� ����	�


��� � ��
�
��

���
� � �

��

��
� � �� � �� � � �

�� �� � �
��
� �

�

���
� � �

��

��
� � �� � �� � � �

��� ������� 	
������



���� ����� ��	� � �

� �
�

���
�� � �������	 �
 ���	����� ������	
�

� �
�
�
�

��
�
� �

�
��� ������

����� � �� � ��������	


�� � � ��� � ��� � �� � ��� �� � ���

�� ����
�
�
�

��
�
� �� � ���

�
�

���
�� � ��� � �

�� � � �� � ��� � �
�

�
� � �

��
� � �

�� � ��� �

� � �� � ���
�
�

��
�
�� � ��� � �

���� � � ��
�
�
�

��
�
� �

�
� � �

��� ��� ����� ���	
 ��
���� 
 �� � �� �� � ���	
� �� ��� 	�� ���	 ��� �	�

��������� ���	 � � �� ��� �	
��

� � �
�

� � � � �
�
��� � � �

�
��� � �

� �

�

�� � � �
� ��� ���

������������ �
� ���� �� � ���� ��� 	
 ��� � ���

�
�
��� �

�

�� � � �

� �
�

���

�
�
��� �

�

�� ��

� �

���
��� � ���

������� 	
� ��� �
�
��� �� ��� ������	� 
�������� �� ���	�� �� ���� ���� ��	 ��

��������� 	 
��� 	� ����� ��� ��� ���������� �� 	
�����
��

�
� �

�

� ��� �
�
��� �� �

� � ���

�
�
� �

�
� �

�

��� � ��� � � ��� ���

����������
� �

�

� ��� �
�
��� �� � �

� �

� �

� ��� �
�

�� ��

� �

���
��� � ��� ��

�
�
�
�
�
��� �

�

�
� ��

� �

��
�
��� � ���

�
�
�

�

�

�
� �� �

� �

� �

� ��� �

�
�

��
�
��� � ��� ��

����������� 
� ����� �� ���

�

�

�� ��

�
�
�
� ��� �

� � � �

��� � �
��� � ��� � � � �����

� � � �

��� � �
��� � ��� ��

�
�
�
� �

� �

�

�

�� ��

�
�
�
� � �

� �

� �

� ���� �
� � � �

��� � �
��� � ��� ��

�
�
�

�
� � ��

�� �� �
� �

� �

� ���� �
� � � �

��� � �
��� � ��� ��

����� �����	����� 
� ��	�� �� ����

������� 	
������ ���



�

����

�� ��

�
�
�
� ����

� � � �

��� � �
��� � ��� � � � ������

� � � �

��� � �
��� � ��� ��

�
�
�
��

��

�

� � ���

�� �� �
� �

� �

� �� ���
� � � �

��� � �
� ��� � ��� ��

����������� 
� � �� �����	 
� ����	 �� ���

�

� � ���

�
� �� �

� �

� �

� � ��� ��� � ��� �� �������

���� �����	
� ����������

�
�
��� �

�

�
�

� � �
�

�
�

��
�
��� � ��� ����������� ������	


�� � � �� �� ��� �
�

�� � � �
� �

�� � � �� �� ��� �
�

�� � � �

�

��
��� � �� �

�

�
�� �� � �

�� � � �� �� ��� �
�

�� � � �

� �

���
��� � ��� �

�

�

�

��
�� ��� � �� �� ���

�

�

�
���� � �� � � � � � � �� �

�

�
�� �

�
� ��

��������	 �� ��� �
�

�
�� �

�
� � ��

�� ��� �
�

�
��� �

�
� �� �

�
� ��

�� ��� �
�

�
��� �

�
� �� �

�
� �� ��

�� ��� �
�

��
���� �

�
� ��� �

�
� ��� �

�
� ��

���������������������������������������������������

�
�
��� � �

� � �

�

� � ��� �� � � � �� �

�� � � � �� � �� � �� � � �� �
�
� � � �

����� � �

�

�
�� � �� �����

� �

�

�
�� � �� �� � �� ����

����� �� ��� ����	�
� �
�
��� �� �����	
�� ��� � ��� �� ������	
 ������

��� � ��� � �
� � �

� � �

��
�
����� � � � � ��� � �

� � �

� � �

� � ���
� �

� � �� � �� �
�
�� � ��

�
�
��� �

�

� �
���

� �

���
��� � ��� �

�

�����
�
� � �

� � �

�� ���
��

�� �� � ���

� �

���
���� � ���

��� ������� 	
������



� �
� � �

�

� � ��� �� � � � �� �

�� � � ��� � �� � �� � � �� �
�
� � � �

������ �
�
�� �

� �� �� ��� �	�� ��
��

��
� � � � � � �� � �

�

�
�� �� �����

�� � � � � � � �� � �

�

�
�� � �� �� �� ����

������� 	
� ������� � ��� � � �� � � �� � � � � � �� ����� �	 
������� �����������

��������� ���

� �
�
� � �

�
� � � � � � � �� ��� � � �� ��� � � �� ��� � � �� ��� ������

� �

�

�
�

� �
�

�
�

� �

�

�

�
�
��

�
�
�

� �
�

�
�

�

�

�
�
�
� � ��� � � ���

�
� ���

�
�

� ��

�
�
� ���

�
�

�

�
� �� � �

�
� ���

�
�
� ���

�
�

�

�
�

� � �

�
� �

�
�� � �

�

�
� ��

�������� �
� ����������� � ���� ����� � �� �� ����

� �

� �

�
� �� � �

�

�

� �

� �

�
�� � � �

� �

� � �

�
� � �� � �

� �

�

�
�
�

�

�

�

�
�
� � �� � �

��

�

� �

� �

�
� � �� � �

� �

�
� � �� � � �

������� ��	 
���	 �� �� �� �� � �� ���� �	 
	�

��� � ��� � �� � � �

�

�
�� ��� � � �� ��� �

��

�
�� ��� � � �� ��� ����

���� � ��	�
���	� �	����	 � ����	�
��� �������	
�

����� ��	� �
�
��� �� ��� ���		����
� �	 �

� �� ��� ���	�
��� �� �� � � �� � �
��� ��� �� �������	

������ �� �	

������ �� � � ��� �
��� ���

� �� � � �� � � ���� ���

� � �
�

�
� �� � � �� �

�
�

�

�
�
�
�

�

�

�
�
�

� �
�
� �� � � ��� ��

�

�
�

�

�
�
�
�
�

�

�
�
�

�
�
�
�

�

�

�
�
�
�

�
�
�
�

�

�
� � � �

�
�
�

� �
� � ��� �� � � ��� �� ������

��� ���������	
 �� �
� ��

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�
�

�
�
�
�

�

�
� � � �

�
�
�

� �
� � ��� �� � � ���

������� 	
������ ���



�

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�
�

�
�
�
�

�

�
� � � �

�
�
�

� �
� � ��� �� ���

�
������ ��� � ��

���� �
���� � �� �

������ ��� � ��

� �
�
�

����������� �� �
�
��

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�
�

�
�
�
�

�

�
� � � �

�
�
�

�� � �� �
�� ��� � � ��� � ��� � �

�

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�
�

�
�
�
�

�

�
� � � �

�
�
�

�� � �� �
������� �� ����� ��������

�

������ �� � � ��

�
� � �

� �� � �� �
���� � � �� � �� �� � �

�

������ �� � � ��

� � �� � �� �
�� � �� �� � �

�

������ �� � � ��

� � �� � �� �
�

�� � � ��

�� � � ��
�� � �� �� � �

�

������ �� � � �� �� � � ��

� �
�

� �� � ��

� �� � � ��
�
� � �

����������� �� �
� ��

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�
�

�
�
�
�

�

�
� � � �

�
�
�

�� � �� �
�
� � � �� � � ���� � ��

�

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�
�

�
�
�
�

�

�
� � � �

�
�
�

�� � �� �
� � � ��� � �

�

�� � �� �� � ��

� �
�� ��� � �

�

������� �� � � ��

�
� � � �� � �� �

�
�� � �� �� � ��

� �
�� ��� � �

�

�������� � � �� �� � � �� �� � � ��

� �� � �� �
�

�� � �� �� � ��

� ������ �� ����
�
���

�

������ �� � � ��

� � �� � �� �� � �� �
�

� �� � �� �� � �� �� � ��

� �� � � �� �� � � ��
�
� � �

�

������ �� � � ��

� �
�

� �� � �� �� � �� �� � ��

��� �� � � �� �� � � ��
�
� � �

��� �� ���

���� ���		
�
��� �	 �
� �� ��� ���	�
��� �� ��

�

������ �� � � ��
� �

�
�
�
�
�
�

� �� � ��

� �� � � ��
��� � �

�

�
� �� � �� �� � �� �� � ��

���� �� � � �� �� � � ��
�
� � �

��

�
�
�

� �
�
���

���� ���		
�
���� �	 �� �
�
� �

� ��� ���� �� �	
 ��� �� ���� �� ���� �� ����

�����

�� � � �� � �
��� ���

� �� ��� � ��� ��� � �
�
����� � �

�
�� ��� ��� �

�
�
�
��� ��

��� ������� 	
������



����� �� � � �� � �
��� ���

� �
� � �

� � �

�
�
��� � �

�
� �������

�	
��� ��� ����� ���� 	
�
��� � ��

��������� �� ���� �	
�

�� � � �� � �
��� ���

� � � ��� ��� � �
�
�� ��� � �

��� ��� ��� �
��

�
��� ��

������������ 
 �� � �� ��� ��	
� ������	� �� ���

�� � � � � �
��� ���

� � � ��� ��� � �
��� ��� � �

�
�� ��� ��� �

��
�
��� ��

��� � ���� � ���
� �
� � �

�

�
� �

�
��� �� �� � �� � �

� � �
�
�
�
���

�� � �
�
�
�
��� � �� � �� � �

� � � � � �
�
� �

�
�� � �

�
��

�������� �
� ����������� � �
� �� ���� ��	
� �
 �
�

�
�
��� � � �������

�	
��� ��� ���� ����

��� �� � ��� � � � ���
������ �� � � ��

������ � �
���� �� � � � ��� � ��

��������� �� ���� �	
�

� �
� � �� � ��� � �� � � � � � �

�� � ���

� �
� � �� � ��� � �� � �

�� � ���

� � � �
�
�
�

�

�

�
�
�
�
�
�

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�

� �
����� �

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�

� �
�����

�� �

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�
�

�
�
�
�

�

�
� � � �

�
�
�

� �
����� ��

�������� �
� ���������� � �� � ���� ���	� 
	 �	�

�� � ��� �

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�

�
�
�
�

�

�

�
�
�
�

�
�
�
�

�

�
� � � �

�
�
�

� �

� � � ���
������ �� � � ��

�� � � �

� � � ���
������ �� � � ��

�������� � �

�������

����������	 ���
� � � �

� �� � � � ��� � � �������

���� ���	�
������ �� �
����� ���������

�
� �

� �

�
�

��� � �
�
��� �� � � � � �

������� 	
������ ���



������ �
�
��� �� � �������	 �


�� � �
��
� �

�

�� �
� � �

��

��
� � �� � �� � � � ������

�
�

��� �� ��� ���	���
 ��

�� � �
��
� �

�

�� �
� � �

��

��
� � �� � �� � � � ������

����������	 �� �� � ��� �� �� � ��� ����	�
���� �� ���

�� � �
��

�
�
�
�
� �

�

�� �
� �

�
��

�� �

�
�
�
� � �

�
�
�
�
��

��
� �

��

��
�
�
�
� �� �� � �� � � �� � ��� �� � �

�� � �
�� ��

�

�
�
�
�
�
�
�

��
�
�
��

��
�

��

��

�
�
�
�

�
�
�

��

��

��

��
� �

�
��

���
�
�
�
� ��

�
�
�
�
��

��
� �

��

��

�

�
�
� �� � �� �� � � � �� �� � �

��
�

��

�
�
�
�� � �

��
�
�
�
�
��

��
� �

��

��

�

�
�

�
�
�
� �� � �� �� � � � �� �� � �

��� ����	
����	 �
� � � �� �� �� ���

�
�
�
�� � �

��
�
�
�
�
��

��
� �

��

��

�

�
�

�
�
� � �

� �

� �� � �� �� � � � �� �
� �

� �

��� �� � ��

�� � � �� � �� �� � � � �� �
� �

� �

� � � �� � �

�� �
� �

� �

�
�
��� � �

�
��� �� � � �� � � � ������

��	
��� ��� ����� ����

�
� �

� �

��
�
���� � �� �

�

� � � �
����� ��� ��	�
��� ��		�� ���� �����

��������� �� ���� �	
� �� � � � � � �
�� � ���

� � �
� �

�
���

�������� 
�� ����� �� ���

�� � � � � � �
�� � � � � �

� �
�
�

� ��� � � � �
� � �

�
�

��� � �
�
���

����������� 
��� ��� 
������ � � ��� � �� �� 	�
�

�
� �

� �

� �
� �

� �
�

� ��� �� � �
� �

� �

� � �
� � �

� �
�

��� � �
�
��� �� � �

� �

� �

�� � � �� � �
�� � �

��

�
� �

� �

� �
� �
�
�

� ��� �� � � � �
� �

� �
�

� � � �� � �
�
��

�� � �
� � �

� �

� �

�
�

� ��� �� � �
�

� �
� ��� �� � � �� � �

�� �
� �

� �

� �

�

� �
���

� � � � � �
�

� � � � � �
�
� �

�

� �
���

�
�
�

� � �

� � �

�

�
�

�

�

�

�
���

� � �

� � �

�

�

�
���� �� � �� � ��� �� � ���

��� ������� 	
������



�

�

�

�
�
�

�
�
�
� �

�
�

�
�

�
�

�
�

�
�

�
�� �

�
� � � �

� � � �
��

�
�
�
�

�
�
�
� � �

�
�

�
�

�
�

�
�

�
�

�
�� �

�
� � � �

� � � �
� �

�
��
�
�
�

�

�

�

�
�
�
� �

�
�

�
�

�
�

�
���

�
� � � �

�� � �
��

�
�
�

� �
�
�
�
� �

�
�

�
�

�
�

�
���

�
� �

� � � �
��

�
�
�

�������� �
� ���������� � �
� � �� ���� ��	
�� �
 ��


�
� �

� �

��
�
���� � �� �

�

� � � �
� �������

����� �
��

��

�
�

�
��� �� �

�

� � � � �
�

�

�
�

������� 	
� �������� �	
� 
 �������
 � ��� �� ������ � 	
� �� ������ 
�

� ��� � �
�

�

�� �� ����

���� ���� �
�
�

� � � �

�
�
� �

�

� ��� �
�

��� ��

��������� � ��� � �
�

�

�
�
�
�

���

� ���� ��� � ���� ��� � ���� ��� � ���� ���

� ���� ��� � � � �
�
�
�

��� � �

����������	 ��� ����� �� �
�

���� �� ���

�
�

��� � ��� � ���� ��� �
�

��� � ���� ��� �
�

��� � ���� ��� �
�

��� �� � �
�
�
�

� ��� ��

�
� �

� �

� ��� �
�

��� �� � �
� �

� �

����� ��� �
�

��� � ���� ��� �
�

���

� ���� ��� �
�

��� �� � �
�
�
�

� ��� � ���� ��

�

�
�
�
� � � �� � �

�

�

� � � �
� ��

�
�
�
�

� �
�

� � � �

�
�
�

� � � �

�
�
� �

� �

� ��� �
�

��� �� �������

�	
��� ��� ����� ��	 
�����	�� ������� ��� 	
�
��
 ��������� ����
 ����

�
� �

� �

�
�
�
�
��� �� � �� ����� �� � 	�� 
����� ������� 	�� � � ��

��������� �
� �

� �

�
��

�
��� �� � �

� �

� �

�
�

�

�� � �

� �

���
�� �

� ��� ��

�

�

�
�
� �

�
� �

� �

�
�

� �

��
�
�� �

� ��� ��

�� ������	���� 
� �	�� �� ���

������� 	
������ ���



�

�

�
�
� �

�
�
�

�
�
�
�
�
� � � �

��
� � �

�� �
� ���

�
�
� � �

� �

� �
� �

� �

� �
� � � � � � �

��
� � �

�� �
� ��� ��

�
�
�

� � �
�

�
�
� �

�
� �

� �

�
� � � �

� � �

��
� � �

�� �
� ��� ��

�
� �

� �

�
�
�
�
��� �� � �

������ �� � ��

�
�
� �

�
� �

� �

�
� � � �

� � �

��
� � �

�� �
� ��� ��

����������� � � � ������ 	� 
��

� �� ���
� �� � �� � �

�� � �
�
� �

� �
� � � �

��� ��
�� �

� ��� ��

�

�� ��� � �

�� � �
�
� �

� �
� � � �

��� � �
�� �

� ��� ��

�

�� ��� � �

�
�
� �

�
�
�

� � � � � �

��
� � � � �

�� �
� ���

�
�
�
� �

� �

� � ����

���� ���	���
�� ���	��� ��� �
�
�����

������� 	
 ��
�
� �� � � �� � �

� � � � �� � �� �
� � ��

��������� �� ���� �	
� �� � � �� � �
�� � ���

� � �
� �

�
���

��������������	 ������ ���� �� ���

�

�

�
�� � � ��� �

�� � ��� � � � � � � �� � � ��
� � �

�
�
���

����������	 ��� ����� �� �� � � � � � �
��� �� ���

�� � � �� � �
�� � ��� �� � �� � �� � � �� � �

�� � ��
� � �

�
�
���

�� � �� � �
�
�
�
��� � �� � � �� � �

�� � ��
� � �

�
�
��� ������

�������� �
� ����������� � �
� � � ���� ���� 	
��	 �� ���

� �
� � � � �� � � � ��

�
� � � �� � �� �

� � � � �� � �� �
� � �

�� ��
�
� �� � � �� � �

� � � � �� � �� �
� � �� �������

������� 		
� �
�
� � ��

� � � � ��
�
�

��������� �� ���� �	
� �� � � �� � �
�� � ���

� � �
�
�
�
��� �����

��������������	 �� ���� ������� �� �� �� ���

�

�

�
�� � � ��� �

�� � ��� � � � � � � �� � � ��
� � �

�
�
���

�� �� � �� �� � � �� � �
�� � ���

� � ��
� � �

�
�
��� ������

��������������	 �� ���� ������� �� �� �� ���

�

�

�
�� � � �� � �

�� � ��� � � � �� � � �
�
��

�
���

�� � �� � � �� � �
�� � ���

� � �
�
�
�
� ��� ������

�������� �	
 �� �
� �� ���

��� ������� 	
������



� � �

�
�

� ��
� � �

�
�
���

� �
�
�
�
� ���

�� �� � �� � �
�
�
�
� ��� � � ��

�
�
�
���

�������� 
���
����� � �
� ���� ���� 	
��	 �� ���

� �
�
� ��� � ��

� � � ��� � ��
�
��� �������

���	
�� �����
�
� � � ��

� � � � ��
� � �

��������� ��
�
� �� � � �� � �

� � � � �� � �� �
� � � ���������� �	�
��� �

��������������	 ��� ���� ������ ������ ���� �� ���

��
�
� � �� � � �� �

� � � � �� � � �� � ��
� � � � �� � �� ��

� � �

�� � ��
�
� � � ��

� � �� � �� � �� �� ��
� � � � ��

� � �� � �� � � �� �
� � �

�� � ��
�
� � � ��

� � �� � �� � �� ��� � �� �
� � �� � �� � � �� �

� � �

����� ������	 ���

�� � ��
�
� � � ��

� � �� � ��� � �� � � �� � � ��� �
� � � � �

�
�
� � �

�� �
�
� � � ��

� � � � ��
� � �� �������

���	
�� �����
� � � � ��

� � � � �� � � �� �
�

��������� ��
�
� �� � � �� � �

� � � � �� � �� �
� � � �������� �	

��������	 � �� �� � ���

�� � �� �
� � � � �� � � � � �� � �

�
� ��

� � �

�� �� � �� �
� � � � �� � � �� � �

�
� ��

� � � ������

��������������	 �� ������ ���� �� ���

�� � �� ��
� � � � �� � � �� �

�
� �� � � �� � �

�
� � ���

� � � ������

� �
�
� � ��

� � � � ��
�

����������� �	�
��� ��� ������

������������ �
� ���� �� � �
�
� ���� ��� 	
�� ��� � ���

�� � �� ��
� � � � ��� � �� �

�
� ��� � �� ���

�
� ��

� � �� � ���
� � �

�� �� � �� ��
� � � � �� � �� ��

� � � � �� � � �� �� � �� �
�

�� ��
� � � � ��

� � � � �� � � �� �
�

�������

������� 	
 �� �
� �� �

�
� � � �� �

�
� �

� � ��

��������� �
�
� � � ��

� � � � ��
� � � ������ ����������� �	�
��� ����

� �
�
� � ��

� � � � ��
�

������ ����������� �	�
��� ���

����������	 �� �� � ��� ����	�
���� 	�� ���� �� ���

�� � �
�� �

�
� � � ��

� � � � � �
�
�� �������

������� 	
� �� �
� �� �

�
� � �� � �� ��

� � � � � �
�
�

��������� ��
�
� �� � � �� � �

� � � � �� � �� �
� � � ����������� �	�
��� ��

��������	 � �� �� � ��� �� ���

�� � �� �
� � � � �� � � � � �� � �

�
� ��

� � �

�� � �� �
� � � � �� � � �� � �

�
� ��

� � �

����� ��� �	 �
���	� ��

������� 	
������ ���



�� � �� ��
� � � � � �

�
� � � �� �

�
� �

� � �� ������

��� �� �
� �� �

�
� � � �� �

�
� �

� � ��� ������ ����������� �	�
��� ��

���� ��� 	
� ��� �� ���

�� �� �
� �� �

�
� � �� � �� ��

� � � � � �
�
�� �������

�	
��� ��� ����� ����

�
� �

� �

�
� �� � � ��� � �

� � � ��� �� �
� � �� � ��

�� � � �� �� � � �� �� � � ��
������� 	


�

��������� ��� ���������� 	
���� � ��

�� � � �� � �
�
� �� � �� �

� � � � ��
� � �

��������	 � �� �� � �� ��� �� � ��� �� ����

�� � � �� � �
� � � � �� � �� �

� � � � �� � �� �
�

������

�� � � �� � �
� � � � ��

�
� �� � �� �

� � � ������

����������	 �� ��� �� ��� ����	�����	 �� ��� ������ � � �� � �� �� ����

�� � � �� �� � � �� �
� �

� �

�
�
�
� � � � �

� � � �� � � �� � �� �
� �

�

�
�

�
�� � � �� � �� �

� �

� �

�
�

� �
� � � ��

� �� �
� �� �

� �

� �

�
�
�
� � � �� � �� � �� �� � �� �

� �

� �

�
� � � � �

� � � ��

� � �� � �� �
� �

�

�
�

�
�� � � � � � �

����������	
�� ��������

� � �� � �� �
�

�� � � ��

�� �
� �

� �

�
�

� �
� � � � �

� � � �� �

� � �� � ��

�� � � �� �� � � �� �� � � ��
�������

�	��
��� ���

�� ������� �	 
���� � ����	��� ����	�������

��� � � � � �
� ��� �� � �

�
� �

�
� � � � ��� � � � � � � �

�
� � �

� ��� �� � � �������������� �	
� ����

���� ��� �
�

�
�� ��� � �� ��� �

�

�
�� ��� ���

�

��
�� ��� �

�

�
�� ��� �

��

��
�� ��� �

�

�
�� ��� �

��

��
�� ���

���
�

�
�� ��� � � �� ��� �

��

�
�� ��� ���

�

�
�� ��� �

�

�
�� ��� � �� ���

���� ����

�� ��� �� �

�

��

�
�
�
�� ��� �

�

�
�� ��� �

��

�
�� ��� �

�
�

��� �� �

�

�
�� ��� �

�

�
�� ���

�� �
�
� � �� � � � ��� �

�
����

��
� � �

� �� � � � � � �
��

�

�

�

�

�

� �

� � �

�

�
�
�
�
��� � �

� � � ��� �
�
�
� �������������� �	

�� ����

��
� � �

�

� � � ��� � �
� �

� � �
� �

� � �

�

��� � �� �
�
��� �

� �������������� �	
�� �����

��� ������� 	
������



�� ��� �
� �

�

�
�
��� �� � � �� � ��� ��� �

� �

� �

�
�

� �� ��� �� �

�

��
�������������� �	

�� ����

�� �
� �

� �
�
�
��� ��

������������� � � �� � �
�
�

� �
�

� � � �
� �������������� �	
�� �����

�� �
� �

� �

� �
�
��� �

� � � ��� �� �

� �

� �
�
� �

�

�� �
� �

� �

�� � �
�� � �

�
� ��� � �

�
� ��� ��

�

�

�

�

�

� � ���� � � �

�
� � �� � ��

� � � �
���� � � �

�������������� �	
� ����

����� �
�

��� �� ��� ����	
�� ���	����� �� ��� ������ ��� �������

�
� �

� �

�
�

� ��� �� �
�

� � � �

��� ������ ��� ��		��� �	 ��� 
��� �� ��� ����	� ���� � ��� �������� ��	�� �

��� ��� ����	�
��� �� � � � � �� ����� 	
 ������� �	���	����� ��

���
�

�
���� � ��� � ����� ����

�

�
���� � ��� � �����

�����
�

�
���� � ��� � ����� ����

�

�
���� � ��� � �����

��� ��� ����� �� ��� �����	
� ��������� ���� ��� � � �� �� ����� 	


��� � � ��� � �
��� ��� ���� � � ��� ��� ��� ����� � � ��� �� ��� ���� ���� ���

��� �� �� ��� �� ��� ����	
�� ���	���� � �
�� �� ���� � �
�
� � � � � ��� �� ���	�

�� �


��� � �� � � ��� ���� � �� � � �� � ��� ����� � �� � � �� � ��� ���� � �� � � �� � � ��

��� �� �
� �

� �

�� ��� �� � �� ���� � ��

��� � ���� � ����� � � ���� ���� �� ���	� 
������������� �	
�� �����

��� �������� �	
��	��
 �� ��� � �
�
�
�
�
�
�

��

��
�
�
�
��

��
�
�
�
�
����� � �� ����� 	


��� ���� ���� ���� ����� ���	
 ���� ����

�� � ��� �
� ��� �� �������� 	
���
��� 
� ������ � � �� ���� �

� �

� �

�� � �� �� ��� �� �� ����� 	


��� �� ���� � � �� � � ��� ����� � � �� � � ��� ���� � � �� � � ���

��� ��� ����� 	
 �
��

�

��� � �� �� ��� �� ����� �� ��� �� ��� ����� ��	��� 
�	����� �������� ��

��� � ���� �� ����� � ���� �

��� ��� ����� 	
 ������� �
��

�

�
�
�� ��� ��� ����� ����� �� � �����	
� �������� �� 	��
�� �� �����

���
��

��
���� �� �����

	

��
����




��
�������������� �	
�� �����

��� ��� ������	� 
�������� �
� ��� ���

��� � ���� ����� 	�
����  ��� �� ���� � ����� �� �	
�	 ��� ��� 
� ������� � � ��� ��

����� � � � � ���� ����	 
����� � � ��� �� ���� ���� �� �����

	�� ��� ����		��
 ���
��� ���� 
�� ��������� ��

��� �� ��� � � ���� �� ��� � �

����� �� ���� � ����� � �
�� ��� ���� �� � �

�
� ���� ��� � �� ������ � ��� � �� �� ��� � �

������� 	
������ ���



��� ��� ����	
�� ������ ��� �
� ���� ��� ������	� 
�������� �� ���	�� � �� �� ��� � �

�
� � �� �

� ��� �

��
�

��� � � � � � �
�

���� � � �
�

� � � ����� � � � � �
�

� � ���� � � �
�

�� ��
�
�

��� ����� ��	 
	��

	��	 
	������ ��
 �	�	��
	�� �������	
�

�� � �� �
� � � ��� � ��� ��� � �� ��� � � ���� ��� � ��� ���	� 
� �� ����� ������ �	


�� ��� ���� ��� ����� ����� ���� ��� ������������� ��	� 
����

��� ����� �� ��	 ��

���� ����	�	�� �� ����	���

��� �� ��� � �� �� ��� �
�

�
�� ��� ��� �� ��� �

�

�
� �� ��� �

�

�
�� ���

��� �� ��� �
�

�
� �� ��� � �� ��� ��� �� ��� �

�

�
� �� ��� �

�

�
�� ��� ������������� �	
� ���

���� ��� ������ ��� ���� ��� ����� ��� ������ ��� ����� ��� ���� ��� ����� ��� ����� ��� ���� ��� ������ ��� �����

���� ���	
�	������	� ������
��

��� � ��� �� � ����	
�� ���
��� ��� � � � � �� � � ��

��� ����	��
������� �����	� �� � ���

� ��� � �� �� ��� � �� �� ��� � �� �� ��� � ������ ��� ���

� � ��� � �
� � �

�

�
�
�
�
���

����������	 ��� ����� �� ��� �� �
�
���� �� ����

� ��� � �
�
��� � �� �� ��� � �

�
��� � �� �� ��� �

�
��� � � � �

�
�
�

� ��� � � �� ���

����������� 
��� ��� �� ���� �� ���

�
� �

� �

� ��� � �
�
��� �� � �� �

� �

� �

�� ��� � �
�
��� �� � �� �

� �

� �

�� ��� � �
�
��� �� � � � �

� �
� �

� �

�
�

� ��� �� � �

�
� �

� �

� ��� � �
�
��� �� � �

� �
� �

� �

�
�

� ��� �� ������ �	��
��� ��� ����� �� �����

� �
�

�

�� � �

� �
�
�

�� � �

�
�
� �

� �

� ��� � �
�
��� �� � �

�
�

�
�
�
� �

�

�

�
�
�
�
� �

� �

� ��� � �
�
��� �� �

������� 	
� ������ �	
 �������

� ��� �
�
�
�

� � � � � � �

� � � � � �

�� ����� �	 
������� �����������

��������� ��� � ��� � �
� � �

�

�
�
�
�
��� ��� ����

�
�
�

�
�
�
� �

�

�

�
�
�
�
� �

� �

� ��� �
�
��� ��

�

�

�
�
� �

�

�

�
�
�

�
�
�
�
� �

�

� �
�
��� �� � �

�

�

� �
�
��� ��

�
�
�
�

�

�
�
� �

�

�

�
�
�
�
�

�

�
�
��� ��

��� ������� 	
������



�

�

�
�
� �

�

�

�
�
�

�
�
�
�
�

�

�� ��� �� � �
�

�

� � ��� �� � �
�

�

�� ��� �� � �
�

�

�� ��� �� � �
�
�
�

�� �

�

�
�
�

�

�� ��� �� �
�

�
�
�

�

� � �� �

�

�
���

�

�

�
�

�

�� �

�

�
�
�

�

�� ��� �� �
�

�
�
�

�

� �� �

�

�

�
�
�

�
�

�

�
�
��

�

�

�

�

�� �

�

�
�
�

�

�� ��� �� �
�

�
�
�

�
�

�
���� � �� �� �

�

�
�
�
�
�
� ��

��

�

� �

�� �

�

�
�
�

�

�� ��� �� �
�

�
�
�

�
�

�
���� � ��� �� �

�

�

�
�
�

��
�

�
�

��
�

�

�
�
��

�

�
� �

��

�� �

�

�
�
�

�

�� ��� �� �
�

�
�
�

�
�

�
��� �

�
� �� �

�
� �� �� �

�

��
�
�
� �

�
� �� �

�
� ���

��
�

� �

�� �

��

�
�
�

�

�� ��� �� �

��

�
�
�

�
�

�
��� �

�
� �� �

�
� ���� �� �

��

��

�
�
�

��

�
�
�
�

��

�
�
�
�
��

�
�
��
�
��

�

�

��

��

������ � ��� �

�

�
�� ��� �

�

�
�� ��� �

�

��
�� ��� �

��

��
�� ��� ������ ����

������� 	
� ������� �	� 
������

� ��� �

�
�
�

� � � � � � �

� � � � � �

�� �������	
������� ���������

��������� ��� � ��� � �
� � �

�

�
�
�
�
���� ����

�
�
�

�
�
�
� �

�

�

�

�
�
�
� �

� �

� ��� �
�
��� ��

�
�
�

�
�
�
� �

�

�

�

�
�
�
� �

�

� � �
�
��� �� � �

�
�
� �

�

�

�
�
�
�
�

�

� � �
�
��� �� �

�
�
�
� �

�

�

��

�
�
�

�

� � �
�
��� ��

�� �

�

�
�
�

�

� � �� ��� �� �

�

�
�
�

�

� � � �� �

�

�
�
�

�

� �� �

�

�

�
�
�

�
�

�

��

��

�

�

�

�

�� �

�

�
�
�

�

� � �� ��� �� �

�

�
�
�

�

� � � �� �

�

�
�
�

�

�
�
�� �

�

�

�
�
�

�
�

�

�
�
��

�

�

�

�

�� �

�

�
�
�

�

� � �� ��� �� �

�

�
�
�

�

� �

� �
�
� �

�
�� �

�

�
�
�

�

�� �
�
� �� �� �

�

�

�
�
�

��
�

�
�

�
�

�

�

�
�
�

�

��

�� �

�

�
�
�

�

� � �� ��� �� �

�

�
�
�

�

� �

��
�
� ��

�
�� �

�

�
�
�

�

���� � ��
�� �� �

�

�
�
�
�
�
� �

��
��

�

� �

�� �

�

�
�
�

�

� � �� ��� �� �

�

�
�
�

�

� �

���
�
� ���

�
� �

�
��

�

�

��
�
�

�

����� � ���� � ��� �� �

�

��

�
�
�

���
�

�
�

��

�
�
�
�
��

�

�

��

��

�

�
� �

��

������� 	
������ ���



�� �

��

�
�
�

�

� � �� ��� �� �

��

�
�
�

�

� �

���
�
� ���

�
� ���

�
��

�

��

��
�
�

�

����� � ���� � ���
�� �� �

��

��
�
�
��

�
� ���

�
� ��

��
��

�

� �

�����

� ��� �

�

�
�� ��� �

�

�
�� ��� �

�

��
�� ��� �

�

��
�� ��� � ������ ����

������� �	
����

�	
����� ������ �	
 �������

� ��� �

�
�
�

� � � � � � � �

�
�

� � � � � �

�� ����� 	
 ������� �	���	������

���� � ��� �

�

�
�� ��� �

�

�
�� ��� �

�

�
�� ��� �

�

��
�� ��� �

��

���
�� ��� � ������

���� ���	
��
� ���
�
����� 
�	�����

�

���

���
� �� � ��

��

��
� �� � �

��� �������	 �� 
���	 � ��
������ ����	�����

�
�
��� � �

�
��

���
��� � �

� ��

�� ��� � �
� ��� �� �� � �

�� ��� � �
�
�

��
�� �

� �� � �
� �� �� �

� �� � ��� �� �� � � � �

�� ��� � �
�
��

���
��� �� �� � �

� ��� �� �
� �� �� �

� � �
� �� � �

�
� �� � �

�� ��� � �
�
��

���
��� �� �� � �

� �� �
�
�
� �

� ��� �� �
� ��� �

� �
� � �

� ��

� � �
�
� ��� � ��� � �

��� ���������� 
������ 
 ��������� ��������� �
�

��

�

� ��

�
� � �

� � �

� �
� � �

�

�
�
���

� �
�
�

������������	������ ��� ��� ������ �����	�����	�

�
�

�

�
� �
�
�
��� � �

�
��� �� �

�
�
�

� � � � �

�� ��� � � � �

���� ����	
�������� �������

�

��
�
�
�
� ��� �

��

��
�
�
�
� �� � ��� � � ���� � � �

��������� �� ���� �	
� ������� ������	
 ��

�� ���

���
� �

��

��
� ���

� �
�� � � � ��� ���

��� ������� 	
������



������������ � � �� �� ���� �	 
	�

��

��
�

��

��

��

��
�

��

��

�

�
���

�� �

���
�

�� �

���

�

��

�
�
�
� �
�
�

�
��

���
�

�
�

�

�
�
� �� ��

�
�
�

��

��

�

�

�

�
�
� ��� �� � ��� � � �

�� �
� �

��

���
� �

��

��
� ��� �� � ��� � � �

�

���

���
�
��

��
�

�

�
�
�
�
� �

�
�

�

�

�
�
� �

�
�
�
�

�
�
�

���
�
��

��

�

�
�
�
�
�
�
� � �

�
�

�

�
�
�
� � � ���� �� � ��

�

��

�
�
�
�

��

��
�
�� �

�
�
�
� � �

�
�

�

�
�
�
� � � ��� ���

��������	 �� ��� �� ��� �� ��� �����

�

��

�
�
�
� ��� �

��

��
�
�
�
� �� � ��� � � ���� � � � ��� ���

�������� 
�� � ����� � ��� ��������������� ���������

�������� 
�� ��� ��� �������� ���������� �� ���� �� ��������������� ��������

�� � ��� � �� �� ��� � �

�� � ��� � �� �� ��� � �

�������� �	 ��
����������� �
����� �� ������ �� ����� 	������� ���
� � �� �� ����� ��	
��

���������� 
��� ������� � � �� � � �� � � � �� ���� �	 
��	

���

���
� � � � �

��� ����	
 ��	�����	 ��� � �� � � ��� �� � �� � �

� ��� � � ��� � ��� � �

�����
� ��� � � � � �

� ��� � �� � ��� � �

�
�
�
�������� 	
�� 
	 �������
����� ��
�����

���� ���	�
������

�
�

�

� ��� �
�

��� � �
�
��� �� � � � � � �

�
�

�

� ��� �
�
�
�

����
�

�
�� � �� �

�
�� � � � �

����� �� �
�

�� �� ��� ��	
 �� �
�

�

�� ��� ���	�
�� 
� ��������� ��� ���� ��� ����� �� �� ���� ��� ���	�
�� 
� ����� ��

����������	

���� ���	�
������ �� ��
�� ���������

�� �� �� � ��� �� ��� ��� ��	
���	 �	 ��������������� �������	 �	� �
�

���� �
�
��� �� ���

����� ����	�
�� 
� �	�����
������ �
����� 	���

������� 	
������ ���



�
�
�
�
� �

�
�
� �

�

�

� �
�
�
�
� �

�
�� �� �� � �

�
�� �� ��

�

�

��
�
�
�� ��

�
� �
�
� �� ��

�
� �

�
�
��

�

� � ��� �
�
�
�
� ��� �

�
��� � �

�
� ��� �

�
����

�
� � ��� �

�
�
�
� ��� �

�
��� � �

�
� ��� �

�
����

�
� ���

� � ��

��� � ��� � � ��� ���� �� ��� � �� ���

����� �� � ��� � �� �� ��� � � ���� �� � ��� � �� �� ��� � �

�������� 
�� ������

�
�

�

� �� �� � � �� � ��

�� ����� �	�� �
��� ����
��� �
�
� �

�
��� �������	�
 ���� ��� ������ � ����

�������� 	
�

�� ��� �����	
� �
�

�

�
�

���� �� ��� �� ��� � � �� ����� �
�

��� �� ��� ����	
���� �������	
� �� ��� �

�������

��� �� ���
�

�
��� � ��� ��

�������������� �	
� ���� ���� ���

�� ���� ���� �	
�� ��	�� �� 
���	
�	� �������� � ������� �� 	
� ����	�	�	�� � � � � ��� � ��� ��������

�������� �
 ����� � �������
�
�
�

��
�
�

�
�
�
� �

� � ��
�

��
�

�
�
�
� � �� ����� ���	 
��
 �� ���� ������ �� �� ���

��������� �	 
������� ������	
 ��� �������� ����	�������� �� ��� ��������	
 	� ��� �	��

��

��� �

���

� ��

��� �

���

� �������������� �	
� ���

�� ����� ��	
����� �
���� �
 �����	
� ����������� �
�
���� ���� ����

�
��

�

� ��� �
�
��� �� �

�����

�
�

��
�
��

�

� ��� ��� ��� � ��� ��

����� � �� ��� ���	
��� ��
������ �� ��
����� ���� ��� ���	� 
�� ����

�
��

�

�
�
��� �

�
��� �� � �� � � �� �������������� �	
� ���

��� ������� 	
������



9
Partial Differential Equations

9.1. PARTIAL  DIFFERENTIAL EQUATIONS are those equations which contain partial
differential coefficients, independent variables and dependent variables.
The independent variables will be denoted by x and y and the dependent variable by z. The
partial differential coefficients are denoted as follows:

,z p
x





.z q
y





2

2 ,z r
x





2

,z s
x y



 

2

2

z t
y





9.2. ORDER of a partial differential equation is the same as that of the order of the
highest differential coefficient in it.

9.3 CLASSIFICATION

Consider the equation. 
2 2 2

2 2 ( , , , , ) 0u u uA B C F x y u p q
x yx y

  
   

  
... (1)

Where A, B, C may be constants or functions of x and y. Now the equation (1) is
1. Parabolic; if B2 – 4AC = 0
2. Elliptic; if B2 – 4AC < 0
3. Hyperbolic; if B2 – 4AC > 0

9.4 METHOD OF FORMING  PARTIAL  DIFFERENTIAL  EQUATIONS

A partial differential equation is formed by two methods.
(i) By eliminating arbitrary constants.
(ii) By eliminating arbitrary functions.
(i) Method of elimination of arbitrary constants
Example 1. Form a partial differential equation from

x2 + y2 + (z — c)2 =  a2 .
Solution. x2 + y2 + (z – c)2 = a2 ...(1)
(1) contains two arbitrary constants a and c.
Differentiating (1) partially w.r.t. x we get

2x + 2 (z – c) z
x



= 0

     x + (z – c) p = 0         ...(2)
Differentiating (1) partially w.r.t. y we get

2y + 2 (z – c) z
y



= 0
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672 Partial Differential Equations

     y + (z – c) q = 0        ...(3)
Let us eliminate c from (2) and (3)

From (2)       (z – c) = 
x
p



Putting this value of z – c in (3), we get 0xy q
p

 

or yp – xq= 0 Ans.
(ii) Method of elimination of arbitrary functions
Example 2. Form the partial differential equation from

z = f (x2 – y2)
Solution. z = f (x2 – y2) ... (1)

Differentiating (1) w.r.t x and y

P =
z
x



= f ’ (x2 – y2) 2x ...(2)

q =
z
y

 = f’ (x2 – y2) (–2y) ...(3)

Dividing (2) by (3) we get
p x
q y


 or py = –qx

or                       yp + xq = 0 Ans.

EXERCISE 9.1
Form the partial differential equation
1. z = (x + a) (y + b) Ans. pq = z

2. (x – h)2 + (y – k)2 + z2  = a2 Ans. z2 (p2+ q2+ 1) = a2

3. 2z = (a x+y)2 + b Ans. p x + q y = q2

4. ax2 + by2 + z2 = 1 Ans. z(px+qy) = z2– 1
5. x2 + y2 = (z – c)2  tan2  Ans. yp – xq = 0
6. z = f(x2 + y2) Ans. yp –xq = 0

7. 2z 
2 2

2 2

x y
a b

          (A.M.I.E.,Winter2001) Ans. 2z = xp + yq

8. f(x+y+z, x2+y2 + z2) = 0 Ans. (y – z) p + (z – x) q = x – y

9.5  SOLUTION  OF  EQUATION  BY DIRECT INTEGRATION

Example 3. Solve
3

2

z
x y

  = cos (2x+ 3y)

Solution.
3

2

z
x y



   cos (2x + 3y)

               Integrating w.r.t. ‘x’, we get
2 1

2
z

x y



  sin (2x + 3y) + f (y)

        Integrating w.r.t. x, we get 1
4

z
y


 


cos (2x + 3y) + x   f (y) dy+g (y)
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      =
1 cos (2 3 ) ( ) ( )
4

x y x y g y    

Integrating w.r.t. ‘y’ we get

        1 sin 2 3
12

z x y x y dy g y dy      

       1 2
1 sin 2 3

12
z x y x y y       Ans.

Example 4. Solve        
2 z

x y

  = x2 y

subject to the condition z (x, 0) = x2 and z (1, y) = cos y.

Solution.                     
2z x y

x y
  

   

On integrating w.r.t. x, we obtain  
3

3
z x y f y
y


 


Integrating w.r.t. y, we obtain    
3 2

3 2
x yz f y dy g x    

                                        F y f y dy   

or    z =
3 2

6
x y

+F (y)+ g (x) ... (1)

Condition 1: Putting z = x2 and y = 0 in (1), we get
          x2 = 0 +F(0)+g(x)

Putting the value of g (x) in (1), we get z =
3 2

6
x y

+F (y) + x2 –F (0) ...(2)

Condition 2: z (1, y) = cos y
Putting x = 1 and z = cos y in (2), we get

cos y = 
2

6
y

+F(y) + 1 – F (0)

Putting the value of F (y) in (2), we obtain

      z = 
1
6 x3y2 + cos y – 1

6
y2 – 1 + F (0) + x2 – F(0)

or     z =
1
6 x3y2 + cosy –

1
6 y2 – 1+ x2 Ans.

Example 5. Solve
2

2 ,z z
y



  if y = 0, z = ex and 

z
y

 = e–x

Solution. If z is a function of y alone, then

  z = sinh y. f (x) + cosh y . (x)  ... (1)      
2

2
2 ( 1) 0 1z z D z m

y


      

        z = A ey + B e–y  = A sinh y + B cosh y
             = f (x) sinh y +  (x) . cosh y
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On putting y = 0 and z = ex in (1), we obtain
ex =  (x)

(1) becomes z = sinh y . f (x) + cosh y . ex ...(2)
On differentiating (2) w.r.t. y, we get

 cosh sinh xz y f x y e
y


   
 ... (3)

On putting y = 0 and z
y



= e–x in (3), we obtain

                                                 e–x  = f(x)

(2) becomes,                    z = e–x sinh y + ex cosh y Ans.

EXERCISE 9.2
Solve the following:

1.
2

2z xy
x y



  Ans. z = 

2 3

6
x y

+ f (y) +  (x)

2.
2

cosyz e x
x y



  Ans. z = ey sin x + f(y)+ (x)

3.

2

2z y
x y x


 
  Ans. z = 

2

2
y

log x + 2xy + f (v) + (x)

4.
2

2

z
x



 = a2 z, when x= 0,
z
x

 = a sin y and z

y



= 0 Ans. z = sin x+ ey cos x

5.
2 z

x y

  = sin x sin y if z

y



= –2 sin y when x = 0, and z = 0 when y is an odd multiple of 
2


.

Ans. z = cos x cos y + cos y

6. The partial differential  equation  y 
2 2 2

2 2 0u u ux y
x y yx

  
  

  
is elliptic if

(a) x2 = y2 (b) x2 < y2        (c) x2 + y2 > 1 (d) x2 + y2  = 1
(A.M.I.E.T.E., Dec. 2004)  Ans. (b)

9.6 LAGRANGE’S  LINEAR  EQUATION  IS  AN  EQUATION OF THE TYPE
Pp + Qq = R

where P, Q, R are the functions of x, y, z and p ,z zq
x y
 

 
 

Solution. Pp + Qq =R ...(1)
This form of the equation is obtained by eliminating an arbitrary function f from

   f (u, v)= 0 ...(2)
where u, v are functions of x, y, z.
Differentiating (2) partially w.r.t. to x and y .

0f u u z f v v z
u x z x v x z x
                          

...(3)   and 0f u u z f v v z
u y z y v y z y
          

                
...(4)

Let us eliminate
f
u



and
f
v



 from (3) and (4).
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From (3), 
f u u f v vp p
u x z v x z
                      

 ...(5)

From (4),     
f u u f v vq q
u y z v y z
        

              
...(6)

Dividing (5) by (6), we get 
. .

. .

u u v vp p
x z x z
u u v vq q
y z y z

    
   
    
   

or      . . .u u v v u u v vp q q p
x z y z y z y z

                                     

. .u v u v u v u vq p pq
x y x z z y z z
       

       
       

or   . . .u v u v u v u vp q pq
y x y z z x z z
       

       
       

u v u v u v u vp q
y z z y z x x z

                           
=

u v u v
x y y x
   

  
    ...(7)

If (1) and (7) are the same, then the coefficients of  p, q are equal .

P = 
u v u v
y z z y
   

  
   

Q = 
u v u v
z x x z

   
  

   
...(8)

R = 
u v u v
x y y x
   

  
   

Now suppose u = c1 and v = c2 are two solutions, where a, b are constants.
Differentiating u = c1 and v = c2

  0u u udx dy dz
x y z
  

  
   ...(9)

and    0v v vdx dy dz
x y z
  

  
   ...(10)

      Solving (9) and (10), we get
dx dy dz

u v u v u v u v u v u v
y z z y z x x z x y y x

 
                   
           

...(11)

From (8) and (11)  
dx dy dz
P Q R

 

Solutions of these equations are u = c1  and v = C2

 f (u, v) = 0 is the required solution of (1).

9.7  WORKING  RULE
First step. Write down the auxiliary equations

                                  
dx dy dz
P Q R
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Second step. Solve the above auxiliary equations.
                       Let the two solutions be u = c1 and v = c2.
Third step. Then f (u, v) = 0 or u =  (v) is the required solution of

Pp + Qq = R.
Example 6. Solve the following partial differential equation

 yq – xp = z .               where ,z zp q
x y
 

 
  .

Solution. yq – xp = z
Here the auxiliary equations are

      
dx dy dz

x y z
 



   – log x = log y – log a          (From first two equations)
          xy = a ...(1)
    log y  = log z + log b           (From last two equations)

          
y b
z
 ...(2)

From (1) and (2)

Hence the solution is         , 0yf x y
z

   
 

Ans.

Example 7. Solve y2p – xyq = x(z – 2y)            (A.M.I.E.,Summer 2001)
Solution. y2p – xyq = x(z – 2y)

The auxiliary equations are

    2 2
dx dy dz

xy x z yy
 
  ...(1)

Considering first two members of the equations

   
dx dy
y x

   x dx = –y dy

Integrating    
2 2

1

2 2 2
Cx y

     x2 + y2 = C1 ...(2)

From last two equations of (1)

2
dy dz
y z y

 


        –zdy + 2y dy = ydz    2y dy = y dz + z dy
On integration, we get

y2 = yz + C2
y2 – yz = C2 . ...(3)

From (2) and (3)
x2 + y2  = f ( y2 – yz) Ans.
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Example 8. Solve (x2 – yz) p + (y2 – zx) q = z2  – xy (A.M.I.E., Summer 2001)
Solution.  (x2 – yz)p + (y2 – zx)q = z2 – xy ...(1)
                   The auxiliary equations are

2 2 2

dx dy dz
x yz y zx z xy

 
  

       or      2 2 2 2 2 2

dx dy dy dz dz dx
x yz y zx y zx z xy z xy x yz

  
 

        

    
– – –

( – )( ) ( )( – ) ( )( – )
dx dy dy dz dz dx

x y x y z x y z y z x y z z x
 

     
– – –

( – ) ( – ) ( – )
dx dy dy dz dz dx
x y y z z x

   ...(2)

Intergrating first members of (2), we have
log (x – y) = log (y –z) + log c1

1
–log log
–

x y c
y z

 or 1
–
–

x y c
y z



Similarly from last two  members of (2) ,we have

    2
–
–

y z c
z x



The required solution  is

, 0x y y zf
y z z x

  
   

Ans.

9.8  METHOD OF MULTIPLIERS
Let the auxiliary equations be

dx dy dz
p Q R
 

l, m, n may be constants or functions of x, y, z then we have

dx dy dz ldx mdy ndz
p Q R lp mQ nR

 
  

 
1, m, n are chosen in such a way that

1P + mQ + nR = 0
Thus                     ldx + mdy + ndz = 0
Solve this differential equation, if the solution is u = c1.

Similarly, choose another set of multipliers (l1, m1, n1) and if the second solution is    v = C2 .

 Required solution is f (u, v) = 0 .

Example 9. Solve

   z zmz ny nx lz ly mx
x y
 

    
            (A.M.I.E. Winter 2001)

Solution.    z zmz ny nx lz ly mx
x y
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Here, the auxiliary equations are
dx dy dz

mz ny nx lz ly mx
 

  
Using multipliers x, y, z we get

Each fraction =       0
x dx y dy z dz x dx y dy z dz

x mz ny y nx lz z ly mx
   


    

                                            x dx + y dy + z dz = 0

which on integration gives x2 + y2 + z2 = c1 ...(1)

Again using multipliers, 1, m, n, we get

each fraction =       0
l dx m dy ndz l dx m dy n dz

l mz ny m nx lz n ly mx
   


    

         ldx + m dy + n dz = 0
which, on integration gives.

lx + m y + n z = c2 ...(2)
Hence from (1) and (2), the required solution is x2 + y2 + z2 = f (lx + my+ nz) Ans.
Example 10. Find the general solution of

x (z2 – y2) 
z
x

 + y (x2 – z2) 

z
y



   = z (y2 – x2)

Solution.  x (z2 – y2) z
x



  + y (x2 – z2) z
y



= z (y2 –  x2)

  The auxiliary simultaneous equations are

     2 2 2 2 2 2

dx dy dz
x z y y x z z y x

 
   ...(1)

Using multipliers x, y, z we get
Each term of (1) is equal to

     2 2 2 2 2 2 2 2 2 0
x dx y dy z dz xdx ydy zdz

x z y y x z z y x
   


    

                x dx + y dy + z dz = 0
On integration       x2 + y2 + z2 =  C1 ...(2)
Again (1) can be written as

             2 2 2 2 2 2 2 2 2 2 2 2

dy dx dy dzdx dz
y x y zx z

z y x z y x z y x z y x

 
  

        0

dx dy dz
x y z
 



    0dx dy dz
x y z
  

 log x + log y + log z = log C2

 log xyz = log C2  xyz = C2 ...(3)
From (2) and (3), the general solution is xyz = f (x2 + y2 +  z2) Ans.
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Example 11. Solve the partial differential equation

y z z x x yp q
yz zx xy
  

                 (A.M.I.E., Winter 2001)

Solution.
y z z x x yp q
yz zx xy
  

 

   Multiplying by xyz, we get
x(y – z)p + y(z – x)q = z(x – y)

           
dx dy dz dz dy dz

x y z y z x z x y x y z y z x z x y
 

  
        ... (1)

         0
dx dy dz 



 dx dy dz  = 0
Which on integration gives

x + y+ z = a ... (2)
Again (1) can be written

   
      0

dy dx dy dz dx dy dzdx dz
y x y z x y zx z

y z z x x y y z z x x y

   
   

       

or              0dx dy dz
x y z
  

On integration we get
log x + log y + log z = log b    log xyz = log b    xyz = b ...(3)

From (2) and (3) the general solution is
      xyz .= f (x + y + z) Ans.

Example 12. Solve (x2 – y2 – z2) p + 2xy q = 2xz .             (A.M.I.E., Summer, 2004, 2000)
Solution. (x2 – y2 – z2) p + 2xyq = 2xz
Here the auxiliary equations are

2 2 2 2 2
dx dy dz

xy xzx y z
 

  ...(1)

From the last two members of (1) we have dz
dy dz
y z


which on integration gives

log y = log z + log a or    log 
y
z  = log a

or
y
z  = a ... (2)

Using multipliers x, y, z we have

 2 2 2 2 2 22 2
dx dy dz x dx y dy z dz

xy xzx y z x x y z
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 2 2 2

2 2 2x dx y dy z dz dz
zx y z

 


 
which on integration gives

log (x2 + y2 + z2) = log z + log b

    
2 2 2x y z b

z
 

  ...(3)

Hence from (2) and (3), the required solution is

     x2+ y2 + z2 = z f 
y
z

 
 
 

Ans.

Example 13. Solve the differential equation

   2 2 .z zx y x y z
x y
 

  
 

Solution.         2 2 .z zx y x y z
x y
 

  
  ...(1)

            The auxiliary equations of (1) are

        2 2

dx dy dz
x y zx y

 
 ...(2)

Take first two members of (2) and integrate them

  
1 1 c
x y

   

               1
1 1 c
x y
  ...(3)

(2) can be written as 

dydx dz
yx z

x y x y
 


=
   

–dx dy dz
x y z

x y x y



  

or       0dx dy dz
x y z
  

On integration we get
or log x + log y  – log z = log c2

or log
xy
z  = log c2 or

xy
z = c2 ...(4)

From (3) and (4) we have
1 1 , 0xyf
x y z

 
  

 
Ans.

Example 14. Find the general solution of
z z zx y t xyt
x y t
  

  
  

Solution. The auxiliary equations are 
dx dy dt dz
x y t xyt
   ...(1)

               Taking the first two members and integrating, we get
log x = log y + log a
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 log x = log  ay      x = ay       y/x = a ...(2)
Similarly, from the 2nd and 3rd members

t b
y
 ...(3)

Multiplying the equations (1) by xyt, we get

                       1 1 1 3
tydx txdy xydt tydx txdy xydtdz  

   

Integrating,

1 1
3 3

z xyt c or z xyt c    ...(4)

From (2), (3) and (4) the solution is
1
3

y tz xyt f
x y


       

   
Ans.

Example 15. Solve (y + z)p – (x + z) q = x – y
Solution. (y+z)p – (x+z)q = x – y ... (1)

   The auxiliary equations are

 
dx dy dz

y z x z x y
 

    ...(2)

    
dx dy dz dx dy dz

y z x z x y y z x z x y
 

  
        

 0
dz dx dy dz

x y
 




Thus, we have dx +  dy + dz = 0
       which on integration gives     x + y + z = c1, ...(3)

Let us use multipliers (x, y, – z) for (2)

       
dx dy dz x dx y dy zdz

y z x z x y x y z y x z z x y
 

  
        

or  
dx dy dz

y z x z x y
  

    0
x dx y dy z dz 

Integrating      x dx + y dy – z dz = 0, we get

         
2 2 2

22 2 2
x y z c  

or             x2 + y2 – z2 = 2c2 ...(4)
From (3) and (4), we get the required solution

f(x + y + z, x2 + y2 – z2) = 0 Ans.
Example 16. Solve zp + yq = x
Solution. zp+yq = x ...(1)

The auxiliary equations are 
dx dy dz
z y x

 

   (i)      (ii)     (iii)
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From (i) and (ii)
dx dz
z x
 or x.dx = z. dz


2 2

1

2 2 2
cx z

  or x2 = z2 – c1 ...(2)

 z = 2
1x c

Putting the value of z in (1)

2
1

dx dy
yx c




                    
1 1

2 2
1 1

sinh log or sinh logx xy c y c
c c

     ...(3)

From (2) and (3), the required solution is

                   2 2 1

1

sinh logxf z x y
c

   Ans.

Example 17. Solve px (z – 2y2) = (z – qy)(z – y2 –2x3) .         (A.M.I.E., Summer 2000)
Solution. px (z – 2y2) = (z – qy) (z – y2 – 2x3) ...(1)
          px (z – 2y2) + qy (z – y2 – 2x3) = z (z – y2 –  2x3)
Here the auxiliary equations are

     2 2 3 2 32 2 2
dx dy dz

x z y y z y x z z y x
 

     ...(2)

From the last two members of (2) we have
dy dz
y z


       which gives on integration
log y = log z + log a or y = a z ...(3)

From the first and third members of (2) we have

2 2 3( – 2 ) ( – – 2 )
dx dz

x z y z z y x
 Put y = az

    2 2 2 2 32 2
dx dz

x z a z z z a z x


  

  2 2 32 21 2
dx dz

z a z xx a z


 
 z dx – a2z2dx – 2x3dx = xdz – 2a2xz dz
 ( xdz – zdx) – a2 (2xz dz – z2 dx) + 2x3dx = 0
On integrating, we have

2
2 2z za x b

x x
   ...(4)

From (3) and (4), we have
2 2

2y z a zf x
z x x

 
   

 
Ans.
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EXERCISE 9.3
Solve the following partial differential equations :

1. p tanx + q tan y = tan z Ans.
sin sin, 0
sin sin

x yf
y z

 
 

 

2.
2 1z zy y z

x y
 

  
  (AMIE. Winter 2002) Ans. f(x – y) = logy – tan–l z

3. (y – z)p + (x – y)q = z – x Ans. f(x + y + z , x2 + 2yz) = 0
4. (y + zx)p – (x + yz)q = x2 – y2 Ans. f (x2 + y2 – z2) = (x – y)2 – (z +1)2

5.
2 2z zzx zy y x

x y
 

  
  Ans. f (x2 + y2 + z2 , xy) = 0

6. pz – qz = z2 + (x+ y)2 Ans. [ z2 + (x + y)2 ] e–2x = f (x + y)
7. p + q + 2xz = 0 Ans. f(x – y)= x2 + log z

8. x2p + y2q + z2 = 0 Ans.
1 1 1 1, 0f
y x y z

 
   

 

9. (x2 + y2)p + 2xyq = (x + y)z Ans. 2 2

2, , 0x y yf
z x y

 
  

10. 2 2 1yz z x e
x y
 

   
  Ans.    22 1

2
4 2

yx ef x y z


   

11. p + 3q = 5z + tan(y – 3x) Ans.    
5

3
5 tan 3

xef y x
z y x

 
 

12. xp – yq + x2 – y2= 0 Ans.  
2 2

2 2
x yf xy z  

13. (x+y)
z z
x y

  
   

= z – 1 Ans.  
 21

x yf x y
z


 


14. (x3 + 3 xy2) z
x



+ (y3 + 3 x2 y)
z
y

 = 2 (x2 + y2) z Ans. 2 2

2 , ( ) ( ) 0xyf x y x y
z

      
 

15. (z2 – 2yz – y2)P + (xy + zx)q = xy –  zx Ans. (x2 + y2 + z2) = f (y2 – 2yz – z2)

16. Find the solution of the equation 0,x z y z
y x
 

 
 

 which passes through the curve z =1,

x2 + y2 = 4 Ans. f (x2 + y2 – 4 , z – 1) = 0
17. 2x(y + z2)p + y(2y + z2)q = z3 (AMIE Winter 2003)

18. 3 2 0,u u
x y
 

 
  u (x, 0) = 4e–x Ans. u = 

3
2
yx

ue
 

19. 4 3 ,u u u
t x

 
 

 
when t = 0, u = 3e–x – e–5x Ans. u = 3e–x+t – 3e–5x +  2t

9.9 PARTIAL  DIFFERENTIAL  EQUATIONS NON-LINEAR IN p AND q.
We give below the methods of solving non-linear partial differential equations in certain

standard form only.
Type I. Equation of the Type f (p, q) = 0 i.e., equations containing p and q only.
Method. Let the required solution be

   z = ax + by + c ...(1)

 , .z za b
x y
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On putting these values in      f (p, q) = 0
we get       f (a, b) = 0,
From this, find the value of b in terms of a and substitute the value of b in (1), that will be
the required solution.

Example 18. Solve p2 + q2 = 1 ...(1)
Solution. Let z = ax + by + c ...(2)

 ,z zp a q b
x y
 

   
 

On substituting the values of p and q in (1), we have

 a2 + b2 = 1 or    21–b a

Putting the value of b in (2), we get z = 21ax a y c  

This is the required solution. Ans.
Example 19. Solve x2p2 + y2 q2 = z2. (RGPV, Bhopal, Feb. 2008)
Solution. This equation can be transformed in the above type.

2 2
2 2

2 2 1x yp q
z z

 

               
22

1x z y z
z x Z y

           
  

22

1

z z
z z
x y
x y

   
  
            

...(1)

Let , , ,z x yZ X Y
z x y
  

     

            log z = Z,  log x = X,     log y = Y
 (1) can be written as

          
2 2

1Z Z
X Y
            

...(2)

            P2 + Q2 = 1
Let the required solution be

Z = aX + bY + c

P = ,Z a
X





Q = 
Z b
Y





From (2) we have

                           a2 + b2 = 1 or b = 21 a
Z = a X + 21 a Y + c

                log z = a log x + 21 a  log y + c Ans.
EXERCISE 9.4

Solve the following partial differential equations

1. pq = 1 Ans.  z= ax+
1
a  y+c 2. 1p q  Ans. z = ax+ (1 – a )2 y + c

3. p2– q2 =1 Ans. z = ax –  2 1a  y+ c  4. pq + p + q = 0 Ans. z = ax –1
a

a  y+c
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Type II. Equation of the type
z = px + qy + f (p,q)

      Its solution is z = ax + by + f (a, b)
Example 20. Solve z = px + qy + p2 + q2

Solution. z = px + qy + p2 + q2 p = a, q = b
Its solution is z = ax+by+a2 + b2 Ans.

Example 21. Solve z = px + qy + 2 pq

Solution. z = px+ qy + 2 pq

Its solution is              z = ax+by+2 ab Ans.

Type III. Equation of the type f(z, p, q) = 0 equations not containing x and y.
Let z be a function of u where

u = x + ay.

1u
x



 and

u a
y





Then .z dz u dzp
x du x du
 

  
 

 .z dz u dzq a
y du y du
 

  
 

On putting the values of p and q in the given equation f (z, p, q) = 0, it becomes

, , 0dz dzf z a
dy du

 
 

 
which is an ordinary differential equation of the first order..

Rule. Assume u = x + ay; replace p and q by
dz
du and a

dz
du in the given equation and then

                solve the ordinary differential equation obtained.
Example 22. Solve

p (1 + q) = qz
Solution. p (1 + q) = qz ... (1)

           Let  u = x + ay 
u
x



 = 1,    
u
y

 = a

andz dz u dz z dz u dzp q a
x du x du y du y du
   

     
   

(1) becomes

1dz dz dza a z
du du du

   
 

         or 1 za az
u


 


              1
–1

dz a dza az du
du az

   

Integrating, we get
                   u = log (az — 1) + log c
           x + ay = log c (az – 1) Ans.
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Example 23. Solve p (1 + q2) = q (z – a).
Solution. Let u = x + by

So that        
dzp
du

  and
dzq b
du



Substituting these values of p and q in the given equation, we have

   
2

21dz dz dzb b z a
du du du

      
   

             
2 2

2 21   or  1dz dzb b z a b bz ab
du du

           
   

     
1 1dz bz ab

du b
  

          
1

b dz du c
bz ab

   
 

          2 1bz ab u c   
            24 1bz ab u c   

            24 1bz ab x by c     Ans.
Example 24. Solve z2 (p2x2 + q2) = 1 ...(1)
Solution. z2 (p2x2 + q2) = 1


22

2 1z zz x
x y

              


2

2
2 1z zz

x y
x

  
                  


22

2 1z zz
X y

              
...(2)

where 
x X
x


             or     log x= X

Let         u = X + ay

    andz dz z dza
X du y du
 

 
 

Then (2) becomes
2 2

2 1dz dzz a
du du

         
     

   
2 2

2
2

1dz dza
du du z

       
   

  
2

2 2 2 2

1 1
1 1 1

dz dz duz dz
du duz a z a a

           


2

2 2
or

21 1

du z uz dz c c
a a

     
 

   
2

2 21 1
2

za u c a   

21X ay c a   

2log 1x ay c a    Ans.
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EXERCISE 9.5
Solve

1. z2 (p2 + q2 + 1) = 1 Ans.  
1

2 2
2

1
1

x ayz c
a


   



2. 1 + q2 = q (z – a) Ans.      2 2 2 11 1 2 4cosh
4 4 2

x by z az a z a z a
b

          
 

3. x2p2 + y2q2 = z Ans. 2

log log2
1

x a yz c
a


 


Type IV. Equation of the type f1 (x, p) = f2 (y, q)
In these equations, z is absent and the terms containing x and p can be written on one side and the
terms containing y and q can be written on the other side.
Method. Let f1 (x, p) = f2 (y, q) = a

f1(x, p) = a, solve it for p. Let p =F1(x)
f2 (y, q) = a, solve it for q. Let q = F2(y)

Since
z zdz dx dy
x y
 

 
         dz = p dx + q dy

 dz = F1(x) dx + F2(y) dy         z =  F1(x) dx +  F2 (y) dy + c

Example 25. Solve p – x2 = q + y2.
Solution. p – x2 = q + y2 = c (say)
i.e. p = x2+ c and       q = c – y2

Putting these values of p and q in
dz = pdx + qdy  =  (x2 + c) dx + (c - y2) dy

z = 
3 3

13
x ycx cy c
x

   
      

   
Ans.

Example 26. Solve p2 + q2 = z2 (x +y) .

Solution. p2 + q2 = z2 (x + y)   
2 2p q x y

z z
        
   


221 1z z x y

z x z y
            



2z z
z z x y
x y

    
   

     
       

   


22z z x y

x y
            

where 
z
z


= Z or log z = Z

 p2 + Q2 = x + y  p2 – x = y – Q2 = a
P2 – x = a  P = a x
y – Q2 = a  Q = –y a

Therefore, the equation    Z ZdZ dx dy
x y

 
 
 

dZ = Pdx + Qdy gives

                     dZ = a x dx y a dy  
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   z  = a x dx y a dy c     

                             3 / 2 3 / 22 2log
3 3

z a x y a c     Ans.

EXERCISE 9.6
Solve
1. q – p + x – y = 0 Ans. 2z = (x+a)2+(y+a)2 + b

2. p q = 2x Ans. z =
1
6 (2x– a)3 + a2y +  b

3. q = x p + p2 Ans.  
2 2

24 log 4
4 4
x x x az a x x a ay b

          
  

4. z2 (p2  + q2) = x2 + y2

     Ans. z2 = x 2x a  + a log (x + 2x a ) + y 2 –y a  – a log (y + 2y a ) + 2b
5. z (p2 + q2) = x  – y Ans. z3/2 = (x + a)3/2 + (y + a)3/2 + b

6. p2 – q2 = x – y Ans. z =
2
3 (x + c)3/2 +

2
3 (y + c)3/2 + c1

7. (p2 + q2) y =  qz Ans. z2 = (cx + a)2 + c2y2

8. Tick  the correct answer.
(a) The partial differential equation from z = (a + x)2 + y is

(i) 
21

4
zz y
x
    

(ii)  
2

1
4

zz y
y

 
   

(iii)   
2zz y

x
    

    (iv)  
2

zz y
y

 
   

        (b) The solution of xp + yq = z is

(i)  f (x, y) = 0 ( ii) , 0x yf
y z

 
 

 
(iii) f (xy, yz) = 0         (iv)   f (x2,  y2) =0

        (c)  The solution of  p + q = z  is
(i) f (x + y, y + log z)= 0 (ii)   f (xy, y log z) = 0
(iii) f (x – y, y – log z) = 0 (iv) None of these

        (d) The solution of (y – z) p + (z – x) q = x – y is
(i) f (x + y + z) = xyz (ii) f (x2 + y2 + z2) = xyz
(iii) f (x2 + y2 + z2, x2 y2 z2) = 0 (iv) f(x+y+z) = x2 + y2 + z2

Ans.   (a) (i), (b) (ii), (c) (iii), (d), (iv)

9.10 CHARPIT’S METHOD
General method for solving partial differential equation with two independent variables.
Solution. Let the general partial differential equation be

f (x, y, z, p, q) = 0 ... (1)
Since z depends on x, y, we have

dz = z dx
x



 + z dy
y



dz = pdx + qdy ... (2)
The main aim in Charpits method is to find another relation between the variables x, y, z
and p, q. Let the relation be

(x, y, z, p, q) = 0 ...(3)

On solving (1) and (3), we get the values of p and q.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Partial Differential Equations 689

These values of p and q when substituted in (2), it becomes integrable.
To determine , (1) and (3) are differentiated w.r.t. x and y giving

0

0

f f f p f qp
x z p x q x

p qp
x z p x q x

                
         
      

w.r.t. x, (First pair)

0

0

f f f p f qq
y z p y q y

p qq
y z p y q y

                
         
      

w.r.t. y, (Second pair)

Eliminating p
x



between the equation of first pair, we have

f f f q qp p
p x z q x x z q x

fx
p p

       
   

          
 
 

or
f f f f q f fp
x p x p z p z p y q p q p

                 
                          

= 0 ...(4)

       On eliminating q
y



between the equations of second pair, we have

0f f f f q f fq
y q y q z q z q y p q p q

                 
                           

                                ...(5)

        Adding (4) and (5) and keeping in view the relation on, the terms of the last brackets of (4)
and(5) cancel. On rearranging, we get

0f f f f f f f fp q p q
f x z q y z z p q p x q y

                                                           

or
f f f fp q
p x q y p q z

                                   
0f f f fp q

x z y z q
                   

    ... (6)

         Equation (6) is a Lagrange’s linear equation of the first order with x, y, z, p, q as independent
variables and 4) as dependent variable. Its subsidiary equations are

0
dx dy dz dp dq

f f f f f f f fp q p q
p q p q x z y z


    

             
       

...(7)

(Commit to memory)
Any of the integrals of (7) satisfies (6). Such an integral involving p or q or both may be

taken as assumed relation (3). However, we should choose the simplest integral involving p and
q derived from (7). This relation and equation (1) gives the values of p and q. The values of p and
q are substituted in (2). On integration new eq. (2) gives the solution of (1).

Example 27. Solve px + qy = pq
Solution. f(x, y, z, p, q) = 0 is px+ qy – pq = 0 ...(1)
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, , 0, – , –f f f f fp q x q y p
x y z p q
    

    
    

Charpits’ equations are

–
0

dx dy dz dp dq
f f f f f f f fp q p q
p q p q x z y z


    

            
       

        0
dx dy dz dp dq d
x q y p p x q q y p p q


    

       
We have to choose the simplest integral involving p and q

 or log log logdp dq p q a p aq
p q
    

Putting for p in the given equation (1), we get

q (ax + y) = aq2      q =
y ax

a


      p = aq = y+ax
Now    dz = pdx qdy ...(2)

Putting for p and q in (2), we get

  dz = (y + ax) dx + y ax
a
 dy

 adz= (y + ax) + (y + a x) dy

adz = (y + ax) (adx + dy)

Integrating  2

2
y ax

az b


  Ans.

Example 28. Solve  (p2 + q2)y = qz.        ... (1)
Solution.          f (x, y, z, p, q) = 0  is     (p2 + q2)y –  qz = 0

                               
2 20, , , 2 , 2f f f f fp q q py qy z

x x z p q
    

       
    

Now Charpits equations are
dx dy dz dp dq

f f f f f f f fp q p q
p q p q x z y z

   
            
       

 2 2 2 2 22 2 02 2
dx dy dz dp dq d

py q z pqp y q y qz p q q


    
       

We have to choose the simplest integral involving p and q.

         2

dp dq
pq p


    

dp dq
q p

     pdp + qdp = 0

Integrating p2 + q2 = a2(say)
Putting for p2 + q2 in the equation (1), we get

  a2 y = qz       q = 
2a y
z

    so          p = 2 2a q  = 
4 2

2
2

a ya
z



                 2 2 2ap z a y
z
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Now dz pdx qdy  ...(2)
Putting for p and q in (2), we get,

2
2 2 2a a ydz z a y dx dy

z z
    zdz = a 2 2 2–z a y + a2 y dy

2

2 2 2
.zdz a y dy a dx

z a y






Integrating, we get, 2 2 21 2
2 1

z a y ax b  

On squaring, z2 – a2 y2 = (ax + b)2 Ans.
EXERCISE 9.7

Solve the following:
1. z = p • q Ans. 2 az = ax + y + ab

2. (p + q)(px + qy) – 1 = 0 Ans. z  1 a  = 2  ax y  + b
3. z = px+ gy + p2+ q2 Ans. z = ax + by + a2 + b2

4. z = p2x + q2 y Ans. (1 + a) z =  
2

ax b y   
5. z2 = pq xy Ans. z = axb y1/b

6. px + pq + qy = yz Ans. log (z – ax) = y – a log (a + y)+ b

7. q + xp = p2 Ans.  z = ax e–y – 
1
2

a2e–2y + b

9.11 LINEAR HOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS OF nTH
ORDER WITH CONSTANT COEFFICIENTS

An equation of the type

 0 1 1 ..... ,
n n n

nn n n

z z za a a F x y
x x y y

  
   

           ... (1)

is called a homogeneous linear partial differential equation of nth order with constant coefficients.
It is called homogeneous because all the terms contain derivatives of the same order.

Putting D
x




and D

y
 
 , (1) becomes

(a0 + Dn + a1D
n–1 D+ ...... + an D n) z = F (x,y)

or f (D, D ) z = F (x, y)
9.12 RULES FOR FINDING THE COMPLEMENTARY FUNCTION

Consider the equation
2 2 2

0 1 22 2 0z z za a a
x yx y

  
  

   or (a0D2 + a1DD’+ a2 D’2) z = 0

1st step :   Put D = m and D  = 1
    a0 m2 + a1m + a2 = 0

This is the auxiliary equation.
2nd step : Solve the auxiliary equation.

Case 1. If the roots of the auxiliary equation are real and different; say m1,m2

Then C.F. = f1(y + m1 x) + f2 (y + m2 x).
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Case 2. If the roots are equal; say m
Then C.F. = f1(y + mx) + xf2 (y + mx)

Example 29. Solve (D3 – 4 D2 D  + 3 D D 2) z = 0 .
Solution. (D3 – 4 D2 D  + 3 D D 2) z = 0  [D = m, D  = 1]
Its auxiliary equation is

    m3– 4m2+3m = 0   m(m2 – 4m + 3) = 0

m (m – 1) (m – 3) = 0 m = 0, 1, 3
The required solution is   z = f1 (y) + f2 (y + x) + f3 (y + 3x) Ans.

Example 30. Solve 
2 2 2

2 24 4 0z z z
x yx y

  
  

  

Solution.      (D2 – 4D D+ 4 D 2) z = 0

Its auxiliary equation is  [D = m, D  = 1]

     m2 – 4 m + 4 = 0    (m – 2)2 = 0   m = 2, 2
The required solution is  z = f1(y + 2x) + x f2 (y + 2x) Ans.

EXERCISE 9.8
Solve the following equations :

1.
2 2 2

2 2

4 5 0z z z
x yx y

  
  
   Ans. z = f1 (y + x) + f 2 (y – 5x)

2.
2 2 2

2 22 5 2 0z z z
x yx y

  
  

   Ans. z = f1 (2y – x) +f2 (y – 2x)

3. (D3 – 6D2 D+ 11D D 2– 6 D 3) z = Ans. z = f1 (y + x) +f2 (y + 2x) +f3 (y + 3x)

4.
2 2 2

2 22 0z z z
x yx y

  
  

   Ans. z = fi (y + x)+ xf2(y + x)

5. (D3 – 6.D2 D + 12D D 2 — 8 D 3) z = 0 Ans. z = f1 (y + 2x) + xf2 (y + 2x) + x2f3 (y + 2x)

6.
4 4

4 4 0z z
x y
 

 
  Ans. z =f1 (y+x)+f2(y – x)+f3(y + ix)+f4(y – ix)

7.
2 2

2 2 0u u
x y
 

 
  , when u = sin y, x = 0 for all y and u 0 when x  .

Ans. u = f1 (y + ix) + f2 (y – ix)

9.13. RULES  FOR  FINDING  THE  PARTICULAR  INTEGRAL

Given partial differential equation is
 f (D, D ) z = F (x, y)

              
1. .
,

P I
f D D


  F (x, y)

(i) When F(x,y) = eax+ by

 
1. .
,

ax byP I e
f D D


  ,

ax bye
f a b




[Put D = a, D = b]
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(ii) When F(x,y) = sin(ax + by) or cos (ax + by)

 2 2

1. .
, ,

P I
f D DD D


  sin (ax + by) or cos (ax + by)

        = 
   

 2 2

sin cos
, ,

ax by or ax by
f a ab b
 

          
2 2

2 2

Put

,

D a

D D ab D b

  
 

       
(iii) When F (x,y) = xm yn

 
–11. . [ ( , ')]

,
m n m nP I x y f D D x y

f D D
 



Expand [f (D, D )]–1 in ascending power of D or D and operate on xm yn term by term.
(iv) When = Any function F(x, y)

   1. . ,
,

P I F x y
f D D




Resolve 
 

1
,f D D

into partial fractions

Considering f (D, D ) as a function of D alone

   1. . , ,
– '

P I F x y F x c mx dx
D mD

   

where c is replaced by y + mx after integration.
Case 1. When R.H. S. = eax+ by

Example 31. Solve :
3 3 3

2
3 2 33 4 x yz z z e

x x y y
  

  
   

Solution.
3 3 3

2
3 2 33 4 x yz z z e

x x y y
  

  
   

Given equation in symbolic form is
(D3 – 3 D2 D  + 4 D 3)z = ex +2y

Its A.E. is m3 – 3m2 + 4 = 0 whence, m = – 1, 2, 2.
           C.F. = f1(y – x) + f2 (y +2x) + xf3 (y + 2x)

P.I. = 2
3 2 3

1
3 4

x ye
D D D D



  

Put D = 1, D = 2      =
2

21
1 6 32 27

x y
x y ee


 

 
Hence complete solution is

 z = f1 (y – x) + f2(y +2x) + xf3(y + 2x) +
2

27

x ye 

Ans.

EXERCISE 9.9
Solve the following equations:

1.
2 2

2
2 2

x yz z e
x y

 
 

  Ans. z = f1(y + x) + f2 (y – x) –
2

3

x ye 

2.
2 2 2

2 25 6 x yz z z e
x yx y

  
  

   Ans. z = f1 (y + 2x ) + f2 (y + 3x) +
1
2

ex+y
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3.
2 2 2

2
2 24 4 x yz z z e

x yx y
  

  
  

Ans. z=f1(y +2x)+ xf2(y +2x) +
2

2
x

e2x + y

4.
2 2 2

2 27 12 x yz z z e
x yx y

  
  

   Ans. z = f1 (y + 3x) + f2 (y + 4x) +
1
20

x ye 

5.

3 3
2

3 22 2 x yz z e
x x y

 
 

   Ans. z = f1(y)+ x f2(y) + f3(y +2x) + 21
8

x ye 

6. (D2 – 2D D + 2D )z = ex+ 2y Ans. z = f1 (y + x) + xf2(y + x) + ex+2y

7.
2 2

2 3
2 2 2 2 x yz z z z e

x yx y
   

   
   Ans. z = f1 (y + x) + e2x f2 (y – x) –

1
3  e2x+3 y

8.  
2 2 2

2 25 6 exp 3 2z z z x y
x yx y

  
   

   Ans. z = f1(y +2x) + f2(y + 3x) + 1
63

e3x–2y

Case II. When R.H.S. = sin (ax + by) or cos (ax + by)

Example 32. Solve  
3 3 3

3 2 24 4 2sin 3 2z z z x y
x x y x y
  

   
    

Solution.  
3 3 3

3 2 24 4 2sin 3 2z z z x y
x x y x y
  

   
    

Putting                                   ,D D
x y
   
 

D3z – 4D2 D z + 4D D 2z = 2 sin (3x + 2y)

A.E. is D3 – 4D2 D+ 4D D 2 = 0  D (D2 – 4D D  + 4 D 2) = 0
Put               D = m, D  = 1

        m (m2 – 4m + 4) = 0  m (m – 2)2 = 0  m = 0, 2, 2
C.F. is f1 (y) + f2 (y  + 2x) + xf3 (y  + 2x)

     3 2 2 2 2

1 1. . 2sin 3 2 2. sin 3 2
4 4 4 4

P I x y x y
D D D DD D D DD D

   
     

=    
   1 22. sin 3 2 sin 3 2

9 4 6 4 4
x y x y

DD
   

      

= – 2
3

[– cos (3x + 2y)] =
2
3 cos (3x + 2y)

General solution is

z = f1 (y) + f2 (y + 2x) + xf3 (y + 2x) +
2
3  cos (3x + 2y)        Ans.

Example 33. Solve 
2 2

2 sin cos 2z z x y
x yx

 
 
 

Solution.
2 2

2 sin cos 2z z x y
x yx

 
 
 

The given equation can be written in the form

(D2 – D D ) z = sin x cos 2y where D = , D
x y
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Writing D = m and D = 1, the auxiliary equation is
m2 – m = 0      m(m – 1)= 0     m = 0, 1

               C.F. = f1 (y) + f2 (y + x)

P.I. = 2

1
D DD

sin x cos 2y  = 2

1 1
2D DD

[sin (x + 2y) + sin (x – 2y)]

      =    2 2

1 1 1 1sin 2 sin 2
2 2

x y x y
D DD D DD

  
  

Put D2 = – 1, D D  = – 2 in the first integral and D2 = – 1, D D  = 2 in the second integral.

       P.I.
       sin 2 sin 21 1 1 1sin 2 sin 2

2 1 ( 2) 2 1 (2) 2 6
x y x y

x y x y
 

     
    

Hence the complete solution is z = C.F. + P.I.

i.e. z = f1 (y) + f2 (y + x) + 
1
2

  sin (x + 2y)
1
6

   sin (x – 2y) Ans.

Example 34. Solve  (D2 + D D – 6 D 2) z = cos (2x + y)

Solution. (D2 + D D – 6 D 2) z = cos (2x + y)
A.E.is m2 + m – 6 = 0    m = 2,– 3

C.F. = f1 (y + 2x) + f2 (y – 3x)

P.I. = 2 2

1

6D DD D  
cos(2x + y)

D2 + D D – 6 D 2 = – 4 – 2 – 6 (–1) = 0

 It is a case of failure.

Now  
2 2

1. . cos 2
6

P I x y
D DD D

 
 

(Case IV)

   2

1 cos 2 cos 2
2 2

Dx x y x x y
D D D DD

   
  

     cos 2 cos 2
2 4 2 10

D xx x y D x y    
 

   2 sin 2 sin 2
10 5
x xx y x y   

      z = f1(y + 2x) + f2(y – 3x) + 5
x

sin(2x + y) Ans.

Example 35. Solve the equation
(D3 – 7D D 2 – 6 D 3) z = sin (x + 2y) + e2x+  y.

Solution (D3 – 7D D 2 – 6 D 3) z = sin (x + 2y) + e2x + y       ...(1)
Its auxiliary equation is

m 3 –7m – 6 = 0   (m + 1) (m + 2) (m – 3) = 0    m = –1, –2,  3
C.F. = f1 (y – x) + f2(y – 2x) + f3(y + 3x)

P.I.=   2
3 2 3

1 sin 2
7 6

x yx y e
D DD D
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  2
3 2 3 3 2 3

1 1sin 2
7 6 7 6

x yx y e
D DD D D DD D

  
      

 
      

2

2 2 2 3 2 3
1 sin 2

. 7 6 2 7 2 1 6 1

x yex y
D D DD D D



  
     

Put       D2 = – 1, D 2 = –22

=      
21 sin 2

– 7 4 6 4 8 14 6

x yex y
D D D



 
     

=    2 21 1 1 1 1sin 2 sin 2
27 24 12 3 9 8 12

x y x yx y e x y e
D D D D

     
  

=        2 2
2

1 1 1 1sin 2 sin 2
3 12 3 9 1 8 2 129 8

x y x yD Dx y e x y e
D DD

     
   

=    2 21 1 1 1sin 2 cos 2
75 12 75 12

x y x yD x y e x y e       

Hence the complete solution is

z = f1(y – x) + f2 (y – 2x) + f3 (y + 3x)   21 1cos 2
75 12

x yx y e    Ans.

EXERCISE 9.10
Solve the following equations :

1.
2 2 2

2 22 sinz z z x
x yx y

  
  

   Ans. z =f1 (y + x) + xf 2(y + x) – sin x

2. [2 D2 – 5D D+ 2 D 2 ]  z = 5 sin(2x + y) . Ans. z = f1(y + 2x) + f2 (2y + x) – 5
3

xcos(2x + y)

3.  
2 2

2 cos 2z z x y
x yx

 
  
  Ans. z = f1(y)  + f2 (y + x) + cos (x + 2y)

4. (D2 – D D ) z = cos x cos 2y                Ans. z = f1 (y) + f2 (y + x) +
1
2

 cos (x + 2y) – 
1
6 cos(x–2y)

5. (D2 + 2 DD + D 2) z = sin (x + 2y) Ans.  z = f1 (y – x) + xf2 (y – x) –
1
9 sin (x + 2y)

6.  
2 2 2

2 3
2 23 2 sin 2x yz z z e x y

x yx y
  

    
  

Ans.  z = c1 f (y + x) + f2(y + 2x) +  2 31 1 sin 2
4 15

x ye x y  

Case III. When R.H.S. = xm yn

Example 36. Find the general integral of the equation
2 2 2

2 23 2z z z x y
x yx y

  
   

  

Solution.
2 2 2

2 23 2z z z x y
x yx y

  
   

  

with D = , ,D
x y
  
  the given equation can be written in the form

(D2 + 3 DD+ 2 D 2) z = x + y
Writing D = m and D= 1, the auxiliary equation is

m2 + 3m + 2 = 0  (m + 1)(m + 2) = 0   m = –1,–2
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 C.F. = f1 (y – x) + f2 (y – 2x)

        P.I.=  2 2

1
3 2

x y
D DD D


  

=    
12

2 2 2

1 3 2 1 31 1 ....D D Dx y x y
D DD D D


             

  

=    2 2

1 1 13 1 3x y x y x
DD D

       

=  
2 3

2

1 2
2 3
x xy x y

D
  

Hence the complete solution is    
2 3

1 2 2
2 3

x y xz f y x f y x      Ans.

Example 37. Solve 
2 2 2

2 26z z z x y
x yx y

  
   
  

Solution. With , ,D D
x y
  
  the given equation can be written in the form

 2 26D DD D z x y    

Writing D = m and D = 1, the auxiliary equation is m2 + m – 6 = 0
 (m + 3) (m – 2) = 0  m =  – 3, 2
        C.F. = f 1(y – 3x) + f2 (y + 2x)

        P.I.  2 2

1
6

x y
D DD D

 
 

=    
12

2 2 2

1 6 11 1 ....D D Dx y x y
D DD D D


                

=    
2

2 2 2

1 1 1 11
2

yxx y x y x y
DD D D

        
 

The complete solution is

z = f1 (y – 3x) + f2 (y + 2x) +
2

2
yx

Ans.

Example 38. Solve
3 3

2 2
3 22 2 3xz z e x y

x x y
 

  
  

(A.M.I.E., Summer 2004, 2001)

Solution.
3 3

2 2
3 22 2 3xz z e x y

x x y
 

  
  

          (D3 – 2D2Dz = 2e2x + 3x2y
Its auxiliary equation is

   m3 – 2m2 = 0
 m 2(m – 2) = 0
                     m = 0, 0, 2.

C.F. = f1 (y) + xf2 (y) + f3 (y + 2x)

P.I.=  2 2
3 2

1 2 3
2

xe x y
D D D
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= 2 2
3 2 3 2

1 12 3
2 2

xe x y
D D D D D D


  

=
     

12 2
2 2

3 2 3
3

1 2 3 22 3. 1
2 82 2 2 0 1

x xe e Dx y x y
D DDD
D

          
 

= 
2 2 2 3

2 2 2 2
3 3 3

3 2 3 2 3 21 ...
4 4 4 3

x x xe D e e xx y x y x x y
D DD D D
                     

=
2 2 5 6 2 5 6

2 3
3 3

1 23 3 2
4 4 3.4.5 4.5.6 4 20 60

x x xe e x x e x y xy x x y
D D

       

=  2 5 61 15 3
60

xe x y x 

Hence the complete solution is

z = f1 (y) + xf2 (y) + f3 (y + 2x) +
1
60 (15e2x + 3x5y + x6) Ans.

EXERCISE 9.11
Solve the following equations :

1.
2 2

2 2

z z x y
x y
 

  
  Ans. z = f1(y - x) + f2 (y + x) +

3

6
x

–
2

2
x y

2.
2 2 2

2 2

3 2 12z z z xy
x yx y

  
  
   (A.M.I.E., Winter 2001)

Ans. z = f1 (y – x) + f2 (y – 2x) + 2x3 y –
43

2
x

3.
2 2 2

2 26z z z xy
x yx y

  
  
   Ans. z = f1(y – 2x) + f2 (y + 3x) +

3 4

6 24
x y x



4. r + 2s + t = 2(y – x) + sin(x – y)     Ans. z = f1(y – x) + xf2 (y – x)+ x2y – x3 + 
2

2
x

sin (x – y)

5.
2 2

2 2
2 2

z za x
x y
 

 
  Ans. z = f1(y + ax) +f2 (y – ax)+ 

4

12
x

6.
2 2 2

2
2 22z z z x y

x yx y
  

   
   Ans. z= f1(y+x)+ xf2(y + x)+ 

4

12
x

+
2

2
x y

+
3

3
x

7.
2 2 2

2 23 4 sinz z z x y
x yx y

  
   

   Ans. z= f1(y+x)+ f2(y – 4x) +
3 1 sin

6 4
x y

8. (D3 – 3 D2 D ) z = x2y Ans. z =f1 (y) + x f2 (y) + f3 (y + 3x) +
5 6

60 120
x y x



Case IV. When R.H.S. = Any function
Example 39. Solve (D2 – D D  – 2 D 2) z = (y –1) ex

Solution. (D2 – D D  – 2 D 2)z = (y – 1)ex

A.E. is D2 – D D  – 2 D 2 = 0        m2– m– 2 = 0
 (m – 2)(m + 1) = 0                     m = 2, – 1

      C.F. =    f1( y + 2x) + f2 (y – x)

P.I.=  2 2

1 1
2

xy e
D DD D
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      =       1 11 2 1
2

x xy e c x e dx
D D D D D D

           [Put y = c – 2x]

 1 2 1 2x xc x e e
D D

     
1 2x x xce xe e

D D
     [Put c = y + 2x]

 1 12 2x x x x xy x e xe e ye e
D D D D

             

=   x xc x e e dx             [Put y = c + x]

  x x xc x e e e   

=  x x x xce xe y x e xe    [Put c = y – x]
= y ex

Hence complete solution is z = f1 (y + 2x)  + f2 (y – x) + yex Ans.

Example 40. Solve 
2 2 2

2 26 cosz z z y x
x yx y

  
  
  

Solution.
2 2 2

2 26 cosz z z y x
x yx y

  
  
  

(D2 + D D – 6 D 2) = y cos x
Its auxiliary equation is m2 + m – 6 = 0

              (m + 3) (m – 2) = 0
                      m = 2, – 3
         C.F. = f1 (y + 2x) + f2 (y – 3x)

   2 2

1 1P.I.= cos cos
2 36

y x y x
D D D DD DD D


     

=  1 3 cos
2

c x x dx
D D

 


Put y = c + 3x

=
1
2D D

[(c + 3x) sin x + 3 cos x] =
1
2D D

[y sin x + 3 cos x] Put c + 3x = y

=  [(c – 2x) sinx + 3cosx] dx Put y = c – 2x
= (c – 2x) (– cos x) – 2 sin x + 3 sin x = –y cos x + sin x Put c – 2x = y

Hence the complete solution is
z = f1(y + 2x) +f2 (y – 3x) + sin x – y cos x Ans.

EXERCISE 9.12
Solve the following equations:
1. (D – D )(D + 2 D ) z = (y  + 1) ex Ans. z= f1 (y + x) + f2(y –2x) + y ex

2.
2 2

3 3
2 2 tan tan tan tanz z x y x y

x y
 

  
 

Ans. z = f1 (y + x) + f2 (x – y) +
1
2

tanx tany

3. (D2 – DD – 22D ) z = (2x2 + xy – y2) sin xy – cos xy  Ans. z = f1 (y + 2x) + f2(y – x) + sin xy
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4. Tick  the correct answer :

(a) The solution of 
3

3

z
x



= 0 is

(i) z = f1(y) + xf2 (y) + x2f3 (y) (ii) z = (1 + x + x2) f (y)
(iii) z = f1(x) + yf2 (x) + y2f3 (x) (iv) z = (1 + y+ y2) f (x)

(b) The solution of 
2 2

2 2

z z
x y
 

 
  0 is

(i) z =f1 (y + x) + f1 (y – x) (ii) z =f1 (y + x) + f2 (y – x)
(iii) z = f2 (y  + x) + f2 (y – x) (iv) z = f (x2 – y2)

(c) Particular integral of (2D2 – 3 D D +D2) z = ex + 2y is

(i) xex + 2y (ii)
1
2

ex + 2y (iii)
2
x

 ex + 2y (iv) 
2

2
x

ex + 2y

(d) Particular integral of (D2 – D 2) z = cos (x + y) is

(i)
2
x cos (x + y) (ii) x sin (x + y) (iii) x cos (x + y) (iv)

2
x

sin (x + y)

Ans. (a) (i), (b) (ii), (c) (iii ), (d) (iv).

9.14 NON-HOMOGENEOUS  LINEAR  EQUATIONS
The linear differential equations which are not homogeneous are called Non-homogeneous

Linear Equations.
For example,

2 2 2

2 23 2 4 5 0z z z z z z
x y x yx y

    
     

    

f (D, D ) = f1(x, y)
Its solution, z = C.F. + P.I.
Complementary Function: Let the non-homogeneous equation be

  0 0z zD mD a z m az
x y
       
 

p – mq = az
The Lagrange’s subsidiary equations are

     1
dx dy dz

m az
 


From first two relations we have, – mdx = dy

dy + mdx = 0   y + mx = c1        ... (1)

and from first and third relation, dx = dz
az

 x = 1
a

log z + c2 z = c3 e
ax                 ... (2)

From (1) and (2), we have z = eax  (y + mx)

Similarly the solution of (D – m D – a)2 Z = 0 is
z = eax1(y + mx)+ xeax2(y + mx)

Example 41. Solve (D + D – 2) (D + 4 D  – 3) z = 0

Solution. The equation can be rewritten as      2 4 3 0D D D D z       
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Hence the solution is

z = e2x 1(y – mx) + e3x 2 (y – 4mx)                  Ans.
Example 42. Solve (D + 3 D+ 4)2 z = 0
Solution. The equation is rewritten as

[D – (– 3 D ) – (– 4)]2 z = 0
Hence the solution is

z = e–4x (y – 3x) + x e– 4x 2 (y – 3x)        Ans.
Example 43. Solve  r +2s + t + 2p + 2q + z = 0
Solution. The equation is rewritten as

(D2 + 2 D D  + D2 + 2D + 2 D+ 1) z = 0

 [(D + D )2 + 2 (D + D )+ 1] z = 0

 (D + D+ 1)2 z = 0

 [D – (– D ) – (– 1)]2 z = 0
Hence the solution is

z = e–x1y (y – x) + xe–x2(y – x)
Example 44. Solve r – t + p – q = 0
Solution. The equation is rewritten as

         (D2 – 2D + D – D ) z = 0

   [(D – D ) (D + D ) + 1 (D – D )] z = 0

 (D – D ) (D + D+ 1)z = 0
 Hence the solution is

z = (y + x) + e–x 2 (y – x)         Ans.
Particular Integral

Case 1.    
1 1
, ,

ax by ax bye e
F D D F a b

 


Example 45. Solve (D – D – 2) (D – D – 3) z = e3x – 2y

The complementary function is

e2x  (y + x) + e3x  (y + x)

P.I. =        
3 2 3 2 3 21 1 1

2 3 63 2 2 3 2 3
x y x y x ye e e

D D D D
   

                
Hence the complete solution is

z = e2x(y + x) + e3x (y + x) + 3 21
6

x ye                    Ans.

Case 2.        2 2 2 2
1 1sin sin

, , , ,
ax by ax by

F D DD D F a ab b
  

    

Example 46. Solve (D + 1) (D + D – 1) z = sin (x + 2y)

Solution. C.F. = e–x(y)  + e–x(y – x)

P.I. =       2

1 1sin 2 sin 2
1 –1 1

x y x y
D D D D DD D
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=      1 1sin 2 sin 2
1 2 1 4

x y x y
D D

  
      

=        2

4 4sin 2 sin 2
4 1616

D Dx y x y
D

  
  

  

=        1 14 sin 2 sin 2 4sin 2
20 20

D x y D x y x y          

=    1 2 cos 2 4sin 2
20

x y x y     

Hence, the solution is z = e–x (y) + e–x(y – x) –
1

10 [cos (x + 2y) + 2 sin(x+ 2y)]        Ans.

Case 3.     –11 ,
,

m n m nx y F D D x y
F D D

   

Example 47. Solve [D2 – 2D + D + 3 D – 2] z = x2 y
Solution. (D – D  + 2) (D + D – 1) z = 0

      C.F. = e–2x (y + x) + ex  (y – x)

      P.I. =    
21

2 1
x y

D D D D    

= 2 2
2 2 2 2

1 1 1
23 2 31

2 2 2 2

x y x y
D D D D D D D D

 
          

=  
1

2 2 21 11 3
2 2

D D D D x y


        

=    22 2 2 21 1 11 3 3
2 2 4

D D D D D D D D            

 32 2 21 3
8

D D D D x y     

=    2 2 2 2 21 1 11 3 9 6 6
2 2 4

D D D D D D DD D D             

           2 21 9 ...
8

D D x y  

=      2 21 1 1 13 2 0 2 0 2 12 12 18
2 2 4 8

x y x xy y y x            

=
2 2

2 21 3 9 1 3 3 213 3 3
2 2 2 4 2 2 2 4

x y x yx y xy y x x y xy x
                    

Hence the complete solution is

            
2

2 2
1 2

1 3 3 213
2 2 2 4

x x x yz e y x e y x x y xy x  
            

 
Ans.

Case 4.        1 1, ,
, ,

ax by ax bye x y e x y
F D D F D a D b
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Example 48. Solve (D – 3 D – 2)2 z = 2 e2x sin (y + 3x)
Solution. A.E.is (D – 3 D – 2)2 = 0

      C.F. = e2x (y + 3x) + x e2x (y + 3x)

      P.I. =  
 2

2

1 2 sin 3
3 2

xe y x
D D

 
 

=
 

 
 

 2 2
2 2

1 12 sin 3 2 sin 3
2 3 2 3

x xe y x e y x
D D D D

  
    

=
   2 12 sin 3

2 3
xe x y x

D D
 


(As denominator becomes zero)

=  2 2 12 sin 3
2

xx e y x (Again differentiate)

= x2 e2x sin (y + 3x)
Hence the complete solution is

z = e2x (y + 3x) + x e2x  (y + 3x) +.x2 e2x sin (y + 3x)      Ans.
Example 49. Solve (D2 + D D – 6 2D ) z = x2 sin (x + y)
Solution. (D2 +D D – 6 2D ) z = x2 sin (x + y)
For complementary function

(D2 + D D – 6 2D ) = 0    (D – 2 D )(D + 3 D ) = 0
             C.F. =1 (y + 2x) + 2 (y – 3x)

P.I.=  2
2

1 sin
– 6

x x y
D DD D


 

= Imaginary part of 2
2 2

1
– 6

x
D DD D 

[cos (x + y)+ i sin (x +y)]

= Imaginary part of  2
2 2

1"
– 6

x yix e
D DD D



 
= Imaginary part of 

 
2

22

1"
– 6

i y ixe x e
D Di i

= Imaginary part of  

   
2

2

1"
6

x yie x
D i D i i



   

= Imaginary part of   2
2

1"
3 4

x yie x
D iD



 
    = Imaginary part of 

 
2

2

1"
4 31

4 4

x yie x
iD D



 

= Imaginary part of 
  12

23" 1
4 4 4

x yie iD D x
  

  
 

= Imaginary part of
  2 2

23 9" 1 ...
4 4 4 16

x yie iD D D x
  

   
 

= Imaginary part of
 

 2 3 2 9" 2
4 2 4 16

x yie ixx
      

=  Imaginary part of     21 3 13" cos sin
4 2 8

ixx y i x y x          
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=        2 21 13 3 1 13 3sin cos sin cos
4 8 2 4 8 8

xx y x x x y x y x x y                    

Hence, the complete solution is

z = 1(y + 2x) + 2 (y – 3x) +    21 13 3sin cos
4 8 8

xx y x x y     
 

   Ans.

EXERCISE 9.13
Solve the following equations:
1. (D2 + 2D D + 2D – 2D – 2 D ) z = 0. Ans. z = f1 (x – y) + e2x f2 (x – y)

2. (D2 – 2D – 3D + 3 D ) z = ex–2y Ans.    3 2
1 2

1
12

x x yz y x e y x e       

3. (D – D  – 1) (D + D – 2) z = e2x – y Ans.    2 2
1 2

1
2

x x x yz e x y e y x e       

4. (D2 – 2D  – 3D + 3 D ) z = ex+2y Ans.    3 2
1 1

x x yz y x e x y xe       
5. (D + D )(D + D – 2) z = sin (x + 2y)

Ans. z =1 (y – x) + e2x (y – x) +
1

117 [6 cos (x +2y) – 9sin (x +2y)]

6. (D2 – D D – 2D) z = cos (3x + 4y)

Ans. z =1 (y) + e2x 2 (y + x) + 1
15

[cos (3x + 4y) – 2 sin (3x + 4y)]

7. (D D + D – D – 1) z = xy Ans. z = e–y1 (x) + ex 2 (y) – (xy + y – x – 1)
8. (D + D – 1) (D + 2 D –3)z = 4 + 3x + 6y    Ans. z = ex 1 (x – y) + e3x2 (2x – y)  + 6 + x + 2y

9.
2 2

2
2 2 3 3 x yz z z z xy e

x yx y
   

    
   (UP. HI Semester, Summer 2002)

Ans. z = f1 (y + x) + e3x f2 (y – x) – 
2 3 2

21 2
3 3 6 3 3 9

x yx y x x xy x xe  
     

 

10. (D – D – 1) (D – D – 2) z – e2x – y      Ans. z = ex f 1(y + x) + e2xf2 (y + x) + 
1
2

e2x–y

11. D (D + D  – 1) (D + 3 D – 2) z = x2 – 4xy + 2y2

Ans. z =  (y) + ex (x – y) + e2x (3x – y) +
1
2

3
2 2 272 2 4

3 2 2
x xx y xy x xy

 
     

 
12. (D – D + 2) (D + D – 1) z = ex – y – x2 y

Ans. z= e2y ( x + y)ex  (x – y)
2

21 3 3 213
4 2 2 2 4

x ye xx y xy y x
  

       
 

13. (D2 – D D – 2 2D  + 2 D’ + 2D) z = e2x+ 3y + sin (2x + y) + xy

Ans. z = (x – y) + ey (2x + y) –
1

10 e2x + 3y – 1
6

cos (2x + y) + 24
x

(6xy – 6y + 9x – 2x2 – 12)

9.15 MONGE’S METHOD (Non linear equation of the second order)
Let the equation be Rr + Ss + Tt = V       ... (1)

where R, S, T, V are functions of x, y, z,p and q.   r = 
2 2 2

2 2, ,f f fs t
x yx y

  
 
  

We have
p pdp dx dy rdx sdy
x y
 

   
         ...(2)
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and
q qdq dx dy sdx tdy
x y
 

   
         ...(3)

From (2) and (3), we have
dp sdyr

dx


  and 
dq sdxt

dy




Putting the value of r and t  in (1), we get

dp sdy dq sdxR Ss T V
dx dy

        
   

 R dp dy +T dq dx – V dx dy – s(Rdy2 – S dx dy + Tdx2)= 0         ... (4)
Equation (4) is satisfied if

R dp dy + T dq dx – V dx dy = 0 ...(5)
              Rdy2 – S dx dy + Tdx2 = 0       ... (6)

Equations (5) and (6) are called Monge’s equations.
Since (6) can be factorised into two equations.

dy – m1 dx = 0 and dy – m2 dx = 0
Now combine dy – m1 dx = 0 and equation (5). If need be, we may also use the relation
dz = p • dx + q • dy while solving (5) and (6). The solution leads to two integrals

u (x, y, z, p, q) = a and V (x, y, z, p, q) = b
Then we get a relation between u and v. V = f1(u)        ...(7)

Equation (7) is further integrated by methods of first order equations.
Note. If the intermediate solution is of the form Pr + Qq = R, then we use lagrange’s

equation.
Example 50. Solve r = a2 t.
Solution. We have dp = rdx + sdy and dq = sdx + tdy which gives

   anddp sdy dq sdxr t
dx dy
 

 

Putting these values of r and t in r = a2 t, we get 
2dp sdy dq sdxa

dx dy
 



 dpdy – a2dxdq – s (dy2 – a2dx2) = 0
Thus, the Monges’ equations are

  dp dy – a2 dx dq = 0
         ...(1)

     dy2 – a2 dx2 = 0         ... (2)
(2) can be resolved into factors

       dy – adx = 0         ...(3)
and        dy + adx = 0     ...(4)
Combining (3) with (1), we get

           dp (adx) – a2 dx dq = 0 or dp – adq = 0                    ...(5)
(3) and (5) on integration give respectively

    1and –
y ax A

p aq f y ax
p aq B
  

    
   ... (6)

Similarly combining (4) and (1)
          p + aq = f2 (y + ax)   ...(7)
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Adding and subtracting (6) and (7), we get

       1 2 2 1
1 1,
2 2

p f y ax f y ax q f y ax f y ax
a

             
Substituting these values in dz = p dx + q dy

       1 2 2 1
1 1
2 2

dz f y ax f y ax dx f y ax f y ax dy
a

             

       2 1
1 1

2 2
dz dy adx f y ax dy a dx f y ax

a a
     

Integrating,    1 2
1 1

2 2
z y ax y a x

a a
     

    1 2z F y ax F y a x    Ans.

Example 51. Solve r – t cos2 x + p tan x = 0

Solution. r =
dp sdy

dx


and t = dq sdx
dy


Putting for r and t in the given equation, we get
dp sdy dq sdx

dx dy
 

 cos2 x + p tan x = 0

 dp dy – sdy2 – dx dq cos2 x + sdx2 cos2 x + p dx dy tanx = 0
 dp dy – dx dq cos2 x + p dx dy tanx – s (dy2 – dx2 cos2 x) = 0
Monge’s equations are

dp dy – dx dq cos2 x + p dx dy tan x = 0     ...(1)
dy2 – dx2 cos2 x = 0 ...(2)

Eq. (2) is factorised (dy + dx cos x) (dy – dx cos x) = 0
dy – dx cos x = 0      ...(3)
dy + dx cos x = 0      ...(4)

Integrating (3) and (4), we get
y – sin x = A      ...(5)
y + sin x = B      ...(6)

Combining (3) and (1), we get
dp – dq • cos x + p tan xd x = 0

 (dp sec x + p sec x tan x dx) – dq = 0
Integrating p sec x – q = B     ...(7)
Combining (5) and (7), we have

p sec x – q = f1 (y – sin x)     ...(8)
On combining (6) and (7), we get

p secx + q = f2(y + sinx)     ...(9)
From (5) and (9)

p = 
1
2

 cos x[f1 (y – sin x) + f2 (y + sinx)] and q = 1
2

[f2 (y + sin x) – f1 (y – sin x)]

Putting for p and q in dz = pdx + qdy, we get

dz =
1
2

cos x[ f1(y – sin x) + f2 (y + sin x)] dx + 1
2

[f2 (y + sin x) – f1(y – sin x)] dy

 dz = 1
2

f2 (y + sin x) [dy + cos x dx] –
1
2

f1 (y – sin x) [dy – cos x dx]

Integrating we get z = 
1
2

F2 (y + sin x) +F1 (y – sin x) Ans.
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EXERCISE 9.14
Solve

1. r +(a + b)s + abt = xy Ans. z =
1
6 x3 y –  (a + b)

4

24
x

+F1(y – ax) + F2 (y – bx)

2. y2 r – 2ys + t = p + 6y Ans. z = y3 – yF1 (y2 + 2x) + F2 (y
2 + 2x)

3. xy(t – r) + (x2 – y2) (s – 2) = py – qx Ans. z = xy + F1 (x2 + y2) + F2

y
x

 
 
 

4. (1 + q)2r – 2(1 + p + q + pq)s + (1 + p)2 t = 0  Ans. z = F1(x+y+z)+xF2(x+y+z)
5. t – r sec4y = 2q tan y Ans. z = F1 (x – tan y)  + F2 (x + tan y)
6. (q + 1)s = (p + 1 )t Ans. z = f1 (x) + f2 (x + y + z)

7. (r – s) y + (s – t)x + q – p = 0 Ans. z = f1(x + y)+ f2 (x2 – y2)

Partial Differential Equations in Practical Problems
9.16 INTRODUCTION

In practical problems, the following types of equations are generally used

(i) Wave equation :
2 2

2
2 2

u uc
t x

 


 

(ii)One-dimensional heat flow :
2

2
2

u uc
t x

 


 

(iii) Two-dimensional heat flow :
2 2

2 2 0u u
x y
 

 
 

(iv) Radio equations :            ,V I I VL C
x t x t

   
   
   

9.17 METHOD OF SEPARATION OF  VARIABLES
In this method, we assume that the dependent variable is the product of two functions,

each of which involves only one of the independent variables. So two ordinary differential
equations are formed.

Example 1. Using the method of separation of variables, solve

2u u u
x t
 

 
 

where                                         u (x, 0) = 6 e–3x                                          (A.M.I.E.T.E., Summer 2002)

Solution. 2u u u
x t
 

 
 

... (1)

Let    u = X (x).T (t) ... (2)
where X is a function of x only and T is a function of t only.
Putting the value of u in (1), we get

                                      
 .

2
X T
x t

 


 
(X . T) + X . T

T 2 .dX dTX X T
dx dt

   TX  = 2 X . T + X.T     T..
X
X


 = 2
T
T


+ 1 = c (say)
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(a)
' 1X dX dXc c c dx

X X dx X
    

On integration log X = c x + log a.     log 
X cx
a
  cxX e

a
     X = aecx

 (b)
2 1T' c
T

        
1 ( 1)
2

T' c
T
     

1 1 ( 1)
2

dT c
T dt

     
1 ( 1)
2

dT c dt
T

 

On integration log 
1 =  (  – 1) + log 
2

T c t b 
1log ( 1)
2

T c t
b
 


1( 1)2 c tT e

b




1 ( 1)
2  

c t
T be


 

Putting the value of X and T in (2), we have
1 ( -1)
2.

c tcxu ae be


1 ( 1)
2

cx c t
u ab e

 
 ...(3)

       ( ,0) cxu x ab e

But        3( ,0) 6 xu x e

i.e.        36cx xab e e                 ab = 6   and   c = –3
Putting the value of ab and c in (3), we have

13 ( 3 1)
26 x tu e   

3 26 x tu e 
    which is the required solution. Ans.

Example 2. Use the method of separation of variables to solve the equation :
2

2

v v
tx

 



given that v = 0 when t  , as well as v = 0 at x = 0 and x = l.

Solution.
2

2

v v
tx

 



...(1)

Let us assume that v = XT where X is a function of x only and T that of t only.
v dTX
t dt





and

2 2

2 2

v d XT
x dx





Substituting these values in (1), we get
2

2

dT d XX T
dt dx



Let each side of (2) be equal to a constant ( –p2)


2

2
2

1 1dT d X p
T dt X dx

    ...(2)

21 dT p
T dt

      2 0dT p T
dt

   ...(3)

   and
2

2
2

1 d T p
X dx

    
2

2
2 0d X p X

dx
  ...(4)

Solving (3) and (4), we have
2–

1
p tT C e
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2 3cos sinX C px C px  ...(5)
   2

1 2 3( cos sin )p tv C e C px C px 
Putting x = 0, v = 0 in (5), we get

2

1 20 –p t= C e C C2 = 0, since 1 0C 
On putting the value of C2 in (5), we get

2

1 3sin–p tv = C e C px ..(6)
Again putting x = l, v = 0 in (6), we get

2

1 30 sin–p t= C e .C pl
Since C3 cannot be zero.

sin pl = 0 = sin n ,np n
l


 is any integer..

On putting the value of p in (6) it becomes
2 2

2

1 3 sin
n t–

l n xv = C C e
l

 

Hence
2 2

2 sin
-n t

l
n

n xv = b e
l

 
where bn= C1C3

This equation satisfies the given condition for all integral values of n. Hence taking
n = 1, 2, 3, ..........,  the most general solution is

2 2

2

1

sinn t–
l

n
n=

n xv = b e
l

 

 Ans.

Exercise 9.15
Using the method of separation of variables, find the solution of the following equations

1.    2 3 0z zx y
x y
 

 
  32

kk

z c x yAns.

2.    –3if 4 , when 0xu uu u e t
x t
 

   
 

3 24 x tu e Ans.

3.    
54 3 ,and   , when = 0.yu u u u e x

x y
 

  
 

2 5x yu e Ans.

4. 54 3 , 3 at 0x xu u u u e e t
t x

  
    

 
(A.M.I.E.T.E, Winter 2002, 2000)     Ans. 2 53 t x t xu e e  

5.  3 2 0; ( ,0) 4 xu u u x e
x y

 
  

  (A.M.I.E.T.E, Summer, 2000) 3 / 24 x yu e Ans.

6.    2( )u u x y u
x y
 

  
 

 2 2x y k x yu ce   Ans.

7.
2

2
2

14 If ( ,0) 4
2

u u u x x x
t x

 
  

 

2
2

4
2

p txu x e 
  
 

Ans.

8.
2

2 2 if ( ,0) (4 )u u u x x x
tx

 
  



2

2(4 )
p t

u x x e


 Ans.

9.
2

2 if ( ,0) 2 when 0
2

u u lu x x x
t x

 
   

 

             2( ) when
2
ll x x l   

2 2

2 for 0 , 2( ) for
2 2

h t h tl lu xe x u l x e x l       Ans.
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10.
2

2 if ( ,0) sinu u u x x
t x

 
  

 
           2

sin . p tu x e Ans.

11.
2

2 2
2 if ( ,0) (25 )u u u x x x

tx
 

  


   22 2(25 ) p tu x x e Ans.

12.  2 23 0xxx u y u 

13.
2

2 2 0z z z
x yx

  
  

             2 2 2 2[1 (1 ) ] [1 1 ]
1 2

p x p y p x p yz c e c e      Ans.

14.
2 2

2 2

1If ( ,0) (1 )
2

u u u x x x
t x
 

  
  2 3 4(1 ) cos sin ( cos sin )

2
xu x p t c p t c p x c p x   Ans.

15.
2 2

2
2 216 if ( ,0) (5 )u u u x x x

x t
 

  
 

   
2

4 1 2(5 )cos sin cos sin
4 4
px pxu x x p t c p t c c     

 
Ans.

16.
2

2 2 if 0,u u u u
yx

 
  


        2( 2)
1 2 3( cos sin ) p yu c px c px c e  Ans.

17. 0u ux y
x y
 

 
          2 21/ 2( )x y ku Ae Ans.

18. ,u u
x y
 


 

( )k x yu Ae Ans.

19.
32 , ( ,0) 4 xu u u u x e

x y
 

  
  (A.M.I.E.T.E., Summer 2001) (3 2 )4 x yu e Ans.

20. 2 3 5 0, (0, ) 2 yu u u u y e
x y

 
   

  2 x yu e Ans.

21.
53 and when 0yu u u u e x

x y
 

   
 

8 5x yu e Ans.

22.
5 32 , given that ( ,0) 3 2x xu u u u x e e

x y
  

   
 

5 3 3 23 2x y x yu e e    Ans.

9.18  EQUATION  OF  VIBRATING  STRING
Consider an elastic string tightly stretched between two points O and A. Let O be the origin and
OA as x-axis. On giving a small displacement to the string, perpendicular to its length (parallel to the
y-axis). Let y be the displacement at the point P (x, y) at any time. The wave equation.

2 2
2

2 2

y yc
t x

 


 
Example 3. Obtain the solution of the wave equation

2 2
2

2 2

y yc
t x

 


 
(A.M.I.E.T.E., Summer 2002)

              using the method of separation of variables.
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Solution.
2 2

2
2 2

y yc
t x

 


 

Let y = XT where X is a function of x only and T is a function of t only.

y dTX
t dt





and y dXT

x dx





Since T and X are functions of a single variable only.
2 2

2 2

y d TX
t dt






2 2

2 2

y d Xand T
x dx





Substituting these values in the given equation, we get
2 2

2
2 2

d T d XX c T
dt dx



By separating the variables, we get

2 2

2 2

2

d T d X
dt dx k

Xc T
  (say).

(Each side is constant, since the variables x and y are independent).


2

2
2 0d T k c T

dt
  and

2

2 0d X kX
dx

 

Auxiliary equations are
2 2 0m kc  m c k   2 0and m k  m k  

Case 1. If k > 0.
1 2

c kt c ktT C e C e 

3 4
c kx kxX C e C e 

Case 2. If k < 0.

5 6cos sinT C c kt C c kt 

7 8cos sinX C kx C kx 
Case 3. If k = 0.

9 10T C t C 

11 12X C x C 
These are the three cases depending upon the particular problems. Here we are dealing with
wave motion (k < 0).

y TX

   5 6 7 8cos sin cos siny C c kt C c kt C kx C kx    Ans.

Example 4. Find the solution of the wave equation
2 2

2
2 2

y yc
t x

 


 
such that y = Po cos pt, (Po is a constant) when x = l and y = 0 when x = 0.

Solution.
2 2

2
2 2

y yc
t x

 


 
...(1)
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       Its solution is as given in Example 3 on page 710.

            1 2 3 4cos sin cos siny c c kt c c kt c kx c kx    ...(2)
Put y = 0 , when x = 0

 1 2 3 30 cos sin 0c c kt c c kt c c   
(2)  is reduced to

 1 2 4cos sin siny c c kt c c kt c kx 

1 4 2 4cos sin sin siny c c c kt kx c c c kt kx                                                                              ...(3)
put 0 cosy P pt when x l 

0 1 4 2 4cos cos sin sin sinP pt c c c kt kl c c c kt kl 
Equating  the  coefficient  of   sin   and   cos  on  both  sides

0
0 1 4 1 4sin

sin
c c kl c c

k l


   

2 4 20 sin 0c c kl c  

And
pp c k k
c

  

(3)  becomes 0 cos sin
sin

py pt x
ckl




0 cos sin
sin

py pt x
p cl
c




                                                 Ans.

Example 5. A string is stretched and fastened to two points l apart Motion is started by

displacing the string in the form y = a sin 
x

l


from which it is released at a time t = 0. Show

that the displacement of any point at a distance x from one end at time t is given by

 , sin cosx cty x t a
l l
        

   
       (A.M.I.E.T.E., Winter 2003,A.M.I.E.,Winter 2001)

Solution. The  vibration  of  the  string  is given by:
2 2

2
2 2

y yC
t x

 


 
...(1)

As the end points of the string are fixed, for all time,

 0, 0y t  ...(2)

and  , 0y l t  ...(3)
Since the initial transverse velocity of any point of the string is zero, therefore,

0

0
t

y
t 

     ...(4)

Also  ,0 sin xy x a
l


 ...(5)

Now we have to solve (1), subject to the above boundary conditions. Since the vibration of
the string is periodic, therefore, the solution of (1) is of the form

y (x, t) = (C1 cos px + C2 sin px)(C3 cos C pt + C4 sin C pt) ...(6)

By (2)    1 3 40, cos sin 0y t C C C pt C C pt  
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For this to be true for all time, 1 0.C 

        Hence    2 3 4, sin cos siny x t C px C Cpt C Cpt  ...(7)

      and           2 3 4sin sin cosy C px C Cp Cpt C Cp Cpt
t


    

   By (4)  2 4
0

sin 0
t

y C px C Cp
t 

     

       Whence 2 4 0C C Cp 

       If  2 0,C  (7) will  lead to  the  trivial  solution y  (x, t) = 0.

         the only possibility is that 4 0C 
       Thus (7) becomes

y (x, t ) 2 3 sin cosC C px Cpt ...(8)

If  x l then  2 30,0 sin cos ,y C C p l Cpt  for  all t.

Since 2C and 3 0C  , we have sin p l = 0   p l n

        i.e.                         
πnp
l

                      ,where n is an integer..

       Hence (8)  reduces to

                         2 3
π π, sin cosn x n Cty x t C C
l l

 ...(9)

Finally  imposing  the  last condition (5), we have

  2 3
π π,0 sin sinn x xy x C C a
l l

 

which will be satisfied by taking   2 3 1C C a and n 
Hence the required  solution is

                       π π, sin cosx C ty x t a
l l

  Proved.

Example  6. The vibrations of an elastic string is governed by the partial differential equation
2 2

2 2

u u
t x

 


 
The length of the string is   and the ends are fixed .The initial velocity is zero and the initial
deflection is u (x, 0) = 2(sin x +sin 3x).Find the deflection u (x, t)of the vibrating string for

0t  .

        Solution.                      
2 2

2 2

u u
t x

 


 
                     1 2 3 4cos sin cos sinu c pt c pt c px c px    ...(1)

On putting x = 0, u = 0 in (1),we get

 1 2 3 30 cos sin 0c pt c pt c c   

On putting 3 0c   in ( 1),it reduces
 1 2 4cos sin sinu c pt c pt c px                                                                          ...(2)
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On putting x  and   u = 0 in (2), we have

                     1 2 40 cos sin sin πc pt c pt c p 

            sin πp  = 0 = sin πn                        n = 1, 2, 3, 4...
       πp  = πn     or p  =  n
    On substituting the value of p in (2), we get

                              1 2 4cos sin sinu c nt c nt c nx  ...(3)
    On differentiating (3) w.r.t.  “t”, we get

                                1 2 4sin cos sindu c n nt c n nt c nx
dt

   ...(4)

     On putting 
du
dt = 0,  t = 0 in  (4) we have

   2 4 20 sin 0c n c nx c  

     On  putting 2 0c  , (3)  becomes

                                       1 4cos sinu c nt c nx

                                     1 4 cos sinu c c nt nx ...(5)
      given  u(x,0) = 2 (sin x + sin 3x)
     On putting t  = 0 in (5), we have
                         u = (x,0) = 1 4 sinc c nx

                2 (sin x + sin 3x) = 1 4 sinc c nx

                   1 44sin 2 cos sinx x c c nx

                             1 4 4cos 2c c x n 

      On substituting  the value of 1 4c c   and n = 2,(5)  becomes

 , 4cos cos 2 sin 2u x t x t x Ans
    Example 7.  A tightly stretched string with fixed end points x = 0 and x = l is initially in a position

    given by  3
0 sin xy y

l
   

 
.If it is released from rest from this position ,find the displacement y (x,t).

Solution.  Let the equation to the vibrating string be

                              
2 2

2
2 2

y yc
t x

 


 
...(1)

Here the initial conditions are
                                           0, 0, , 0y t y l t 

  3
0

π0at 0, ,0 siny xt y x y
t l


  


The solution of (1) is of the form

y = (c1cos px + c4 sin px) (c3cos pct + c4 sin pct) ...(2)
Now y (0,t) = 0 gives

0 = c1(c3cos pct + c4 sin pct)c1 = 0
Hence (2) becomes

                            2 3 4sin cos siny c px c pct c pct  ...(3)
          , 0y l t  gives
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          2 3 40 sin cos sinc pl c pct c pct 


πsin 0 sin or , or npl n pl = n p =
l

    where n = 0, 1,2,3......
On putting the value of p in (3), we get

2 3 4sin ( cos sin )n x n ct n cty c c c
l l l
  

  ...(4)

Now 2 3 4sin sin cosy n x n c n c n c n ctc c t c
t l l l l l
           

Since 0y
t





when t = 0, we have

2 40 sin n x n cc c
l l
 


4 0c 

Now (4) reduces to

2 3 sin cosn x n cty c c
l l
 



 sin cosn
n x n cy b t

l l
 

 (bn= c2c3)


1

sin cosn
n

n x n cy b t
l l





 
 ...(5)

But 3 0
0

3( ,0) sin (3 sin sin )
4
yx x xy x y

l l l
  

    (given)  ...(6)

On putting  t = 0 in (5), we get,  
1

( ,0) sinn
n

n xy x b
l






 ...(7)

From (6) and (7), we have

0

1

3sin (3 sin sin )
4n

n

yn x x xy b
l l l





  
  

0 0
1 2 3

33 3sin sin sin sin sin
4 4
y yx x x x xy b b b

l l l l l
    

    

Comparing the coefficients, we have
0

1 ,
4
y

b


 0
3 4

y
b  

and all others b’s are zero.
Hence (5) becomes

0 3 33sin cos sin cos
4 1
y x c t x c ty

l l l
      

 
Ans.

Example 8. Solve the wave equation
2 2

2
2 2

u ua
t x

 


 
   under the condition:

u =  0   when x  =  0 and x =  

0 0 ( ,0) ,0 .u when t and u x x x
t


     


Solution.  The solution is of the form

u (x, t) = (c1 cos px + c2 sin px) (c3 cos a pt + c4 sin a pt) ...(1)
     Since u (0, t) = 0.

          1 3 4 10 cos sin 0c c a pt c a pt c   
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Then (1) becomes
u (x, t) = c2 sin px (c3 cos a pt + c4 sin a pt)   ...(2)
u (, t) = 0

0 = c2 sin p (c3 cos a pt + c4 sin a pt)  sin p  = 0= sin n  or p = n
Thus   u(x, t) = c2 sin nx (c3 cos a nt + c4 sin a n t)

u (x, t) = sin n x (b1 cos a nt + b2 sin a n t)          ...(3)

Now sinu nx
t





(– ab1 n sin ant + ab2n cos ant)

As 0u
t





 when t = 0 we have

        20 sin ( )nx ab n  2 0b 

1( , ) sin ( cos )u x t nx b ant or u (x, t) = bn sin nx cos a nt ... (4)

1
( , ) sin cosn

n
u x t b nx ant





        ...(5)

On putting u (x, 0) = x, we have

1
sin ,n

n
x b nx





 where
0

2 sinnb x nx dx



 

2
0

2 cos sin(1)nx nxx
n n


                

          ..(6)

2 2cos ( 1)nn
n n
         

Hence, the required solution is

1

( 1)( , ) 2 sin cos
n

n
u x t nx nat

n






    Ans.

Example 9. A string is stretched and fastened to two points l apart. Motion is started by displacing
the string into the form y = k (lx – x2) from which it is released at time t = 0. Find the
displacement of any point on the string at a distance of x from one end at time t.

(A.M.I.E.T.E., Dec. 2006, Summer 2000)
Solution. The vibration of the string is given by

2 2
2

2 2

y yc
t x

 


 
          ...(1)

As the end points of the string are fixed for all time,
y(0, t) = 0          ...(2)

        and y (l,t) = 0           ...(3)
since the initial transverse velocity of any point of the string is zero, therefore,

0
0

t

y
t 

               ... (4)

and y (x, 0) = k (l x – x2) ... (5)

Solution of (1) is y = (c1 cos px + c2 sin px) (c3 cos c pt + c4 sin cpt)           ...(6)
By (2), y (0, t) = 0
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0 = c1 (c3 cos c pt + c4 sin c pt)  c1= 0

Hence (6) becomes 2 3 4sin ( cos sin )y c px c cpt c cpt            ...(7)

             2 3 4sin ( sin cos )y c px c cp cpt c cp cpt
t


  



By (4)
0

0
t

y
t 

    

2 40 sin ( )c px c cp  4 0c           (since 2 0c  )

Hence (7) is reduced to
        2 3sin ( cos )y c px c cpt

       2 3 sin cosy c c px cpt           ...(8)
          y (l, t) = 0

On putting x = l in equation (8), we get
2 30 sin cosc c pl cpt  0 sin pl

 sin sinn pl           or     ,pl n       
np
l


 where n = 1 ,2,3....

On putting π =
l

np , equation (8) becomes 2 3( )nc c b

       sin cosn
n x n cy b t

l l
 



We can have any number of solutions by taking different integral values of n and the
complete solution will be the sum of these solutions. Thus,

1
( , ) sin cosn

n

n x n cy x t b t
l l





 
         ... (9)

1
( ,0) sinn

n

n xy x b
l








2

1
sinn

n

n xlx x b
l






  [Using (5)] ...(10)

Now it is clear that (10) represents the expansion of f (x) in the form of a Fourier sine series
and consequently

       
0

2 ( ) sin
l

n
n xb f x dx

l l


  ...(11)

         2

0

2 ( ) sin
l

n
n xb lx x dx

l l


 
2 3

2
2 2 3 3

0

2 ( ) cos ( 2 ) sin ( 2) cos
l

n x l n x l n x llx x l x
l l n l ln n
                             

3 3 2
1

3 3 3 3 3 3

2 2 2 8( 1)n l l l
l n n n

 
       

,   when n is odd

= 0,   when n is even
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   Putting the value of bn in (9), we get
2

3 3

8 sin cosl n x n cy t
l ln
 


 when n is odd.           Ans.

9.19.    SOLUTION  OF  WAVE  EQUATION  BY  D’ ALMBERT’S  METHOD
2 2

2
2 2

y yc
t x

 


 
        ...(1)

Let us introduce the two new independent variables u = x + ct,         v = x – ct
So that y becomes a function of u and v

(1) (1)y y u y v y y y y
x u x v x u v u v
        

     
        

x u v
  
 

  
2

2

y y y y
x x u v u vx

                           

         
2 2 2

2 22y y y y y y y
u u v v u v u vu v
                               

        ...(2)

( ) ,y y u y v y y y y u vc c c c c
t u t v t u v u v t t
                                      



c
t u v
        

2

2

y y y yc c
t t u v u vt

                              

      
2 2 2

2
2 22y y yc

u vu v
   

      
        ...(3)

Substituting the values of
2

2

y
x



and
2

2

y
t




 from (2) and (3) in (1), we get

2 2 2 2 2 2 2
2 2

2 2 2 22 2 or 0y y y y y y yc c
u v u v u vu v u v

         
                   

      ... (4)

Integrating (4) w.r.t v, we get ( )y f u
u





      ... (5)

where f(u) is constant in respect of v. Again integrating (5) w. r.t ‘u,’ we get

( ) ψ( )y f u du v 
where  (v) is constant in respect of u

( ) ( )y u v   where ( ) ( )u f u du  
         y (x, t) =  (x + ct) +  (x – ct)       ... (6)

This is D’Almberts solution of wave equations (1)

To determine ,  let us apply initial conditions, y (x,0) = f (x) and 0y
t





 when t= 0.
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Differentiating (6) w. r.t. “t” , we get

   ' '( ) ( )y c x ct c x ct
t


     

 ...(7)

Putting 0,y
t





 and t = 0 in (7) we get                 ' '0 ( ) ( )c x c x   

 ' '( ) ( )x x           ( ) ( )x x b   

Again substituting y = f (x) and t = 0 in (6) we get

( ) ( ) ( )f x x x     ( ) ( ) ( )f x x b x   
 ( ) 2 ( )f x x b  

so that  1( ) ( )
2

x f x b   and  1( ) ( )
2

x f x b  

On putting the values of ( )x ct  and ψ( )x ct in (6), we get

   1 1( , ) ( ) ( )
2 2

y x t f x ct b f x ct b     

  1( , ) ( ) ( )
2

y x t f x ct f x ct    Ans.
EXERCISE 9.16

1. Solve the wave equation 
2

2

u
t




= 
2

2
2

uc
x



under the conditions u = 0, when x = 0 and x = 

0u
t




 when t = 0 and u (x, 0) = x, 0 < x <  Ans.
12 ( 1)

sin cos
n

u nx nct
n


 

2. Using the transformations v = x + ct and z = x – ct, solve the following :
2 2

2
2 2 ;u uc

t x
 


 

( ,0) 0;u x
t





    ( ,0) ( ).u x f x Ans.      1,

2
u x t f x ct f x ct     

3.   A string of length l is initially at rest in equilibrium position and each of its points given velocity,
3

0

sin
t

y xb
t l

     

Find the displacement y (x, t). (A.M.I.E.T.E., Summer 2001) Ans. y (x,t) =
π πsin sinn

n x ncb t
l l

4. Find the solution of the equation of a vibrating string of length l satisfying the initial conditions :

y= f (x) when t = 0, and 
y
t




= g (x) when 0t 

It is assumed that the equation of a vibrating string is 
2 2

2
2 2

y ya
t x

 


 

Ans.
1

( , ) ( cos sin )sinn n
n

n at n at ny x t b c x
l l l





  
 

         where 
0 0

2 2( ) sin , ( ) sin
l l

n n
n x n xb f x dx C g x dx

l l cn l
 


  

5.    A tightly stretched string with fixed end points x = 0 and x = l is initially at rest in its equilibrium
        position. If it is set vibrating by giving to each of its points a velocity λ ( ),x l x find the
       displacement of the string at any distance x from one end at any time t.

Ans.
3

4 4
( 1)

8 1 (2 1) (2 1)sin sin
(2 1)

n

n

l n x n cty
l lc n
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6. A tightly stretched string of length l fastened at both ends, is disturbed from the position of equilibrium by
imparting to each of its points an initial velocity of magnitude f (x). Show that the solution of the problem is

1

0
1

2( , ) ( ) sin sin cos
n

n n x n atu x t f x xdx
l l l l





      
 

7. A tightly stretched string with fixed end points x = 0 and x =  is initially at rest in its equilibrium

position.If it is set vibrating by giving each point a velocity 
0

0.03sin 0.04sin 3
t

y x x
t 

     
 then

find the displacement y (x, t) at any point of the string at any time t.

8. Find the solution of the equation 
2 2

2
2 2

u ua
t x

 


 
which satisfies the conditions.

u (0, t)= 0 , u(l, t)= 0, u(x, 0) = (x), ut (x, 0) = 0    Ans. u (x, t)= 
1

cos sinn
n

n at n xb
l l





 

9. Find the solution of the equation
2 2

2 2 2

1y y
x c t
 


 

subject to the boundary conditions.

y (0, t) = 0, ( , ) 0,y l t  ( ,0) ( ),y x x  ( ,0) ψ( )y x x
t






Ans.
sin( )( ).cos .
sin

n ct
n ct l x ly x

n xl n c
l


 

  


10. The vibrations of an elastic string of length l are governed by the one-dimensional wave equation
2 2

2
2 2 .u uc

t x
 


 

The string is fixed at the ends.
u (0, t) = 0 = u (l, t) for all t. The initial deflection is

u(x, 0) = x; 0 <x < l/2 , u(x, 0) = l – x; 
2
l x l 

and the initial velocity is zero. Find the deflection of the string at any instant of time.

(A.M.I.E.T.E., Summer 2001, ,A.M.I.E. Summer 2001) Ans.
2 2

1

sin4 2 sin cos
n

n
l n x n ct

l ln






 

 
9.20  ONE  DIMENSIONAL  HEAT  FLOW

Let heat flow along a bar of uniform cross-section, in the direction perpendicular to the
cross-section. Take one end of the bar as origin and the di-
rection of heat flow is along x-axis.

Let the temperature of the bar at any time t at a point x
distance from the origin be ( , ).u x t Then the equation of one

dimensional heat flow is 
2

2
2

u uc
t x

 


 
Example 10. A rod of length l with insulated sides is initially at a uniform temperature u. Its

ends are suddenly cooled to O°C and are kept at that temperature. Prove that the temperature function
u (x, t) is given by

2 2 2

2

1
( , ) sin .

c n t
t

n
n

n xu x t b e
l

 






where bn is determined from the equation.
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0
1

sinn
n

n xU b
l





Solution. Let the equation for the conduction of heat be

2
2

2

u uc
t x

 


 
      ...(1)

Let us assume that u =XT, where X is a function of x alone and T that of t alone.


u dTX
t dt




 and
2 2

2 2

u d XT
x dx





Substituting these values in (1), we get X
2

2
2

dT d Xc T
dt dx



i.e.
2

2 2

1 1dT d X
dt Xc T dx

       ...(2)

Let each side be equal to a constant ( – p2).

2
2

1 dT p
dtc T

  
2 2 0dT p c T

dt
         ...(3)

and
2

2
2

1 d X p
X dx

  
2

2
2 0d X p X

dx
         ...(4)

Solving (3) and (4) we have
2 2

1
p c tT c e and  X = c2 cos px + c3 sin px


2 2

1 2 3( cos sin )p c tu c e c px c px  ...(5)

Putting x = 0, u = 0 in (5), we get
2 2

1 20 ( )p c tc e c  2 10 since 0c c 

(5) becomes 2 2

1 3
p c tu c e c sin px          ...(6)

Again putting x = l, u = 0 in (6), we get
           2 2

1 30 . sinp c tc e c pl  sin 0 sin πpl n 

 πpl n 
π ,np n
l

 is any integer

Hence (6) becomes 
2 2 2 2 2 2

2 2

1 3 sin sin ,
n c n c tt

l l
n

n x nu c c e b e x
l l

  
 

               bn= c1c3

This equation satisfies the given conditions for all integral values of n. Hence taking
n =  1, 2, 3, ...... , the most general solution is

2 2 2

2
π

1

πsin
n c t

l
n

n

nu b e x
l






By initial conditions u = U0 when t = 0

0
1

πsinn
n

n xU b
l





 Proved.
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Example 11. Find the solution of
2

2
2

u uh
tx

 




     for which u (0, t) = u(l, t) = 0, u(x, 0) = sin 
πx
l by method of variable separable.

Solution.
2

2
2

u uh
tx

 



... (1)

In example 10 the given equation was
2

2 2

1u u
tx c

 



... (2)

On comparing (1) and (2) we get 2
2

1h
c



Thus solution of (1) is
2

2

2 3 1( cos sin )
p t
hu c px c px c e


           [Using (5) of example (10)] ...(3)

On putting x = 0, 0u  in (3), we get
2

2
1 20

p t
hc c e


 1 0c   2 0c 

(3) is reduced to
2

2

3 1sin
p t
hu c pxc e


 ...(4)

On putting x = l and u = 0 in (4), we get
2

2

3 10 sin
p t
hc plc e




3 0,c  1 0c    [ sin 0 sinpl n      
πnp
l

 ]

Now (4) is reduced to
2 2

2 2
π

1 3
πsin

n t
h ln xu c c e

l


     ...(5)

On putting t = 0, πsin xu
l

 in (5) we get

4sin sinx n xc
l l
 

 [ put c1c3 = c4]
This equation will be satisfied if

n = 1 and c4 = 1
On putting the values of c4 and n in (5), we have

2

2 2–
sin

t
h l

xu e
l


 Ans.

Example 12. The ends A and B of a rod 20 cm long have the temperatures at 30° C and at 80°C
until steady state prevails. The temperature of the ends are changed to 40°C and 60°C
respectively. Find the temperature distribution in the rod at time t.
Solution. The initial temperature distribution in the rod is

5030
20

u x  i.e.,
530
2

u x 
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and the final distribution (i.e. in steady state)is
2040 40
20

u x x   

To get u in the intermediate period, reckoning time from the instant when the end tem-
perature were changed, we assumed

u = u1 (x, t) + u2 (x)
where u2 (x) is the steady state temperature distribution in the rod (i.e. temperature after a

sufficiently long time) and u1 (x, t) is the transient temperature distribution which tends to zero as
t increases.

Thus u2 (x) = 40 + x

Now u1 (x, t) satisfies the one-dimensional heat-flow equation
2

2
2

u uc
tx

 



Hence u  is of the form
2 2

40 ( cos sin ) c k t
k ku x a kx b kx e    

Since 40u   ,  when  x = 0and u = 60°,   when x = 20, we get
π0,

20k
na k 

Hence
2

2 02

1
40 sin

2 0

n

tc
n

n

n xu x b e
 

 
 







         ...(1)

Using the initial condition i.e.,
530
2

u x  when t = 0, we get

5 π30 40 sin
2 20n

nx x b x    
3 π10 sin
2 20n

n xx b 
Hence                  20

0

2 3 π10 sin
20 2 20n

n xb x dx   
 

20

2 2
0

1 3 20 3 40010 cos sin
10 2 20 2 20

x n x n x
n n

                      

     1 20 20 2020 1 10 2 1 1
10

n n

n n n
                          

Putting this value of bn in (1),  we get


 

2

202 12040 sin .
20

n cn tn xu x e
n

  
 

       
     

                                             Ans.

EXERCISE 9.17
1. Solve the following boundary value problem which arises in the heat conduction in a rod :

2
2

2

u uc
t x

 


 
,  0, ( , ) 0u t u l t  (A.M.I.E.T.E., Summer 2002)

( ,0) 100 xu x
l

                         Ans.   
2 2 2

2
1

1

200 ( 1)( , ) s in
c nn t

l

n

n xu x t e
n l
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2. Determine the solution of one-dimensional heat equation
2

2
2

u uc
t x

 


 
subject to the boundary conditions u(0, t) = 0, u(l, t) = 0 (t > 0) and the initial condition
u (x, 0) =  x,l being the length of the bar.

    Ans. 
2 2 2

21

1

2( 1) sin
n c t

n l

n

l n xy e
n l

 





 


3. Solve the non-homogeneous heat conduction equation u = a2uxx+ sin 3 x

subject to the following conditions :
u (x, 0) = sin 2π , (0, ) ( , ) 0x u t u l t 

4. Solve
2

2
2 ,u ua

t x
 


 

given that (i) u= 0 when x = 0 and x = l for all t

(ii) u  π3sin ,x
l

 when t= 0 for all x, 0 <x < I. Ans. u=3
2 2

2sin
a t
lx e

l

 

5. (a) Find by the method of separation of variables the solution of U (x, t) of the boundary value problem
2

23 ,U U
t x

 


 
t > 0, 0 <  < 2

U(0, t) = 0, U(2, t) = 0 Ans.
2 23
4

1

sin
2U

sin
2

n t

n

n x

e
n












U (x, 0) = x, 0 < x < 2

(b) The ends A and B of a rod 30 cm long have their temperatures kept at 20°C and 80°C
respectively until steady-state conditions prevail. The temperature of the end B is suddenly
reduced to 60°C and kept so while at the end A temperature is raised to 40°C. Find temperature
distribution in the rod at time t.   (A.M.I.E.T.E., Winter 2002)

6. The equation
2

2μu u
t x

 


 
refers to the conduction of heat along a bar, given that u = u0 sin nt

when x = 0, for all values of t and u = 0 when x is very large.

Without radiation, show that if u = gxAe  sin (nt – gx), where A, g and n are positive constants,

then g = 2μ
n

7. An insulated rod of  length l has its ends A and B maintained at 0°C and 100°C respectively until
steadystate condition prevails. If B is suddenly reduced to 0°C and maintained at 0°C, find the
temperature at a distance x from A at time t, solve the equation of heat

2
2

2

u uC
t x

 


 
by the method of separation of variables and obtain the solution. (A.M.I.E., Summer 2004)

        Ans.
2 2 2

2
1

1

200 ( 1)( , ) sin .
n c n t

l

n

n xu x t e
n l

   



 


 
8. Solve

2
2

2

u ua
t x

 


 
under the conditions

 ' 0, 0u t  t >0

 ' , 0u t       Ans . 
2 2

2

2
1

( 1)( , ) 4 cos
3

n
a n t

n
u x t nxe

n
 






  

2( ,0) ,u x x 0 πx 
9. A rod of length l has its lateral surface insulated and is so thin that heat flow in the rod can be regarded as one

dimensional. Initially the rod is at the temperature 100 throughout. At t = 0 the temperaure at the left end of
the rod is suddenly reduced to 50 and maintained thereafter at this value, while the right end is maintained at
100. Let u (x, t)be the temperature at point x in the rod at any subsequent time t.
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(i) Write down the appropriate partial differential equation for u (x, t) with initial and boundary
conditions.

(ii) Solve the differential equation in (i) above using method of separation of variables and show
that

2 2

2 2
1

50 100 1( , ) 50 sin exp
n

x n x n tu x t
l n l a l





  
  

 
Where a2 is the constant involved in the partial differential equation.  (A.M.I.E.T.E., Dec. 2004)

10. A uniform rod of length a whose surface is thermally insulated is initially at temperature  = 0. At
time t = 0, one end is suddenly cooled to  = 0 and subsequently maintained at this temperature,
the other end  remains thermally insulated. Find the temperature (x, t).

Ans.
2 2 2

2
(2 1)

4

1

(2 1)sin4 2( , )
2 1

n c t
a

n

n x
ax t e

n

  



 


 
 

11. Solve 
2

2
2

U Ua
t x

 


  under the conditions
(i) U   if ;t   (ii) (0, ) (π, ) 0;U t U t   (iii) 2( ,0) πU x x x 

 Ans.     
2 2

3
1

8 sin (2 1) (2 1)
(2 1)

a

n

n xu e n t
n







 
 

12. The temperature distribution in a bar of length , which is prefectly insulated at the ends x = 0 and

x = is governed by the partial differential equation
2

2

u u
t x

 


 
.  Assuming the initial temperature

as ( ,0) ( ) cos 2 ,u x f x x  find the temprature distribution at any instant of time.
Ans. u = e4t cos 2x

13. The heat flow in a bar of length 10 cm of homogeneous material is governed by the partial
differential equation 2

.t xxu c u . The ends of the bar are kept at temperature 0°C, and the initial
temperature is f (x) = x (10 – x). Find the temperature in the bar at any instant of time.

14. Find the temperature u (x, t) in a bar of length  which is perfectly insulated everywhere including the

ends x = 0 and x = . This leads to the conditions (0, ) 0, (π, ) 0u ut t
x x
 

 
 

. Further the initial

conditions are as given below:

  , 0 / 2
,0

, / 2
x x

u x
x x
  

     
Find the solution by the separation of variables.

9.21  TWO DIMENSIONAL HEAT FLOW
Consider the heat flow in a metal plate of uniform thickness, in the directions parallel to
length and breadth of the plate. There is no heat flow along the normal to the plane of the
rectangle.
Let u (x, y) be the temperature at any point (x, y) of the plate at time t is given by

2 2
2

2 2

u u uc
t x y

   
     

                 ...(1)

In the steady state, u does not change with t.

 0u
t






(1) becomes 
2 2

2 2 0u u
x y
 

 
 

This is called Laplace equation in two dimensions.
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Example 13. Solve   
2 2

2 2 0u u
x y
 

 
  which satisfies the conditions

(0, ) ( , ) ( ,0) 0u y u l y u x  

and u (x, a) = sin
πn x
l              (A.M.I.E.T.E., Winter 2000)

Solution.
2 2

2 2 0u u
x y
 

 
          ... (1)

Let u = X (x) . Y (y)           ...(2)

Putting the values of 
2

2

u
x



 and 
2

2

u
y

   in (1), we have

" " 0X Y XY 

 2" "X Y p
X Y

    (say)

 2"X p X   2" 0X p X            ...(3)
and 2"Y p Y  2" 0Y p Y            ...(4)

A.E. of (3) is m2 + p2 = 0    m = ± ip

        1 2cos sinX c px c px 

A.E. of (4) is m2  – p2 = 0       m p 

 3 4
py pyY c e c e 

Putting the values of X and Y in (2), we have

1 2 3 4( cos sin )( )py pyu c px c px c e c e                   ...(5)

Putting 0, 0x u  in (5), we have

1 3 40 ( )py pyc c e c e 

      1 0c 

(5) is reduaced to u 2 3 4sin ( )py pyc px c e c e            ... (6)

On putting x = l, u = 0, we have

2 3 40 sin ( )py pyc pl c e c e 
c2  0   sin p l = 0 = sin n 

 πpl n 
πnp
l



Now (6) becomes

2 3 4sin ( )
n y n y

l ln xu c c e c e
l

  
            ... (7)

On putting u = 0 and y = 0 in (7), we have

2 3 4
π0 sin ( )n xc c c
l

 

   3 4 0c c   3 4c c 

(7) becomes 2 3 sin
n y n y

l ln xu c c e e
l

   
  

 
       ...(8)
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On putting y = a and 
πsin n xu
l

 in (8), we get

2 3sin sin
n a n a

l ln x n xc c e e
l l

    
  

 
i.e. 2 3

1
n a n a

l l

c c
e e

 


Putting this value in (8), we have

sin

n y n y
l l

n a n a
l l

n x e eu
l

e e

  

  

 



              

sinh
sin

sinh

n y
n x lu

n al
l





          Ans.

Example 14. A rectangular plate with insulated surfaces is 10 cm wide and so long compared
to its width that it may be considered infinite in length without introducing an appreciable
error. If the temperature along the short edge y = 0 is given by

  u (x, 0) = 20x, 0 < x  5
= 20 (10 – x), 5 < x < 10

while the two long edges x = 0 and x = 10 as well as the other short edges are kept at 0°C.
Find the steady state temperature at any point (x, y) of the plate.
Solution. In the steady state, the temperature u (x, y) at any
point p (x, y) satisfy the equation

2 2

2 2 0u u
x y
 

 
  ... (1)

The boundary conditions are
 u(0 , y) = 0 for all values of y ... (2)
u (10, y)  = 0 for all values of y   . ... (3)
u (x, ) = 0 for all values of x ... (4)
u (x, 0) = 20x 0 < x  5

= 20 (10 – x)           5 < x < 10 ...(5)
Now three possible solutions of (1) are

        u = (C1 epx + C2 e–px) (C3 cos py + C4 sin py) ...(6)
        u = (C5 cos px + C6 sin px) (C7 epx + C8 e–py) ...(7)

        u = (C9 x + C10) (C11y + C12) ...(8)
Of these, we have to choose that solution which is consistent with the physical nature of the
problem. The solution (6) and (8) cannot satisfy the condition (2), (3)and (4). Thus, only
possible solution is (7) i.e., of the form.

u (x, y) = (C1 cos px + C2 sin px) (C3 epy + C4 e–py)           ...(9)

By (2) 1 3 4(0, ) ( ) 0py pyu y C C e C e   for all values of y

 C1= 0

 (9) reduces to u (x, y) = C2 sin px (C3 epy + C4 e–py)         ...(10)

By (3) u (10 , y) = C2 sin 10 p 3 4( ) 0py pyC e C e  C2   0

 sin 10 p = 0    10p πn                    
π

10
np 
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Also to satisfy the condition (4) i.e., u = 0 as y 
C3 = 0

Hence (10) takes the form u (x, y) = C2 C4 sin px.e–py

 u (x, y) = bn sin px.e–py where bn= C2 C4

 The most general solution that satisfies (2), (3) & (4) is of the form

1
( , ) sin py

n
n

u x y b pxe






          ...(5)

Putting y = 0, u (x, 0) =
1

sinn
n

b px



 where

π
10
np 

This requires the expansion of u in Fourier series in the interval x = 0 and x = 5 and from
x = 5 to x = 10.

         
5 10

0 5

2 220 sin 20 (10 )sin
10 10nb x pxdx x pxdx   

        
5 10

0 5
4 sin 4 (10 )sinnb x pxdx x pxdx   

5 10

2 2
0 5

cos sin cos sin4 (1) 4 (10 ) ( 1)px px px pxx x
p pp p

            
              

         

2 2 2

5cos5 sin 5 sin10 5cos5 sin 54 4 0p p p p p
p pp p p

   
        

   

2 2

2sin 5 sin104 p p
p p

 
  

 

π
10
np  

 

2 2 2 2 2 2 2 2

2 sin 5. sin10. 800 40010 104 sin sin
2

100 100

n n
n n

n n n n

  
  

     
    

  

2 2

800 sin 0
2

n
n


 


if n is even. 2 2

800
πn

   if n is odd.    or    
1

2 2

( 1) 800
(2 1) π

n

nb
n






On putting the value of nb in (5) the temperature at any point  ,x y is given by

( 2 1)1
10

2 2
1

800 ( 1) (2 1)( , ) sin
10(2 1)

n yn

n

n xu x y e
n

  



  


              Ans.

Exercise 9.18
1. Find by the method of separation of variables, a particular solution of the equation

2 2

2 2 0u u
x y
 

 
 

that tends to zero as x tends to infinity and is equal to 2 cos y when x =0              Ans. 2 cosxu e y
2. Solve the equation : uxx+ uyy= 0

(0, ) (π, ) 0u y u y    for all y,,
( ,0)u x k , 0 πx 
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lim ( , ) 0
y

u x y


 0 πx  (A.M.I.E.T.E., Summer 2003)

       Ans.  
1

( , ) sin ,ny
n

n
u x y b nxe







1

sinn
n

k b nx





3. Find the solution of Laplace’s equation 2 0  in cartesian coordinates in the region

00 ,0x a y b    to satisfying the conditions y = 0 on x = 0, x = a, y = 0, y = b and
ψ ( ),0 .x a x x a    (A.M.I.E.T.E., Winter 2001)

Ans.
2

3 3
0

(2 1)sin sinh8 1
(2 1)(2 1) sinhn

x n y
a a a

n bn
a





  

 
  

4. An infinitely long uniform plate is bounded by two parallel edges and an end at right angles
to them. The breadth is . This end is maintained at a temperature u0 at all points and other edges
are at zero temperature. Determine the temperature at any point of the plate in the steady state.

(A.M.I.E.T.E.,Dec. 2005)  Ans. 3 504 1 1( , ) sin sin3 sin 5 ...
π 3 5

y y yu
u x y e x e x e x        

5. Solve 
2 2

2 2 0,V V
x y

 
 

 
 given that

(i) V = 0 when x = 0 and x = c (ii) 0V   as ;y  (iii) V = V0 when y = 0.

          Ans.   0
1 1

( , ) sin , sin
n y

c
n n

n n

n x n xV x y b e V b
c c

 

 

 
  

6. The steady state temperature distribution in a thin plate bounded by the lines x = 0, x = a,
y = 0 and ,y   is governed by the partial differential equation

2 2

2 2 0.u u
x y
 

 
 

Obtain the steady state temperature distribution under the conditions
u (0, y) = 0, u (a, y)= 0, u (x, ) = 0
u (x, 0) = x, 0  x  a/2
           = a – x / 2a x a 

7. The points of trisection of a tightly stretched string are pulled aside through the same
distance on opposite sides of the position of equilibrium and the string is released from rest.
Derive an expression for the displacement of the string at subsequent time and show that the
mid-point of the string always remains at rest.

9.22. LAPLACE  EQUATION  IN  POLAR  CO-ORDINATES

Example 15. Solve 
2 2

2 2 2

1 1 0
θ

u u u
r rr r

  
  

 
by the method of separation of variables.

Solution.   
2 2

2 2 2

1 1 0u u u
r rr r

  
  

 
  

2 2
2

2 2 0u u ur r
drr

  
  

 
...(1)

        Let u = R (r). T ()

. ( )u dR T
r dr


 


        and         
2 2

2 2 . ( )u d R T
r dr
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( ).u dTR r
d




  and
2 2

2 2( ).u d TR r
d




 

Putting the values of
2

2

u
r



, 
u
r



 and 
2

2

u


in (1), we get

2 2
2

2 2. . ( ) . ( ) ( ) 0d R dR d Tr T r T R r
drdr d

    


2 2
2

2 2. . 0d R dR d Tr r T R
drdr d

 
     

2
2

22

2

. 1
d R dRr r d Tdrdr h

R T d


  


(say)

2
2

2
. 0

d R dR
r r hR

drdr
  

2

2 0d T hT
d

 


Put zr e 2( ) 0D h T 

( ( 1) ) 0D D D h R    2 0 or D h D i h   

2 0D h D h     3 4cos( ) sin( )T c h c h   

1 2
h hz zR c e c e 

1 2
h hR c r c r 

1 2 3 4( )[  cos( )  sin( )]h hu c r c r c h c h              ...(2)

Case 1. If  h = k2

  (2) becomes 1 2 3 4( )[ cos( ) sin( )]k ku c r c r c k c k    
Case 2. If   h = 0

 (2) becomes 5 6 7 8(   ) ( )u c z c c c   

         5 6 7 8[ (log  ) ] [ ]C r c c c   
Case 3. If h = – p2

   (2) becomes 9 10 11 12( cos sin )( )p pu c pz c pz c e c e    
Then there are three possible solutions

1 2 3 4( )[ cos( ) sin( )]k ku c r c r c k c k    

5 6 7 8( log )( )u c c r c c   

9 10 11 12[ cos( log ) sin( log )][ ]p pu c p r c p r c e c e             Ans.

Example 16. The diameter of a semicircular plate of radius a is kept at 0°C and the temperature
at the semicircular boundary is T° C. Find the steady state temperature in the plate.
Solution. Let the centre O of the semicircular plate be the pole and the bounding diameter
be as the initial line. Let u (r, ) be the steady state temperature
at any point p (r, ) and u satisfies the equation

2 2
2

2 2 0u u ur r
rr

  
  

   ...(1)
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       The boundary conditions are

      (i) ( ,0) 0u r  0 r a 

     (ii)   ( , ) 0u r   0 r a 

     (iii) ( , ) .u a T 

From conditions (ii) and (iii), we have 0 0u as r  . Hence the appropriate solution
        of (i) is as solved in example 15.

                                      2 3
–

1 4 = (c + )( cos sin θ)p pu r c r c p c p         ...(2)
Putting u  (r, 0) = 0  in (2), we get

–
1 2 3 30 = ( + ) 0p pc r c r c c 

        (2)  becomes

1 2 4( ) sinp pu c r c r c p    . . . (3)

Putting ( , ) 0in (3),u r    we get

1 2 40 = ( ) sin sin 0 sinp pc r c r c p p n     

 p n p n    

(3)  becomes, on putting  p = n

1 2 4=( ) sinn nu c r c r c n          ...(4)

Since,  u = 0 when  r = 0
                                               20  =  c

(4) becomes, 1 4 sinnu c c r n 

The most general solution of  (1) is

 
1

,θ sinn
n

n
u r b r n





  ...(5)

Putting  r  =  a  and  u =  T  in (5), we have

1
sinn

n
n

T b a n




 
By Fourier half range series, we get

0

2 2 cos 2sin [ ( 1) 1]n n
n

n Tb a T n d T
n n






             
bnan = 0, When n is even.

4n
n

Tb a
n




, When n is odd.

 n
4

n

Tb
n a




Hence, (5) becomes
3 54 / ( / ) ( / )( , ) sin sin 3 sin 5 ...

1 3 5
T r a r a r au r
 

       
Ans.
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Exercise 9.19
1. Solve the steady-state temperature equation

                                         
2 2

2 2 2

1 1 0; 10 20,0 2T T T r
r rr r

  
        

 
subject to the following conditions:

                                (10, ) 15cos and (20,θ) 30sinT T    

                                                                                    Ans.
34 1( , ) sin sin3

3
T r rT r

a a
            

 2. A semi-circular plate of radius a has its circumference kept at temperature ( , ) ( )u a k     while
the boundary diameter is kept at zero temperature. Find the steady state temperature distribution

( , )u r   of the plate assuming the lateral surfaces of the plate to be insulated.

  Ans.
2 1

3
1

8 sin(2 1)( , )
(2 1)

nk r nu r
a n

        


3. Find the steady state temperature in a circular plate of radius a which has one half of its circumference
at 0°C and the other half at 60°C.

Ans.
2 1

1

200 1( , ) 50 sin(2 1) .
2 1

n

n

ru r n
n n a





        


9.23  TRANSMISSION  LINE EQUATIONS
2

2

V VRC
tx

 



2

2

i iRC
tx

 



are called telegraph equations,
where V = potential, i = current, C = capacitance, L = inductance

   
2 2

2 2

V VLC
x t

 


 

   
2 2

2 2

i iLC
x t
 


 

are called radio equations.
Example 17.Find the current i and voltage v in a transmission line of length l,t seconds after the ends are

suddenly grounded given that 0 0( ,0) , ( ,0) sin xi x i v x v
l
    

 
and  that R and G are negligible.

Solution.         
2 2

2 2

v vLC
x t
 


 

Let v = XT where X and T are the functions of x and t respectively.
2 2

2 2

v d XT
x dx





and
2 2

2 2

v d TX
t dt





2 2

2 2

d X d TT LCX
dx dt
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2 2

2 2
2

d X d T
dx dtLC p
X T

   say

Since the initial conditions suggest the values of v and i are periodic functions,
 1 2cos sinX c px c px 

3 4cos sinpt ptT c c
LC LC

 

v XT

 1 2 3 4( cos sin )( cos sin )pt ptv c px c px c c
LC LC

            ...(1)

When 0,t  0 sin xv v
l




0 1 2 3
πsin ( cos sin )xv c px c px c
l
          ...(2)

On equating the coefficients, we get

1 3 10 0c c c   and 2 3 0 ,c c v p
l


 

(1) becomes

      0 2 4sin cos sinx pt ptv v c c
l LC LC
  

  
 

         ...(3)

Now when 00,t i i   (constant)

Hence 0i
x





i c v
x t
  


 

0 when 0v t
t


  


Now 0 2 4sin sin cosv x p pt ptv c c
t l LC LC LC

     
         

...(4)

On  putting 0v
t





 and t = 0 in (4), we get 2 4 40 0c c c  

(3) is reduced to 0 sin cosx tv v
l l LC
 



      0 cos cosv x x t iv L
x l l tl LC
   

  
     ...(5)

and       0 1sin sin
vv x t

t l C xl LC t LC
    

  
     ...(6)

Integrating (5) and (6), we get

0 cos sin ( )C x ti v f x
L l l LC

 
  

0 cos sin ( )C x ti v F t
L l l LC

 
  

 f (x) and F  (t) must be constant only, since i = i0 when t = 0
 Constant  0 ( )i f x 

Hence     0 0 cos sin .C x ti i v
L l LC

 
                                                            Ans.
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Exercise 9.20
1. A transmission line 1,000 miles long is initially under steady state condition with potential 1,300

volts at the sending end (x  = 0) and 1,200 volts at the receiving end (x = 1000). The terminal end
of the line is suddenly grounded but the potential at the source is kept at 1,300 volts. Assuming
the inductance and leakage to neglible, find the potential v (x, t), if it atisfies the equation

.
1

t xxv v
RC

   
 

         Ans.
1 1

( , ) sin sinny
n nv x y b nx e and k b nx

 
  

2. Obtain a solution of the telegraph equation

                                                       
2

2

e eRC
tx

 



suitable for the case when e decays with the time and when there is steady fall of potential from
e0  to 0 along the line of length l initially and the sending end is suddenly earthed.

Ans. 
2 2

0
2

1

2 1( , ) sin
n

e n x n le x t e
n l CRt





  


 
3. Fill in the blanks :

(a)   The general solution of the equation
2 2

2 2 0 isz z
x t
 

 
 

...................................

(b)   The general solution of the equation
2

0 isz
x y



  ...................................

(c)   The solution of z (x,y) of the equation    0 isz zy
x y
 

 
  .............................................

 (d)   The solution of 3 5 0 isz zx y
x y
 

 
  .................................................

(e)   The solution of 
2

2 sin( ) isz x y
x





.....................................

(f)   The solution of 
2

22 if (0, ) (3, ) 0u u u t u t
t x

 
  

 
and ( ,0) 5sin 4 3sin8u x x x   

is.......................
(g) If the unknown function in a differential equation depends on more than one independent

variables, then the differential equation is said to be        (A.M.I.E., Winter 2001)
Ans. (a)  1 2 3 4( cos sin )( cos sin )C px C px C pt C pt 

(b)    1 2f x f y
(c)  ( log , ) 0f x y z 
(d)  5 3( , ) 0f x y z 

(e)  1 22

1 sin ( ) ( ) ( )xy x f y f y
y

  

(f)  2 232 128(5sin 4 3sin8 )x t n txe x e    

(g)   Partial Differential Equation
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10
Statistics

10.1 STATISTICS is a branch of science dealing with the collection of data, organising,
summarising, presenting and analysing data and drawing valid conclusions and thereafter making
reasonable decisions on the basis of such analysis.

10.2 FREQUENCY DISTRIBUTION is the arranged data, summarised by distributing it
into classes or categories with their frequencies.

Wages of 100 workers

Wages in Rs. 0-10 10-20 20-30 30-40 40-50
Numbers of workers 12 23 35 20 10

10.3 GRAPHICAL REPRESENTATION. It is often useful to represent frequency
distribution by means of a diagram. The different types of diagrams are

1. Histogram
2. Frequency polygon
3. Frequency curve
4. Cumulative frequency curve or Ogive
5. Bar chart
6. Circles or Pie diagrams.
1. Histogram consists of a set of rectangles having their heights proportional to the class-

frequencies, for equal class-intervals. For unequal class-interval, the areas of rectangles are proportional
to the frequencies.

2. Frequency Polygon is a line graph of class-frequency plotted against class-mark. It can
be obtained by connecting mid-points on the tops of the rectangles in the histogram.

735

X

Y Y

X

`
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736 Statistics

3. Cumulative Frequency curve or the Ogive. If the various
points are plotted according to the upper limit of the class as x
co-ordinate and the cumulative frequency as y co-ordinate and
these points are joined by a free hand smooth curve, the curve
obtained is known as cumulative frequency curve or the Ogive.
10.4   AVERAGE OR MEASURES OF  CENTRAL
   TENDENCY

An average is a value which is representative of a set of
data. Average value may also be termed as measures of central
tendency. There are five types of averages in common.

(i)Arithmetic average or mean (ii) Median  (iii) Mode
       (iv) Geometric Mean (v) Harmonic Mean

10.5   ARITHMETIC  MEAN
 If x1, x2, x3, .... xn are n numbers, then their arithmetic mean (A.M.)  is defined by

1 2 3 ........ n xx x x x
AM

n n
   

  

If the number x1 occurs fl times, x2 occurs f2 times and so on, then
1 1 2 2

1 2

......
......

n n

n

fxf x f x f xAM
f f f f
  

 
  




This is known as direct method.
Example 1. Find the mean of  20,  22,  25,  28,  30.

Solution. 20 22 25 28 30 125. . 25
5 5

A M    
           Ans.

Example 2. Find the mean of the following :

Numbers 8 10 15 20
Frequency 5 8 8 4

Solution. fx = 8  5 + 10  8 + 15 8 + 20  4  =  40 + 80 + 120 + 80  =  320

f =  5 + 8 + 8 + 4  = 25

320. . 12.8
25

fx
A M

f
  
         Ans.

(b) Short cut method
Let a be the assumed mean, d the deviation of the variate x from a. Then

      
( )

A.M. – . .
fd f x a fx fa a f

A M a
f f f f f


         

    

        . .
fd

A M a
f

 


Example 3.  Find the arithmetic mean for the following distribution:
Class 0 –10 10 – 20 20 – 30 30 – 40 40 – 50
Frequency 7 8 20 10    5

Solution. Let assumed mean (a) = 25.

Y

X
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Class Mid-value
x

Frequency
f

x –25 = d fd

0 – 10 5 7 –20 –140
10 – 20 15 8 –10 –80
20 – 30 25 20 0 0
30 – 40 35 10 + 10 + 100
40 – 50 45 5 + 20 + 100

Total 50 – 20

20
. . 25 24.6

50
fd

A M a
f


    

                                                         Ans.

(c)  Step deviation method
Let a be the assumed mean, i the width of the class interval and

, . .
fDx aD A M a i

i f


  


Example 4. Find the arithmetic mean of the data given in example 3 by step deviation
method

Solution. Let a = 25

Class Mid-value
x

frequency
f

–x aD
i


f .D

0 – 10 5 7 –2 –14
10 – 20 15 8 –1 –8
20 – 30 25 20 0 0
30 – 40 35 10 + 1 + 10
40 – 50 45 5 + 2 + 10
Total 50 – 2

2. . . 25 10 24.6
50

fD
A M a i

f


     
 Ans.

10.6    MEDIAN
Median is defined as the measure of the central item when they are arranged in ascending or
descending order of magnitude.

When the total number of the items is odd and equal to say n, then the value of 
1 ( 1)
2

n  th

item gives the median.
When the total number of the frequencies is even, say n, then there are two middle items, and so

the mean of the values of 
1
2

nth and
1 1
2

n  
 

 th items is the median.

Example 5. Find the median of  6,  8,  9,  10,  11,  12,  13.
Solution. Total number of items = 7

                            The middle item 1 (7 1) 4
2

th th  

                                  Median  = Value of the 4th item  =  10          Ans.
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For grouped data, 

1
2Median .

N F
l i

f


 

where l is the lower limit of the median class, f is the frequency of the class, i is the width
of the class-interval, F is the total of all the preceeding frequencies of the median-class and N is
total frequency of the data.

Example 6. Find the value of Median from the following data:
No. of days for which absent

(less than)
5 10 15 20 25 30 35 40 45

No. of students 29 224 465 582 634 644 650 653 655

Solution. The given cumulative frequency distribution will first be converted into ordinary
frequency as under

       Class- Interval      Cumulative frequency            Ordinary frequency
0 – 5 29        29 = 29

5 – 10 224 224 – 29 =  195
10  – 15 465 465 – 224  =  241
15 – 20 582 582 – 4 65 = 117
20 – 25 634 634 – 582   =  52
25 – 30 644 644 – 634   =  10
30 – 35 650 650 – 644    =  6
35 – 40 653 653 – 650    =  3
40 – 45 655 655 – 653    =  2

Median  =  size of 655
2

 or  327.5th item

327.5th item lies in 10-15 which is the median class.

2
N C

M l i
f


 

where l stands for lower limit of median class,

   N stands for the total frequency,

   C stands for the cumulative frequency just preceeding the median class,

   i stands for class interval

    f stands for frequency for the median class.

655 224
2Median 10 5

241


  

                  
103.5 510

241


   10  +  2.15  =  12.15                                 Ans.

10.7  MODE
Mode is defined to be the size of the variable which occurs most frequently.
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Example 7. Find the mode of the following items :
0, 1, 6, 7, 2, 3, 7, 6, 6, 2, 6, 0, 5, 6, 0.

Solution. 6 occurs 5 times and no other item occurs 5 or more than 5 times, hence the mode
is 6.         Ans.

For grouped data,
–1

1 1

–
.

2 – –
f f

Mode l i
f f f

 

where l is the lower limit of the modal class, f is the frequency of the modal class, i is the
width of the class, f–1 is the frequency before the modal class and f1 is the frequency after the
modal class.
Emperical formula

Mean – Mode = 3 [Mean –Median]
Example 8. Find the mode from the following data:

Age 0 – 6 6 – 12 12 – 18 18 – 24 24 – 30 30 – 36 36 – 42

Frequency 6 11 25 35 18 12 6

Solution.
Age          Frequency Cumulative frequency

0 – 6 6 6

6 – 12 11 17
12 – 18 25 = f–1 42
18 – 24 35 = f 77
24 – 30 18  = f1 95
30 – 36 12 107
36 – 42 6 113

1

1 1

Mode
2

f f
l i

f f f





  

 

           
35 2518 6

70 25 18


  
 

             
6018 18 2.22 20.22
27

    

                        Ans.
10.8  GEOMETRIC MEAN

If x1, x2, x3, ..... , xn be n values of variates x, then the geometric mean

                                                            
1

1 2 3 4( ...... )n
nG x x x x x     

Example 9. Find the geometric mean of 4, 8, 16.
       Solution.                       1/3. . (4 8 16) 8.G M             Ans.
10.9    HARMONIC  MEAN

Harmonic mean of a series of values is defined as the reciprocal of the arithmetic mean of
their reciprocals. Thus if H be the harmonic mean, then

1 2

1 1 1 1 1.......
nH n x x x
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Example 10. Calculate the harmonic mean of 4, 8, 16.

Solution.
1 1 1 1 1 7

3 4 8 16 48H
      

48 6.853
7

H   Ans.

10.10 AVERAGE   DEVIATION   OR   MEAN   DEVIATION
It is the mean of the absolute values of the deviations of a given set of numbers from their
arithmetic mean.
If x1, x2, x3, ...., xn be a set of numbers with frequencies 1 2, ,..... nf f f respectively. Let x be the
arithmetic mean of the numbers x1, x2, ...., xn, then

Mean deviation 
i i

i

f x x
f





Example 11. Find the mean deviation of the following frequency distribution.
   Class      0 – 6 6 –12     12 –18 18 – 24     24 –30
   Frequency       8   10        12     9        5
Solution. Let a = 15

             Class  Mid- value   Frequency        d = x – a    fd  |x – 14|        f|x – 14|

        x       f
0–6         3      8 –12 –96         11 8 8

       6–12         9     10   –6 –60           5 5 0
     12–18       15     12     0    0           1 1 2
     18–24       21       9 + 6  54           7 6 3
     24–30       27       5 + 12  60         13 6 5
      Total      44 – 42 278

        
42Mean 15 – =14 nearly
44

fd
a

f
  



          Average deviation 278 6.3
44

f x x
f


  


Ans.

10.11 STANDARD DEVIATION
Standard deviation is defined as the square root of the mean of the square of the deviation

from the arithmetic mean.
2( )

. .
f x x

S D
f


  




Note. 1. The square of the standard deviation 2 is called variance.
                2. 2 is called the second moment about the mean and is denoted by 2 .
10.12 SHORTEST METHOD FOR CALCULATING STANDARD DEVIATION

We know that   2 2 21 1( ) ( )f x x f x a x a
N N

       

                                                                21 ( )f d x a
N

             Where x a d 
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2 21 1 12( ) ( )fd x a fd x a f f N
N N N

        
2 21 12( ) ( )fd x a fd x a

N N
     

           
fd

x a
N

          or        
fd

x a
N

  

                                                          

2

2 21 12
fd fd

fd fd
N N N N

                  

  

                                                          

2

21 fd
fd

N N
 

    
 



                                                  

22

. .
fd fd

S D
N N

 
      

 

 

Note.      Coefficient of variation 100
x


 

Example 12. Calculate the mean and standard deviation for the following data :
Size of item 6 7 8 9 10 11 12
Frequency 3 6 9 13 8 5 4

          Solution. Assumed mean = 9                                                 (A.M.I.E., Winter 2001)
x f d = x – a                    f.d. f. d2

6 3 –3 – 9 2 7
7 6 –2 –12 2 4
8 9 –1 – 9 9
9 13   0    0 0
10 8 +1    8 8
11 5 +2   10 2 0
12 4 +3   12 3 6

                = 48f     = 0f  d        2  = 124fd

                  Mean 9 0 9
fd

a
f

    


                     
2( )

. .
f x x

S D
f


 


               =

22 124 1.6
48

fd fd
f f

 
    
 

 
         Ans.

Example 13. From the following frequency distribution, compute the standard
deviation of 100 students :

Mass in kg 60 – 62 63 – 65 66 – 68 69 – 71 72 – 74
Number of students 5 18 42 27 8
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        Solution.           Assumed mean = 67

Mass         Number of       x                  d = x —67 f . d f. d2

in kg         students f
60 – 62   5      61            – 6 – 30 180
63 – 65 1 8      64            – 3 – 54 162
66 – 68 4 2      67               0      0     0
69 – 71 2 7      70               3     81 243
72 –74    8      73               6     48 288

        = 100f            = 45fd            2  = 873f  d

                                           

2 22 873 45. .
100 100

fd fd
S D

f f
             

 
 

8.73 – 0.2025 8.5275 2.9202    Ans.

Example 14. Compute the standard deviation for the following  frequency distribution:

Class interval 0 – 4 4 – 8 8 – 12 12 – 16

Frequency 4 8 2 1

Solution.    Assumed mean = 6
Class intervalf  x d = x —6   f d       f d2

0 – 4 4   2     – 4 – 16 64
4 – 8 8   6        0      0   0
8 – 12 2 10    + 4      8 32

      12 – 16 1 14    + 8      8 64

      = 15f = 0fd 2  = 160f d

                                                              

22 160. . 0 3.266
15

fd fd
S D

f f
 

      
 

 
  Ans.

10.13 MOMENTS

The rth moment of a variable x about the mean x  is usually denoted by r  is given by

                
1μ ( ) ,r

r i if x x
N

  if N

The rth moment of a variable x about any point a is defined by

              
1μ' ( )r

r i if x a
N

 

In particular 0
0

1 1μ ( ) 1i i
Nf x x f

N N N
     

0
0

1 1μ' ( ) 1i i
Nf x a f

N N N
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1
1μ ( ) 0if x x
N

   , 1
1μ' ( )if x a x a
N

   

2 2
2

1μ ( ) .if x x
N

   
 Relation between moments about mean and moment about any point.

      
1 1μ ( ) ( ) ( )

rr
r i if x x f x a x a

N N
        

           
1 ( )r

i if X d
N

    where   Xi = x – a and d = x  – a

                                                                               1 2 2 3 3
1 2 3

1 ......i
r r r r r r r

i i i i i i if X C f X d C f x d C f x d
N

           
                 

2 3
1 –1 2 –2 3 –3= μ'  – μ'  + μ' – μ'  +.......r r r

r r r rC d C d C d

In particular
       2

2 2 1μ  = μ'  – μ'

        3
3 3 2 1 1μ  = μ'  – 3μ' μ'  + 2μ'

                        2 4
4 4 3 1 2 1 1μ  = μ'  – 4μ' μ'  + 6μ' μ'  – 3μ

Note.1. The sum of the coefficients of the various terms on the right-hand side is zero.
   2. The dimension of each term on right-hand side is the same as that of terms on  the left.

10. 14    MOMENT  GENERATING  FUNCTION
The moment generating function of the variate x about x = a is defined as the expected value of

( )t x ae  and is denoted by Ma (t).

                  ( )( ) it x a
a iM t Pe 

             
2

2( ) ( ) ... ( ) ...
2! !

r
r

i i i i i i i
t tP t P x a P x a P x a

r
          

             
2

1 21 ' ' ... ' ...
2! !

r

r
t tt

r
        

                    where μ 'r is the moment of order r about a

                    Hence          μ ' =r  coefficient of 
!

rt
r

   or    
0

μ ' ( )
r

r ar
t

d M t
dt



 
  
 

                    again                     Ma (t)  ( )it x a
iPe 

at txi
ie Pe  0 ( )ate M t

Thus the moment generating function about the point a = e–at moment generating function
about the origin.

10.15 (1)  SKEWNESS
Skewness denotes the opposite of symmetry. It is lack of symmetry. In a symmetrical series,
the mode, the median, and the arithmetic average are identical.

Coefficient of skewness  = 
Mean – Mode

standard deviation
(2) KURTOSIS.   It measures the degree of peakedness of a distribution and is given by

Measure of kurtosis
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2

4
2 2

μ
β  = ,

μ

2

2

( – )
μ  = ,

x x
N

 4

4

( – )
μ  = ,

x x
N



If 2 = 3, the curve is normal or mesokurtic.
If 2 > 3, the curve is peaked or leptokurtic.
If 2 < 3, the curve is flat topped or platykurtic.

Exercise 10.1
1. Marks obtained by 9 students in statistics are given below

52, 57, 40, 70, 43, 40, 65, 35, 4 8
Calculate the arithmetic mean.                   Ans.
50.

2.Calculate the mean of the following:

Height in cm 65 66 67 68 69 70 71 72 73

Number of plants 1 4 5 7 11 10 6 4 2

Ans. 69.18.
3. Find the mean for the following distribution :

Marks No. of students Marks No. of Students
0-10 3 50 – 60 15

10-20 5 60 – 70 12
20-30 7 70 – 80 6
30-40 10 80 – 90 2
40-50 12 90 – 100 8

            Ans. 51.75
4. Determine the mode from the following figures:

25, 15, 23, 40, 27, 25, 23, 25, 20.    Ans. 25.

5. Find the median of the following :

20, 18, 22, 27, 25, 12, 15.                                                 Ans. 20.

6.  The Mean of 200 items was 50. Later on it was discovered that two items were misread as 92
and 8 instead of 192 and 88. Find the corrected mean Ans. 53.6

Negative skewness
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    7. Calculate the mean and standard deviation of the following frequency distribution.

                                                                                                                   Ans. Mean = 31.34, S.D.
= 16.67

     8. Compute the standard deviation from the following distribution of marks obtained by 90 students:
                                                                              Ans. 17.65.

9.    The following table shows the Marks obtained by 100 candidates in an examination. Calculate

the mean, median and standard deviation.
Ans. Mean = 32, S.D. = 12.36, Median = 32.11

10.   Fill in the blanks :
         (a) Average value may be termed as measure of.....       (b) 2  ...............

 ( c) 2μ =...............                                                             (d) The curve is normal if  2β = ........

(e)  The value of ( ) ................f x x 
 (f)  The measure of central item is called as...........
(g)  The size of the variable which occurs most frequently is known as...........
(h)  Coefficient of skewness = ...........
(i)  The ratio of the standard deviation to the mean is known as...........
(j)  The square of standard deviation is known as the...........

        Ans. (a) Central tendency, (b)
4
2
2

μ
,

μ (c)

2( )
,

x x
N


     (d) 3,  (e) 0,  (f) median,

                    (g) mode, (h) 
Mean – Mode ,

Standard deviation
(i) Coefficient of standard deviation, (j) Variance

11. The expected value of a random variable X is 2 and its variance is 1, then variance of 3X+ 4 is
(a) 9 (b) 7 (c) 3  (d) 13  (A.M.I.E.T.E., Dec. 2004)       Ans. (a)

12.  The expected value of a random variable X is 3 and its variance is 2. Then the variance of
2X + 5 is
(a) 8 (b) 9 (c) 10 (d) 11  (A.M.I.E.T.E., June 2006)      Ans. (a)

10.16   CORRELATION
Whenever two variables x and y are so related that an increase in the one is accompanied by

an increase or decrease in the other, then the variables are said to be correlated.
For example, the yield of crop varies with the amount of rainfall.
 If an increase in one variable corresponds to an increase in the other, the correlation is said to be

Weekly wages in Rs. No. of persons Weekly wages in Rs. No of persons
4.5 – 12.5 4 44.5 – 52.5 3

12.5 – 20.5 24 52.5 – 60.5 5
20.5 – 28.5 21 60.5 – 68.5 8
28.5 – 36.5 18 68.5 – 76.5 2
36.5 – 44.5 5

Marks 20 – 29 30 – 39 40 – 49 50 – 59 60 – 69 70 – 79 80 – 89 90 – 99
No. of students 5 12 15 20 18 10 6 4

Marks 1 – 10 11 – 20 21 – 30 31 – 40 41 – 50 51 – 60
No. of candidates 3 16 26 31 16 8

` `
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positive. If increase in one corresponds to the decrease in the other the correlation is said to be
negative. If there is no relationship between the two variables, they are said to be independent.

Perfect Correlation: If two variables vary in such a way that their ratio is always constant, then
the correlation is said to be perfect.
10.17    SCATTER  OR DOT-DIAGRAM

When we plot the corresponding values of two variables, taking one on x-axis and the other
along y-axis, it shows a collection of dots.

This  collection of dots is called a dot diagram or a scatter diagram

Methods of Determining Simple Correlation
Methods

Graphical        Algebraic

Scatter Diagram             Correlation graph

Karl Pearsons Spearman’s Concurrent Other
Coefficient of Rank differences Deviations Methods
Correlation Method Method

10.18    KARL  PEARSON’S  COEFFICIENT  OF CORRELATION
r between two variables x and y is defined by the relation

   2 2

( , ) ,
x y

XY P Covariance x yr
variance x variance yX Y

  
 


 

 where X = x – x, Y = y – y
  i.e. X, Y are the deviations measured from their respective means,

co - variance
XY

p
n

 
   
 



 and ,x y   being the standard deviations of these series.
Example 15. Ten students got the following percentage of marks in Economics and    Statistics.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Statistics 747

Calculate the coefficient of correlation.

Solution. Let the marks of two subjects be denoted by x and y respectively.

 Then the mean for x marks 650 65
10

  and the mean of y marks 660 66
10

 

If X and Y are deviations of x’s and y’s from their respective means, then the data may be
arranged in the following form :

x y X = x – 65 Y = y – 66    X2  Y 2   X Y
7 8 8 4    13    18   169 324  234
3 6 5 1 – 29 – 15   841 225  435
9 8 9 1    33    25 10 89 625  825
2 5 6 0 – 4 0  – 6 1600   36  240
7 5 6 8    10     2  100     4    20
8 2 6 2    17 – 4  289   16 – 68
9 0 8 6    2 5  2 0   625 400  500
6 2 5 8  – 3 – 8       9   64    24
6 5 5 3     0  – 13      0 169      0
3 9 4 7 – 2 6 – 19   676 361   494
650 660       0      0 5 39 8 2224 2704

              Here 2X = 5398, 2Y  =   2224, X Y  = 2704

                2 2

2704
5398 2224

XY
r

X Y
 




 

    
2704 2704 0.78

73.4 47.1 3457
  


        Ans.

Example 16. Find the coefficient of correlation between the age and the sum assured from
the following table.

Solution. Let the sum assured denote by x and the age group by y.

                                 
30,000' ,

10,000
xx 

       
45'

10
yy 



Roll No. 1 2 3 4 5 6 7 8 9 10
Marks in Economics 78 36 98 25 75 82 90 62 65 39
Marks in Statistics 84 51 91 60 68 62 86 58 53 47

Sum assured (in Rs )
Age- group 10,000 20,000 30,000 40,000 50,000

20 – 30 4 6 3 7 1

30 – 40 2 8 15 7 1
40 – 50 3 9 12 6 2

50 – 60 8 4 2 — —

`
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   2 22 2

' ' . ' . '

. ' . ' . ' . '

N fx y f x f y
r

N f x f x N f x f y




 

  
   

2 2

100( 7) ( 33)( 61) 700 2013
13100 1089 13100 3721100(131) ( 33) 100(131) ( 61)

     
 

    

              
2713 2713 –2713 –0.2556

109.59 96.85 10613.791512011 9379
 

   


Hence, the age and sum assured are negatively correlated, i.e., as age goes up the sum
assured comes down. Ans.

10.19 SHORT-CUT  METHOD

2 222

' ' ' '

' ' ' '

X Y X Y
N N N

r
X X Y Y

N N N N

  
     
  

                   
          

  

   

               where r is the coefficient of correlation.
                      X  = deviation from assumed mean of x = x –a

Y  = deviation from assumed mean of y = y –b
 N = Total number of items.

10,000 20,000 30,000 40,000 50,000           x

y      x
y

–2 –1 0 1 2

f fxy f fxy f fxy f fxy f fxy

f
(Rows)

f.y f.y f.xy

20–30
25 –2

4
16

6
12

3
0

7
–14

1
–4 

 –42 84 +10

30–40 35
–1

2
4

8
8

15
0

7
–7

1
–2 

 –33 33 +3

40–50 45
0

3
0

9
0

12
0

6
0

2
0 

 0 0 0

50–60 55 1 8
–16

4
–4

2
0

–
0

–
0 

 14 14 –20

f
(colu-
mn)

17 27 32 20 4  fy=
–61

fy2
=131

fxy
= –7

fx 34 27 0 20 8 fx
= –33

fx2 68 27 0 20 16 fx2
= 131

fx y 4 16 0 –21 –6 fx y
= –7
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          x–age
marks 0 – 4 4 – 8 8 –12 12 –16

0 – 5 7   — — —
5 –10           6   8 — —

10 –15 —   5 3 —
15 – 20 —   7 2 —
20 – 25 —   — — 9

2 6 10 14

–2 –1 0 1

       x

y    X
Y f fXY f fXY f fXY f fXY

f
(Row)

fY fY2 fXY

0–5 2.5 –2 7 28 7 –14 –28 28

5–10 7.5 –1 6 12 8 8 14 –14 –14 20

10–15 12.5 0 5 0 3 0 8 0 0 0

15–20 17.5 1 7
–7

2 0 9 9 9 –7

20–25 22.5 2 9 18 9 18 36 18

f 13 20 5 9 47 fY=
–1

fY2
=87

fXY
= 59

fX –26 –20 0 9 fX
= –37

  

fX2 52 20 0 9 fX2
= 81

  

fX Y 40 1 0 18 fX Y
= 59

  

Example 17. Calculate the coefficient of correlation for the following table :

Solution. Replace the class-interval for x and y by their mid-points and then let
10 –12.5' '

4 5
x yX and Y

 

  Here,       ' 37,fX   ' 2 81,fX  ' 1fY   , 2' 87,fY  fX Y   = 59

                       

' ' ' '

2 2'2 ' ' 2 '

fX Y fX fY
N N N

r
fX fX fY fY
N N N N

  
     
  

   
       
   

  

   

  2 2

59 37 1
1.255 0.01747 47 47

1.732 0.620 1.851 0.000581 37 87 1
47 47 47 47

          
                  

         

                          
1.238 1.238 1.238 0.87

1.05 1.36 1.4281.103 1.8505
   

 Ans.
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10. 20 SPEARMAN’S RANK CORRELATION

     
2

2

6
1

( 1)
d

r
n n

 




Solution. Let 1 1 2 2( , ), ( , )...( , )n nx y x y x y  be the ranks of n individuals corresponding to two
characteristics.
Assuming nor two individuals are equal in either classification, each individual takes the values
1, 2, 3, ... n and hence their arithmetic means are, each

      
1 ( 1 1

2 2
n n n n

n n
 

  

Let 1 2 3, , ,... nx x x x  be the values of variable X and 1 2 3, , ,... ny y y y those of Y.

Then                   
1 1

2 2
n nd X Y x y x y              

   
where X and Y are deviations from the mean.

          
2 2

2 21 1( 1)
2 2

n nX x x n x            
   

    

                       
2( 1)(2 1) ( 1) ( 1) 1

6 2 2
n n n n n n nn         

 

                         = 
2( 1)

12
n n 

Clearly,               X Y  and 2 2X Y 

                              
2

2 ( 1)
12

n nY 


Hence              2 2 2 2( ) 2d x y x y xy        

                            
2

21 ( 1)
2 6

n nXY d
 

  
 

 

        2 21 1( 1)
12 2

n n d   

Putting these values in      
2 2

XY
r

X Y
 
 

        

2 2

2

1 1( 1)
12 2

( 1)
12

n n d

n n

 






        
2

2

6
1

( 1)
d

n n
 




        Ans.

10.21  SPEARMAN’S  RANK  CORRELATION  COEFFICIENT

     
2

2

6
1

( 1)
d

r
n n

 




where r denotes rank coefficient of correlation and d refers to the difference of ranks between
paired items in two series.
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Example 18.  Compute Spearman’s rank correlation coefficient r for the following data:

Person A B C D E F G H I J
Rank in statistics 9 10 6 5 7 2 4 8 1 3
Rank in income 1 2 3 4 5 6 7 8 9 10

Solution.

Person Rank in statistics Rank in income d = R1 – R2 d2

A 9 1 8 64
B 10 2 8 64
C 6 3   3 9
D 5 4    1 1
E 7 5 2 4
F 2 6 –4 16
G 4 7 –3 9
H 8 8   0 0
I 1 9 –8 64
J 3 10 –7 49

 d2 = 280

                                                                
2

2

6
1

( 1)
d

r
n n

 




6 2801 1 1.697 0.697
10(100 1)

r 
     

         Ans.

Example 19.  Establish the formula 2 2 2 2x y x y x yr       
                         where r is the correlation coefficient between x and y.

Solution. We know that         
2

2 ( )
x

x x
n


  

            
2

2 [( ) ( )]
x y

x y x y
n

  
 

          x y   mean of ( )x y series = mean of x – mean of y x y 

         
2 2

2 [( ) ( )] [( ) ( )]
x y

x y x y x x y y
n n

     
   

    
2 2[( ) ( ) 2( )( )]x x y y x x y y

n
     



    
2 2( ) ( ) 2 ( )( )x x y y x x y y

n n n
   

    

   2 2 2 ( )( )
x y

x x y y
n

 
     ...(1)

We know that
( )( )

x y

x x y y
r

n
 


 


 or 

( )( )
x y

x x y y
r

n
 

  

Putting this value in (1), we get 2 2 2 2x y x y x yr            Proved.
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Example 20. If X and Y are uncorrelated random variables, find the coefficient of correlation
between X + Y and X – Y.

Solution.
Let               u = X + Y      and      v = X – Y

Then              
( )( )

u v

u u v v
r

n 
 

 

Now              ,u X Y u X Y   

Similarly              v X Y 

Now              ( )( )u u v v 
( )[( ) ( )]X X Y Y X X Y Y      
( )( )x y x y  

2 2x y  
2 2
x yn n  

Also           
2

2 2( ) 1 [( ) ( )]u

u u
X X Y Y

n n



     

21 ( )x y
n

 

2 21 ( 2 )x y xy
n

    
2 2
x y    (As X and Y are not correlated, we have  0xy  )

Similarly           2 2 2
v x y   

               
( )( )

u v

u u v v
r

n 
 

 

2 2

2 2 2 2

( )

( ) ( )
x y

x y x y

n

n n

 

   




 

2 2

2 2
x y

x y

 

 




   Ans.

10.22 REGRESSION
If the scatter diagram indicates some relationship between two variables x and y, then the dots of
the scatter diagram will be concentrated round a curve. This curve is called the curve of regression.
Regression analysis is the method used for estimating the unknown values of one variable
corresponding to the known value of another variable.

10.23  LINE  OF  REGRESSION
When the curve is a straight line, it is called a line of regression. A line of regression is the
straight line which gives the best fit in the least square sense to the given frequency.
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10.24  EQUATIONS  TO  THE  LINES  OF  REGRESSION
Let y a bx                                             ... (1)
be the equation of the line of regression of y on x.
Let ( , )r rx y be any point of dot.
From the figure

  rPR y

   rQR a bx 

   r rPQ PR QR y a bx    
Let S be the sum of the squares of such distances, then

       2( )S y a bx  
According to the principle of least squares, we have to choose a and b so that  S  is minimum. The
method of least square gives the condition for minimum value of S.

–2 ( ), 2 ( )S Sy a bx y a bx x
a b
 

      
  

  0, 0,S S
a b
 

 
 

  for S minimum

i.e.              ( ) 0y a bx       0y na b x   
               y na b x   ... (2)

and        2( ) 0xy ax bx        2 0xy a x b x    
           2xy a x b x    ...(3)

Dividing (2) by n, we get

                
y x

a b
n n

   ,
y x

y x
n n

 
   

 

 

                y a bx 
where x  and y  are the means of x series and y series.

This shows that  ,x y  lie on the line of regression (1), shifting the origin to  , ,x y  the equation
(3) becomes

           2( )( ) ( ) ( )x x y y a x x b x x       
But          0x x      i.e.    2( )( ) ( )x x y y b x x    

        
 

 2 2

( )x x y y XY
b

Xx x

 
 


 

 ...(4)

We know        
2 2 2 2 x y

XY XY XY
r

nX Y X Y
n

n n

  
 

  
   

               x yXY nr  
Putting the value of XY  in (4), we get

     2 2 2
x y x y x y y

xx

nr r r r
b

X X
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i.e. slope of the line of regression y

x

b r


 


The line of regression passes through ( , ).x y
Hence the equation to the line of regression is

   ( )y

x

y y r x x


  


Similarly the regression line of x on y is

   ( ).x

y

x x r y y
  



Note. y
yx

x

b r





and x
xy

y

b r





are known as the coefficients of regression.

2. xy
yx xy

x y

b b r r r
  

       
Example 21. If  be the acute angle between the two regression lines in the case of two variables
x and y, show that

   
2

2 2

1tan x y

x y

r
r

 


 





where , ,x yr   have their usual meanings. Explain the significance wheree 0r  and 1r   .
       (A.M.I.E., Winter 2001)

Solution. Lines of regression are

    y

x

y y r x x



   ...(1)    1

y

x

m r



 

and     x

y

x x r y y



   ...(2)    2
1 y

x

m
r



 

   
2 1

1 2

tan
1
m m

m m


 


             2

2

1 1

11 1

y y y

x x x

y y y

x x x

r r
r r

r
r

         
  

  
  

             

2
2 2

2 2 2 2

1 1.

y
x

x yx

x y x y

r r
r r


 

      
    

...(3)            Proved.

(a) If r = 0, then there is no relationship between the two variables and they are independent.

On putting the value of r = 0 in (3), we get tan , .    


 So the lines (1) and (2) are
perpendicular.                     (A.M.I.E., Summer 1998)

(b) If r = 1 or –1
On putting these values of r in (3) we get, tan 0   or   
i.e. lines (1) and (2) coincide.
The correlation between the variables is perfect.        Ans.
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Example 22. Find the correlation coefficient between x and y, when the lines of regression are:
2 9 6 0x y    and 2 1 0x y  

Solution. Let the line of regression of x on y be 2 9 6 0x y  
Then, the line of regression of y on x is 2 1 0x y  


9 92 9 6 0 3
2 2xyx y x y b       

and    
1 1 12 1 0
2 2 2yxx y y x b       

         
9 1 3 1
2 2 2xy yxr b b      which is not possible.

So our choice of regression line is incorrect.
 The regression line of x on y is 2 1 0x y  

And, the regression line of y on x is 2 9 6 0x y  
    2 1 0 2 1 2xyx y x y b       

And
2 2 22 9 6 0
9 3 9yxx y y x b       

         
2 22
9 3xy yxr b b    

Hence the correlation coefficient between x and y is
2
3 .

Example 23. The following regression equations were obtained from a correlation table:
         0.516 33.73, 0.512 32.52y x x y   

Find the value of (a) the correlation coefficient, (b) the mean of x’s and (c) the mean of y’s

Solution.          0.516 33.73y x  ...(1)
         0.512 32.52x y  ...(2)

(a) From (1),     0.516y

x

r



 ...(3)

From (2),     0.512x

y

r  
 ...(4)

From (3) and (4)

  (0.516)(0.512)y x

x y

r r
   

      

       2 0.516 0.512r            0.514r 
     Coefficient of correlation 0.514 . Ans.
(b) (1) and (2) pass through the point ( , )x y .

          0.516 33.73y x  ...(5)

         0.512 32.52x y  ...(6)
On solving (5) and (6), we get

67.6, 68.61x y          Ans.
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Example 24. The two regression equations of the variables x and y are
          19.13 0.87x y   and 11.64 0.50y x  .

Find (i) Mean of x’s; (ii) Mean of y’s; (iii) The correlation coefficient between x and y.
Solution. 19.13 0.87x y  ...(1)

11.64 0.50y x  ...(2)
As (1) and (2) pass through ( , )x y :

19.13 0.87x y  ...(3)
11.64 0.50y x  ...(4)

On solving (3) and (4) we get
15.935, 3.67x y 

From (1)         0.87x

y

r   
 ...(5)

From (2)           0.50y

x

r


 
 ...(6)

As x  and y  are always positive, so r is negative.
Multiplying (5) and (6) we get

              0.87 ( 0.50)yx

y x

r r


    
 

               2 0.435r   0.66r           Ans.
Example 25. The regression equations calculated from a given set of observations for two
random variables are

0.4 6.4x y   and 0.6 4.6y x  
Calculate ,x y and r..
Solution. The regression equations are

0.4 6.4x y          ... (1)
0.6 4.6y x          ... (2)

From (1) coefficient of regression of x  on 0.4x

y

y r   


...(3)

From (2) coefficient of regression of y on 0.6y

x

x r


  


...(4)

From (3) and (4)

           ( 0.4)( 0.6)yx

y x

r r
   

        
                     2 0.24r 
                   r  =  ± 0.49
In (3) and (4), x  and y  are (always) positive so r is negative

r = – 0.49
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To find x  and y  we solve the equations  (1)  and  (2) simultaneously. Their point of intersection

is ( )x, y

    x  = 6, y  = 1 Ans.
Example 26. Show that the geometric mean of the coefficients of regression is the coefficient of

correlation.

Solution. The coefficients of regressions are andy x

x y

r r
 
 

i.e.          .y x

x y
G.M. r r r

 
 

 

     = coefficient of correlation. Proved.
Example 27. Prove that arithmetic mean of the coefficients of regression is greater than the

coefficient of correlation.      (A.M.I.E., Summer 2000)

Solution. Cefficients of regression are andy x

x y

r r
 
 

We have prove that A.M. > r

           
1 1 1
2 2

y yx x

x y x y

r r r
     

       
         


2 212 0 2 0y x
x y x y

x y x y

 
              


21 0x y

x y

        which is true.  Proved.

Example 28. Find the regression line of y on x for the following data
                      Estimate the value of y, when x = 10.
Solution.
Let  y = a + bx be the line of regression of y on x, where a and b are given by the following

x 1 3 4 6 8 9 11 14
y 1 2 4 4 5 7 8 9

S. No. x y xy x2

1 1 1 1         1
2 3 2 6         9

3 4 4 16 16
4 6 4 24 36

5 8 5 40 64
6 9 7 63 81
7 11 8 88 121

8 14 9 126 196

Total 56 40 364 524
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equations :

y na b x   or  40 = 8a +56b ...(1)
2xy a x b x    or 364 = 56a +524b ...(2)

On solving (1) and (2) we get,

   
6 7and

11 11
a b 

The equation of the required line is

    
6 7

11 11
y   x   or 7x–11y + 6 =0 Ans..

If    
6 7 76 1010, (10) 6

11 11 11 11
x y               Ans.

Example 29. In a study between the amount of rainfall and the quantity of air pollution
removed the following data were collected.

Daily Rainfall in 0.01 cm 4.3 4.5 5.9 56 61 5.2 3.8 2.1
Pollution Removed (mg/m3) 12.6 121 11.6 11.8 11.4 11.8 13.2 14.1

Find the regression line of y on x.                       (A.M.I.E., Summer 2000)
Solution.

S.No. x (metre) y xy x2

1 4.3 12.6 54.18 18.49
2 4.5 12.1 54.45 20.25
3 5.9 11.6 68.44 34.81
4 5.6 11.8 66.08 31.36
5 6.1 11.4 69.54 37.21
6 5.2 11.8 61.36 27.04
7 3.8 13.2 50.16 14.44
8 2.1 14.1 29.61 4.41

37.5 98.6 453.82 188.01

Let y = a +  bx  be the equation of the line of regression of y on x, where a and b are given  by
the following equations.

y na b x     98.6 = 8a + 37.5b        ...(1)
2xy a x b x     453.82 = 37.5a + 188.01b ...(2)

On solving (1) and (2), we get a = 15.49 and b = – 0.675.
The equation of the line of regression is y = 15.49 – 0.675x Ans.
Example 30. The following data regarding the heights (y) and the weights (x) of 100
college students are given :

2x = 15000, x =  2272500

  y =6800, 2y =46.3025

x y =1022250
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Find the correlation coefficient between height and weight and state the equation of regression
of height on weight

Solution.
15000 6800150, 68

100 100
x y

x y =
n n

     

2 22 2272500 15000
100 100x

x x
n n

              

 

22725 22500 225 15x    

2 22 463025 6800
100 100y

y y
n n

              

 

    4630.25 4624 6.25 2.5   

1022250( ) ( ) (150)(68)
100

( )( ) 15 2.5x y

xy
x y

nr
 

 
  



    
10222.5 10200 22.5 1.5 0.6

15 2.5 15 2.5 2.5


   
 

Regression equation of y on x we have
2.5( ), 68 0.6 ( 150)
15

y

x

y y r x x y x
          
168 ( 150) or 10 680 = 150

10
y x y – x –  

    10 y  =  x  + 530       Ans.
10.25 ERROR  OF  PREDICTION

The deviation of the predicted value from the observed value is known as the standard error of
prediction. It is given by

   
2( )

  r
yx

y y
E

n
where y is the actual value and yr the predicted value.
Example 31. Prove that

(i) . 1 – 2
yx yE r  (ii) 1 – 2

xy xE r 

Solution. The equation of the line of regression of y on x is

( )y

x

y – y r x – x





     ( )y
r

x

y y +r x – x





So,   

1/222( ) 1 ( )yr
yx

x

y y
E y – y r x x

n n




   
     
   

 

           =

1/ 22 2
2 2

2

21· ( ) ( ) ( )( )y y

xx

r r
y y x x x x y y

n
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1/ 222 2

2

( ) ( ) ( )( )2y y2

xx

y y x x x x y y+r r
n n n

     
  

  
  

         

1/ 22
2 2 2

2 . 2 . .y y
y x x y

xx

r r r
  

       
  

         
1/ 2 1/ 22 2 2 2 2 2 2 22y y y y yr r r               

         21y r    Proved.
(ii) Similarly  (ii) may be  proved.
Example 32. Find the standard error of estimate of y on x for the data given below:

x 1 3 4 6 8 9 11 14
y 1 2 4 4 5 7 8 9

Solution. The equation of the line of regression of y on x is

    
7 6 7 6. So
11 11 11 11r

xy x y         (See Example 28 on Page 757)

.            S.No.           x                    y yr                      (y – yr)                       (y–yr)
2

1            1   1
13
11

                      
2–

11
      

4
121

2            3                2                     
27
11

                   
5–

11
       

25
121

3            4                 4                   
34
11

  
10
11

      
100
121

4 6     4
48
11

4–
11

      
16
121

 5 8     5
62
11

7–
11

      
49

121

6 9     7
69
11

   
8

11
      

64
121

7 11     8
83
11

   
5

11
      

25
121

8 14    9
104
11

5–
11

      
25

121

     2 308( )
121ry y  

2( ) 308 7 0.564
22

r
yx

y y
E

n 121 8


   


 Ans.

Exercise   10.2
1.  Find the coefficient of correlation between x and y from the table of their values :

   
x 1 3 4 6 8 9 11 14
y 1 2 4 4 5 7 8 9                        Ans.0.977.
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2. Find the coefficient of correlation of the following data taking new origin of x at 70 and for y at 67.

x 67 68 64 68 72 70 69 70
y 65 66 67 67 68 69 71 73

(AMIE winter 2002)   Ans. 0.472
3. x and y are two random variables with the same standard deviation and correlation coefficient r.

Show that the coefficient of correlation between x and x + y is
1

2
 r

4.  Find the regression line of y on x for the data :

x 1 4 2 3 5
y 3 1 2 5 4    Ans. y = 2.7 + 0.1x

5. Find the correlation coefficient and the equations of regression lines from the following data :

x 1 2 3 4 5
y 2 5 3 8 7

   Ans. r = 0.81, x = 0.5y + 0.5,  y = 1.3x + 1.1
6. Find the regression line of y on x if

x 40 70 50 60 80 50 90 40 60 60
y 2.5 6.0 4.5 5.0 4.5 2.0 5.5 3.0 4.5 3.0

      Ans. y = 0.55 + 0.0583
x

7. The following marks have been obtained by a class of students in statistics.

Paper I 80 45 55 56 58 60 65 68 70 75 85
Paper II 81 56 50 48 60 62 64 65 70 74 90

        Compute the coefficient of correlation for the above data. Find the lines of regression.
    Ans. r = 0.918,  y –65.45 = 0.981 (x – 65.18)
          x – 65.18 = 0.859 (y – 65.45)

8. Find the equations to the lines of regression and the coefficient of correlation for the following
data:

x 2 4 5 6 8 11
y 18 12 10 8 7 5

 Ans.  y –10 = – 1.34 (x – 6), x – 6 = – 0.632 (y – 10), r = – 0.92
9.   The following results were obtained from lineups in Applied Mechanics and Engineering

  Mathematics in an examination :
Applied Mechanics

(x)
Engg. Maths.

(y)
Mean 47.5 10.5

Standard deviation 16.8 10.8
0.95r 

 Find both the regresssion equations. Also estimate the value of y for x = 30.
Ans. y = 0.611x + 10.5, x = 1.478 y – 1.143, y = 28.83

10.  The following results were obtained from records of age (x) and systolic blood pressure (y)  of
a group of 10 men:

  

x y
Mean 53 142
Variance 130 165

and  ( )( ) 1220   x x y y
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x 1 2 3 4 5
y 2 5 3 8 7

Find the appropriate regression equation and use it to estimate the blood pressure of a man
whose age is 45.           Ans.  y = 0.94 x + 92.26, Blood   pressure =
134.56

11.  The regression equation are : 7x – 16y + 9 = 0, 5y – 4x – 3 = 0 find ,x y and r

                            (AMIE, Winter 2003)  Ans.  ,

3 15 3, ,
29 419

x = – y r 

12.  If two regression coefficients are 0.8 and 0.2, what would be the value of coefficient of
correlation?              Ans.  r
=0.4

13.  In a partially destroyed laboratory record of an analysis of correlation data, the following results
only are legible :
Variance of x = 9
Regression equations: 8x – 10y + 66 = 0, 40x – 18y – 214 = 0.
What were (a) the mean values of x and y, (b) the standard deviation of y, and (c) the coefficient
of correlation between x and y.   (A.M.I.E, .Summer 2001 2002)

Ans. 13, 17, 0.8 6.6, 0.45 5.35, 0.6, 4.yx y y x x y r        
14.  The following regression equations and variances are obtained from a correlation table :

20x – 9y – 107 = 0, 4x – 5y + 33 = 0, variance of x = 9.
        Find (i) the mean values of x and y, (ii) the standard deviation of y.

Ans. 13, 17, 4.  yx y 
       (A.M.I.E., Winter 2000)

15.  Two random variables have the least square regression lines with equations 3x + 2y = 26 and
 6x + y = 31. Find mean values and correlation coefficient between x and y.

   Ans.  4, 7, 0.5x y r   
16.  Find the Standard error of estimate of y on x for the data given below  Ans. 1.349
17.   Fill in the blanks :

         (a)The correlation coefficient is the ..............mean between the regression coefficients.
         (b)The lines of regression always pass through a point ...............
         (c) Arithmetic mean of the coefficients of regressions is .............than the coefficient of correltion.

(A.M.I.E., Summer 2000)
         (d)The value of coefficient of correlation lies between .........and............
         (e)  If the two regression lines are perpendicular to each other, then the coefficient of correla-

tion     is equal to...................
          (f)  If two regression coefficients are, – 0.1 and – 0.9, the value of r is .............

         (g)  The normal equations for  fitting a curve of the form y  = a + bx + 2cx are
.................,and..............

         (h)  If 1r  and 2r  are two regression coefficients, then signs of 1r , 2r  depend on ............
          (i)  If coefficient of correlation r = 0, the two lines of regression are..................
          (j)  If two regression lines concide then the coefficient of correlation is ..........

(A.M.I.E., Winter 2000)
           Ans. (a) geometric, (b) ( , , )x y (c) greater, (d) –1 and 1, (e) 0, ( f ) – 0.3,

    (g) y = na + bx + c x2,x y = ax + bx2 + cx3  and  x2 y = ax2 + bx3+ c x4,

    (h) Coefficient of regression, (i) perpendicular, (j) ±1
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11
Probability

11.1 PROBABILITY
Probability is a concept which numerically measure the degree of uncertainty and therefore, of

certainity of the occurrence of events.
If an event A can happen in m ways, and fail in n ways, all these ways being equally likely to

occur, then the probability of the happening of A is

= 
Number of  favourable cases

Total number of  mutually exclusive and equally likely cases
= m

m n

and that of its failing is defined as
n

m n

If the probability of the happening = p
and the probability of not happening = q

then 1m n m np q
m n m n m n


    

    or p + q = 1.

For instance, on tossing a coin, the probability of getting a head is
1
2

.

11.2  DEFINITIONS
1. Die : It is a small cube. Dots are .  .. ... ::   :·:  :::  marked on its faces. Plural of the die is dice. On

throwing a die, the outcome is the number of dots on its upper face.
2. Cards : A pack of cards consists of four suits i.e. Spades, Hearts, Diamonds and Clubs. Each

suit consists of 13 cards, nine cards numbered 2, 3, 4, ..., 10, an Ace, a King, a Queen and a
Jack or Knave. Colour of Spades and Clubs is black and that of Hearts and Diamonds is red.
Kings, Queens and Jacks are known as face cards.

3. Exhaustive Events or Sample Space : The set of all possible outcomes of a single performance
of an experiment is exhaustive events or sample space. Each outcome is called a sample point.
In case of tossing a coin once, S = (H, T) is the sample space. Two outcomes - Head and Tail
- constitute an exhaustive event because no other outcome is possible.

4. Random Experiment : There are experiments, in which results may be altogether different,
even though they are performed under identical conditions. They are known as random
experiments. Tossing a coin or throwing a die is random experiment.

5. Trial and Event : Performing a random experiment is called a trial and outcome is termed as
event. Tossing of a coin is a trial and the turning up of head or tail is an event.

6. Equally likely events : Two events are said to be ‘equally likely’, if one of them cannot be
expected in preference to the other. For instance, if we draw a card from well-shuffled pack, we
may get any card, then the 52 different cases are equally likely.

7. Independent events : Two events may be independent, when the actual happening of one
does not influence in any way the probability of the happening of the other.

763
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Example. The event of getting head on first coin and the event of getting tail on the second
coin in a simultaneous throw of two coins are independent.

8. Mutually Exclusive events : Two events are known as mutually exclusive, when the occurrence
of one of them excludes the occurrence of the other. For example, on tossing of a coin, either
we get head or tail, but not both.

9. Compound Event : When two or more events occur in composition with each other, the
simultaneous occurrence is called a compound event. When a die is thrown, getting a 5 or 6
is a compound event.

10. Favourable Events : The events, which ensure the required happening, are said to be favourable
events. For example, in throwing a die, to have the even numbers, 2, 4 and 6 are favourable
cases.

11. Conditional Probability : The probability of happening an event A, such that event B has
already happened, is called the conditional probability of happening of A on the condition
that B has already happened. It is usually denoted by P (A/B).

12. Odds in favour of an event and odds against an event
If number of favourable ways = m, number of not favourable events = n

(i) Odds in favour of the event = 
m
n ,   (ii) Odds against the event =

n
m .

13. Classical Definition of Probability. If there are N equally likely, mutually, exclusive and
exhaustive of events of an experiment and m of these are favourable, then the probability of

the happening of the event is defined as m
N

.

14. Expected value. If p1, p2, p3 ...pn of the probabilities of the events x1, x2, x3  ...  xn  respectively then
expected value

E (x) = p1 x1 + p2 x2+ p3 x3+ ... + pn xn = 
1

n

r r
r

p x



Example 1. Find the probability of throwing (a) 5,(b) an even number with an ordinary six
faced die.

Solution. (a) There are 6 possible ways in which the die can fall and there is only one way of
throwing 5.

Number of  favourable ways 1Probability
Total number of  equally likely ways 6

  Ans.

(b)  Total number of ways of throwing a die = 6
Number of ways falling 2, 4, 6 = 3

The required probability = 
3 1
6 2
 Ans.

Example 2. Find the probability of throwing 9 with two dice.
Solution. Total number of possible ways of throwing two dice

= 6 × 6 = 36.
Number of ways getting 9 i.e., (3 + 6), (4 + 5), (5 + 4), (6 + 3) = 4.

 The required probability = 
4 1

36 9
 Ans.

Example 3. From a pack of 52 cards, one is drawn at random. Find the probability of
getting a king.

Solution. A king can be chosen in 4 ways. But a card can be drawn in 52 ways.

 The required probability = 
4 1

52 13
 Ans.
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Exercise 11.1
1. In a class of 12 students, 5 are boys and the rest are girls. Find the probability that a student selected

will be a girl. Ans. 
7

12

2. A bag contains 7 red and 8 black balls. Find the probability of drawing a red ball. Ans.
7

15
3. Three of the six vertices of a regular hexagon are choosen at random. Find the probability that the

triangle with three vertices is equilateral. Ans.
1

10
4. What is the probability that a leap year, selected at random, will contain 53 Sundays.

                    (A.M.I.E.T.E.,Summer 2002, 2001) Ans.
2
7

5. Choose the correct answer :
(a)  In solving any problem, odds against A are 4 to 3 and odds in favour of B in solving the same
         problem are 7 to 5. The probability that the problem will be solved is

(i)  
5
21

     (ii)
16
21

     (iii)  
15
84 (iv)

69
84

          (A.M.I.E.T.E., Winter 2003) Ans. (ii)

(b) In a given race, the odds in favour of horses A, B, C, D are 1 : 3, 1 : 4, 1 : 5, 1 : 6 respectively. The
probability that horse C wins the race is

(i)  
1
4

(ii)
1
5 (iii)

1
6                  (iv)

1
7 Ans. (iii)

(c) In tossing a fair die, the probability of getting an odd number or a number less than 4 is
(i) 2 (ii) 1/2 (iii) 2/3                      (iv) 3/4 Ans. (iii)

(d) An unbiased coin is tossed 3 times. The probability of obtaining two heads is

(i) 
1
2

(ii)   
3
8 (iii)   1                   (iv)

1
8            (A.M.I.E.T.E., Winter 2002) Ans. (ii)

6. Fill in the blanks with appropriate correct answer
(a) Chance of throwing 6 at least once in four throws with single die is ..........

(A.M.I.E., Summer 2000) Ans.
671

1296
(b) A pair of fair dice is thrown and one die shows a four. The probability that the other die shows

       5 is... (A.M.I.E., Summer 2000)  Ans.
1
36

11.3   ADDITION   LAW   OF   PROBABILITY
If p1, p2, ...... ,pn be separate probabilities of mutually exclusive events, then the probability P, that

any of these events will happen is given by P = p1+ p2+ p3 + ...... pn
Proof. Let A, B, C, ...... be the events, where probabilities are respectively p1, p2, ...... pn.
Let n be the total number of favourable cases to either A or B or C or.......

= m1 + m2  +  m3 +.......+ mn

Hence P (A + B + C...) = 1 2 3 ...... nm m m m
n

   

= 31 2 ...... nm mm m
n n n n
   

=  P(A) + P (B) + P (C) + ....
    P = p1+ p2+ p3 +......+ pn            Proved.
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NOT   MUTUALLY   EXCLUSIVE  EVENTS
Consider the case where two events A and B are not mutually exclusive. The probability of
the event that either A or B or both occur is given as

P (A  B) = P (A) + P (B) – P (A  B)
Example 4. An urn contains 10 black and 10 white balls. Find the probability of drawing

two balls of the same colour.

Solution. Probability of drawing two black balls = 
10

2
20

2

C
C

 Probability of drawing two red balls = 
10

2
20

2

C
C

     Probability of drawing two balls of the same colour

= 

10 10 10
2 2 2

20 20 20
2 2 2

10 9
2 12. 2.

20 19
2 1

C C C
C C C


  



= 
9

19 Ans.

Example 5. A bag contains four white and two black balls and a second bag contains three
of each colour. A bag is selected at random, and a ball is then drawn at random from the
bag chosen. What is the probability that the ball drawn is white ?
Solution. There are two mutually exclusive cases,
(i) when the first bag is chosen, (ii) when the second bag is chosen.

Now the chance of choosing the first bag is 
1
2

and if this bag is chosen, the probability

of drawing a white ball is 4/6. Hence the probability of drawing a white ball from first bag is
1 4 1
2 6 3
 

Similarly the probability of drawing a white ball from second bag is
1 3 1
2 6 4
 

Since the events are mutually exclusive the required probability

          
1 1 7
3 4 12

   Ans.

Example 6. Three machines I, II and III manufacture respectively 0.4, 0.5 and 0.1 of the total
production. The percentage of defective items produced by I, II and III is 2, 4 and 1 per cent
respectively. For an item chosen at random, what is the probability it is defective ?

Solution. The defective item produced by machine I = 
0.4 2 0.8
100 100




The defective item produced by machine II = 
0.5 4 2
100 100




The defective item produced by machine III = 
0.1 1 0.1
100 100
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0.8 2 0.1 2.9 0.029
100 100 100 100

    

The required probability = 
0.029

1
= 0.029 Ans.

11.4  MULTIPLICATION   LAW  OF  PROBABILITY
If there are two independent events the respective probabilities of which are known, then

the probability that both will happen is the product of the probabilities of their happening
respectively.

P (A B) = P (A) × P (B)
Proof. Suppose A and B are two independent events. Let A happen in m1 ways and fail in n1

ways.


1

1 1

( )
m

P A
m n




Also let B happen in m2 ways and fail in n2 ways.

P (B) =  
2

2 2

m
m n

Now there are four possibilities
A and B both may happen, then the number of ways = m1 . m2 .
A may happen and B may fail, then the number of ways = ml .n2.
A may fail and B may happen, then the number of ways = n1. m2 .
A and B both may fail, then the number of ways = n1 . n2.

Thus, the total number of ways = m1 m2 +  m1 n2 +  n1 m2 + n1 n2

         = (m1 + n1) (m2 + n2)
Hence the probabilities of the happening of both A and B

1 2 1 2

1 1 2 2 1 1 2 2

( ) .
( )( )

m m m m
P AB

m n m n m n m n
 

   

              =  P (A) .  P (B) Proved.
Example 7. An article manufactured by a company consists of two parts A and B. In the

process of manufacture of part A, 9 out of 100 are likely to be defective. Similarly, 5 out of 100
are likely to be defective in the manufacture of part B. Calculate the probability that the
assembled article will not be defective (assuming that the events of finding the part A non-defective
and that of B are independent).

Solution. Probability that part A will be defective = 
9

100

Probability that part A will not be defective =
9 911–

100 100
   
 

Probability that part B will be defective = 
5

100

Probability that part B will not be defective = 
5 951–

100 100
   
 

Probability that the assembled article will not be defective = (Probability that part A will not be
defective) × (Probability that part B will not be defective)

         = 
91 95 0.8645

100 100
       
   

Ans.
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Example 8. The probability that machine A will be performing an usual function in 5years’ time

is 
1
4

, while the probability that machine B will still be operating usefully at the end of the same

period is
1
3 .

Find the probability in the following cases that in 5 years time:
(i) Both machines will be performing an usual function.
(ii) Neither will be operating.
(iii) Only machine B will be operating.
(iv) At least one of the machines will be operating.

Solution. P (A operating usefully) =
1
4

, q (A) = 1–
1
4

=
3
4

P (B operating usefully) =
1
3       so q (B) = 1–

1
3

= 2
3

(i)  P (Both A and B will operate usefully) = P (A) . P (B) =
1 1 1
4 3 12

       
   

(ii)  P (Neither will be operating) = q (A)  q (B) =
3 2 1
4 3 2

       
   

(iii)  P (Only B will be operating) = p (B) × q (A) =
1 3 1
3 4 4

       
   

(iv) P (At least one of the machines will be operating)
= 1 – P (none of them operates)

= 
1 11 –
2 2
 Ans.

Example 9. There are two groups of subjects one of which consists of 5 science and 3
engineering subjects and the other consists of 3 science and 5 engineering subjects. An unbiased
die is cast. If number 3 or number 5 turns up, a subject is selected at random from the first
group, otherwise the subject is selected at random from the second group. Find the
probability that an engineering subject is selected ultimately. (A.M.I.E.T.E., Summer 2000)

Solution. Probability of turning up 3 or 5 = 
2 1
6 3


Probability of selecting engineering subject from first group =
3
8

Now the probability of selecting engineering subject from first group on turning up 3 or 5

1 3 1
3 8 8

        
   

... (1)

Probability of not turning up 3 or 5 = 1–
1 2
3 3


Probability of selecting engineering subject from second group = 
5
8

Now Probability of the selection of engineering subject from second group on not turning up 3 or 5

=  
2 5 5
3 8 12
  ...(2)
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Probability of the selection of engineering subject = 
1 5
8 12
 [From (1) and (2)]

       = 
13
24

Ans

Example 10. An urn contains nine balls, two of which are red three blue and four black.
Three balls are drawn from the urn at random. What is the probability that
(i) the three balls are of different colours?
(ii) the three balls are of the same colour?              (A.M.I.E., Summer 2000)
Solution.
Urn contains 2 Red balls, 3 Blue balls and 4 Black balls.
(i) Three balls will be of different colours if one ball is red, one blue and one black ball are
     drawn.

Required probability = 
2 3 4

1 1 1
9

3

2 3 4 2
84 7

C C C
C

   
  Ans.

(ii) Three balls will be of the same colour if either 3 blue balls or 3 black balls are drawn.
P (3 Blue balls or 3 Black balls) = P (3 Blue balls) + P (3 Black balls)

= 
3 4

3 3
9 9

3 3

1 4 5
84 84

C C
C C


   Ans.

Example 11. An urn A contains 2 white and 4 black balls. Another urn B contains 5 white
and 7 black balls. A ball is transferred from the urn A to the urn B, then a ball is drawn from
urn B. Find the probability that it is white.
Solution. Urn A contains 2 white and 4 black balls.
Urn B contains 5 white and 7 black balls.
Now there are two cases of transferring a ball from A to B.
Case I. When a white ball is transferred from A to B

P (Transfer of a white ball) =
2 1

2 4 3



After transfer of a white ball, urn B contains 6 white balls and 7 black balls.

P (Drawing a white ball from urn B after transfer)

   = P (Transfer of a white ball) ×  P (Drawing of  a white ball)

   = 
1 6 1 6 2
3 6 7 3 13 13
            

Case II. When a black ball is transferred from A to B.

P (Transfer of a black ball) = 
4 2

2 4 3



After transfer of a black ball, urn B contains 5 white and 8 black balls.
P (Drawing a white ball from urn B after transfer)

      =  P (Transfer of a black ball) ×  P (Drawing of a white ball)

Required probability = 
2 10 16

13 39 39
  Ans.
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Example 12. A bag contains 10 white and 15 black balls. Two balls are drawn in succession.
What is the probability that first is white and second is black ?

Solution. Probability of drawing one white ball = 
10
25

Probability of drawing one black ball without replacement = 15/24

Required probability of drawing first white ball and second black ball = 
10 15 1
25 24 4

           Ans.

 Example 13. A committee is to be formed by choosing two boys and four girls out of a group of
five boys and six girls. What is the probability that a particular boy named A and
a particular girl named B are selected in the committee?

Solution. Two boys are to be selected out of 5 boys. A particular boy A is to be included in the
committee. It means that only 1 boy is to be selected out of 4 boys.
Number of ways of selection = 4C1

Similarly a girl B is to be included in the committee.
Then only 3 girls are to be selected out of 5 girls.
Number of ways of selection = 5C3

Required probability = 
4 5

1 3
5 6

2 4

4 10 4
10 15 15

C C
C C

 
  

 Ans

Example 14. Three groups of children contain respectively 3 girls and 1 boy; 2 girls and 2
boys; 1 girl and 3 boys. One child is selected at random from each group. Find
the chance of selecting 1 girl and 2 boys.

Solution. There are three ways of selecting 1 girl and two boys.
I way : Girl is selected from first group, boy from second group and second boy from third

group.

     Probability of the selection of (Girl + Boy + Boy) = 
3 2 3 18
4 4 4 64
  

II way : Boy is selected from first group, girl from second group and second boy from third
group.

      Probability of the selection of (Boy + Girl + Boy) = 
1 2 3 6
4 4 4 64
  

III way : Boy is selected from first group, second boy from second group and the girl from the
third group.

       Probability of selection of (Boy + Boy + Girl) = 
1 2 1 2
4 4 4 64
  

       Total probability = 
18 6 2 26 13
64 64 64 64 32

    Ans.

Example 15. The number of children in a family in a region are either 0, 1 or 2 with probability
0.2, 0.3 and 0.5 respectively. The probability of each child being a boy or girl 0.5.
Find the probability that a family has no boy.

Solution. Here there are three types of families
(i) Probability of zero child (boys) = 0.2
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(ii) Boy Girl

0 1

1 0

Probability of zero boy in case II
= 0.3 × 0.5 = 0.15

(iii)
Boy     Girl
  0         2
  1         1
  2         0

In this case probability of zero boy = 0.5 × 
1
3  = 0.167

Considering all the three cases, the probability of zero boy
               = 0.2 + 0.15 + 0.167 = 0.517 Ans.

Example 16. A husband and wife appear in an interview for two vacancies in the same post. The

probability of husband’s selection is 
1
7  and that of wife ‘s selection is

1
5 . What is the probability

that
(i) both of them will be selected. (ii) only one of them will be selected and
(iii) none of them will be selected ?

Solution. P (husband’s selection) = 
1
7 , P (wife’s selection) = 

1
5

(i) P (both selected) = 
1 1 1
7 5 35
 

(ii) P (only one selected) = P (only husband’s selection) + P (only wife’s selection)

= 
1 4 1 6 10 2
7 5 5 7 35 7
    

(iii) P (none of them will be selected) = 
6 4 24
7 5 35
  Ans.

Example 17. A problem of statistics is given to three students A, B and C whose chances of

solving it are 
1 3,
2 4 and 

1
4

respectively. What is the probability that the problem will be solved?

(A.M.I.E., Winter 2001)

Solution. The probability that A can solve the problem = 
1
2

The probability that A cannot solve the problem = 1–
1
2

.

Similarly the probability that B and C cannot solve the problem are
31–
4

 
 
 

and 
11–
4

 
 
 

 The probability that A, B, C cannot solve the problem

                    = 
1 3 1 1 1 3 31– 1– 1–
2 4 4 2 4 4 32

               
     

. .
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Hence the probability that the problem can be solved
3 291 –

32 32
  Ans.

Example 18. A student takes his examination in four subjects . He estimates his chances

of  passing in as 
4
5 , in  as 

3
4

, in  as 
5
6 and in  as

2
3 . To qualify, he must pass in  and at least

two other subjects. What is the probability that he qualifies ?

Solution. P () = 
4
5 , P () = 

3
4

, P =  
5
6 , P () =

2
3

There are four possibilities of passing at least two subjects
(i) Probability of passing  and failing 

= 
3 5 2 3 5 1 51–
4 6 3 4 6 3 24

       
 

(ii)  Probability of passing and failing 

= 
5 2 3 5 2 1 51–
6 3 4 6 3 4 36

       
 

(iii) Probability of passing  and failing 

= 
2 3 5 2 3 1 11–
3 4 6 3 4 6 12

       
 

(iv) Probability of passing   = 
3 2 5
4 6 3 12


   .

Probability of passing at least two subjects

= 
5 5 1 5 61
24 36 12 12 72

   

Probability of passing  and at least two subjects
4 61 61
5 72 90

   Ans.

Example 19. There are 6 positive and 8 negative numbers. Four numbers are chosen at
random, without replacement, and multiplied. What is the probability that the product is a
positive number ?
Solution. To get from the product of four numbers, a positive number, the possible
combinations are as follows :
S. No. Out of 6 Positive Out of 8 Negative Positive Numbers

 Numbers         Numbers

1. 4 0 6 8
4 0

6 5 1 15
1 2

C C 
   



2. 2 2 6 8
2 2

6 5 8 7 420
1 2 1 2

C C  
   

 

3. 0 4 6 8
0 4

8 7 6 51 70
1 2 3 4

C C   
   

  
Total = 505
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Probability = 
6 8 6 8 6 8

4 0 2 2 0 4
14

4

C C C C C C
C

    

                     = 
15 420 70 505 4 3 2 1 505

14 13 12 11 14 13 12 11 1001
1 2 3 4

     
 

     
  

Ans

Example 20. A six-faced die is so biased that, when thrown, it is twice as likely to show an
even number than an odd number. If it is thrown twice, what is the probability that the sum of
two numbers thrown is odd ?

Solution. A biased die, when thrown, shows even number twice than an odd number.

Probability of showing even number = 
2 2

2 1 3




Probability of showing odd number = 
1 1

2 1 3



Sum of two numbers is odd if the first is even and the second is odd or vice versa.
Probability of sum to be odd =  Probability of an even number × Probability of an odd

number + Probability of an odd number × Probability of an even number.

= 
2 1 1 2 2 2 4
3 3 3 3 9 9 9
      Ans.

Example 21. A can hit a target 3 times in 5 shots, B 2 times in 5 shots and C three times in
4 shots. All of them fire one shot each simultaneously at the target. What is the probability that
(i) 2 shots hit (ii) At least two shots hit? (A.M.I.E.T.E., Summer 2003)

Solution. Probability of A hitting the target = 
3
5

Probability of B hitting the target = 
2
5

Probability of C hitting the target = 
3
4

Probability that 2 shots hit the target
= P (A) P (B) q (C) + P (A) P (C) q (B) + P (B) P (C) q (A)

= 
3 2 3 3 3 2 2 3 31– 1– 1–
5 5 4 5 4 5 5 4 5

                 
     

= 
6 1 9 3 6 2
25 4 20 5 20 5

     =  
6 27 12 45 9

100 100 20
 

  Ans.

(ii) Probability of at least two shots hitting the target
= Probability of 2 shots + probability of 3 shots hitting the target

=  
9
20 + P (A) P (B)  P (C) = 

9 3 2 3 63
20 5 5 4 100

    Ans.

Example 22. A and B take turns in throwing two dice, the first to throw 10 being awarded
the prize. Show that if A has the first throw, their chances of winning are in the ratio 12:11.
Solution. The combinations of throwing 10 from two dice can be (6+ 4), (4 + 6), (5 + 5).
The number of combinations is 3.
Total combinations from two dice = 6 × 6 = 36.
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 The probability of throwing 10 = p = 
3 1

36 12


The probability of not getting 10 = q = 1– 
1 11

12 12
   
 

If A is to win, he should throw 10 in either the first, the third, the fifth, ... throws.

Their respective probabilities are =  p, q2 p,  q4 p, .......
2 41 11 1 11 1, , ...

12 12 12 12 12
       
   

A’s total probability of winning 
2 41 11 1 11 1. ...

12 12 12 12 12
         
   

2

1
1212
23111–

12

 
 
 
 

             This is infinite G.P. Its sum =
1–

a
r

 
  

B can win in either 2nd, 4th, 6th ... throws.
So B’s total chance of winning = q p + q3 p + q5p + ......

= 
3 5

2

11 1
11 1 11 1 11 1 1112 12...
12 12 12 12 12 12 23111–

12

  
                             

            
 
 

Hence A’s chance to B’s chance is 
12 11:
23 23

= 12 : 11. Proved.

Example 24. A and B throw alternatively a pair of dice. A wins if he throws 6 before B throws
7 and B wins if he throws 7 before A throws 6. Find their respective chances of winning, if A begins.

(A.M.I.E.T.E., Summer 2002)
Solution. Number of ways of throwing 6
i.e. (1 +5), (2 + 4),  (3 + 3), (4 + 2), (5 + 1) = 5.

Probability of throwing 6 =
5

36 = p1, q1= 
31
36

Number of ways of throwing 7
i.e. (1 + 6),  (2 + 5), (3 + 4), (4 + 3), (5 + 2), (6 + 1) = 6

Probability of throwing  2 2
6 1 56 ,

36 6 6
P q   

2 2
1 1 2 1 1 2 1( ) .....P A p q q p q q p   

2 3 2
1 2 1 2 2 1 2 2( ) .....P B q p q q p q q p   

Probability of A’s winning = 2 2
1 1 2 1 1 2 1 .....p q q p q q p  

        =
1

1 2

5
5 36 6 3036

31 51 – 36 61 611 –
36 6

p
q q


   



Probability of B’s winning  = 2 3 2
1 2 1 2 2 1 2 2 ...q p q q p q q p  
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=  
1 2

1 2

31 1
31 36 6 3136 6

31 51– 36 6 61 611–
36 6

q p
q q

 
   

  
  
  

Ans.

Exercise 11.2.

1. The probability that Nirmal will solve a problem is 
2
3 and the probability that Satyajit will solve it is 

3
4

.

What is the probability that

(a) the problem will be solved

(b) neither can solve it. Ans. (a) 
11
12

, (b) 
1

12
2. Two persons A and B toss an unbiased coin alternately on the understanding that the first who gets

the head wins. If A starts the game, then what are their respective chances of winning ?
            (A.M.I.E.T.E. Summer 2004) Ans. 4 : 1

3. Four persons are chosen at random from a group containing 3 men, 2 women, and 4 children. Show

that the probability that exactly two of them will be children is 
10
21

.

4. A five digit number is formed by using the digits 0, 1, 2, 3, 4 and 5 without repetition. Find the

probability that the number is divisible by 6. Ans.
4
25

5. The chances that doctor A will diagnose a disease X correctly is 60%. The chances that a patient will
die by his treatment after correct diagnosis is 40% and the chances of death by wrong diagnosis is
70%. A patient of doctor A, who had disease X, died, what is the chance that his disease was diagnosed

correctly ? Ans. 
6

13
6. An anti-aircraft gun can take a maximum of four shots on enemy’s plane moving from it. The probabilities

of hitting the plane at first, second, third and fourth shots are 0.4, 0.3, 0.2 and 0.1 respectively. Find the
probability that the gun hits the plane.  Ans.   0.6976.

7. An electronic component consists of three parts. Each part has probability 0.99 of performing
satisfactorily. The component fails if two or more parts do not perform satisfactorily. Assuming that
the parts perform independently, determine the probability that the component does not perform
satisfactorily. Ans. 0.000298

8. The face cards are removed from a full pack. Out of the remaining 40 cards, 4 are drawn at random.

What is the probability that they belong to different suits ? Ans. 
1000
9139

9. Of the cigarette smoking population, 70% are men and 30% women, 10% of these men and 20% of
these women smoke ‘WILLS.’ What is the probability that a person seen smoking a ‘WILLS’ will be

a man. Ans.
7

13
10. A machine contains a component C that is vital to its operation. The reliability of component C is 80%.

To improve the reliability of a machine, a similar component is used in parallel to form a system S. The
machine will work provided that one of these components functions correctly. Calculate the reliability
of the system S. Ans. 96%

11. In a bolt factory, machines A, B and C manufacture 25%, 35% and 40% of the total output respectively.
Of their outputs, 5%, 4% and 2% are defective bolts. A bolt is chosen at random and found to be

defective. What is the probability that the bolt came from machine A ? B ? C ?     Ans.
25 28 16, ,
69 69 69
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12. One bag contains four white and two black beads and another contains three of each colour. A bead

is drawn from each bag. What is the probability that one is white and one is black ? Ans.
1
2

.
13. The odds that a book will be favourably reviewed by three independent critics are 5 to 2, 4 to 3, 3 to 4

respectively. What is the probability that of the three reviews, a majority will be favourable ?

(A.M. I.E ., Summer 2004) Ans. 
209
343

14. Let E and F be independent events. The probability that both E and F happen is 
1

12
and the probability

that neither E nor F happen is 
1
2

. Then find P (E) and P (F). Ans. P(E) = 
1
3  , P (F) = 

1
4

15. Given a random variable whose range set is ( 1, 2) and whose probability is f (1) =
1
4

 and f (2) = 
3
4

. Find

the mean and variance of the distribution. Ans. Mean =
7
4

,  Var = 
3

16
16. A man takes a step forward with probability 0.4 and backward with probability 0.6. Find the probability

that at the end of 11 steps, he is just one step away from the starting point. Ans. 0.210677186
17. What would be the expectation of the number of failures preceding the first success in an infinite

series of independent trials with the constant probability of success p ?
Solution. The probabilities of success in 1st, 2nd, 3rd trials respectively are p, qp, q2p, q3p, ......
The expected number of failures preceding the first success

E (x) = (0.p) + (1.qp) + (2.q2 p) + ......  =  qp [1 + 2q + 3q2 + ......  ] where q < 1.

           = 2 2(1– )
qp qp q

pq p
  Ans.

18. The probability of an airplane engine failure (independent of other engines) when the aircraft is in
flight is (1-P). For a successful flight at least 50% of the airplane engines should remain operational.
For which values of P would you prefer a four engine airplane to a two engine one

(A.M.I.E.T.E., Dec. 2004)

19. A person plays m independent games. The probability of his winning any game is  
a

a b (a, b are

positive numbers). Show that probability that the person wins an odd number of games is
1
2

[(b + a)m – (b – a)m] / (b + a)m.

20. Fill in the blanks :

(a) If the probabilities of n independent events are p1, p2, p3, ..., pn, then the probability that at least
one of the event will happen is ..............

(b) For a biased die, the probabilities for the different faces to turn up are given below :
   Face   1   2    3   4   5                 6
   Prob. 0.1 0.32 0.21 0.15 0.05            0.17

The die is tossed and you are told that either face 1 or face 2 has turned up. Then the probability
that it is face 1, is.....

(c) The probability of getting a ticket of number of multiple of 5 in a random draw from a bag
containing tickets of even numbers from 1 to 100, is .............

(d) A town has two doctors X and Y operating independently. If the prob. the doctor X is available,
is 0.9 and that for Y is 0.8, then the prob. that at least one doctor is available, when needed is ........

(e) From a pack of well shuffled cards, one card is drawn randomly. A gambler bets it as a diamond or
a king. The odds in favour of his winning the bet are ............
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(f) From a pack of cards, 2 cards are drawn, the first being replaced before the second is drawn. The
probability that the first is a diamond and the second is a king will be .............

(g) From an urn containing 12 white and 8 black balls two balls are drawn at random. The probability
that both the balls will turn to be black is..............

(h) A ball is taken out of a pot containing 6 white and 12 red balls. The probability that the ball is white
is .............

(i) A speaks truth in 75% and B in 80% of the cases. The percentage of cases in which they likely to
contradict each other narrating the same incident is .............

Ans. (a) 1– (1 – p1) (1 –p2).... (1 – pn) ,      (b) 
5
21

         (c)  
1
5      (d) 0.98,          (e) 4 : 9,

(f)
1
52 , (g)   

14
95 , (h)  

1
3 ,       (i)  35 %

   21.   Tick the correct answer :
(i) The probability that at least one of the events A and B occurs is 0.8 and the probability that both

the events occur simultaneously is 0.25. The probability P (A) + P (B) is:
(i)  0.65 (ii)   0.75 (iii)   0.85             (iv)   0.95

(ii) A, B, C are independent events such that P (A) = P (B) and probability that at least one of them

happens is 1/2. The probability that A or B happens given that at least one of A, B, or C happens

is 
2
9  . Find P (A) and P (C). Ans. P (A) = 1–

7
3

– , P(c)  = 
5

14
(iii) An unbiased coin is tossed five times. Given that heads were obtained in two of the tosses, the

probability that these were obtained in the first two tosses is
(a) 1/10             (b) 1/4 (c) 1/32 (d) None of these.

(iv) Groups are formed of 4 persons out of 12 persons. The probability that one particular person is
never included is
(a) 2/3                          (b) 1/3                  (c) 1/4 (d) none of these

(v) 50 tickets are serially numbered 1 to 50. One ticket is drawn from these at random. The probability
of its being a multiple of 3 or 4 is
(a) 12/25                (b) 14/25                     (c) 2/5 (d)  none of these

(vi) The probabilities of occurring of two events E, F are 0.25 and 0.5 respectively and of occurring
both simultaneously is 0.14. Then the probability of the occurrence of the neither event is
(a) 0.61              (b) 0.39                   (c) 0.89 (d)  none of these

(vii) A bag contains 5 black and 4 white balls. Two balls are drawn at random. The probability that they
match, is
(a)    7/12                (b) 5/8                   (c) 5/9   (d) 4/9

(viii) A, B, C in order toss a coin. The first to throw a head wins. Assuming if A begins and the game
continues indefinitely their respective chances of winning the games are:

(a)
4 2 1, ,
7 7 7       (b)  

1 4 2, , ,
7 7 7                           (c)    

2 4 1, ,
7 7 7  (d) None of these

(ix) A purse contains 4 copper coins, 3 silver coins, the second purse contains 6 copper coins and 2
silver coins. A coin is taken out of any purse, the probability that it is a copper coin is:
(a) 4/7             (b) 3/4                (c) 3/7     (d) 37/56

(x) In rolling two fair dice, the probability of getting equal numbers or numbers with an even
product is
(a) 6/36            (b) 30/36               (c) 27/36 (d) 3/36

(xi) One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of
the other are
(a) 1 : 3           (b) 2 : 3               (c) 3 : 1 (d) none of these
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(xii) The probability that a certain beginner at golf gets a good shot if he uses the correct club is 1/3,
and the probability of a good shot with an incorrect club is 1/4. In his bag are 5 different clubs,
only one of which is correct for the shot in question. If he chooses a club at random and takes a
stroke, the probability that he gets a good shot is

(a) 
1
3 (b)

1
12

(c) 
4

15 (d) 
7

12
(xiii) India plays two matches each with West Indies and Australia. In any match, the probabilities of

India getting points 0, 1 and 2, are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes
are independent, the probability of India getting at least 7 points is
(a) 0.8750 (b) 0.0875 (c) 0.625 (d) 0.0250    (A.M.I.E.T.E., Summer 2001)

(xiv)A bag contains 10 bolts, 3 of which are defective. Two bolts are drawn without replacement. The
probability that both the bolts drawn are not defective is

(a)
49

100 (b)
7

15 (c)
4
9 ( d)

3
10

(xv) The probability that a family has k children is (0.5)k + 1, k= 0, 1, 2, ... If four families are chosen
at random, the probability that each family has at least one child is
(a) 1/16 (b) 1/256 (c) 3/16 (d)3/256

(xvi) Two distinguishable dice are tossed simultaneously. The probability that multiple of 2 does not
occur on the first die or multiple of 3 does not occur on the second die is

(a) 
5

36 (b) 10
36

(c)
20
36 (d)

30
36

(xvii) An unbiased die with faces marked 1, 2, 3, 4, 5, 6 is rolled 4 times, out of four face values
obtained, the probability that the minimum face value is not less than 2 and the maximum face
value is not greater than 5 is then

(a) 
16
81 (b)

2
9 (c)

80
81 (d) 

8
9      (A.M.I.E.T.E., Summer 2000)

(xviii) There are q persons sitting in a row. Two of them are selected at random, the probability that the
two selected persons are not together is

(a)
2
q (b)

21
q

 (c)
( 1)

( 1)( 2)
q q

q q


          (d) None of these

Ans. (i) (b),, (ii) (b), (iii) (a), (iv) (a), (v) (a), (vi) (b),, (vii) (d), (viii) (a), (ix) (d), (x) (b), (xi) (d),
 (xii) (c), (xiii) (b), (xiv) ( b ), (xv) (a), (xvi) (d), (xvii) (a), (xviii) (b)

11.5 CONDITIONAL  PROBABILITY

Let A and B be two events of a sample space S and let P(B)  0. Then conditional probability
of the event A, given B, denoted by P (A/B), is defined by

( )( / )
( )

P A BP A B
P B


 ... (1)

Theorem. If the events A and B defined on a sample space S of a random experiment are
independent, then

P (A /B) = P (A) and P (B / A) = P (B)
Proof. A and B are given to be independent events,

P (A and B) = P (A) .  P (B)
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( ) ( ). ( )( / ) ( )

( ) ( )
P A B P A P BP A B P A

P B P B


  


( ) ( ). ( )( / ) ( )

( ) ( )
P B A P B P AP B A P B

P A P A


  

11.6  BAYES  THEOREM
If B1, B2, B3, Bn are mutually exclusive events with P(Bi)  0, (i = 1, 2, ... n) of a random
experiment then  for  any  arbitrary  event A of the  sample  space of the  above  experiment
with P(A)> 0, we have

1

( ) ( / )( / )
( ) ( / )

i i
i n

i i
i

P B P A BP B A
P B P A B





 (for n = 3)

2 2
2

1 1 2 2 3 3

( ) ( / )
( / )

( ) ( / ) ( ) ( / ) ( ) ( / )
P B P A B

P B A
P B P A B P B P A B P B P A B


 

Proof. Let S be the sample space of the random experiment.
The events B1, B2, ..., Bn being exhaustive

1 2 .... nS B B B                                                           A S
 A A S 

    1 2( .... )nA B B B    

    1 2( ) ( ) .... ( )nA B A B A B                             [Distributive Law]

                        1 2( ) ( ) ( ) .... ( )nP A P A B P A B P A B      

    1 1 2 2( ) ( / ) ( ) ( / ) .... ( ) ( / )n nP B P A B P B P A B P B P A B   

    = 
1

( ) ( / )
n

i i
i

P B P A B

 ... (1)

Now              ( ) ( ) ( / )i iP A B P A P B A 

                  
1

( ) ( ) ( / )( / )
( ) ( ) ( / )

i i i
i n

i i
i

P A B P B P A BP B A
P A P B P A B




 

 [Using (1)]

Note. P (B) is the probability of occurrence B. If we are told that the event A has already
         occurred. On knowing about the event A, P(B) is changed to P(B/A). With the help of Baye’s

theorem we can calculate P(B / A).
Example (A) An urn I contains 3 white and 4 red balls and an urn II contains 5 white and

6 red balls. One ball is drawn at random from one of the urns and is found to be white. Find
the probability that it was drawn from urn I.

Solution. Let U1: the ball is drawn from urn I
U2 : the ball is drawn from urn II
 W : the ball is white.

We have to find P (U1/W)
By Baye’s Theorem

1 1
1

1 1 2 2

( ) ( / )
( / )

( ) ( / ) ( ) ( / )
P U P W U

P U W
P U P W U P U P W U


 ... (1)
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Since two urns are equally likely to be selected, P (U1) = P (U2) = 
1
2

P (W/U1) = P (a white ball is drawn from urn I) = 
3
7

P (W/U2) = P (a white ball is drawn from urn II) =
5

11

 From (1), 1

1 3
332 7( / )

1 3 1 5 68
2 7 2 11

P U W


 
  

Ans.

Example (B) Three urns contains 6 red, 4 black; 4 red, 6 black; 5 red, 5 black balls
respectively. One of the urns is selected at random and a ball is drawn from it. If the
ball drawn is red find the probability that it is drawn from the first urn.

Solution. Let U1: the ball is drawn from urn I.
U2 : the ball is drawn from urn II.
U3 : the ball is drawn from urn III.
R : the ball is red.

We have to find P (U1/R).
By Baye’s Theorem,

1 1
1

1 1 2 2 3 3

( ) ( / )
( / )

( ) ( / ) ( ) ( / ) ( ) ( / )
P U P R U

P U R
P U P R U P U P R U P U P R U


        ... (1)

Since the three urns are equally likely to be selected P(U1) = P (U2) = P (U3) = 
1
3

Also P (R/U1)= P (a red ball is drawn from urn I) = 
6

10

P (R/ U2) = P (a red ball is drawn from urn II) = 
4

10

P (R/U3) = P (a red ball is drawn from urn III) = 
5

10

  From (1), we have = 1

1 6
23 10( / )

1 6 1 4 1 5 5
3 10 3 10 3 10

P U R


 
    

Ans.

Example (C) In a bolt factory, machines A, B and C manufacture respectively 25%, 35% and
40% of the total. If their output 5, 4 and 2 per cent are defective bolts. A bolt is drawn
at random from the product and is found to be defective. What is the probability that it was
manufactured by machine B?

Solution. A : bolt is manufactured by machine A.
B : bolt is manufactured by machine B.
C : bolt is manufactured by machine C.
P (A) = 0.25, P (B) = 0.35, P (C) = 0.40

The probability of drawing a defective bolt manufactured by machine A is P (D/A) = 0.05
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Similarly, P (D/B) = 0.04 and P (D/C) = 0.02
 By Baye’s theorem

( ) ( / )( / )
( ) ( / ) ( ) ( / ) ( ) ( / )

P B P D BP B D
P A P D A P B P D B P C P D C


 

               
0.35 0.04 0.41

0.25 0.05 0.35 0.04 0.40 0.02


 
    

Ans.

BINOMIAL DISTRIBUTION
11.7 DISCRETE  PROBABILITY  DISTRIBUTION

P (X= xi) = Pi or p (xi)for i = 1, 2, ... where (i) p (xi)  0 for all values of i,

(ii)  p (xi)= 1.
The set of values xi with their probabilities pi constitute a discreate probability distribution

of the distrete variate X.
11.8 BINOMIAL DISTRIBUTION P (r) = nCr  pr.qn–r

To find the probability of the happening of an event once, twice, thrice, ...... r times .....
exactly in n trials.
Let the probability of the happening of an event A in one trial be p and its probability of
not happening be 1 – p = q.
We assume that there are n trials and the happening of the event A is r times and its not
happening is n – r times.
This may be shown as follows
AA.....A .......A A A

         r times n –r times ...(1)
A indicates its happening, A  its failure and P(A) = p and P ( A )= q.
We see that (1) has the probability

..... . ..... .r n rpp p q q q p q  ... (2)
r times      n – r times

Clearly (1) is merely one order of arranging r A’s.
The probability of (1) = prqn–r × Number of different arrangements of r A’s and (n – r) A ’s.
The number of different arrangements of r A’s and (n – r) A ’s=nCr.
Probability of the happening of an event r times =  nCr p

r qn–r.
= (r + 1)th term of (q + p)n (r =  0, 1, 2, ...... , n).

If r = 0, probability of happening of an event  0 times =  nCo qn p0 = qn

If r = 1, probability of happening of an event  1 time =  nC1qn–1 p
If r = 2, probability of happening of an event  2 times =  nC2 q

n–2 p2

If r = 3, probability of happening of an event  3 times =  nC3qn–3p3 and so on.
These terms are clearly the successive terms in the expansion of (q + p)n.
Hence it is called Binomial Distribution.
Example 24. Find the probability of getting 4 heads in 6 tosses of a fair coin.

Solution.
1 1, , 6, 4.
2 2

p q n r   

We know that P (r) = nCr qn–rpr   P (4) = 6C4q6–4 p4

2 4 66 5 1 1 1 1515
1 2 2 2 2 64
                     Ans.
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Example 25. If on an average one ship in every ten is wrecked, find the probability that out
of 5 ships expected to arrive, 4 at least will arrive safely.

Solution. Out of 10 ships, one ship is wrecked.

i.e., Nine ships out of ten ships are safe. P (safety) = 
9

10
P (At least 4 ships out of 5 are safe) = P ( 4 or 5) = P (4) + P (5)

4 5 4 4
5 4 5–4 5 5 0

4 5
9 1 9 9 5 9 7 95

10 10 10 10 10 10 5 10
C p q C p q                             

           
       Ans.

Example 26. The overall percentage of failures in a certain examination is 20. If six
candidates appear in the examination, what is the probability that at least five pass
the examination?

Solution. Probability of failures = 20% = 
20 1

100 5


Probability of  (P) = 
1 41
5 5

 

Probability of at least five pass = P (5 or 6)
= P (5) + P (6) = 6C5 p5 q + 6C6  p6 q0

5 6 5 54 1 4 4 6 4 4 20486 2 0.65536
5 5 5 5 5 5 5 3125

                                      
Ans.

Example 27. Ten percent of screws produced in a certain factory turn out to be defective. Find
the probability that in a sample of 10 screws chosen at random, exactly two will be
defective.

Solution.
1 9, , 10, 2 ( )

10 10
n r n r

rp q n r P r C p q     

                         
2 10 2 2 8 9

10
2

1 9 10 9 1 9 1 9(2) . 0.1937
10 10 1 2 10 10 2 10

P C
                               

Ans.

Example 28. The probability that a man aged 60 will live to be 70 is 0.65. What is the
  probability that out of 10 men, now 60, at least 7 will live to be 70 ?

Solution. The probability that a man aged 60 will live to be 70
=  p = 0.65
q = 1–  p = 1–  0.65 = 0.35

 Number of men = n = 10
Probability that at least 7 men will live to 70 = ( 7 or 8 or 9 or 10 )

= P (7) + P (8)+ P (9) + P (10) = 10C7 q
3p7 +10C8q

2 p8 + 10C9qp9 + p10

3 7 2 8 9 1010 9 8 10 9(0.35) (0.65) (0.35) (0.65) 10(0.35)(0.65) (0.65)
1 2 3 1 2
  

   
  

= (.65)7 [120 (0.35)3  + 45 (0.35)2 (0.65)  + 10 (0.35) (0.65)2  +  (0.65)3]

= (0.65)7  × 125 [120 ×  (0.07)3 +  45 ×  (0.07)2 (0.13) + 10 (0.07) (0.13)2  +  (0.13)3]

= 0.04901 × 125 [0.04116  +  0.028665 +  0.011830  + 0.002197]
= 6.12625 × 0.083852 = 0.5137 Ans.
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Example 29. If 10% of bolts produced by a machine are defective. Determine the probability
that out of 10 bolts, chosen at random (i) 1 (ii) none (iii) at most 2 bolts will be
defective.

Solution. Probability of defective bolts = p = 10% = 0.1
Probability of not defective bolts = q = 1 – p = 1 – 0.1 = 0.9
Total number of bolts = n = 10

(i) Probability of 1 defective bolt = 10C1 (0.1)1 (0.9)9 = 0.3874
(ii) Probability that none is defective = Probability of 0 defective bolt

= P (0) = 10C0 (0.1)0 (0.9)10  = 0.3487

(iii) Probability of  2 defective = 10C2 (0.1)2 (0.9)8 = 0.1937

Probability of at most 2 defective = P (0 or 1 or 2)
= P (0) +  P (1) + P (2) = 0.3487 + 0.3874 +  0.1937
= 0.9298 Ans.

Example 30. A die is thrown 8 times and it is required to find the probability that 3 will
show (i) Exactly 2 times (ii) At least seven times (iii) At least once.

Solution. The probability of throwing 3 in a single trial = p = 
1
6

The probability of not throwing 3 in a single trial = q = 
5
6

(i) P (getting 3, exactly 2 times) = 
6 2 6

8 6 2
2 8

5 1 28 528
6 6 6

C q p        
   

(ii) P (getting 3, at least seven times) = P (getting 3, at 7 or 8 times)
7 8

8 1 7 8 0 8
7 8 8

5 1 1 41(7) (8) 8
6 6 6 6

P P C q p C q p               
    

(iii) P (getting 3 at least once)
= P (getting 3, at 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 times)
= P (1) + P(2) + P(3) + P(4) + P(5) + P(6) + P(7) + P(8)

= 1 –  P (0) = 1– 8C0 q8p0

851
6

    
 

Ans.

Example 31. An underground mine has 5 pumps installed for pumping out storm water; the

probability of any one of the pumps failing during the storm is 
1
8 . What is the

probability that (i) at least 2 pumps will be working; (ii) all the pumps will be working

during a particular storm?

Solution. (i) Probability of pump failing = 
1
8

                      Probability of pump working = 
1 7 7 11 , , , 5
8 8 8 8

p q n    
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(i) P (At least 2 pumps working) = P (2 or 3 or 4 or 5 pumps working)

= P (2)+ P (3)+ P (4)+ P (5) = 5C2 p2 q3 +5C3 p
3q2 +  5C4 p

4q + 5C5 p
5q0

2 3 3 2 4 57 1 7 1 7 1 710 10 5
8 8 8 8 8 8 8

                             
             

 5

1 10 49 10 343 5 2401 16807
8

      

5 5

1 32732 8183[490 3430 12005 16807]
81928 8

     

(ii) P (All the 5 pumps working) =  
5

5 5 0
5

7 168075
8 32768

P C p q      
Ans.    8183 16807

8192 32768
i ii

Example 32. Assuming that 20% of the population of a city are literate, so that the chance of an

individual being literate is 1
5

and assuming that 100 investigators each take 10 individuals

to see whether they are literate, how many investigators would you expect to report 3 or
less were literate.                              (A.M.I.E.T.E., Summer 2000)

Solution. p =
1
5

, n = 10

 P (3 or less) = P (0 or 1 or 2 or 3) = P (0) + P (1) + P (2) + P (3)
0 10 1 9 2 8 3 7

10 10 10 10
0 1 2 3

1 4 1 4 1 4 1 4
5 5 5 5 5 5 5 5

C C C C                                 
               

10 9 8 74 10 4 45 4 120 4
5 5 5 25 5 125 5

                 
       

7
3 24 [(0.8) 2(0.8) 1.8(0.8) 0.96]

5
     
 

= 0.2097152 [0.512 + 1.28 + 1.44 +  0.96] = 0.2097152 × 4.192 = 0.879126118
Required number of investigators = 0.879126118 × 100 = 87.9126118

                   = 88 approximate Ans.
Example 33. Assuming half the population of a town consumes chocolates and that 100
investigators each take 10 individuals to see whether they are consumers, how many
investigators would you expect to report that three people or less were consumers?

Solution. The chance for an individual to be consumer is p = 
1
2

The chance of not being a consumer = 
1 11
2 2

q   

Here we have to find the probabilities of 0, 1, 2 and 3 successes.
0 10 9 1 10 8 2 10 7 3

1 2 3( 3) (0) (1) (2) (3)p r P P P P q C q p C q p C q p        
10 9 8 2 7 31 1 1 1 1 1 110 45 120

2 2 2 2 2 2 2
                             
             

101 176[1 10 45 120]
2 1024

      
 

 The number of investigators to report that three or less people were consumers of chocolates is given by
176 100 17.2

1024
 

Hence, 17 investigators would report that 3 or less people are consumers. Ans.
Example 34. For special security in a certain protected area, it was decided to put three lighting
bulbs on each pole. If each bulb has a probability p of burning out in the first 100 hours of service,
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calculate the probability that at least one of them is still good after 100 hours.
If P = 0.3, how many bulbs would be needed on each pole to ensure 99% safety so that at least
one is good after 100 hours?
Solution. Probability of burning out in the first 100 hours of service = p = 0.3
Probability of working good in the first 100 hours

q = 1 – p = 1 – 0.3 = 0.7
(i) Probability that at least one of them is still good after 100 hours

= 3C1q p2 + 3C2q
2 p1 + 3C3 q3p0

3 0 3 3 2 3 2 3 3 0 0 3
0 1 2 3 03C q p C qp C q p C q p c q p      

= 1– p3 = 1 –  (0.3)3  = 1 – 0.027 = 0.973 Ans.
(ii) Let the number of bulbs required be n.
P (At least one bulb is good) = 1 – pn

  0.99 = 1– (0.3)n         (0.3)n = 1 – 0.99
 (0.3)n = 0.01   log (0.3)n  = log 0.01

 n log 0.3 = log 0.01 
log0.01
log 0.3

n 


2.000 2.000 3.8 4 Bulbs

0.5231.477
n 
   


Ans.

Exercise 11.3
1. If 20% of the bolts produced by a machine are defective, determine the probability that out

of 4 bolts chosen at random
(a) 1 (b) 0 (c) At most 2
bolts will be defective. Ans. (a) 0.4096, (b) 0.4096, (c) 0.9728.

2. Six dice are thrown 729 times. How many times do you expect at least three dice to show
a five or a six ? Ans. 233

3. If the chance that any one of the 10 telephone lines is busy at any instant is 0.2, what is
the chance that 5 of the lines are busy ? What is the probability that all the lines are busy?

Ans. 10C5 (0.2)5 (0.8)5, (0.2)10

4. An insurance salesman sells policies to 5 men, all of identical age in good health. According
to the actuarial tables the probability that a man of this particular age will be alive 30 years

hence is 
2
3 .Find the probability that in 30 years.

(a) All 5 men (b) At least  3 men  (c) Only 2 men (d) At least 1 man

 will be alive. Ans. (a)
32
243 (b)

192
243 (c) 

40
243 (d) 

242
243

5. Assuming a Binomial distribution, find the probability of obtaining at least two “six” in

rolling a fair die 4 times.                                         Ans.  
171

1296
6. If successive trials are independent and the probability of success on any trial is p, show

that the probability that the first success occurs on the nth trial is
1(1 ) ,np p  n = 1, 2, 3 ...

7. Consider an urn in which 4 balls have been placed by the following scheme : A fair coin
is tossed; if the coin falls head, a white ball is placed in the urn, and if the coin falls tail, a red
ball is placed in urn. (i)What is the probability that the urn will contain exactly 3 white balls ? (ii)
What is the probability that the urn will contain exactly 3 red balls, given that the first ball placed

was red?                              Ans.  (i) 1
8   (ii)

3
8
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8. A box contains 10 screws, 3 of which are defective. Two screws are drawn at random without

replacement. Find the probability that none of the two screws is defective.     Ans.   
7

15
9. Out of 800 families with four children each, how many families would be expected to have :

(i) 2 boys and 2 girls; (ii) at least one boy; (iii) no girl;        (iv) at most two girls?
Assume equal probabilities for boys and girls. Ans. (i) 300, (ii) 750, (iii) 50, (iv) 550.

10. In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is

5/6. What is the probability that he will knock down less than 2 hurdles ?         Ans. 
98 5

3 6
 
 
 

11. An electronic component consists of three parts. Each part has probability 0.99 of performing
satisfactorily. The component fails if 2 or more parts do not perform satisfactorily. Assuming that
the parts perform independently, determine the probability that the component does not perform
satisfactorily.                                    Ans.  0.000298

12. Find the binomial distribution whose mean is 5 and variance is 10/3.  Ans.  
15

15 1 2
3 3

r r

rC


   
   
   

13. The probability that on, joining Engineering College, a student will successfully complete the

course of studies is 
3
5 . Determine the probability that out of 5 students joining the College

(i) none and (ii) at least two will successfully complete the course.    Ans. (i)
32 2853( )

3125 3125
ii

14. A carton contains 20 fuses, 5 of which are defective. Three fuses are chosen at random and

inspected. What is the probability that at most one defective fuse is found?   Ans. 
27
32

15. A bag contains three coins, one of which is coined with two heads, while the other two coins are
normal and not biased. A coin is thrown at random from the bag and tossed three times in
succession. If heads turn up each time, what is the probability that this is the two-headed coin?

                                               Ans.
4
5

16. In sampling a large number of parts manufactured by a machine, the mean number of defectives
in a sample of 20 is 2. Out of 1,000 such samples, how many would be expected to contain at least
3 defective parts?                                                   Ans. 324

17. The incidence of occupational disease in an industry is such that the workers have 20% chance
of  suffering from it. What is the probability that out of 6 workers 4 or more will catch the disease?

                                                  Ans.
53

3125
18. If the probability of hitting a target is 10% and 10 shots are fired independently, what is the

probability that the target will be hit at least once ?                            Ans. 1 –  (0.9)10  = 0.65 nearly
19. Among 10,000 random digits, find the probability p that the digit 3 appears at most 950 times.

(A.M.I.E., Summer 2003)                  Ans.
10,000

10,000 1 9
10 10

r r

rC


   
   
   

20. A fair coin is tossed 400 times. Using normal approximation to the binomial, find the probability
that a head will occur (a)more than 180 times and (b) less than 195 times. (A.M.I.E. Winter 2004)

Ans. (a) 
22111

2
   
 

 (b) 
19511

2
   
 

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Probability 787

21. Four coins were tossed 200 times. The number of tosses showing 0, 1, 2, 3 and 4 heads were found
to be as under. Fit a binomial distribution to these observed results. Find the expected frequencies.
 No. of heads:       0 1 2            3                   4
 No. of tosses:      15 35 90         40                 20

22. A firm plans to bid ` 300 per tonne for a contract to supply 1000 tonnes of a metal. It has
two competitors A and B and it assumes that the probability that A will bid less than 300/
- per tonne is 0.3 and that B will bid less than ` 300 per tonne is 0.7. If the lowest bidder
gets all the business and the firms bid independently, what is the expected value of business
in rupees to the firm.                               (A.M.I.E.T.E., Dec. 2006)

11.9 MEAN  OF  BINOMIAL  DISTRIBUTION (GBTU, 2012, A.M.I.E.T.E., Dec. 2006)
1 1 2 2 3 3

1 2 3( ) ... ....n n n n n n n n n n r r n
rq p q C q p C q p C q p C q p p           

Successes r Frequency f                               rf
       0 qn 0
       1 nqn–1p nqn–1p

       2 2 2( 1)
2

nn n q p 2 2( 1) nn n q p

            3 3 3( 1)( 2)
6

nn n n q p  3 3( 1) ( 2)
2

nn n n q p 

       ...... ....... ....
       n                                                            pn npn

1 2 2 3 3( 1)( 2)( 1) ...
2

n n n nn n nfr nq p n n q p q p np   
      

         1 2 3 2 1( 1) ( 1)( 2)[ ... ]
1! 2

n n n nn n nnp q q p q p p     
    

          = np (q + p)n–1 = np                                         (since q +p = 1)

1 2 2( 1) ...
2

n n n nn nf q nq p q p p 
     

         = (q + p)n = 1                                        (since q + p = 1)

Hence Mean =  
fr np
f




 Ans.

11.10 STANDARD DEVIATION OF BINOMIAL DISTRIBUTION        (A.M.I.E.T.E., Dec.2006)

      Successess r             Frequency f                    r2f
       0                                qn                                           0
       1                                nqn–1p                                       nqn–1p

       2                                2 2( 1)( 2)
2

nn n n q p 
             2 22 ( 1) nn n q p

              3                              3 3( 1)( 2)
6

nn n n q p               3 33 ( 1) ( 2)
2

nn n n q p 

       ......                            .......                                          ....
       n                                pn                                           n2pn
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We know that
22

2 –f r f r
f f


      

...(1)

r is the deviation of items (successes) from 0.
  f  = 1,     f r = np

  f r2     = 1 2 2 3 3 23 ( 1)( 2)0 2 ( 1) ....
2

n n n nn n nnq p n n q p q p n p   
     

        = 1 2 3 2 12( 1) 3 ( 1) ( 2)[ .... ]
1! 2!

n n n nn n nnp q q p q p np     
   

        = 
2

1 3 2 1( 1) ( 1) ( 2)[ ....
1! 2!

n
n n nn q p n nnp q q p p


    
   

         
2

3 2 1( 1) 2 ( 1) ( 2) .... ( 1)
1! 2!

n
n nn q p n n q p n p


    

     

        = 1 2 3 2 1( 1) ( 2)( 1) ....
2!

n n n nn nn p q n q p q p p            

          
2 3 4 2 2( 2)( 3)( 1) ( 2) ....

2!
n n n nn nn p q n q p q p p              

=  np [{(q + p)n –1}+ (n – 1) p (q + p )n–2] =  np [1 + (n – 1) p]
               =  np [np  + ( 1– p ) ]= np[np + q] = n2 p2  + npq

Putting these values in (1), we have

                         Variance  = 2  = 
22 2

1 1
n p n pq np npq    

 
,

S.D. =  n p q
Hence for the binomial distribution, Mean = np ,  2  = 2  = n p q
Example 35. Find the first four moments of the binomial distribution. (AMIETE, Summer 2000)
Solution. First moment about the origin

1
= 

0
.

n
n r n r

r
r

C p q r


  = 

0

( 1)( 2).......( 1).
!

n
r n r

r

n n n n rr p q
r





   

          =  
1

( 1)( 2).......( 1)
( )!

n
r n r

r

n n n rn p q
n r





   
  =  

1 1
1

1

n
n r n r

r
r

np C p q  





          =   np (q + p) n –1 = np
Thus, the mean of the Binomial distribution is np.
Second moment about the origin

2  = 
2

0
.

n
n r n r

r
r

C p q r


 [r2  =  r (r – 1)  +  r]

         =  
0

( 1)
n

n r n r
r

r
r r r C p q 



   = 
0 0

( 1) ·
n n

n r n r n r n r
r r

r r
r r C p q r C p q 

 

  

          = 
0

( 1) ( 1)( 2).......( 1)
!

n
r n r

r

r r n n n n r p q
r





    

          = 
0

( 1)( 2).......( 1)
!

n
r n r

r

r n n n n r p q
r





   

          = 2 2

2

( 2)( 3).......( 1)( 1)
( 2)!

n
r n r

r

n n n rn n p p q
r

 



   




           +
1( 1)( 2).......( 1)

( 1)!
r n rn n n rnp p q

r
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          =   n (n – 1) p2  (q + p ) n –2    +  np  ( q + p )n–1 = n (n – 1) p2  + np
Third moment about the origin

3
 3

0
·

n
n r n r

r
r

C p q r




[Let  r3  = Ar ( r  – 1 ) ( r  – 2 ) +  Br ( r  –  1 ) +  Cr
By putting  r  = 1, 2,  3,  we get A = 1,   B = 3,   C = 1]

             3  =  
0

( 1)( 2) 3 ( 1)
n

n r n r
r

r
r r r r r r C p q 



    

     =  
0 0 0

( 1)( 2) 3 ( 1)· ·
n n n

n r n r n r n r n r n r
r r r

r r r
r r r C p q r r C p q r C p q  

  

      

     =  
0

( 1)( 2)· ( 1).......( 1)
!

n
r n r

r

r r r n n n r p q
r





    

    + 
0 0

( 1) · ( 1).......( 1) ( 1).......( 1)3
! !

n n
r n r r n r

r r

r r n n n r n n n rp q r p q
r r

 

 

      
 

     = 
3

( 1)( 2)( 3).......( 1)
( 3)!

n
r n r

r

n n n n n r p q
r





    


    + 
2

( 1)( 2)( 3).......( 1)3
( 2)!

n
r n r

r

n n n n n r p q
r





    


    + 
1

( 1)( 2).......( 1)
( 1)!

n
r n r

r

n n n n r p q
r





   


     = 
3 3 3 3 2 2 2 2

3 2
3 2

( 1)( 2) 3 ( 1)
n n

n r n n r n
r r

r r
n n n p C p q n n p C p q     

 
 

    

    
( 1) 1 1

1
1

n
n r n

r
r

np C p q  




 
     = n (n – 1) (n – 2 )  p3 (q + p)n – 3 + 3 n (n – 1) p2 (q + p)n – 2  +  np (q + p)n – 1

     = n (n – 1) (n – 2 )  p3  + 3 n (n – 1) p2  +  np

Fourth Moment

4
= 4

0
·

n
n r n r

r
r

C p q r




[Let  r 4  =  Ar  ( r  – 1 ) ( r  – 2 ) ( r – 3 ) + Br ( r – 1 ) ( r – 2 ) +  Cr ( r  – 1 ) +  Dr
By putting  r = 1, 2, 3, 4, we get A = 1, B = 6, C = 7, D = 1]

4


0 0
( 1)( 2)( 3)· 6 ( 1)( 2)·

n n
n r n r n r n r

r r
r r

r r r r C p q r r r C p q 

 

      


0 0

7 ( 1)· ·
n n

n r n r n r n r
r r

r r
r r C p q r C p q 

 

   


0

( 1)( 2)( 3)· ( 1).......( 1)
!

n
r n r

r

r r r r n n n r p q
r





     


0

( 1)( 2) · ( 1).......( 1)6
!

n
r n r

r

r r r n n n r p q
r





    
 


0 0

( 1)· ( 1).......( 1) · ( 1).......( 1)7
! !

n n
r n r r n r

r r

r r n n n r r n n n rp q p q
r r
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4

( 1)( 2) ( 3)( 4)...( 1)
( 4)!

n
r n r

r

n n n n n n r p q
r





     



3

( 1)( 2)( 3)...( 1)6
( 3)!

n
r n r

r

n n n n n r p q
r





    




   
2

( 1)( 2)...( 1)7
( 2)!

n
r n r

r

n n n n r p q
r





   


 ( 1)...( 1)
( 1)!

r n rn n n r p q
r

  




             = 
4 3

4 3
4 3

( 1)( 2)( 3) 6 ( 1)( 2) ·
n n

n r n r n r n r
r r

r r
n n n n C p q n n n C p q   

 
 

      
2 1

2 1
2 1

7 ( 1) · ·
n n

n r n r n r n r
r r

r r
n n C p q n C p q   

 
 

   
              = n (n – 1) ( n – 2) (n – 3) p4 (q + p )n – 4   + 6n (n – 1)(n – 2) p3 (q  + p) n –3

+ 7n (n – 1) p2 (q  + p) n –2  + np (q + p)n –1

                     =  n (n – 1) ( n – 2) (n – 3) p4  + 6n (n – 1)(n – 2) p3 + 7n (n – 1) p2 + np

11.11  CENTRAL  MOMENTS :  (Moments  about  the mean)
Now, the first four central moments are obtained as follows:
Second Central Moment
=2– 1

 =  [ n ( n – 1 ) p2  +  np ]  – n2 p2  = np [ ( n – 1) p + 1– np ] = np ( 1–  p ) = npq
Variance of Binomial distribution is  npq
Third Central Moment

        3  = 3– 3 21
3
1μ '

              = { n ( n –1 ) ( n – 2 ) p3  + 3n ( n – 1 ) p2 +  np} – 3{ n2 p2  + npq ) np} +2 n3 p3

              =  np [ –3 n p2 + 3np + 2 p2 – 3p + 1–3npq ]
              =  np [ 3np ( 1– p ) + 2p2  – 3p + 1–3npq ]
              =   np [ 3npq  + 2p2 – 3p + 1–3 npq ] = np [ 2p2  – 3p + 1 ] = np[ 2p 2 – 2p + q ]
              = np [–2p ( 1– p ) + q ]  =  np ( –2pq + q ) = npq ( 1– 2p ) = npq ( q – p )

Fourth Central Moment

         4  = 4– 4 312
2 4
1 1μ ' 3μ '

              = n ( n –1 ) ( n –2 ) ( n – 3 ) p4 + 6n ( n –1 )( n –2 ) p3  + 7n ( n – 1 ) p2

+ np  – 4 [ n ( n – 1 ) ( n –2 ) p3 +  3n ( n –1) p2 + np ] np
+ 6 [ n ( n – 1 ) p2  + np ] n2 p2  – 3 n4 p 4

              = np [ ( n – 1 )( n – 2 ) ( n –3 )p3  + 6 ( n –1 ) ( n –2 ) p2 + 7( n– 1 ) p
+ 1 – 4 {n ( n  – 1 ) ( n – 2 ) p3 + 3n ( n – 1 ) p2  + np}

+ 6 {n  ( n – 1 ) p2  + np} np – 3n3 p3 ]
              =  np [( n3 – 6n2 + 11n – 6 ) p3 + ( 6n2 – 18n +  12 ) p2  + 7np – 7p + 1

+ {( – 4 n3 +  12 n2 –  8n ) p3  – 4 ( 3n2  – 3n ) p2  – 4 np}
+  {( 6n3 – 6n2 ) p3 +  6 n2 p2} – 3n3 p3 ]

              =   np [ ( n3  – 6 n2 +  11n –6 – 4n3  + 12 n2  – 8n +  6n3 – 6n2 – 3n3 ) p3

+ (6n 2 – 18n + 12 – 12 n2  + 12n + 6n2 ) p2 + ( 7n – 7 – 4n ) p + 1]
              =   np [(3n – 6 ) p3 + (– 6n + 12 ) p2 + ( 3n – 7 )p + 1]
              =   np [ 3np3 – 6 p3 –  6n p2 + 12 p2 + 3np –7p + 1 ]
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              =   np [ 3n p3  – 3 n p2  – 6 p3  + 6 p2  –3n p2 + 3np + 6 p2  – 6p –  p + 1]
              =   np [–3n p2 ( 1– p )  + 6 p2 ( 1 – p ) + 3np ( 1 – p ) – 6p ( 1– p ) + ( 1 – p ) ]
               =  np [ –3n p2 q + 6 p2 q + 3n pq – 6pq + q ] = npq [–3n p2  +  6p2 + 3np – 6p + 1 ]
              =   npq [ 3np ( 1– p ) – 6p ( 1– p ) + 1]  = npq [ 3npq – 6pq + 1 ]
              =  npq [ 1 + 3 ( n – 2 ) pq ] Ans.

11.12 MOMENT  GENERATING  FUNCTIONS  OF  BINOMIAL  DISTRIBUTION ABOUT ORIGIN
                       M0  (t)  = E (etx ) = nCx p

x qn – x  · etx

            nCx  (p et)x  qn – x = (q  + pet)n

Differentiating w.r.t. ‘t’  we get  M0   ( t) = n (q + p et )n–1 p  ·et

On putting  t  = 0,  we get  1=  n (q  + p)n –1 p
1np

Since  Ma (t)  =  e– at  M0 (t)
Moment generating function of the Binomial distribution about its mean (m) =  np is given by

   Mm (t)  =  e– npt   M0 (t)
   Mm (t)  =  e– npt(q + p et )n = (qe–pt + pe– pt + t)n = (qe–pt + pe(1 – p) t)n

2 2 3 2 4 4 2 2 3 3 4 4

(1 ...) (1 ....)
2! 2! 4! 2! 3! 4!

n
p t p t p t q t q t p tq pt p qt

 
             

=
2 3 4

2 2 3 31 ( ) ( ) ....
2! 3! 4!

n
t t tpq pq q p pq q p

 
       

        
2 3 4

1 2 3 41 μ μ μ μ .....
2! 3! 4!
t t tt    

= 
2 3 4

1 ( ) [1 3( 2) ] .....
2! 3! 4!
t t tnpq npq q p npq n pq      

Equating the coefficients of like powers of t on both sides, we get
2 = npq,   3  =  npq (q – p), 4  =  npq [ 1 + 3 (n – 2) pq]

Hence the moment coefficient of skewness is

1   = 
2 2 2
3
3 3
2

μ [ ( )] ( )
μ ( )

npq q p q p
npqnpq

 
   ;    1   = 1β q p

npq




Coefficient of Kurtosis is given by

2    = 
4
2 2
2

μ [1 3 ( 2)] 1 63
μ ( )

npq pq n pq
npqnpq

  
  

;    22  – 3 = 
1 6 pq

npq


 Example 36. If  the probability of a defective bolt is 0.1, find
              (a)  the mean (b) the standard deviation for the distribution bolts in a total of 400.

 Solution. n = 400,  p  = 0.1,   Mean  = np =  400 × 0.1 = 40

Standard deviation = 400 0.1(1 0.1)npq   

   =  400 0.1 0.9 20 0.3 6     Ans.
Example 37. A die is tossed thrice. A success is getting 1 or 6 on a toss. Find the mean and

variance of the number of successes.                                (AMIETE, Dec. 2010)

Solution.
1 23, ,
3 3

n p q  
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       Mean  = np  = 
13 1
3

 

  Variance  = npq = 
1 2 23
3 3 3

   Ans..

11.13  RECURRENCE  RELATION F OR  THE  BINOMIAL  DISTRIBUTION
By Binomial distribution,    P (r) =  nCr   pr  q n – r                    ...(1)         (A.M.I.E., Summer 2002)

                                P( r  + 1 ) =  nCr +1   p r +1 q n – r – 1           ...(2)
On dividing (2) by (1), we get

  
1 1

1( 1)
( )

n r n r
r

n r n r
r

CP r p q
P r C p q

  







   =
( 1)( 2).....( ) !

( 1)! ( 1)( 2).....( 1)
n n n n r r p

r n n n n r q
  

    

  
( 1) ( 1) ( )

( ) 1 1
P r n r p n r pP r P r

P r r q r q
  

   
    Ans.

Exercise 11.4
       1.   Fit a binomial distribution to the following frequency data:

        x 0 1 3 4
        f 2 8 6 2 10 4 (U. P  III Sem. Dec. 2004)

Ans.  P (r )  = 104Cr (0.00999)r (0.99111)104 – r

2. Fill in the blanks :
(a) A coin is biased so that a head is twice as likely to occur as a tail. If the coin is

tossed 3 times, the prob. of getting exactly 2 tails, is ...........
(b) The probability of getting number 5 exactly two times in five throws of an unbiased die

is  .......
(c) A die is thrown 6 times. The probability to get greater than 4 appears at least once is...

(d) For what, one should be?
(i) Obtaining 6 at least once in 4 throws of a die.
or (ii) obtaining a double-six at least once in 24 throws with two dice.

(e) The probability of producing a defective bolt is 0.1. The probability that out of 5
bolts one will be defective is ........

(f) If the probability of hitting a target is 5% and 5 shots are fired independently, the probability
that the target will be hit at least once is  .......

(g) If n and p are the parameters of a binomial distribution the standard deviation is ....
(h) The mean, standard deviation and skewness of Binomial distribution are ..... and ..

                                (A.M.I.E., Summer 2001)
(i) If three persons selected at random are stopped on a street, then the probability that all of

them were born on Sunday is .....                                   (A.M.I.E., Winter 2001)

Ans.
24 43

5
5

2 5 665 671 35 1 9( ) , ( ) 10. , ( ) , ( ) ( ) , ( )1 , ( ) , ( ) 1 (0.95) ,
9 729 1296 36 2 106

1( ) ( ) , , ( )
343

a b c d i ii e f

q pg npq h np npq i
npq
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 3.  Tick the correct answer :
(a) If a coin is tossed 6 times in succession, the probability of getting at least one head is

(i) 1/64 (ii) 3/32 (iii) 63/64 (iv) 1/2
(b) A coin is tossed until a tail appears or at the most five times. Given that the tail does not

appear on the first two tosses, the probability that the coin will be tossed 5 times, is
(i) 1/2 (ii) 3/5 (iii) 1/3 (iv) 1/4

(c) In a certain manufacturing process it is known that on an average, 1 in every 100 items is
defective. What is the probability that 5 items are inspected before a defective item is
found?
(i) 0.0096 (ii) 0.96 (iii) 0.096 (iv) none of these

(d) The probability that a marksman will hit a target is given as 
1
5 . Then his probability of at least

one hit in 10 shots is

(i)
1041

5
   
 

(ii) 10

1
5 (iii) 10

11
5

 (iv)None of these

(e) The probability of having at least one tail in 4 throws with a coin is

(i) 
15
16 (ii)

1
16 (iii)

1
4

( iv) 1.

(f) A coin is tossed 3 times. The probability of obtaining two heads will be

(i) 
3
8 (ii) 

1
2 ' (iii) 1 (iv) 2.

(g) 8 coins are tossed simultaneously. The probability of getting at least 6 heads is

(i) 
57
64 (ii) 

229
256 (iii) 

7
64 (iv) 

37
256

(h) Three unbiased coins are tossed simultaneously. This is repeated four times. The
probability of getting at least one head each time is

(i) 
43

4
 
 
 

(ii) 
47

8
 
 
 

(iii) 
41

8
 
 
 

(iv) 
41

4
 
 
 

(i) In rolling two fair dice, the probability of getting equal numbers or numbers with an even
product is

(i) 
6

36 (ii) 
30
36 (iii) 

27
36 (iv) 

3
36

(j) In a binomial distribution the sum and the product of the mean and variance are 25
3

 and
50
3

respectively. The distribution is

(i) 
154 1

5 5
  
 

(ii) 
152 1

3 3
  
 

(iii) 
153 1

4 4
  
 

(iv) None of these.

(k) A room has three lamp sockets. From a collection of 10 light bulbs of which only 6 are good. A
person selects 3 at random and puts them in a socket. What is the probability that room will have
light.
(i) 29/120 (ii) 39/60 (iii) 19/30 (iv) 29/30               (A.M.I.E.T.E. Dec 2005)

(l)  The inequality between mean and variance of Binomial distribution which is true is
(a) Mean < Variance (b) Mean = Variance
(c) Mean > Variance (d) Mean × Variance = 1            (A.M.I.E.T.E Dec. 2006)

Ans. (a) (iii ), (b) (iv), (c) (i), (d) (i), (e) (i), (f) (i), (g) (iv), (h) (ii), (i) (ii), (j) (ii), (l) (c),
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11.14  POISSON DISTRIBUTION
Poisson  distribution  is  a  particular  limiting form of the Binomial distribution when p (or q)
is very small and n is large enough.
Poisson distribution is

( )
!

r mm eP r
r





where m is the mean of the distribution.
Proof. In Binomial distribution.

            P ( r )  =  n Cr q n – r p r  = n C r (1 – p)n–r pr

since mean mm np p
n

     
 

                 1
n r r

n
r

m mC
n n


       
    (m is constant)

          
( 1) ( 2)...( 1) 1

!

r n rn n n n r m m
r n n

           
   

       

1 2 1... 1

! 1

n
r

r

n n n n r mm
n n n n n n n n

mr
n

               
      

  
 

        

1 2 11 1 1 ... 1 1

! 1

n
r

r

r mm
n n n n

mr
n

               
       

  
 

               Taking limits, when n tends to infinity

                lim 1 lim 1

mnn
m m

n n

m m e
n n






 

 
               

     as      lim 1
n
m

n

m e
n






      



  ( )
!

r
mmP r e

r


.( )
!

m re mP r
r





4. Find the Binomial distribution whose mean is 5 and variance is 10
3 .     Ans.

15
15 1 2

3 3

r r

rC


   
   
   

5. (a) The mean, standard deviation and skewness of Binomial distribution are ......,  .... and ....
(AMIE Summer 2001)                      Ans. , , 0np npq

(b) If three persons selected at random are stopped on a street, then the probability that all of

them were born on Sunday is .........             (A.M.I.E, Winter 2001)  Ans.
1

343

POISSON DISTRIBUTION
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11.15 MEAN OF POISSON DISTRIBUTION
.( )
!

m re mP r
r



  (A.M.I.E.T.E., Summer 2004, 2002)

Successes r Frequency f f.r

        0
0

0!

me m

0

        1
1

1!

me m

e–m. m

       2
2

2!

me m

e–m. m2

           3
3

3!

me m 3.
2!

me m

      ...      ...    ...

      r
!

m re m
r

 .
( 1)!

m re m
r




      ...      ...    ...

     
3

– – 2 –0 . . . ... ...
2! ( 1)!

r
m m m mm mf r e m e m e e

r
       



2 1

. 1 ... ...
1! 2! ( 1)!

r
m m m me m

r


  

       
            = m . e–m. [em] = m

Mean = ,
1

fr m
f






             Mean = m. Ans.
11.16  STANDARD  DEVIATION  OF  POISSON  DISTRIBUTION

( )
!

m re mP r
r



            (A.M.I.E.T.E., Summer 2002)

Successes Frequency Product Product
       r        f      rf     r2f

  0
0

0!

me m

 0 0

  1
1

1!

me m

e–m . m e–m.m

  2
2

2!

me m

e–m . m2 2e–m . m2

  3
3

3!

me m 3.
2!

me m 3

3 .
2!

m me

r
!

m re m
r

 .
( 1)!

m re m
r




.

( 1)!

m rre m
r




      ......... .........                .........       .........

f  = 1, fr = m

      ......... .........                .........       .........
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3

2 – 2 – .0 . 2 . 3. . ... ..
2 ( 1)!

m r
m m m m r e mf r e m e m e

r


       



          =  
2 3 13 4 .. 1 2 ... ..

2! 3! ( 1)!

r
m m m r mm e m

r


  

      

          = 
2 3 1

. 1 ... ..
2! 3! ( 1)!

r
m m m mm e m

r


 

     
..+

2 3 13 ( 1)2 ... ...
2! 3! ( 1)!

rm m r mm
r

 
      

  = 
2 3 1

. 1 ... ...
2! 3! ( 1)!

r
m m m mm e m

r


  

        

2 2

1 ... ...
1! 2! ( 2)!

rm m mm
r

  
       

          = m.e–m [em + m em] = m + m2

    
22 2

2 2( ) or
1

fr fr m m m m m
f f

   
          

=S. D. m

Hence mean and variance of a Poisson distribution are each equal to m. Similarly we can obtain,
3 = m, 4 = 3m2 + m

           1 2
1 1, 3
m m

    

           1 2
1 1,

mm
   

11.17   MEAN   DEVIATION
Show that in a Poisson distribution with unit mean, and the mean deviation about the mean is

2
e

 
 
 

 times the standard deviation.                                                           (A.M.I.E.T.E., Dec. 2005)

Solution. ( )
!

r
mmP r e

r
 But mean = 1 i.e. m = 1 and S.D. = m  = 1

Hence,        
1 1 1( ) .

! ! !

m
re eP r m

r r e r

 

  

       r       P(r)     | r – 1| P(r) |r – 1|

  0   
1
e  1

1
e

  1   
1
e 0 0

  2
1 1

2!e 1
1 1

2!e

  3
1 1

3!e 2
1 2

3!e

4
1 1

4!e 3
1 3

4!e

         r
1 1

!e r        r – 1
1 1

!
r

e r


.......... .......... .......... ..........
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Mean Deviation = 1 1 1 1 2 1 3 1 1( ) | 1 | 0 ... ...
2! 3! 4! !

rP r r
e e e e e r


         

   =
1 1 2 3 11 0 ... ...

2! 3! 4! !
r

e r
         

   = 
1 1 1 2 1 3 1 4 1 11 ... ...

1! 1! 2! 2! 3! 3! 4! 4! ! !
r

e r r
                                         

   = 
1 1 2 3 4 1 1 1 1 11 ... ... ... ...

1! 2! 3! 4! ! 1! 2! 3! 4! !
               

r
e r r

   = 
1 1 1 1 1 1 1 1 1 11 1 ... ... 1 ... ... 1

1! 2! 3! ( 1)! 1! 2! 3! 4! !e r r
                          

   = 
1 2[1 1]e e
e e

   

   = 
2 2(1) S.D.
e e

 Proved.

11.18  MOMENT  GENERATING  FUNCTION  OF  POISSON  DISTRIBUTION
          (A.M.I.E., Summer 2000)

Solution. ( )
!

m re mP r
r





Let Mx(t) be the moment generating function, then

      
0 0

. ( )( ) .
! !

m r t r
t r m

x
r r

e m meM t e e
r r

 


 

    = 
2 3

( 1)( ) ( )1 ... .
2! 3!

t t
t t

m t m me m eme mee me e e e   
      

 
11.19   CUMULANTS

The cumulant generating function Kx(t) is given by

        ( 1)( ) log ( ) log ( 1) log
tm e t

x e x e eK t M t e m e e   

= 
2 3

( 1) 1 .... ... 1
2! 3! !

r
t t t tm e m t

r
 

         
 

 = 
2 3

... ...
2! 3! !

rt t tm t
r

 
     

 

Now     Kr = r th cumulant = coefficient of 
!

rt
r

 in K(t) = m

i.e.,        kr = m,       where    r = 1, 2, 3, ....
Hence, all the cumulants of the Poisson distribution are equal. In particular, we have
Mean = K1 = m, 2 = K2 = m, 3 = K3 = m

4 = K4 + 3K2
2 = m + 3m2

2 2 2
3 4

1 23 3 2 2
2 2

1 3 1, 3m m m
m mm m
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11.20   RECURRENCE  FORMULA  FOR  POISSON  DISTRIBUTION
Solution.   By Poisson distribution

                                   
.( )
!

m re mP r
r



 ... (1)

             
1

( 1)
( 1)!

m re mP r
r

 

 
 ... (2)

On dividing (2) by (1), we get

            
1( 1) !

( ) ( 1)! 1.

m r

m r

P r e m r m
P r r re m

 




 

 

             ( 1) ( )
1

mP r P r
r

 


Ans.

Example 38. If the variance of the Poisson distribution is 2, find the probabilities for
r = 1, 2, 3, 4 from the recurrence relation of the Poisson distribution. Also find
P(r  4).

Solution. Variance = m = 2;
     Mean = 2

                    ( 1) ( )
1

mP r P r
r

 


[Recurrence relation]

Now                     
2( 1) ( )

1
P r P r

r
 


(m = 2)

If           r = 0,  P (1) = 
2 2(0) (0.1353) 0.2706

0 1 0 1
P  

 
       [P (0) = e– m = e– 2 =  0.1353]

If           r = 1,  P (2) = 
2 2(1) (0.2706) 0.2706

1 1 2
P  



If           r = 2,   P (3) = 
2 2(2) (0.2706) 0.1804

2 1 3
P  



If           r = 3,  P (4)  = 
2 1(3) (0.1804) 0.0902

3 1 2
P  


                  P (r  4) = P (4) + P (5) + P (6) + ...

        = 1– [P (0) + P (1) + P (2) + P (3)]
         = 1– [0.1353  + 0.2706 + 0.2706 + 0.1804]
         = 1– 0.8569 = 0.1431 Ans.

Example 39. Assume that the probability of an individual coal miner being killed in a mine

accident during a year is 
1

2400 . Use appropriate statistical distribution to

calculate the probability that in a mine employing 200 miners, there will be at
least one fatal accident in a year.                                   (A.M.I.E.T.E., Summer 2001)

Solution.     
1 , 200

2400
P n 

    
200 1

2400 12
m np  

      P (At least one)  = P (1 or 2 or 3 or   .....  or 200)
                    = P (1) + P (2) + P (3) + ... + P (200)
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        = 
0.1 (0) 1

0!

me mP


  

= 
1–

121 1 0.92 0.08e          Ans.
Example 40. Suppose 3% of bolts made by a machine are defective, the defects occurring at

random during production. If bolts are packaged 50 per box, find
(a) exact probability and
(b) Poisson approximation to it, that a given box will contain 5 defectives.

Solution.     
3 0.03

100
p  

     q = 1 – p = 1 – 0.03 = 0.97
(a) Hence the probability for 5 defective bolts in a lot of 50

         = 50C5 (0.03)5 (0.97)45 = 0.013074   (Binomial Distribution)

(b) To get Poisson approximation m = n p = 50 × 
3 3 1.5

100 2
 

Required Poisson approximation  = 
5 1.5(1.5) 0.01412

! 5!

r mm e e
r

 

  Ans.

Example 41. The number of arrivals of customers during any day follows Poisson distribution
with a mean of 5. What is the probability that the total number of customers on
two days selected at random is less than 2?

Solution. m  = 5

                        
5 (5)( ) , ( )

! !

m r re m eP r P r
r r

 

 

If the number of customers on two days < 2 = 1 or 0

First day Second Day Total
     0       0    0
     0       1    1
     1       0    1

              Required probability   = P (0) P (0) + P (0) P (1) + P (1) P (0)

    
5 0 5 0 5 0 5 1 5 1 5 0(5) (5) (5) (5) (5) (5). .
0! 0! 0! 1! 1! 0!

     

  
e e e e e e

     = e–5· e–5 + e–5 · e–5 ·  5  + e–5 · 5 · e–5

     = e–10 [1 + 5 + 5] = 11e–10  = 11 × 4.54 × 10–5

     = 4.994 ×10–4       Ans.
Example 42. Using Poisson distribution, find the probability that the ace of spades will be
drawn from a pack of well-shuffled cards at least once in 104 consecutive trials.

Solution. Probability of the ace of spades = P = 
1
52 ,  n = 104

m = np = 104 × 
1
52  = 2

P(r)= e–m.
!

rm
r

=  e –2 . 2

2 1 2
! !

r r

r re
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P (At least once) = P (1) + P (2) + P (3) + ... + P (104) = 1– P (0)

       = 1 – 2

1
e

 ×
2
0!

o

= 1 – 2

1
e

= 1 – 0.135 = 0.865 Ans.

Example 43. In a certain factory producing cycle tyres, there is a small chance of 1 in 500 tyres
to be defective. The tyres are supplied in lots of 10. Using Poisson distribution,
calculate the approximate number of lots containing no defective, one defective
and two defective tyres, respectively, in a consignment of 10,000 lots.

Solution.
1 , 10

500
p n 

1 110 . 0.02
500 50

m np    ,    
.( )
!

m re mP r
r





S.No.       Proability of defective Number of lots containing defective

1 P (0)  = 
0.02 0

0.02(0.02) 0.9802
0!

e e


  10,000 × 0.9802 = 9802 lots

2 P (1)  = 
0.02 1(0.02)

1!
e

10,000 × 0.019604 = 196 lots

       = 0.9802 × 0.02 = 0.019604

3. P (2)  = 
0.02 2(0.02)

2!
e

10,000 × 0.000196 = 2 lots

       = 0.9802 × 0.0002 = 0.00019604
Ans.

Example 44. A car hire firm has two cars which it hires out day by day. The number of demands
for a car on each day is distributed as a Poisson distribution with mean 1.5.
Calculate the number of days in a year on which
(i) neither car is on demand (e–1.5 = 0.2231)
(ii) a car demand is refused.
(MDU, Dec. 2010, A.M.I.E., Summer 2004 Winter 2001, June 2009)

Solution. m = 1.5
(i) If the car is not used, then demand (r) = 0

                        
1.5 0

1.5. (1.5)( ) , (0) 0.2231
! 0!

m re m eP r P e
r

 
   

Number of days in a year when the demand is zero = 365 × 0.2231 =  81.4315       Ans. 81 days
(ii) Some demand is refused if the number of demands is more than two i.e. r > 2.

                     P (r > 2) = P (3) + P (4) + ... = 1 – [P (0) + P (1) + P (2) ]

      = 
1.5 0 1.5 1 1.5 2(1.5) (1.5) (1.5)1

0! 1! 2!
e e e   

   
 

= 1 – [e–1.5 + e–1.5 × 1.5 + e–1.5 × 1.125]
= 1 – e–1.5 [1 + 1.5 + 1.125] = 1 – e–1.5 × 3.625
= 1 – 0.2231 × 3.625 = 1 – 0.8087375
= 0.1912625 Ans.

Number of days in a year when some demand of car is refused
= 365 × 0.1912625 = 69.81 = 70 days                         Ans.
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Example 45. If the probability that an individual suffers a bad reaction from a certain injection
is 0.001, determine the probability that out of 2000 individuals
(a) exactly 3 (b) more than 2 individuals (c) None (d) More than one individual
will suffer a bad reaction.             (A.M.I.E.T.E., June 2007, Winter, 2002, 2000)

Solution.  p = 0.001,         n = 2000
  m = np = 2000 × 0.001 = 2

         2
2

2 1 2( )
! ! !

m r r re mP r e
r r re


   

       (a)     P (Exactly 3) = 
3

2 2
1 2 1 8 4(3) . (0.135) 0.18

3! 6 3(2.718)
P

e
     

(b) P (more than 2) = P (3) + P (4) + P (5) + ... + P (2000)
           = 1 – [P (0) + P (1) + P (2)]

            = 
2 0 2 1 2 2(2) (2) (2)1
0! 1! 2!

e e e   
   
 

           = 2
2

51 [1 2 2] 1e
e

    

         = 1 – 5 × 0.135 = 1 – 0.675 = 0.325 Ans.

(c)             P (none) = P (0) = 
2 0(2) 0.135
0!

e



(d) P (more than 1) = P (2) + P (3) + P (4) + ... + P (2000)  = 1 – [P (0) + P (1)]

          = 
2 0 2 1

2(2) (2)1 1 3 1 3 0.135 1 0.405
0! 1!

e e e
 

 
         
 

 = 0.595 Ans.

Example 46. A manufacturer knows that the razor blades he makes contain on an average 0.5% of
defectives. He packs them in packets of 5. What is the probability that a packet picked
at random will contain 3 or more faulty blades ?

Solution. p = 0.5% = 0.005, n = 5

m = np = 5 × 0.005 = 0.025

         p (r) =
 –0.025– 0.025·

! !

rm r ee m
r r



P (3 or more) =P (3) + P (4) + P (5 = 
     3 4 5–0.025 –0.025 –0.0250.025 0.025 0.025
3! 4! 5!

e e e
 

            = 
 3–0.025 0.025
5!

e
 [20 + 5 (0.025) + (0.025)2]

          = 0.975 0.000015625 20.125625
120

 

          =  0.000002555. Ans.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



802 Probability

Example 47. Suppose that a book of 600 pages contains 40 printing mistakes. Assume that these errors
are randomly distributed throughout the book and x, the number of errors per page has a Poisson
distribution. What is the probability that 10 pages selected at random will be free of errors ?

Solution. p =
40 1

600 15
 , n = 10,  m = np = 10 × 

1 2
15 3



                                                               
–2 / 3

–
2

. 3
! !

r

m r e
e mP r

r r

 
 
  

       

0
–2 / 3

–2 / 3

2
30

0!

e
P e

 
 
   = 0.51 Ans.

Example 48. A manufacturer knows that the condensers he makes contain on an average 1%
of defectives. He packs them in boxes of 100. What is the probability that a box
picked out at random will contain 4 or more faulty condensers?

Solution. p = 1% = 0.01, n = 100,   m = np = 100 × 0.01 =1

                       
1 1.( ) (1)( )

! ! !

m r re m e eP r
r r r

  

  

P (4 or more faulty condensers)   = P (4) + P (5) + ... + P (100) 1 [ (0) (1) (2) (3)]P P P P    

1 1 1 1

1
0! 1! 2! 3!
e e e e    

     
 

 = 1 1 11 [1 1 ]
2 6

e     = 
81 1 0.981 0.019

3e
         Ans.

Example 49. An insurance company found that only 0.01% of the population is involved in a
certain type of accident each year. If its 1000 policy holders were randomly
selected from the population, what is the probability that not more than two of
its clients are involved in such an accident next year? (given that e–0.1 = 0.9048)

Solution.    
1 1 10.01% , 1000

100 100 10000
p n    

   
1 1(1000) 0.1

10000 10
m np    

                      ( )
!

m re mP r
r





                   P (not more than 2)   = P (0, 1 and 2)  = P (0) + P (1) + P (2)

       = 
0.1 0 0.1 1 0.1 2(0.1) (0.1) (0.1)

0! 1! 2!
e e e  

 

        = 
0.1 0.011 0.1

2
e    

 
 = 0.9048 × 1.105 = 0.9998       Ans.

Example 50. A skilled typist, on routine work kept a record of mistakes made per day
during 300 working days.

Mistakes per day 0 1 2 3 4 5 6

No. of days 14 3 9 0 4 2 12 9 3 1

Fit a Poisson distribution to the above data and hence calculate the theoretical frequencies.
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Solution. The mean number of mistakes

=
1

300  (143 × 0 + 90 × 1+ 42 × 2 + 12 ×3 + 9×4 + 3 ×5 + 1×6)

=   
1

300  (90 + 84 + 36 + 36 + 15 + 6) = 
267
300 = 0.89

Number of Probability Theoretical frequency

mistakes    –0.89 0.89
!

re
P r

r




0
 0–0.89 0.89

0.411
0!

e 
 0.411 × 300 = 123.3 = 123 (say)

1
 1–0.89 0.89

0.365
1!

e 
 0.365 × 300 = 109.5 = 110 (say)

2
 2–0.89 0.89

0.163
2!

e 
 0.163 × 300 = 48.9 = 49 (say)

3  3–0.89 0.89
0.048

3!
e 

                  0.048 × 300 = 14.4 = 14 (say)

4
 4–0.89 0.89

0.011
4!

e 
 0.011 × 300 = 3.3 = 3 (say)

5
 5–0.89 0.89

0.002
5!

e 
 0.002 × 300 = 0.6 = 1 (say)

6
 6–0.89 0.89

0.0003
6!

e 
 0.0003 × 300 = 0.09 = 0 (say)

Example 51. Fit a Poisson distribution to the following data which gives the number of yeast
cells per square for 400 squares.

  No. of cells per 0 1 2 3 4 5 6 7 8 9 10 Total
   square (x)
No. of squares 103 143  98 42 8 4 2 0 0 0 0 400

It is given that e–1.32 = 0.2674 (A.M.I.E., Summer 2000)

Solution.

x 0 1 2 3 4 5 6 7 8 9 10 Total

f 103 143 98 42 8 4 2 0 0 0 0 400

f . x 0 143 196 126 32 20 12 0 0 0 0 529

529Mean = 1.32
400

f.xm
f


  



       But Poisson distribution is P(x) =
   –1.32– 1.32 0.2674 1.32· =

! ! !

x xm x ee m P(r)
r x x
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Number of cell Probability P(x) =
 0.2674 1.32
!

x

x      Theoretical frequency

0  00.2674 1.32
0.2674

0!
  0.2674 × 400 = 107

1
 10.2674 1.32

0.353
1!

 0.353 × 400 = 141

2
 20.2674 1.32

0.233
2!

 0.233 × 400 = 93.2

3
 30.2674 1.32

0.1025
3!

 0.1025 × 400 =  41

4
 40.2674 1.32

0.0338
4!

 0.0338 ×  400 =  13.52              i.e., 14

5
 50.2674 1.32

0.00893
5!

  0.00893 × 400 = 3.57                i.e.,  4

6
 60.2674 1.32

0.00196
6!

  0.00196 × 400 = 0.784              i.e., 1

7
 70.2674 1.32

0.00037
7!

 0.00037 × 400 = 0.148               i.e., 0

8
 80.2674 1.32

0.00006
8!

  0.00006 × 400 = 0.24                i.e., 0

9
 90.2674 1.32

0.00000897
9!

 0.00000897 × 400 = 0.003588   i.e., 0

10  100.2674 1.32
0.00000118

10!
 0.00000118  × 400  =  0.000472  i.e.,0

Exercise 11.5
1. Find the probability that at most 5 defective fuses will be found in a box of 200 fuses if experience

shows that 2 per cent of such fuses are defective.                                                Ans. 0.785
2. The number of accidents during a year in a factory has the Poisson distribution with mean 1.5. The

accidents during different years are assumed independent. Find the probability that only 2 accidents
take place during 2 years time.                               Ans. 0.224

3. A manufacturer of cotter pins knows that 5% of his product is defective. If he sells cotter pins in
boxes of 100 and guarantee that not more than 10 pins will be defective, what is the approximate
probability that a box will fail to meet the guaranteed quality. [e–5 = 0.006738]      Ans. 0.0136875

4. Suppose the number of telephone calls on an operator received from 9.00 to 9.05 follow a Poisson
distribution with mean 3. Find the probability that
(i)  the operator will receive no calls in that time interval tomorrow,
(ii)  in the next three days the operator will receive a total of 1 call in that time interval.

  [e –3 = 0.04978]             Ans. (i) e– 3 (ii) 3 × (e–3)2 (e–3 . 3)
5. On the basis of past record it has been found that there is a 70% chance of power-cut in a city on

any particular day. What is the probability that from the first to the 10th day of the month, there
are 5 or more days without power cut.              (A.M.I.E.T.E., Summer 2001)

            Ans.
5 6 7 8 9 10

–33 3 3 3 3 3
5! 6! 7! 8! 9! 10!

e
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6. The distribution of typing mistakes committed by a typist is given below. Assuming a Poisson model,
find out the expected frequencies:
  Mistakes per pages 0 1 2 3 4 5
  No. of pages 142 156 69 27 5 1

       Ans. 147, 147, 74, 25, 6, 1 pages.

7. Let x be the number of cars per minute passing a certain crossing of roads between 5.00 P.M. and
7.00 P.M. on a holiday. Assume x has a Poisson distribution with mean 4. Find the probability of
observing atmost 3 cars during any given minute between 5.00 P.M. and 7 P.M. (given e–4 = 0.0183)

            Ans. 0.4331

8. Let x be the number of cars, passing a certain point, per minute at a particular time. Assuming that
x has a poisson distribution with mean 0.5, find the probability of observing 3 or fewer cars during
any given minute.               Ans. 0.998

9. Number of customers arriving at a service counter during a day has a Poisson distribution with mean 100.
Find the probability that at least one customer will arrive on each day during a period of five days. Also find
the probability that exactly 3 customers will arrive during two days.

                                                                              Ans. (1 – e–100)5, e–200 × 
 34 100

3

10. The random variable X has a Poisson distribution. If

P (X = 1) = 0.01487,P ( X = 2) = 0.04461. Then find P (X = 3). Ans.    0.08922

11. A source of water is known to contain bacteria with mean number of bacteria per cc equal to 2.
Five 1 cc test tubes were filled with water. Assuming that Poisson distribution is applicable, calculate
the probability that exactly 2 test tubes contain at least 1 bacterium each.

Ans.
2
5  ( 1 – e–2) = 0.3459

12. In a normal summer, a truck driver gets on an average one puncture in 1000 km. Applying Poisson
distribution, find the probability that he will have
(i)  no puncture, (ii) two punctures in a journey of 3000 kms. Ans. (i) e–3 (ii) 4.5 e–3

13. Wireless sets are manufactured with 25 soldered joints each. On the average, 1 joint in 500 is defective.
How many sets can be expected to be free from defective joints in a consignment of 10000 sets ?

             Ans. 9512

14. In a certain factory turning out razor blades, there is small chance 
1

500  for any blade to be defective.

The blades are supplied in packets of 10. Using Poisson’s distribution, calculate the approximate
number of packets containing (i) no defective (ii) one defective and (iii) two defective blades respectively in
a consignment of 10,000 packets. (e–0.02 = 0.9802).                                 Ans. (i) 9802 (ii) 196 (iii) 2

15. If m andr denote by the mean and central rth moment of a Poisson distribution, then prove that

      1 –1 .r
r r

drm m
dm


                        

–

0
– , find

!

m x
r r

r n

de mx m
x dm





 
   

 
Hint.
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        16.  The random variable x has a Poisson distribution.If P (x = 3) =
1
6

, 
' P(x= 2) = 1

3
,
' then P (x = 0) is

(i)  exp (–3/2)    (ii) exp (3/2)   (iii) exp (–3) (iv) exp (–1/2) Ans. (i)
17. Suppose that on an average 1 house in 1000 houses gets fire in a year in a district. If

there are 2000 houses in that district find the probability that exactly 5 houses will have
fire during the year. Also find approximate probability using Poisson distribution.

(A.M.I.E.T.E., Dec. 2006)

18. Assuming that the probability of a fatal accident in a factory during the year is 
1

1200 .Calculate

the probability that in a factory employing 300 workers, there will be at least two fatal
accidents in a year (e–0.25 = –0.770)

19. An insurance company found that only 0.01% of the population is involved in a certain
type of accident each year. If 1000 policy holders were randomly selected from the population,
what is the probability that not more than 2 of its clients are involved in such an accident
next year. (A.M.I.E. Summer 2001) Ans. 0.9998)

20. Fill in the blanks :
(a) If a random variable x follows Poisson distribution such that P (x = 1) = P (x = 2),
then the mean of the distribution is ......
(b) Mean and variance of a Poisson distribution are ......
(c) If the probability of a defective fuse is 0.05, the variance for the distribution of

defective fuses in a total of 40 is .....
(d) The probability of the king of hearts drawn from a pack of cards once in 52 trials is ...

(e)If the standard deviation of the Poisson distribution is 2 , the probability for r = 2 is .....

(f)  If x has a modified Poisson distribution
1( 1)( ) , ( 1, 2,3....)

!

m k

k r
e mP P x k k

k


    , then the expectation of x is ....

(g) If x has a poisson distribution such that P(x = k) = P (x = k+ 1) for some positive
integer k then mean of x is  ... (A.M.I.E., Summer 2000)

Ans. (a) 2, (b) equal, (c)2, (d)
1
e , (e) 2

2
e , (f)

1

m

m

me
e 

(g) k+ 1.

21. Choose the correct answer:
(a) Let X be a Poisson random variable, such that 2P (X = 0) = P (X = 2). Then standard

deviation of x is
(i) 4. (ii) 2. (iii) 2 (iv) 2      Ans.  (iv)

(b) A card is drawn from a well shuffled pack of cards. A sequence of 156 consecutive
trials are made. Using Poisson distribution, the probability that the Queen of clubs
will be drawn at least once is obtained as

(i) 3e (ii) 1– e–3 (iii)
1
3e

 (iv)
1
31 e


                    Ans.  (ii)

NORMAL  DISTRIBUTION
11.21  CONTINUOUS  DISTRIBUTION

So far we have dealt with discrete distributions where the variate takes only the integral values.
But the variates like temperature, heights and weights can take all values in a given interval. Such
variables are called continuous variables.

Distribution function.

If ( ) ( ) ( )
x

F x P X x f x dx


    , then f (x) is defined as the Distribution Function.
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Let  f (x) be a continuous function, then Mean = ( )xf x dx




Variance = 2( ) . ( ) .x x f x dx



 ( x = mean)

Note. f (x) is called probability density function if

(1) f (x)   0 for every value of x.       (2). ( ) 1f x dx



      (3) ( ) , ( )

b

a
f x dx P a x b  

Example 52. A function  f ( x)  is defined as follows

0, x 2
1f x 2x 3 , 2 x 4

18
0, x 4


       

 

Show that it is a probability density function.
Solution.    0,                 x  <  2

                f (x)  =
1

18  (2x + 3), 2    x   4

  0, x   >  4
If  f ( x) is a probability density function, then

(i)   ( ) 1f x dx





Here
4

42
2

2

1 1 1(2 3) [ 3 ] (16 12 4 6) 1
18 18 18

x dx x x       
(ii) f  (x) > 0  for  2    x  4

Hence, the given function is a probability density function. Proved.
Example 53. The diameter of an electric cable is assumed to be continuous random variate

with probability density function:
f ( x)   = 6 x (1–  x) ,  0  x  1
 (i)  verify that above is a p.d.f.          (ii)  find the mean and variance.

Solution. (i)    
1 1

2

0 0
( ) 6 (1 ) (6 6 )f x dx x x dx x x dx




     

         =  
12 3
0

(3 2 ) 3 2 1x x   
Secondly  f  (x) > 0  for   0      x    1.
Hence the given function is a probability density function.

(ii)               Mean  = 
1

0
. ( ) .6 (1 )x f x dx x x x dx




  

           =  
1

2 3

0
(6 6 )x x dx  =  

1
3 4

0

3 3 12 2
2 2 2

x x     
 

     Ans.

          Variance =  2( ) . ( )x x f x dx



  = 

21

0

1 .6 (1 )
2

x x x dx   
 

           = 
1

2 2

0

1 (6 6 )
4

x x x x dx    
  = 

1
3 4 2

0

15 312 6
2 2

x x x x dx    
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           =  
12

4 5 3

0

6 5 33
5 2 4

xx x x
 

   
 

 = 
6 5 33
5 2 4

    
 

 =
1
20  Ans.

Example 54. If the probability density function of a random variable x is
1 1(1 ) , 0 1, 0, 0

( )
0,
kx x for x

f x
otherwise

        
 


Find k and mean of x.
Solution.  If f(x) is a probability density function,

Then ( ) 1f x dx





Here
1 1 1

0
(1 ) 1kx x dx   [ f (x) is a beta function.]

 1k  


 
     k 


 

Ans.

Mean = 
1 11 1 1 1 1

0 0
. ( ) . (1 ) (1 )x f x dx x kx x dx k x x dx

     


     

1.
1 ( )

          
  

       Ans.

Exercise 11.6
1. The two equal sides of an isosceles triangle are of length a each and the angle  between them has a

probability density function proportional to ( 0)    in the range 0,
2
 

 
 

 and zero otherwise. Find

the mean value and variance of area of triangle. (AMIETE Dec. 2005)
2. Suppose that certain bolts have length L = 400 + X mm, where X is a random variable with

probability distribution function.
23( ) (1 ), 1 1

4
f x x x      and 0, otherwise

(i) Determine C so that with probability 
11
16 , a bolt will have length between 400 – C and 400 + C

(ii) Find the mean and variance of bolt length L. Also find mean and variance of (2L + 5).
3.  Let f (x) be a function defined as f (x) = e–x, for x   0 and f (x) = 0 for x < 0, then the value of

probability distribution function x = 2.
(a) 1+ e–2    (b) 1 – e–2        (c) 1 + e2       (d) 1+ e –2.5 (A.M.I.E.T.E., Dec. 2006) Ans. (b)

11.22 MOMENT  GENERATING  FUNCTION  OF  THE  CONTINUOUS  PROBABILITY
DISTRIBUTION ABOUTx = a is given by

( )( ) ( )t x a
aM t e f x dx

 


  where f (x) is p.d.f.

Example 55. Find the moment generating function of the exponential distribution

/1( ) 0 , 0x cf x e x c
c

    

Hence find its mean and S.D.
Solution. The moment generating function about origin is

/ ( 1/ )
0 0 0

1 1( ) tx x c t cM t e e dx e xdx
c c
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( 1/ )
1

0

1 1 1 1 (1 )
1 1 1

t c xe ct
c c ctt t

c c






   
   

        
    

      

       = 1 + ct + c2t2 + c3t3 + c4t4 + ...

2 3 2 4 3
1 0 0 0' [ ( )] [ 2 3 4 ...]t t

d M t c c t c t c t c
dt         

2
2 3 4 2 2

2 0 0 02' [ ( )] [2 6 12 ...] 2t t
d M t c c t c t c
dt        

2 2 2 2
2 2 1' ( ') 2c c c        Ans.

      S.D. = c
   Mean = c, S.D. = c

11.23 NORMAL  DISTRIBUTION
Normal distribution is a continuous distribution. It is derived as the limiting form of the

Binomial distribution for large values of n and p and q are not very small.
The normal distribution is given by the equation

2

2
( )

21( )
(2 )

x

f x e





 
.. (1)

where = mean,   = standard deviation,   = 3.14159 ..., e = 2.71828 ...
2

2 2

1

( )
2

1 2
1( )
2

x
x

x
P x x x e dx




  
 

On substitution z = 
x 


in (1), we get f (z)
21

21
2

z
e





... (2)

Here mean = 0, standard deviation = 1.
(2) is known as standard form of normal distribution.

11.24 NORMAL CURVE

O

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0 1 2 3 4 5 6 7 8 9 10

Number of heads

Pr
ob

ab
ili

tie
s

Y

X
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Let us show binomial distribution graphically. The probabilities of heads in 1 tosses are
10 10 0 10 9 1 10 8 2 10 7 3

0 1 2 3, , , ,C q p C q p C q p C q p
10 6 4

4 ,C q p 10 5 5 10 4 6
5 6, ,C q p C q p 10 3 7

7 ,C q p 10 2 8 10 1 9 10 0 10
8 9 10, , .C q p C q p C q p

p =
1
2

, q = 
1
2

. It is shown in the given figure.

If the variates (heads here) are treated as if they were continuous, the required probability curve will
be a normal curve as shown in the above figure by dotted lines.

Properties of the normal curve. 
2

2–
2

0

x

y y e  .
  1. The curve is symmetrical about the y-axis. The mean, median and mode coincide at the origin.
  2. The curve is drawn, if mean (origin of x) and standard deviation are given. The value of yo

can be calculated from the fact that the area of the curve must be equal to the total number
of observations.

  3. y decreases rapidly as x increases numerically. The curve extends to infinity on either side
of the origin.

4. (a) P(µ– < x < µ+  ) = 68%
(b) P  (µ – 2 < x < µ + 2 ) = 95.5%
 (c) P (µ – 3 < x < µ + 3 ) = 99.7%

Hence (a) About 2
3

of the values will lie between ( µ–   ) and ( µ +  ).

(b) About 95% of the values will lie between ( µ–2 )  and (µ + 2 ).
(c) About 99.7 % of the values will be between (µ –3 )  and (µ + 3 ).

11.25  MEAN  FOR  NORMAL  DISTRIBUTION

Mean = 
2

221 .
2

x
ae xdx



                                           Putting x t   
2

2
–

1 ( )( )
2

t

e t dt



  
  

2 2

2 2
–2 2

t t

te dt e


 




  
   

    


 0 0
2


 


11.26 STANDARD  DEVIATION  FOR  NORMAL  DISTRIBUTION
2

22 2 2
2 2

1. ( ) .
2

x

x f x dx x e dx





     
  

Put
12
2

2 1
2

22 .
2

2

x dtt x t dx
t


    




2

2 1
2

1 2(2 ).
2 2

t dtt e
t

 



    
    



32 1 12
0

2 2 ,
2(2 )

t n xt e dt x e dx n
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2 2 2
23 1 1.2 2 .

2 2 2
  

     
  

2 2 2 2
2 2 1( ) (0)         

S.D. =  Ans.
11.27  MEDIAN  OF  THE  NORMAL  DISTRIBUTION

If a is the median, then it divides the total area into two equal halves so that
1( ) ( )
2

a

a

f x dx f x dx




  

where
2( )

21( )
2

x

f x e





 
Suppose a > mean, then

1( ) ( )
2a

f x dx f x dx
 



  
1But ( )
2

f x dx




 
 

  


  
1 1( )
2 2

a

f x dx


  (mean)

          ( ) 0
a

f x dx



Thus                       a =
Similarly, when a < mean, we have a =
Thus, median = mean =
Q. Let X be a random variable having a normal distribution.

If P (x < 0) = P (X > 2) = 0.4, then mean value of X is.
(a) 0 (b) 1     (c) 1.5            (d) 2 (A.M.I.E.T.E., Dec. 2004)          Ans. (b)

11.28 MEAN  DEVIATION  ABOUT  THE  MEAN 

Mean deviation = E x 

2

2
( )

2
1
2

x
x e dx









 
 

= 
2

21 where
2

z xz e dz z







 

 
2 20
2 2

0

1
2

z z

ze dz ze dz


 



 
    

   
 

2

2
0

2
2

z

ze dz



  (as the function is given)

2 4
5

   


  approximately..

11.29 MODE  OF  THE  NORMAL  DISRIBUTION .
We know that mode is the value of the variate x for which f (x) is maximum. Thus, by differential

calculus f (x) is maximum if   f  (x)  = 0  and  f (x) < 0
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where
2

2
( )

2
1( )
2

xf x e 



 

Clearly f (x) will be maximum when the exponent will be maximum which will be the case when
x = .

Thus mode is  and modal ordinate 
1
2


 

11.30 MOMENT  OF  NORMAL  DISTRIBUTION
2 1

2 1 ( ) ( )n
n x f x dx







   (A.M.I.E., Winter 2001)

2

2
( )2 1
2

1 ( )
2

xnx e dx


 




  
  

2

2 1 21 ( )
2

z
nz e dz






  
 

xz    

2
2 1

2 1
22

n
Znz e dz


 






 

= 0 (Since 
2

2 1 2
z

nz e


 is an odd function)

              2
2 ( ) ( )n

n x f x dx



  

2 2

2 2

2
2 21 ( )

2 2
z Z

n
n nz e dz z e dz 

 

 


   

  

2
–

2

2
2

0

2
2

z
n

nz e dz



 

2

2 2. is an even function
z

nz e
 

 
  

2
–

0

2 1–
2

n n
te t n dt

    
  

2

2
z t

 
 

 
22 1

2

n n

n
 


Changing n to (n – 1), we get

1 2 2

2 2
2 1

2

n n

n n
 




  


On dividing, we get

2

2 22

2 2

1 11 2
12 222 2
21 1

2 2

n

n

n nn
n

n n

                 

2
2 2 2(2 1)n nn     

which gives the recurrence relation for the moments of normal distribution.
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2n= [(2n – 1) 2] [(2n – 3) 2]2n – 4

   = [(2n – 1)2] [(2n – 3)2] [(2n  –  5)2]n –  6

   = [(2n – 1)2][(2n – 3)2] [(2n – 5)2]– (3 2)(1 •2) 
  = (2n – 1) (2n – 3) (2n – 5) ....1 • 2n

   = 1.3.5.7....(2n – 5) (2n – 3) (2n – 1) 2n

Example 56. Fit a normal curve to the following data :
Length of line (in cm) 8.60 8.59 8.58 8.57 8.56 8.55 8.54 8.53 8.52
Frequency 2 3 4 9 10 8  4 1   1

Solution. Let a = 8.56

x f d = (x – a) f d f d2

8.60 2 0.04 0.08 0.0032

8.59 3 0.03 0.09 0.0027

8.58 4 0.02 0.08 0.0016

8.57 9 0.01 0.09 0.0009

8.56 10    0   0 0

8.55 8 –0.01 –0.08 0.0008

8.54 4 –0.02 –0.08 0.0016

8.53 1 – 0.03 –0.03 0.0009

8.52 1 – 0.04 – 0.04 0.0016

 f = 42         fd = 0.11        f d2 = 0.0133

                  Mean () 
0.118.56 8.56262
42

fda
f


    



            
22

. .( ) fd fdS D
f f

  
      

20.0133 0.11 0.00031666 0.00000686
42 42

      
 

     = 0.0176
Hence the equation of the normal curve fitted to the given data is

                    
2 2( ) / 21( ) ,

2
xP x e x      

 

where = 8.56262, = 0.0176 Ans.
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Z0

( )a

                                             Table

Area under standard normal curve from 0 to 
x 


x 


0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .0000 .0040 .0080 .0120 .0159 .0199 .0239 .0279 .0319 .0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1084 .1103 .1141
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224
0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2518 .2549
0.7 .2580 .2611 .2642 .2671 .2704 .2734 .2764 .2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133
0.9 .3159 .3186 .3212 3238 .3264 .3289 .3315 .3340 .3365 .3389
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319
1.5 .4232 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4430 .4441
1.6 .4452 .4463 .4474 .4485 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4762 .4767
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4865 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4990
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4980 .4980 .4981
2.9 .4981 .4982 .4983 .4983 .4984 .4984 .4985 .4985 .4986 .4986
3.0 .49865 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990
3.1 .49903 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993
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11.31  AREA  UNDER  THE  NORMAL  CURVE

By taking z = ,x x
 the standard normal curve is formed.

The total area under this curve is 1. The area under the curve is divided into two equal
parts by z = 0. Left hand side area and right hand side area to z = 0 is 0.5. The area between the
ordinate z = 0 and any other ordinate can be noted from the table given on the next page.

      Example 57. On a final examination in mathematics, the mean was 72, and the standard
deviation was 15. Determine the standard scores of students receiving graders.

(a) 60 (b)  93 (c)  72
Solution.

(a) 
–x xz


 = 
60 – 72

15 = –0.8     (b)  
93 – 72 1.4

15
z         (c) 

72 – 72 0
15

z    Ans.

Example 58.  Find the area under the normal curve in  each of the cases

(a) z = 0 and z = 1.2; (b) z = – 0.68 and z = 0;
(c) z = – 0.46 and z = 2.21; (d) z = 0.81 and z = 1.94;
(e) To the left of z = – 0.6; (f ) Right of z = –1.28.

Solution.
(a) Area between z = 0 and z = 1.2 (b) Area between z = 0 and z = – 0.68

                         = 0.3849              = 0.2518

              

0 1.2 –0.68 0

( )a ( )b

(c)  Required area = (Area between z = 0 and z = 2.21)

         + (Area between z = 0 and z = –0.46)
       = (Area between z = 0 and z = 2.21)
          + (Area between z = 0 and z = 0.46)
       = 0.4865 + 0.1772 = 0.6637.

(d)  Required area = (Area between z = 0 and

    z = 1.94) – (Area between z = 0 and z = 0.81)

       = 0.4738 – 0.2910 = 0.1828

(e) Required area  = 0.5 – (Area between z = 0 and z = 0.6)

       = 0.5 – 0.2257 = 0.2743

(f) Required area   = (Area between z = 0 and z = –1.28) + 0.5

       = 0.3997 + 0.5

       = 0.8997.

–0.46 0 2.21

(c)

– 0.6 0

( )e

0–1.28

( )f

0 0.81 1.94

( )d
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       Example 59. Find the value of z in each of the cases
(a)  Area between 0 and z is 0.3770
(b)  Area to the left of z is 0.8621

       Solution.
(a) z = ± 1.16
(b) Since the area is greater than 0.5.

            Area between 0 and z.
= 0.8621 –  0.5 = 0.3621

from which  z = 1.09 Ans.
Example 60. Students of a class were given an aptitude test. Their marks were found to be

normally distributed with mean 60 and standard deviation 5. What percentage of students scored
more than 60 marks?

Solution. x = 60, x  = 60, = 5

60 60 0
5

x xz  
  


if x > 60 then z > 0
Area lying to the right of z = 0 is 0.5.
The percentage of students getting more than 60 marks = 50 % Ans.

Example 61. In a sample of 1000 cases, the mean of a certain test is 14 and standard
deviation is 2.5. Assuming the distribution to be normal, find
   (i)  how many students score between 12 and 15 ?
  (ii)  how many score above 18 ?
(iii) how many score below 8 ?
(iv) how many score 16 ?

Solution. n = 1000, x  = 14,  = 2.5

(i) 1
12 14 0.8

2.5
x xz  

   


2
15 14 1 0.4

2.5 2.5
z 
  

The area lying between – 0.8 to 0.4 = Area from 0 to – 0.8 + area from 0 to 0.4
= 0.2881 + 0.1554 = 0.4435

The required number of students = 1000 × 0.4435 = 443.5 = 444 (say)

1
18 14 4 1.6

2.5 2.5
z 
  

   (ii)             Area right to 1.6     = 0.5 – Area between 0 and 1.6
       = 0.5 – 0.4452 = 0.0548

     The required number of students
      = 1000 × 0.0548 = 54.8 = 55 (say)

 (iii)
8 14 6 2.4

2.5 2.5
z 
    

Area left to – 2.4                      = 0.5 – area between 0 and – 2.4

Z0

( )a

Z0

( )b

0

0 0.4–0.8

1.60

0–2.4
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 = 0.5 – 0.4918 = 0.0082
The required number of students = 1000 × 0.0082 = 8.2 = 8 (say)
(iv) Area between 15.5 and 16.5

1
15.5 14 0.6

2.5
z 
 

and 2
16.5 14 1

2.5
z 
 

Area between 0.6 and 1 = 0.3413 – 0.2257 = 0.1156
The required number of students = 0.1156 × 1000

   = 115.6 = 116 say Ans.
      Example 62. Five thousand candidates appeared in a certain examination carrying a
maximum of 100 marks. It was found that the marks were normally distributed with mean 39.5
and with standard deviation 12.5. Determine approximately the number of candidates who
secured a first class for which a minimum of 60 marks is necessary. You may see the table given
below (x denotes the deviation from the mean).

The proportion A of the whole area of the normal curve lying to the left of the ordinate

at the deviation 
x
  is :

x


1.5 1.6 1.7 1.8

A. 0.93319 0.94520 0.95543 0.96407

Solution.                  Mean = x  = 39.5
Standard deviation    = = 12.5

    
60 39.5 20.5 41 1.64

12.5 12.5 25
x 
   



We have to find out area for 
x


 = 1.64.

Area for 
x


= 1.6 is 0.94520.

                Area for 
x


= 1.7 is 0.95543.
Difference for 0.1 =  0.01023
Difference for 0.04  =  0.004092

   Area for x


= 1.64 is 0.94520 + 0.004092 = 0.949292.

Area right to ordinate 1.64 = 1 – 0.949292 = 0.050708
Number of candidates who secured marks 60 or more = 5000 × 0.050708 = 253.54
Candidates securing first division = 254 Ans.
Example 63. The mean inside diameter of a sample of 200 washers produced by a machine

is 0.0502 cm and the standard deviation is 0.005 cm. The purpose for which these washers are
intended allows a maximum tolerance in the diameter of 0.496 to 0.508 cm, otherwise the
washers are considered defective. Determine the percentage of defective washers produced by the
machine, assuming the diameters are normally distributed   (A.M.I.E., Summer 2001)

0 .6 1

0 1.64

0.949292
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Solution. 1
0.496 0.502 1.2

0.005
x xz  

   


2
0.508 0.502 1.2

0.005
x xz  

   


    Area for non-defective washers = Area between z = – 1.2
and z = + 1.2

                                                       = 2 Area between z = 0
and z = 1.2.

         = 2 × (0.3849) = 0.7698 = 76.98%
    Percentage of defective washers = 100 – 76.98

         = 23.02% Ans.
    Example 64. A manufacturer of envelopes knows that the weight of the envelopes is normally
distributed with mean 1.9 gm and variance 0.01 gm. Find how many envelopes weighing (i) 2 gm or
more, (ii) 2.1 gm or more, can be expected in a given packet of 1000 envelopes. [Given : if t is the
normal variable, then (o   t  1) = 0.3413 and  (0   t   2) = 0.4772].

       Solution. = 1.9 gm, Variance = 0.01 gm
      (i) x = 2 gms or more

2 1.9 0.1 1
0.1 0.1

xz  
   


P (z> 2) = Area right to z = 1

= 0.5 – 0.3413 = 0.1587

    Number of envelopes heavier than 2 gm in a lot of 1000
    = 1000× 0.1587 = 158.7 = 159 (app)

   (ii)
2.1 1.9 0.2 2

0.1 0.1
z 
  

    P (z> 2) = Area right to z = 2
    = 0.5 – 0.4772 = 0.0228

      Number of envelopes heavier than 2.1 gm in a lot of 1000
   = 1000 × 0.0228 = 22.8 = 23 (app) Ans. (i) 159 (ii) 23

    Example 65. The life of army shoes is ‘normally’ distributed with mean 8 months and standard
deviation 2 months. If 5000 pairs are issued how many pairs would be expected to need replacement
after 12 months? [Given that P (z  2) = 0. 0228 and z = (x – )/ ]
     Solution.        Mean () = 8,

Standard deviation ( ) = 2
Number of pairs of shoes = 5000
Total months (x) = 12

When
12 8 2

2
xz  

  


               Area (z  2) = 0.0228
Number of pairs whose life is more than 12 months (z > 2)

0–1.2 1.2

0 1

0 2

z = 0 2
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= 5000 ×  0.0228 = 114
Replacement after 12 months = 5000 –114 = 4886 pairs of shoes Ans.

      Example 66. In a male population of 1000, the mean height is 68.16 inches and standard
deviation is 3.2 inches. How many men may be more than 6 feet (72 inches)?
          [(1.15) = 0.8749, (1.2) = 0.8849,  (1.25) = 0.8944]
where the argument is the standard normal variable.

Solution. Male population = 1000
      Mean height = 68.16 inches

     Standard deviation = 3.2 inches
Men more than 7.2 inches = ?

(1.15) = 0.8749, (1.2) = 0.8849
(1.25) = 0.8944

                          
72 68.16 1.2

3.2
x xz  

  


 ( 1.2) = 0.8849
 for more than 1.2 = 1 – 0.8849 = 0.1151

Men more than 72 inches = 1000 ×  0.1151 = 115.1
     = 115 (say) Ans.

      Example 67. Pipes for tobacco are being packed in fancy plastic boxes. The length of the
pipes is normally distributed with 5  and 0.1  . The internal length of the boxes is 5.2 .
What is the probability that the box would be small for the pipe?
          [given that (1.8) = 0.9641,  (2) = 0.9772,  (2.5) = 0.9938]

      Solution. = 5",   = 0.1", x = 5.2"

 (1.8) = 0.9641,  (2) = 0.9722,   (2.5) = 0.9938

              
5.2 5 2

0.1
xz  

  


(2) = 0.9772
     (z >2) =  1 – 0.9772 = 0.0228

     The box will be small if the length of the pipe is more than 5.2" (z = 2).
     Hence the probability is 0.0228 Ans.
    Example 68. Assuming that the diameters of 1,000 brass plugs taken consecutively from a
machine form a normal distribution with mean 0. 7515 cm and standard deviation 0. 0020 cm, how
many of the plugs are likely to be rejected if the approved diameter is 0.752 ± 0.004 cm ?
     Solution. Tolerance limits of the diameter of non-defective plugs are

 0.752 – 0.004 = 0.748 cm and
  0.752 + 0.004 = 0.756 cm

xz 




If xl = 0.748, 1
0.748 0.7515 1.75

0.002
z 
  

0 1.2

0 Z=2

.0772

0 2.25–1.75
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         If x2 = 0.756, 2
0.756 0.7515

0.002
z 
 = 2.25

          Area under           zl = –1.75 to z2 = 2.25

= (Area from z=0 to z1= – 1.75) + (Area from z= 0 to z2= 2.25) = 0.4599 + 0.4878 = 0.9477

Number of plugs likely to be rejected = 1000( 1 – 0.9477) = 1000 × 0.0523 = 52.3

Approximately 52 plugs are likely to be rejected. Ans.
Example 69. A manufacturer knows from experience that the resistance of resistors he

produces is normal with mean  = 100 ohms and standard deviation   = 2 ohms. What
percentage of resistors will have resistance between 98 ohms and 102 ohms ?

(A.M.I.E.T.E., Winter 2003)
Solution. = 100 ohms,  = 2 ohms

                 x1 = 98, x2 = 102

         1
98 100, 1

2
xz z 

   


        2
102 100 1

2
z 
  

Area between         z1 = – 1 and z2 = + 1
            = (Area betweem z = 0 and z = – 1)

+ (Area between z = 0 and z = + 1)
            = 2 (Area between z = 0 and z = + 1) = 2 × 0.3413 = 0.6826

Percentage of resistors having resistance between 98 ohms and 102 ohms = 68.26 Ans.
Example 70. In a normal distribution, 31% of the items are under 45 and 8% are over
 64. Find the mean and standard deviation of the distribution. (A.M.I.E.T.E., Winter 2003)
Solution. Let  be the mean and  the S.D.

If x = 45,
45z  




If x = 64,
64z 




Area between 0 and
45


= 0.50 – 0.31 = 0.19

[From the table, for the area 0.19, z = 0.496]
45 0.496

 


...(1)

Area between z = 0 and z =
6 4  




 0.5 –0.08 = 0.42.

(From the table, for area 0.42, z = 1.405)
64 1.405




...(2)

        Solving (1) and (2), we get   = 50,   = 10. Ans.
Exercise 11.7

1. In a regiment of 1000, the mean height of the soldiers is 68.12 units and the standard deviation
is 3.374 units. Assuming a normal distribution, how many soldiers could be expected to be more
than 72 units? It is given that

0 +1–1

O +1

31%

–0.496

19%
42%

8%
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P (z = 1.00) = 0.3413, P (z = 1.15) = 0.3749 and
P (z = 1.25) = 0.3944, where z is the standard normal variable. Ans. 125

2. If the height of 300 students are normally distributed with mean 64.5 inches and standard deviation
3.3 inches, find the height below which 99% of the students lie. Ans. 68.7295 inches

3. The lifetime of radio tubes manufactured in a factory is known to have an average value of 10 years.
Find the probability that the lifetime of a tube taken randomly (i) exceeds 15 years, (ii) is less than 5
years, assuming that the exponential probability law is followed.        Ans.(i) 0.2231, (ii) 0.3935.

4. Analysis of past data shows that hub thickness of a particular type of gear is normally distributed
about a mean thickness of 2.00 cm with a standard deviation of 0.04 cm.
(i) What is the probability that a gear chosen at random will have a thickness greater than 2.06

cm?
      (ii) How many gears will have a thickness between 1.89 and 1.95 cm?

Given  (1.5) = 0.4332,  (2.75) = 6.4970,  (1.25) = 0.3944.
                                             (A.M.I.E., Summer 2001) Ans. (i) 0.068   (ii) 62
5. The breaking strength X of a cotton fabric is normally distributed with E (x) = 16 and   (x) = 1.

The fabric is said to be good if X  14. What is the probability that a fabric chosen at random is
good. Given that  (2) = 0.9772              Ans. 0.9772

6. A manufacturer knows from experience that the resistance of resistors he produces is normal with
mean = 140   and standard deviation  = 5  . Find the percentage of the resistors that will have

    resistance between 138  and 142  . (given  (0.4) = 0.6554, where z is the standard normal variate).
Ans. 31.08%

7. A manufacturing company packs pencils in fancy plastic boxes. The length of the pencils is normally
distributed with  = 6" and  = 0.2". The internal length of the boxes is 6.4". What is the probability
that the box would be too small for the pencils (Given that a value of the standardized normal
distribution function is  (2) = 0.9772).              Ans. 0.0228.

8. A manufacturer produces airmail envelopes, whose weight is normal with mean  1.95 gm and
standard deviation  = 0.05 gm. The envelopes are sold in lots of 1000. How many envelopes in a lot
will be heavier than 2 gm? Use the fact that

1 2

0

1 exp(– / 2) 0.3413
2

x dx 
  Ans. 159

9. A sample of 100 dry battery cells tested to find the length of life produced the following results.
x = 12 hours,  = 3 hours. Assuming the data to be normally distributed, what percentage of
battery cells expected to have life?
(i) more than 15 hours. (ii) less than 6 hours.
 [Given P (0 < z < 1) = 0.3413 and  P (0 < z <2) = 0.4772.] Ans. (i) 15.87%  (ii) 2.28%

10. Find the mean and variance of the density function f (x) = e–x Ans. 2

1 1, .
 

11. Fill in the blanks :
(a) The mean of the marks obtained by the students is 50 and the variance is 25. If a student gets

60 marks, his standard score is..........

(b) If f (x) =
2

21 ,
2

x

e



then its mean is  and standard deviation is..........

(c) In the standard normal curve the area between z = –1 and z = 1 is nearly..........
(d) If  = 2, x  = 5, the equation of normal distribution is...........

         (e) The marks obtained were found normally distributed with mean 75 and variance 100 .
The percentage of students who scored more than 75 marks is........

        (f) The mean, median and mode of a normal distribution are......      (A.M.I.E., Summer 2000)
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     (g) Exponential distributionf(x) is defined by f (x) = a e–2r,0 <x <  , then a =
     (h) The probability density function of beta distribution with  = 1,  = 4 is f(x) =......
      (i) For a standard normal variate z P (- 0.72  z  0) = ......... (A.M.I.E., Winter 1997) Ans. 0.2642

        Ans. (a) 2, (b) 0.1 , (c) 68%, (d) f (x) =
2( 5)

81
2

x

e





,(e)50%, (f ) zero, (g) 2, (h) 4(1 – x)3

12. The probability density function f (x) of a continuous random variable x is defined by

                                   3( ) , 5 10Af x x
x

  

                                                     = 0,           elsewhere
The value of A is

(i) 50,            (ii) 1,              (iii) –200,           (iv)   
200
3 Ans. (iv)

13. The cumulative distribution function F of a continuous variate x is such that F (a)= 0.5 and
F (b) = 0.7. then value of P (a  X   b) is given as
(a) 0                          (b) 0.5            (c) 0.2            (d) 0.7 ....          (A.M.I.E.T.E. Dec, 2005)

14. A discrete random variate X has probability mass function f which is positive at x = – 1, 0, 1 and

is zero elsewhere. If f (0) =
1
2

, then the value of E (x2) is

(a) 1                               (b) 0              (c) 
1
2

           (d) =
1
2

 (A.MIE.T.E. Dec. 2005)

15. If x is normally distributed with mean 1 and variance 4,
(i) Find Pr (– 3 x    3 );    (ii) Obtain k if Pr ( x   k)= 0.90    Ans. (i) .8185, (ii) 3.56.

16. A normal variable × has mean 1 and variance 4. Find the probability that x  3. (Given: z is the standard
normal variable and  (0) = 0.5,  (0.5) = 0.6915,  (1) = 0.8413,  (1.5) = 0.9332)     Ans. 0.1587

17. (a)  If x is normally distributed with mean 4 and variance 9; find
(i) Pr (2.5 x   5.5). (ii) Obtain k if Pr (x   k)= 0.9.
Use Pr (z .5)= 0.691 and Pr (z 1.3) = 0.90.                                                 Ans. (i) 0.382 (ii) 7.9.

(b) If loge x is normally distributed with mean 1 and variance 4, find P 
1 2
2

x   
 

 , given  that

loge 2 = 0.693.                                                                                                       Ans. 0.24.
(c)   For a standard normal variate z P (– 0.72   z  5 0) =....                            Ans. 0.2642

18. The random variable x is normally distributed with E (x) = 2 and variance V (x) = 4. Find a
number p (approximately), such that P (x > p) = 2P (x   p). [The values of the standard
normal distribution are  ( – 0.43) = 0.3336, and  ( – 0.44) = 0.3300].
                                                                                               (A.M.I.E.T.E., Summer 1995)       Ans. 1.13834

19. The continuous random variable x is normally distributed with E (x) =  and V (x) = 2. If
Y = cx + d, then find V(Y).                                                                                                Ans. c22

20. The pdf of X is given by f (X) = e–X,  x  0.
Calculate Pr [X> E(X)].                   If X   N (75, 25), find Pr [X > 80/X > 77].

If X  N (10, 4) find Pr [ 5].X                                  Ans. 
2( 75)

2(0.5)1 1, ,0.062
5 2

x

e
e





21. If the resistance X of certain wires in an electrical networks have a normal distribution

with mean of 0.01 ohm and a standard deviation of 0.001 ohm, and specification requires
that the wires should have resistance between 0.009 ohm and 0.011 ohms, then find the
expected number of wires in a sample of 1000 that are within the specification. Also,
find the expected number among 1000 wires that cross the upper specification.
(You may use normal table values  (0.5) = 0.6915, (1) = 0.8413, (1.5) = 0.9332,
 (2) =  0.9772 .......................................................                        (A.M.I.E.T.E., Dec. 2004)
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22.  A random variable x has a standard normal distribution . Prove Pr ( x >k)= 2 [1 –  (k)]
23. The random variable x has the probability density function f(x) = kx if 0  x  2. Find k.

Find x such that

(i) Pr (X   x) = 0.1 (ii)Pr (X    x) = 0.95      Ans. k =
1
2

, (i) x = 0.632 (ii) x = 1.949

        24.   For a normal curve, show that 2n+ 1 = 0 and      n= (2n – 1)   2 2n –  2.
25. In a normal distribution, 7% of the items are under 35 and 89% are under 63.

Determine mean and variance of distribution. [Area of z for 0.43 = 1.48. Area of z for 0.39
= 1.23]                                                 (A.M.I.E.T.E., Winter 2001)Ans.. = 50.29, 2 = 106.73

        26.   The length of an item manufactured on an automatic machine tool is a normally distributed randam

variable with parameters m (x) =10, and 2 = 
1

200 .Find the probability of defective production of    the

tolerance is 10 ± 0.05.                                                                              (A.M.I.E.T.E., Winter 2001)Ans. 0.04798
       27. In a mathematics examination, the average grade was 82 and the standard deviation was 5. All the

students with grades from 88 to 94 received a grade B. If the grades are normally distributed and 8
students received a B grade, find how many students took the examination.

          Given:
x/6 1.20 2.00 2.40 2.45
A 0.3849 0.4772 0.4918 0.4929

   (A.M.I.E., Winter 2001)      Ans. 75 students
28. The income of a group of 10,000 persons was found to be normally distributed with mean

` 750 p.m. and standard deviation of ̀  50. Show that, of this group, about 95% had income
exceeding ` 668 and only 5% had income exceeding ` 832. Also find the lowest income
among the richest 100.                                      (U.P. III Semester, Dec. 2004) Ans. ̀  866

29. A continuous type random variable X has probability density f(x) which is proportional to
x2 and X takes values in the interval [0, 2]. Find the distribution function of the random
variable use this to find P (X>1.2) and conditional probability P (X> 1.2/X > 1).

(A.M.I.E.T.E., Dec. 2006)
11.32  OTHER DISTRIBUTIONS

(1)  Uniform (or Rectangular) Distribution

Here 
1( )P x
n

  p(x)= n (
1
n )= 1

The value of probability for all variates x1, x2 ...., xn is the same
1
n .

(2)  Geometric Distribution
Let r be the number of failures preceding the first success

   p (r) = qr p        where r = 0,1,2,3 ...... , q = 1 – p
 p (r) = qrp = p (1+ q + q2 + ..... + qr ...) (Geometric series)

= 
1 1

1
pp

q p
 

          Mean = 
q
p

,     Variance 2

q
p



(3) Negative Binomial Distribution
The probability of the event that occurs for the kth time on the rth trial

p(k,r) = r – 1 Ck –1 p
k qr – k

For k = 1, the negative Binomial distribution becomes geometric distribution.
(4) Hypergeometric Distribution

Let the number y white balls be m and n black balls in a bag. If r balls are drawn at a
time with replacement
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p (k white) =
m

m r k
k m n

r

C
C

C


 where k = 0,1,2,....r,   rm, r n

0

( ) 1 since ( )
r

m n
k r k r

k
p k C C m n C



   
(5) Exponential Distribution

Let f (x) be a continuous distribution
f (x)= cxe from x  > 0

Hence mean = 1
C

= standard deviation =
1
C

(6) Weibull Distribution is given by f (x) = 1 , > 0, > 0xx e x c
C c


  

where C is a scale parameter and   is a shape parameter..
This distribution is used for
(1) variation in the fatigue resistance of steel and its elastic limits.
(2)  variation of length of service of radio service equipment.

Exercise 11.8
Find the mean and variance for the following distributions

1. Rectangular distribution Ans.
1 1
2, 12

2. Uniform distribution f (x) =
1
n , x = 1, 2, ... n Ans. 21 1( 1), ( 1)

2 12
n n 

3. Geometric distribution p (r) = 2r , r= 1,2,3 ...

4. Exponential distribution p(x) = xe Ans.
1 1,
 

SAMPLING OF VARIABLES
11.33 POPULATION  (Universe)

Before giving the notion of sampling, we will first define population. The group of individuals
under study is called population or universe. It may be finite or infinite.
11.34 SAMPLING

A part selected from the population is called a sample. The process of selection of a sample
is called sampling. A Random sample is one in which each member of population has an equal
chance of being included in it. There are 

N
nC different samples of size n that can be picked up

from a population of size N.
11.35 PARAMETERS  AND  STATISTICS

The statistical constants of the population such as mean (), standard deviation () are
called parameters. Parameters are denoted by Greek letters.

The mean ( )x , standard deviation |S| of a sample are known as statistics. Statistics are
denoted by Roman letters.
Symbols for Population and Samples

Characteristic Population Sample
Parameter Statistic

Symbols  population size = N sample size = n
population mean =  sample mean = x
population standard deviation =  sample standard deviation = s

population proportion = p sample proportion = p
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11.36 AIMS OF A SAMPLE
The population parameters are not known generally. Then the sample characteristics are
utilised to approximately determine or estimate of the population. Thus, static is an estimate
of the parameter. To what extent can we depend on the sample estimates?
The estimate of mean and standard deviation of the population is a primary purpose of all
scientific experimentation. The logic of the sampling theory is the logic of induction. In
induction, we pass from a particular (sample) to general (population). This type of generalization
here is known as statistical inference. The conclusion in the sampling studies are based not
on certainties but on probabilities.

11.37 TYPES OF SAMPLING
Following types of sampling are common:
(1) Purposive sampling       (2) Random sampling
(3) Stratified sampling      (4) Systematic sampling

11.38 SAMPLING DISTRIBUTION
From a population a number of samples are drawn of equal size n. Find out the mean of each
sample. The means of samples are not equal. The means with their respective frequencies are
grouped. The frequency distribution so formed is known as sampling distribution of the mean.
Similarly, sampling distribution of standard deviation we can have.

11.39 STANDARD ERROR (S.E.) is the standard deviation of the sampling distribution. For
assessing the difference between the expected value and observed value, standard error is used.
Reciprocal of standard error is known as precision.

11.40 SAMPLING DISTRIBUTION OF MEANS FROM INFINITE POPULATION
Let the population be infinitely large and having a population mean of  and a population
variance of 2 . If x is a random variable denoting the measurement of the characteristic, then

Expected value of  x,  E(x)=

Variance of x, Var (x) = 2
The sample mean x  is the sum of n random variables, viz., x1, x2, ..., xn, each being divided
by n. Here, x1, x2, ..., xn are independent random variables from the infinitely large population.
 E(x1) =  and Var(x1)= 2

E(x2) =  and                       Var(x2)= 2 and so on

Finally     E( x ) = E 1 2 ... nx x x
n

   
  

             =     1 2
1 1 1...Ex E x E xnn n n

  

              =
1 1

...
1

n nn
    

              =

and                                  Var  x =Var 1 2 ... nx x x
n

   
  

       =Var 1x
n

 
 
 

+Var 2x
n

 
 
 

+...+Varar nx
n

 
 
 

       = 2

1
n Var(x1)+ 2

1
n Varar(x2)+...+ 2

1
n Var(xn)
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                                = 2 2 2
2 2 2

1 1 1. . ... .
n n n

    

=
2 2

2

n
nn

 


The expected value of the sample mean is the same as population mean. The variance of the
sample mean is the variance of the population divided by the sample size.
The average value of the sample tends to true population mean. If sample size (n) is increased then

variance of  
2

,x
n

 
  
  gets reduced, by taking large value of n, the variance 

2

n
 
 
  of x  can be made

as small as desired. The standard deviation n
 

 
 

 of x  is also called standard error of the mean.

It is denoted by x .
Sampling with Replacement

When the sampling is done with replacement, so that the population is back to the same form
before the next sample member is picked up. We have

E ( )x  

                              Var ( )x =  
2

n


 or x =
n


Sampling without replacement from Finite population
When a sample is picked up without replacement from a finite population, the probability

distribution of second random variable depends on the outcome of the first pick up. n sample members
do not remain independent. Now we have

E ( )x  =

and Var ( )x = 2
x =

2

1
N n

n N
 




or x = 1
N n
Nn

 




              =
n


app (if N
n

isverysmall)

Sampling from Normal Population

If x ~ N  2,   then it follows that x ~N
2

( , )
n




Example 71. The diameter of a component produced on a semi-automatic machine is known to
be distributed normally with a mean of 10 mm and a standard deviation of  0.1 mm. If we pick up a
random sample of size 5, what is the probability that the same mean will be between 9.95 and 10.05
mm?

Solution. Let x be a random variable representing the diameter of one component picked up at
random.

 Here x ~N(10, 0.01), Therefore, x  ~ N
0.0110,

5
 
 
 

2
,x N x

n

         

Pr  9.95 10.05x  = 2 Pr  10.0510 x 
xz

n

 
     
  

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Probability 827

= 2 Pr
10 – 10.05x

n n n

 
          
  

= 2 Pr
10.05 100

0.1
5

z

 
    
 
  

= 2 Pr{0 z  1.12}
= 2 0.3686
= 0.7372 Ans.

Similar Question
A sample of size 25 is picked up at random from a population which is normally distributed with

a mean 100 and a variance of 36. Calculate (a) Pr { x  99}, (b) Pr{98 x  100}
Ans. (a) 0.2023 (b) 0.4522

11.41 SAMPLING DISTRIBUTION OF THE VARIANCE
We use a sample statistic called the sample variance to estimate the population variance. The

sample variance is usually denoted by 2s

2

2 1

( )

1

n

i
i

x x
s

n









11.42 TESTING A HYPOTHESIS
On the basis of sample information, we make certain decisions about the population. In taking

such decisions we make certain assumptions. These assumptions are known as statistical hypothesis.
These hypothesis are tested. Assuming the hypothesis correct we calculate the probability of getting
the observed sample. If this probability is less than a certain assigned value, the hypothesis is to be
rejected.
11.43 NULL HYPOTHESIS ( 0H )

Null hypothesis is based for analysing the problem. Null hypothesis is the hypothesis of no
difference. Thus, we shall persume that there is no significant difference between the observed
value and expected value. Then, we shall test whether this hypothesis is satisfied by the data or
not. If the hypothesis is not approved the difference is considered to be significant. If hypothesis
is approved then the difference would be described as due to sampling fluctuation. Null hypothesis
is denoted by 0H .
11.44 ERRORS

In sampling theory to draw valid inferences about the population parameter on the basis of the
sample results.

We decide to accept or to reject the lot after examining a sample from it. As such, we are liable
to commit the following two types of errors.

Type 1 Error. If H0 is rejected while it should have been accepted.
Type II Error. If H0 is accepted while it should have been rejected.

11.45  LEVEL OF SIGNIFICANCE
There are two critical regions which cover 5% and 1% areas of the normal curve. The shaded

portions are the critical regions.

10.059.95 =10
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Thus, the probability of the value of the variate falling in the critical region is the level of
significance. If the variate falls in the critical area, the hypothesis is to be rejected.
11.46  TEST OF SIGNIFICANCE

The tests which enables us to decide whether to accept or to reject the null hypothesis is called
the tests of significance. If the difference between the sample values and
the population values are so large (lies in critical area), it is to be rejected

11.47   CONFIDENCE LIMITS
 – 1.96  ,  + 1.96  are 95% confidence limits as the area

between  –1.96  and  + 1.96  is 95%. If a sample statistics lies in
the interval  – 1.96  ,  + 1.96 , we call 95% confidence interval.

Similarly,  – 2.58 ,  + 2.58  is 99% confidence limits as the
area between  – 2.58  and  + 2.58  is 99%. The numbers 1.96,
2.58 are called confidence coefficients.
11.48 TEST OF SIGNIFICANCE OF LARGE SAMPLES (N > 30)

Normal distribution is the limiting case of Binomial distribution when n is large enough. For normal
distribution 5% of the items lie outside  ± 1.96 while only 1% of the items lie outside  ± 2.586 .

–μ
σ

xz 

where z is the standard normal variate and x is the observed number of successes.
First we find the value of z. Test of significance depends upon the value of z.
(i) (a) If 1.96z  , difference between the observed and expected number of successes is not

significant at the 5% level of significance.
(b) If 1.96z  , difference is significant at 5% level of significance.

(ii) (a) If 2.58z  , difference between the observed and expected number of successes is not
significant at l% level of significance.

(b) If 2.58z  , difference is significant at 1% level of significance.
Example 72. A cubical die was thrown 9,000 times and 1 or 6 was obtained 3120 times. Can the

deviation from expected value lie due to fluctuations of sampling?
Solution. Let us consider the hypothesis that the die is an unbiased one and hence the probability

of obtaining 1 or 
2 16
6 3

  i.e.,
1 2,
3 3

p q 

The expected value of the number of successes = np = 9000 1
3

 = 3000

Also   = S.D. = npq  = 
1 29000
3 3

  = 2000  = 44.72

 –1.96  1.96

–2.586 .586

0.5% 0.5% 2.5% 2.5%

Z = 1.966 Z = –0.674 Z = 0.674Z = 1.966O

Area of 
Acceptance

Area of 
Acceptance
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3 = 3 44.72 = 134.16
Actual number of successes = 3120
Difference between the actual number of successes and expected number of successes

 = 3120 – 3000 = 120 which is <3
Hence, the hypothesis is correct and the deviation is due to fluctuations of sampling due randon

causes.       Ans.
11.49 SAMPLING DISTRIBUTION OF THE PROPORTION

A simple sample of n items is drawn from the population. It is same as a series of n independent
trials with the probability P of success. The probabilities of  0, 1, 2, ..., n success are the terms in the
binomial expansion of (q + p)n.

Here mean = np and standard deviation = npq .

Let us consider the proportion of successes, then

(a) Mean proportion of successes =
np
n = p

(b) Standard deviation (standard error) of proportion of successes = 
npq
n

 = 
pq
n

(c) Precision of the proportion of success =
1

S.E.
=

n
pq .

 Example 73. A group of scientific mens reported 1705 sons and 1527 daughters. Do these

figures conform to the hypothesis that the sex ratio is 
1
2

.

Solution. The total number of observations = 1705 + 1527 = 3232
The number of sons = 1705

Therefore, the observed male ratio = 
1705
3232 =0.5175

On the given hypothesis the male ratio = 0.5000
Thus, the difference between the observed ratio and theoretical ratio

 = 0.5275 – 0.5000
                        = 0.0275

The standard deviation of the proportion = s =
pq
n

=

1 1
2 2
3232


= 0.0088

The difference is more than 3 times of standard deviation.
Hence, it can be definitely said that the figures given do not conform to the given hypothesis.

11.50 ESTIMATION OF THE PARAMETERS OF THE POPULATION
The mean, standard deviation etc. of the population are known as parameters. They are denoted

by  and  . Their estimates are based on the sample values. The mean and standard deviation of a
sample are denoted by x  and s respectively. Thus, a static is an estimate of the parameter. There are
two types of estimates.

(i) Point estimation: An estimate of a population parameter given by a single number is called
a point estimation of the parameter. For example,

2
2 ( )

(S.D.)
1

x x
n
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(ii) Interval estimation: An interval in which population parameter may be expected to lie with
a given degree of confidence. The intervals are

(i) x  – s to x  + s  (68.27% confidence level)

(ii) x  – 2 s  to x + 2 s  (95.45% confidence level)

(iii) x – 3 s  to x  + 3 s  (99.73% confidence level)

x  and s  are the mean and S.D. of the sample.

Similarly, x  ± 1.96 s , x  ± 2.58 s  are 95% and 99% confidence of limits for μ .

x  ± 1.96 
σ
n and x ± 2.58 

σ
n  are also the intervals as s  =

σ
n .

11.51 COMPARISON OF LARGE SAMPLES
Let two large samples of size n1,  n2 be drawn from two populations of proportions of attributes

A’s as P1, P2 respectively.
(i) Hypothesis: As regards the attribute A, the two populations are similar. On combining the

two samples

P = 1 1 2 2

1 2

n p n p
n n



where p is the common proportion of attributes.
Let e1, e2 be the standard errors in the two samples, then

2
1

1

pqe
n

 and
2

2
2

pqe
n



 If e be the standard error of the combined samples, then

e = 2 2
1 2e e =

1 2

pq pq
n n

 =pq
1 2

1 1
n n
 

 
 

z= 1 2P P
e


1.  If  z > 3, the difference between P1 and P2 is significant.
2.  If  z < 2, the difference may be due to fluctuations of sampling.
3. If  2 <   z < 3, the difference is significant at 5% level of significance.

(ii) Hypothesis. In the two populations, the proportions of attribute A are not the same, then
standard error e of the difference p1 – p2 is

e2 = p1+ p2

    = 1 1 2 2

1 2

,P  q P – q
n n

 z = 1 2 3,
P – P

e


difference is due to fluctuations of samples.
Example 74. In a sample of 600 men from a certain city, 450 are found smokers. In another

sample of 900 men from another city, 450 are smokers. Do the data indicate that the cities are
significantly different with respect to the habit of smoking among men.

Solution.                     n1 = 600 men, Number of smokers= 450, P1=
450
600 = 0.75

 n2 = 900 men, Number of smokers= 450, P2=
450
900 = 0.5
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P =
1 2 2

1 2

1n P + n P
n n =

600 0.75 900 0.5
600 + 900

  
=

900
1500 =0.60

q = 1– p =1– 0.6 = 0.4

e2 = 2 2
1 2P P = pq

1 2

1 1
n n

 
 

 

e2 =
1 10.6 0.4

600 900
   
 

= 0.000667

 e = 0.02582

 z = 1 2P P
e


=
0.75 0.50

0.02582


=9.682

z > 3 so that the difference is significant. Ans.
Example 75. One type of aircraft is found to develop engine trouble in 5 flights out of a total of

100 and another type in 7 flights out of a total of 200 flights. Is there a significant difference in the
two types of aircrafts so far as engine defects are concerned.

Solution.  n1= 100 flights, Number of troubled flights = 5, p1=
5

100 =
1
20

n2= 200 flights, Number of troubled flights = 7, p2=
7

200

e2 = 1 1 2 2

1 2

0.05 0.95 0.035 0.965
100 200

p q p q
n n

 
  

     =  0.000475 + 0.0001689 = 0.0006439
 e =  0.0254

z  = 
0.05 0.035

0.0254


= 0.59

z < 1, Difference is not significant. Ans.
11.52  THE t-DISTRIBUTION (For small sample)

The students distribution is used to test the significance of
(i) The mean of a small sample.
(ii) The difference between the means of two small samples or to compare two small samples.
(iii) The correlation coefficient.
Let x1, x2, x3, ..., xn, be the members of random sample drawn from a normal population with

mean  . If x  be the mean of the sample then

2
2 ( )

  where  
1

x xx
t ss n

n

 
 




Example 76. A machine which produces mica insulating washers for use in electric device to
turn out washers having a thickness of 10 mm. A sample of 10 washers has an average thickness
9.52 mm with a standard deviation of 0.6 mm. Find out t.

Solution. x  = 9.52, M = 10, S '  = 0.6, n = 10
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9.52 –10 0.48 10 4= = = – 10  
0.6 0.6 5
10

x Mt
s
n




    = –0.8 3.16 = –2.528    Ans.
Example 77. Compute the students t for the following values in a sample of eight:

–4, –2, –2, 0, 2, 2, 3, 3 taking the mean of universe to be zero.
Solution.   = 0

S.No.  x
1
4

x x x     

2
2 1( )

4
x x x     

1 –4
17
4


289
16

2 –2
9
4


81
16

3 –2
9
4

 81
16

4 0
1
4


1

16

5 2
7
4

49
16

6 2
7
4

49
16

7 3
11
4

121
16

8 3
11
4

121
16

n = 8 2x  2 792( )
16

x x 

   
2 1
8 4

x  

S.D.= s =
2( )

1
x x
n



=
792 7.07

16 7



= 2.66

  

1 0 8 2.834 0.266
' 2.66 4(2.66) 10.64

8

xt
S
n


    

Ans.

11.53  WORKING RULE
To calculate significance of sample mean at 5% level.

Calculate t=
x

n
s


and compare it to the value of t with (n – 1) degrees of freedom at 5%

level, obtained from the table. Let this tabulated value of t be t1.
If t < t1, then we accept the hypothesis i.e., we say that the sample is drawn from the
population.
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If t > t1, we compare it with the tabulated value of t at 1% level of significance for (n – 1) degrees
of freedom. Denote it by t2. If t1 < t <t2 then we say that the value of t is significant.

If t > t1, we reject the hypothesis and the sample is not drawn from the population.
Example 78. A manufacturer intends that his electric bulbs have a life of 1000 hours. He

tests a sample of 20 bulbs, drawn at random from a batch and discovers that the mean life of the
sample bulbs is 990 hours with a s.d of 22 hours. Does this signify that the batch is not up to the
standard?

[Given: The table value of t at 1% level is significance with 19 degrees of freedom is 2.539]
Solution. x= 990,   = 22, x = 1000

1000
22
20

xt s
n

 
 

   =
10 20

22





=2.033

Since the calculated value of t (2.032) is less than the value of t (2.539) from the table. Hence, it
is not correct to say that this batch is not upto this standard. Ans.

Example 79. Ten individuals are chosen at random from a population and their heights are
found to be in inches 63, 63, 64, 65, 66, 69, 69, 70, 70, 71. Discuss the suggestion that the Mean
height of universe is 65.

For 9 degree of freedom t at 5% level of significance = 2.262.
Solution.

x x – 67         2( 67)x 
63 –4 16
63 –4 16
64 –3 9
65 –2 4
66 –1 1
69 +2 4
69 +2 4
70 +3 9
70 +3 9
71 +4 16

     670x  2( ) 88x x 

670 67,
10

x
x

n
   2( ) 88 3.13

1 9
x x

s
n


  




67 65
3.13

10

xt s
n

 
 

   =
2 10
3.13

=2.02
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2.02 < 2.262
Calculated value of t (2.02) is less than the table value of t (2.262). The hypothesis is

accepted the mean height of universe is 65 inches. Ans.
Example 80. The mean life time of sample of 100 fluorescent light bulbs produced by a

company is computed to be 1570 hours with a standard deviation of 120 hours. The company
claims that the average life of the bulbs produced by it is 1600 hours. Using the level of
significance of 0.05, is the claim acceptable?

Solution. 1570x  ,  S = 120, n = 100,   = 1600

1570 1600 1570 1600 2.5
120 12
100

xt s
n

  
   

At 0.05 the level of significance, t = 1.96
Calculated value of t > Table value of  t.

2.5 > 1.96
Hence the claim is to be rejected. Ans.
Example 81. A sample of 6 persons in an office revealed an average daily smoking of 10, 12,

8, 9, 16, 5 cigarettes. The average level of smoking in the whole office has to be estimated at 90%
level of confidence.

t = 2.015 for 5 degree of freedom
Solution.
x x – 10 2( 10)x 
10 0 0

12 2 4

8 –2 4

9 –1 1

16 +6 36

5 –5 25

Total 0 2( 10) 70x  
Mean = a+

fd
f


 =10+

0
6 =10

          s =
2( ) 70

1 5
x x

n





 =3.74

At 90% level of confidence, t = ± 2.015.

        
10 –2.015 =xt

s
n

 
  




    
3.742.015

6
   +10 = 6.92,13.08 Ans.

Example 82. A certain stimulus administered to each of 12 patients resulted in the following
increase in the blood pressures 5, 2, 8, –1, 3, 0, 6, –2, 1, 5, 0, 4. Can it be calculated that
stimulus is accompanied by an increase in blood pressure given that for 11 degrees of freedom
the value of t0.5 is 2.201?
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Solution.
5 2 8 1 3 0 6 2 1 5 0 4=

12
x           

  =
31
12

=2.583=2.6 approx.

x x – 2.6 (x– 2.6)2

5 2.4 5.76
2 –0.6 0.36
8 5.4 29.16
–1 –3.6 12.96
3 0.4 0.16
0 –2.6 6.76
6 3.4 11.56
–2 –4.6 21.16
1 –1.6 2.56
5 2.4 5.76
0 –2.6 6.76
4 1.4 1.96

12x  ( 2.6)x  2( 2.6)x  =104.92

2
2 ( )

1
x xs
n

 =

104.92
12 1 =9.54

   s = 3.08
Assuming that the stimulus will not be accompanied by increase in blood pressure, i.e., the mean

of increase in blood pressure for the population is zero, we have

t = 
2.6 0

12
3.08

x
n

s
 

 =
2.6 3.464
3.08

 =2.924

As the computed value of t, i.e., 2.924 is greater than 0.05t , i.e.,2.201 we find that our assumption
is wrong and we conclude that as a result of the stimulus blood pressure will increase.             Ans.

Example 83. A fertiliser mixing machine is set to give 12 kg of nitrate for quintal bag of fertiliser:
Ten 100 kg bags are examined. The percentages of nitrate per bag are as follows:

11, 14, 13, 12, 13, 12, 13, 14, 11, 12
Is there any reason to believe that the machine is defective? Value of t for 9 degrees of freedom

is 2.262.
Solution.
The calculation of x  and s is given in the following table:

x d = x– 12 d2

11 –1 1
14 2 4
13 1 1
12 0 0
13 1 1
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12 0 0
13 1 1
14 2 4
11 –1 1
12 0 0

125x  5d  2 13d 

 = 12   kg,  n = 10, 125
10

x
x

n
  =12.5

22 2
2 13 5

10 10
d d

s
n n

             

  13 1 21 105
10 4 20 100

   

   s =1.024
Value of t for 9 degrees of freedom = 2.262

Also t =
x

n
s


                                =
12.5 12 10

1.024


=1.54

Since the value of t is less than 2.262, there in no reason to believe that machine is defective.
Ans.

Example 84. A random sample of size 16 values from a normal population showed a mean
of 53 and a sum of squares of deviation from the mean equals to 150. Can this sample be
regarded as taken from the population having 56 as mean? Obtain 95% and 99% confidence limits
of the mean of the population.

  = 15,  = 0.05, t = 2.131
  = 0.01, t = 2.947

Solution.   = 56, n = 16, x  = 53, 2( )x x  = 150

s2=
2( ) 150

1 15
x x

n





 =10

      s = 10

      

53 56 3 4
3.79

10 10
16

x
t s

n

   
    

        t = 3.79
3.79 > 2.131 and also 3.79 > 72.947.

Thus, the sample cannot be regarded as taken from the population. Ans.
11.54  TESTING FOR DIFFERENCE BETWEEN MEANS OF TWO SMALL SAMPLES

Let the mean and variance of the first population be  and 2
1  and  . 2

2  be the mean and
variance of the second population.

Let 1x  be the mean of small sample of size 1n from first population and 2x  the mean of a sample
of size n2 from second population.

We know that

Region of 
rejection

–3.79   –2.131 O
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1( )E x  and Var 
2

1
1

1

( )x
n




2( )E x  and Var
2

2
2

2

( )x
n




If the samples are independent, then 1( )x . and 2( )x are also independent.

1 2( )E x x      and Var 1 2
1 2

( )x x
n n

 
  

  

1
1

~ ,x N
n






 
 
 

and 2
2

~ ,x N
n






 
 
 

then 1 2
1 2

( ) ~ ,x x N
n n

 
 

 

  
    

 

1 2

1 2

( ) ( )x xt

n n

 

 
 

   


 


If the population is the same then

1 2

1 2

x xt

n n




 
  0)        

Example 85. Two independent samples of 8 and 7 items respectively had the following values
of the variable (weight in ounces):

Sample 1: 9 11 13 11 15 9 12 14
Sample 2: 10 12 10 14 9 8 10
Is the difference between the means of the sample significant?
Is the difference between the means of the sample significant?
[Given for V = 13, t0.05 = 2.16]
Solution.
Assumed mean of x = 12, Assumed mean of y = 10

x (x – 12) (x – 12)2 y (y – 10) (y – 10)2

9 –3 9 10 0 0
11 –1 1 12 2 4
13 1 1 10 0 0
11 –1 1 14 4 16
15 3 9 9 –1 1
9 –3 9 8 –2 4
12 0 0 10 0 0
14 2 4 – – –

x = 94 (x–12) = –2 (x–12)2 = 34 y =73 (y–10) =3 (y–10)2 = 25

94
8

x
x

n
   11.75

2 22
2 ( 12) ( 12) 34 2

8 8x

x x
n n

               

  = 4.1875
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73
7

y
y

n
  =10.43

   
2 22

2 ( 10) ( 10) 25 3
7 7y

y y
n n
              

  =3.438

2 2

1 2

( ) ( ) 34 25 59 4.54
2 8 7 2 13

x x y y
s

n n
   

   
   

 
= 2.13

1 2

11.75 10.43 1.32 1.32
2.13 0.5181 1 1 1 2.13 0.2682.13

8 7

x yt
s

n n

 
   


 

    =
1.32
1.103 =1.12

The 5% value of t for 13 degree of freedom is given to be 2.16. Since calculated value of t is 1.12
is less than 2.16, the difference between the means of samples is not significant.       Ans.

Exercise 11.9
1. A random sample of six steel beams has mean compressive strength of 58.392 psi (pounds

per square inch) with a standard deviation of s = 648 psi. Test the null hypothesis
H0 =  = 58,000 psi against the alternative hypothesis H1:  > 58,000 psi at 5% level of
significance (value for t at 5 degree of freedom and 5% significance level is 2.0157). Here 
denotes the population mean.        (A.M.I.E., Summer 2000)

2. A certain cubical die was thrown 96 times and shows 2 upwards 184 times. Is the die biased?

Ans. die is biased.
3. In a sample of 100 residents of a colony 60 are found to be wheat eaters and 40 rice eaters.

Can we assume that both food articles are equally popular?

4. Out of 400 children, 150 are found to be under weight. Assuming the conditions of simple sampling,
estimate the percentage of children who are underweight in, and assign limits within which
the percentage probably lies.                                     Ans. 37.5% approx. Limits = 37.5 ± 3 (2.4)

5. 500 eggs are taken at random from a large consignment, and 50 are found to be bad. Estimate
the percentage of bad eggs in the consignment and assign limits within which the percentage
probably lies. Ans. 10%, 10 ± 3.9

6. A machine puts out 16 imprefect articles in a sample of 500. After the machine is repaired,
puts out 3 imprefect articles in a batch of 100. Has the machine been improved?

                                                                               Ans. The machine has not been improved.

7. In a city A, 20% of a random sample of 900 school boys had a certain slight physical defect.
In another  city B, 18.5% of a random sample of 1600 school boys had the same defect. Is the
difference between the  proportions significant?

  Ans. z = 0.37, Difference between proportions is significant.

8. In two large populations there are 30% and 25% respectively of fair haired people. Is this
difference  likely to be hidden in samples of 1200 and 900 respectively from the two
populations?                                             Ans. z = 2.5, not hidden at 5% level of significance.
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9. One thousand articles from a factory are examined and found to be three percent defective.
Fifteen hundred similar articles from a second factory are found to be only 2 percent defective. Can
it reasonably be  concluded that the product of the first factory is inferior to the second?

Ans. It cannot be reasonable concluded that the product of
        the first factory is inferior to that of the second.

10. A manufacturing company claims 90% assurance that the capacitors manufactured by them
will show a tolerance of better than 5%. The capacitors are packaged and sold in lots of 10.
Show that about 26% of his customers ought to complain that capacitors do not reach the specified
standard.

11. An experiment was conducted on nine individuals. The experiment showed that due to
smoking, the pulse rate increased in the following order:

5, 3, 4, –1, 2, –3, 4, 3, 1.
Can you maintain that smoking leads to an increase in the pulse rate?

(t for 8 d.f. at 5% level of significance = 2.31). Ans. Yes.
12. Nine patients to whom a certain drink was administered registered the following in blood

pressure: 7, 3, –1, 4, –3, 5, 6, –4, 1. Show that the data do not indicate that the drink was responsible
for these increments.

13.  A machine has produced washers having a thickness of 0.50 mm. To determine whether the
machine is in proper working order, a sample of 10 washers is chosen for which the mean
thickness is 0.53 mm. and the standard deviation is 0.03 mm. Test the hypothesis that the machine
is in proper working order using a level of significance (a) 0.05 (b) 0.01.

Ans. (a) The machine is not in proper working order at 0.05 level of significance.
         (b) The machine is in proper working order at 0.01 level of significance.

14.  Eleven school boys were given a test in drawing. They were given a months further tuition
and a second test of equal difficulty was held at the end of it. Do the marks give evidence
that the students have benefitted by extra coaching.

Boys 1  2 3 4 5 6 7 8 9 10 11
Marks I Test 23 20 19 21 18 20 18 17 23 16 19
Marks II Test 24 19 22 18 20 22 20 20 23 20 17

Ans. t = 1.48, The value of t is not significant at 5% level of significance. (i.e., the test,
i.e., the students) no evidence that the students have benefitted by extra coaching.

15. Two horses A and B were tested according to the time (in seconds) to run a particular race
with the following results:

Horse A 28 30 32 33 33 29 39

Horse B 9 30 30 24 27 29

Test whether you can discriminate between two horses?     Ans. Yes with 75% confidence.
11.55 THE CHI-SQUARE DISTRIBUTION

Chi-square is a measure of actual divergence of the observed and expected frequencies. If f0
is the observed frequency and fe the expected frequency of a class interval, then x2 is defined as

 2
02 e

e

f f
x

f
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11.56    DEGREE OF FREEDOM (df)
The degree of freedom refers to the number of “independent constrants” in a set of data.We

shall illustrate this concept with example. There is a 2 x 2 association table and the actual
frequencies as under:

Let the two attributes A and B be independent.

Expected frequency of   30 60 18
100

AB 
 

After findingthefrequency of (AB), the expected frequencies of the remaining three classes
are automatically fixed.

Expected frequency of  B  = 60 – 18 = 42

Expected frequency of  A  = 30 – 18 = 12

Expected frequency of     = 70 – 42 = 28
It means that only one choice is fixing of frequency of AB is independent choice. Frequencies of the

remaining three classes depend on the frequency of (AB). It means, we have only one degree of
freedom.

Degree of freedom = (r – 1) (c – 1)
where r is the number of rows and c is the number of columns.

11.57 2 – CURVE
Let 1 2, ,...., nx x x  be n standard variates with mean zero and S.D. unity. Then x2-distribution has

the 2 2 2
1 2, ,...., nx x x random variates.

Equation of the 2-curve is

    
2 1

22 2
0 ( ) , 1

x r

y y e x r n


  

where r is the degree of freedom.

Since this equation does not have any parameter. So it can be

used for every problem of chi-square.  2χ n   denote the value

of chi-square for n degree of freedom such that the area to the
right of this point is a.

11.58  GOODNESS OF FIT

The value of  2 is used to find the divergence of the observed frequency from the expected
frequency.

If the value of P is high the fit is said to be good. It means that there no significant diver-
gence between observed and expected data.

If the curve of the expected frequency is super imposed on the curve of observed frequencies there
would not be much divergence between the two. The fit would be good. If the value of P is small,
the fit is said to be poor.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Probability 841

11.59 STEPS FOR TESTING
(i) First calculate the value of  2 .
(ii) From the table read the value of  2 for a given degree of freedom.
(iii) Find out the probability P corresponding to the calculated values of  2.
(iv) If P > 0.05, the value is not significant and it is a good fit.
(v) If P < 0.05, the deviations are significant.

Example 86. The following table is given

Eye colour infathers

not light light

Eye colour in Not light 230 148 378

fathers light 251 471 622

381 619 1000

Test whether the colour of the son’s eyes is associated with that of the fathers. Given: value
of 2 is 3.84 for 1 degree of freedom.

Solution.
Hypothesis: Let the eye colour of sons and the eye colour of fathers independent.

Eye colour in sons
not light light

   Eye colour                     Not  light
378 381 144

1000



378 619 234

1000




   in fathers                          light
622 381 237

1000



622 619 385

1000




              
 2

02 e

e

f f
f


 

       2 2 2 2
2 230 144 148 234 151 237 471 385

144 234 237 385
   

    

       
2 1 1 1 1

(86) 133.37
144 234 237 385
       

The degree of freedom = (c – 1) (r – 1) = (2 –  1)(2 – 1) = 1
The value of  2 at 5% level of significance for 1 degree of freedom is 3.841 and the calculated
value is 133.37

133.37 > 3.841
This leads to the conclusion that the hypothesis is wrong and the colour of son’s eyes is
associated with that of the fathers to a great extent.        Ans.
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Example 87. From the following table, showing the number of plants having certain
characters, test the hypothesis that the flower colour is independent of flatness of leaf

Flat leaves         Curled leaves Total

        White Flowers      99                                36 135
        Red Flowers      20                                 5 25
                Total                     119                               41 160

Solution. Null Hypothesis: The flower colour is dependent of flatness of leaf. The following
table shows the theoretical frequencies.

Flat leaves Curled leaves Total

White flowers
135 119

100
160



135 41

35
160


 135

Red flowers
25 119

19
160



25 41

6
160


 25

Total       119      41 160

 2
02χ e

e

f f
f




       2 2 2 2
2 90 100 36 35 20 19 5 6

χ
100 35 19 6
   

   

2 1 1 1 1χ 0.2579
100 35 19 6

    

Degree of freedom = (r – 1)(c – 1) = (2–1) (2–1) = 1
We have 2 = 0.0158 at 0.1 level of significance.

0.2579  > 0.0158
This leads to the conclusion that the hypothesis is wrong and the flower colour is independent
of flatness of leaf at the 0.1 level of significance.         Ans.
Example 88. The following table gives the number of air craft accidents that occurs during
various days of the week. Find whether the accidents are uniformly distributed over the week.

Days   Sun.  Mon.  Tues.   Wed.   Thurs.      Fri. Sat.
                No. of accidents    14   16    8    12     11        9 14

Given: The values of chi-square significant at 5, 6, 7, are respectively 11.07, 12.59, 14.07 at
the 5% level of significance.

Solution. Null Hypothesis: The accidents are uniformly distributed over the week.

 Expected frequencies of the accidents are given below:

        Days   Sun.  Mon.  Tues.   Wed.   Thurs.      Fri. Sat. Total
                No. of accidents    12   12    12    12     12        12 12 84

2 2 2 2 2 2 2
2 (14 12) (16 12) (8 12) (12 12) (11 12) (9 12) (14 12)χ

12 12 12 12 12 12 12
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= 1
12

[4+16+16+0+1+9+4] =
50
12

= 4.17

The number of degrees of freedom = Number of observations – Number of independent constants
                                = 7 – 1 = 6.

The tabulated 2
0.05 for 6 d.f. = 12.59

Since the calculated 2 is much less than the tabulated value, we accept the null hypothesis.
Hence, the accidents are uniformly distributed over the week.         Ans.

Example 89. A set of five similar coins is tossed 320 times and the result is

No. of heads     0     1  2   3      4 5
Frequency     6    27 72 112     71 32

Test the hypothesis that the data follow a binomial distribution.

Solution. P (Head) = 
1
2

, q = 1 – 
1
2

= 
1
2

Theoretical  frequencies are

P (0 H) = q5 =

51
2

 
 
 

1 ,
32

  
 

Frequency of 0 head =
320
32

 = 10

P (1 H) = 5C1 pq4 =  5C1
1 1 5
2 2 32

    
  

Frequency of 1 head =
5

32
 320 = 50

P (2 H) = 5C2 p2q3 = 10 
2 31 1 10 ,

2 2 32
       
   

 Frequency of 2 heads =
10
32

320 = 100

 P (3 H) = 5C3 p3q2 = 10
3 21 1 10

2 2 32
       
   

, Frequency of 3 heads =
10
32

320 = 100

P (4 H) = 5C4 p4q = 5
41 1 5

2 2 32
       
   

, Frequency of 4 heads =
5

32
 320 = 50

P (5 H) = 5C5 p5q0 = 

51 1
2 32

   
 

, Frequency of 5 heads =
1
32

 320 = 10

       
           2 2 2 2 2 2

2 6 10 27 50 72 100 112 100 71 50 32 10
χ

10 50 100 100 50 10
     

     

                   = 
1

100 [ 160 + 1058 + 784 + 144 + 882 + 4840 ] = 
7868
100  = 78.68

Degree of freedom = 6 – 1 = 5
For 5 degree of freedom, 2 = 11.07
Since the calculated value of 2 is much greater than that of 2 at 5% level of significance,
the hypothesis that the data follow the binomial law is rejected.                                           Ans.
Example 90. Fit a Poisson distribution to the following data and test the goodness of fit.
   x   0 1    2     3      4       5 6
   f 275 72   30     7      5       2 1

Solution.

      Mean,                                           
0 72 60 21 20 10 6 189 0.482

392 392
fxm
f
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      Poisson   distribution

           0.482 0.482
or

! !

rm r ee mP r P r
r r



 

         0.4820 0.6175, 0 392 0.6175 242.1P e f    

       
     

10.482 0.482
1 0.2976, 1 392 0.2976 116.7

1 !
e

P f


    

     
20.482 0.482

2 0.0717, 2 392 0.0717 28.1
2!

e
P f



    

     

     

     

     

30.482

40.482

50.482

60.482

0.482
3 0.0115, 3 392 0.0115 4.5

3!

0.482
4 0.00139, 4 392 0.0139 0.5

4!
(5.1)

0.482
5 0.0001, 5 392 0.0001 0.1

5!

0.482
6 0.00001, 6 392 0.00001 0

6!

e
p f

e
p f

e
P f

e
P f










     



     



     


    


2 2 2 2
2 (275 242.1) (72 116.7) (30 28.1) [(7 5 2 1) (4.5 0.5 0.1)]

242.1 116.7 28.1 4.5 0.5 0.1
        

    
 

    2 = 4.471 + 17.122 + 0.128 + 19.217 = 40.938
Degree of freedom = 7 – 1 – 1 – 3 = 2
[One d.f. being lost because 0 = E; 1 d.f. is lost because the parameter m has been estimated;

3 d.f. are lost because of pooling the last four expected cell frequencies
which are less than 5]

Tabulated value of 
2  for 2 d.f. at 5% level of significance = 5.99.

Since, the calculated value of 
2  (40.938) is much greater than 5.99, it is highly significant.

Hence, Poisson distribution is not good fit.         Ans.
Exercise 11.10

1. The following information is obtained concerning an investigation of 50 ordinary shops of small size.
        Shops              Total

In Town                                         In Villages,
Run by men   17   18 35
Run by women    3    12 15

Total  20    30 50

Can it be inferred that shops run by women are relatively more in villages than in towns? Use 
2

test. Ans.  2 = 3.57, Hypothesis is wrong.
2. Of a group of patients who complained they did not sleep well, some were given sleeping

pills while others were given sugar pills (although they all thought they were getting sleeping
pills). They were later asked whether the pills helped them or not. The result of  their responses
are shown in the table given below. Assuming that all patients told the truth, test the hypothesis
that there is no difference between sleeping pills and sugar pills at a significance level of 0.05.
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           Slept well                    Did not sleep well
 Took sleeping pills                                  44 10

                    Took sugar pills                                  81 35
Ans. The hypothesis cannot be rejected at the 0.05 level.

3. In an experiment on immunization of cattle from tuberculosis the following results were obtained
  Died                              Unaffected

                        Inoculated                                  12 26
                     Not inoculated                   16 6

Examine the effect of vaccine in controlling susceptibility to tuberculosis.

Ans.
2  = 9.367, vaccine is effective.

4. Genetic theory states that children having one parent of blood type M and other blood type
N will always be one of three types M, MN, N and that the proportions of these types will on
average be 1 : 2 : 1. A report states that out of 300 children having one M parent and one N
parent, 30% were found to be of type M, 45% of type MN and remainder of  type N. Test the
hypothesis by 2 test. Ans. Hypothesis is correct.

5. In an experiment on pea-breeding, Mendal obtained the following frequencies of seeds; 315
round and yellow, 101 wrinkled and yellow; 108 round and green, 32 wrinkled and green. Total
556. Theory predicts that the frequencies should be in the proportion 9 : 3 : 3 : 1 respectively.
Set up proper hypothesis and test it at 10% level of significance.

Ans. 2  = 0.51. There seems to be good correspondence between theory and experiment.
6. On a particular proposal of national importance, political party A and party B cast votes as

given in the table. At a level of significance of (a) 0.01 and (b) 0.05, test the hypothesis that
there is no difference between the two parties in so far as this proposal is concerned.

    In Favour        Opposed Undecided
                     Party A                   85                          78                             37
                     Party B         118                          61                              25

Ans. The hypothesis can be rejected at both levels.
7. The table shows the relation between the performance in mathematics and electronics, using

a (a) 0.05 (b) 0.01 significance level.
                Mathematics                                                 Electronics

       High marks               Medium marks            Low marks
High marks 56      71 12
Medium marks 47                           163 38
Low marks 14                            42 85

Ans. The hypothesis can be rejected at both levels.
8. The results of a survey made to determine whether the age of a driver 21 years of age and

older has any effect on the number of automobile accidents in which he is involved (including
minor accidents) are given in the table below. At a level of significance of (a) 0.05 and (b)
0.01, test the hypothesis that number of accidents is independent of the age of the driver.

                                                 Age of the driver
      21-30              31-40              41-50          51-60          61-70

0        748 821       786 720      672
               Number of 1                      74                     60                  51 66       50
                accidents 2                      31                     25                  22 16       15
                                    more than 2                9                    10                     6  5        7

Ans. The hypothesis cannot be rejected at either level.
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9. A die is thrown 60 times with the following results.
Face 1 2      3 4     5 6
Frequency 8 7     12 8   14 11

Test at 5% level of significance if the die is honest, assuming that P ( 2> 11.1) = 0.05 with 5 d.f
10. Fit a Binomial Distribution to the data

    x 0 1 2 3 4 5
    f 38 144 342 287    164 25

and test for goodness of fit at the level of significance 0.05.
        Ans. 2 = 7.97, Binomial distribution gives a good fit at 5% level.

11. Fit a Poisson distribution to the following data and test for its goodness of fit at level of
significance 0.05.

x 0 1  2 3 4
f 419 352 154 56  19

Ans. Poisson distribution can be fitted to the data.
12. A bird watching sitting in a park has spotted a number of birds belonging to 6 categories. The

exact classification is given below:
  Category 1 2 3 4 5 6
   Frequency 6 7 13    17 6 5
Test at 5% level of significance whether or not the data is compatible with the assumption
that this particular park is visited by birds belonging to these six categories in the proportion

= 1 : 1 : 2 : 3 : 1 : 1.
Given P ( 2 = 1.07) = 0.05 for 5 degree of freedom.

13. Two hundred digits were chosen at random from a set of tables. The frequencies of the digits
were as follows:

    Digits 0          1         2         3        4          5         6         7        8         9

   Frequency 18      19        23        21      16        25       22       20       21        15

Use 2 test to assess the corrections of hypothesis that the digits were distributed in equal
numbers in the table from which they were chosen.
Given that the values of 2 are respectively 16.9, 18.3., 19.7 for 9, 10 and 11 degrees of
freedom at 5% level of significance.  Ans. 2 = 4.3, the hypothesis seems reasonable correct.

14. A survey of 320 families with 5 children each revealed the following distribution:
No. of boys 5 4 3 2 1 0
 No. of girls 0 1 2 3 4 5
No. of families 14 56 110 88 40 40

Is this result consistent with the hypothesis that male and female births are equally probable?
Ans. 2  = 7.16, Equal probability for male and female births may be accepted.

11.60  F-DISTRIBUTION HAS THE FOLLOWING APPLICATION
F-Test for Equality of Population Variances
Suppose we want to test
(i) Whether two independent samples x1, x2, ... xn and 1 2, ,...., ny y y  have been drawn from

the normal population with the same variance 2s .
(ii) Whether the two independent estimates of the population variance are homogeneous or

not.
Under the null hypothesis (H0)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Probability 847

(i) 2 2 2 ,x y     population variances are equal.

(ii) Two independent estimates of population variance are homogeneous, F is given by
2

2
x

y

SF
S

=

where

2 2
2 2

2 21 1

1

( ) ( )
,

1 1

n n

n n
x y

x x y y
S S

n n
 

 
 

 

 

and ,x y are sample means, 2 2
1 2,S S  are unbiased estimates of two samples from two

normal population with 1 2( ). 
The distributions of variance ratio F with r1 and r2 is

1 2
1 2

( )
2

12
0

2

. 1

r r
r r ry y F F

r


  

  
 

where r1 = n1 – 1, r2  = n2 = 1, r1 and r2 are d.f. of two samples.

Note. (i) Greater of the two variances 2 2,x yS S   is to be taken in the numerator and n1

corresponds to the greater variance. Calculated value of F is compared with tabulated value
of F at certain level of significance, H0 is either rejected or accepted.
(ii) Significative Test
If the calculated value of F is higher than this table value of
F  for the given degree of freedom at 5% level of significance
as such the difference is significant. It means that the variance
between the samples is significantly greater than variance
within the samples. In other words, the samples are not
picked up from the same population or the mean value of
various samples are significantly different from each other.

11.61 FISHER’S Z-DISTRIBUTION

On substitution 
1

log
2 ez  F or F = e2z in the F-distribution, we have the Fisher’s z-distribution.

It is of the form
1 2

0 1 2( )r z zy y e r e r 

The curve is more symmetrical than F-distribution curve.
Example 91. The I.Q.’s of 25 students from one college showed a variance of 16 and those
of an equal number from the other college had a variance of 8. Discuss whether there is any
significant difference in variability of intelligence.
Given: F (5%) = 1.98, F (1%) = 2.62

Solution. 2
1s = 16, 2

2s  = 8

F = 
2

1
2

2

s
s  = 

16
8  = 2

Tabulated value of F at 5% level of significance = 1.98
Calculated value of F (2) Tabulated value of F (1.98)
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Hence, variability of intelligence is just significant at 5% level of significant.
Tabulated value of F at 1% level of significance = 2.62
Calculated value F (2) < Tabulated value of F (2.62)
Hence, variability of intelligence is not significant at 1% level of significance. Ans.
Example 92. Two random samples are:

         Sample Size         Sum of squares of
     deviations from the mean

1 10    90
2 12  108

Test whether the samples come from the same normal population at 5% level of significance.
[Given: F0.05 (9, 11) = 2.90, F0.05 (11, 9) = 3.10]
Solution. Null Hypothesis: The two samples have been drawn from the same normal
population.

n1 = 10, ( )2x xå -  = 90

n2 = 12, ( )2y yå -   = 108

( )22
1

1

1 90 10
1 9

S x x
n

= å - = =
-

( )22
2

2

1 108 9.82
1 11

S y y
n

= å - = =
-

2
1

2
2

10 1.018
9.82

SF
S

= = =

Tabulated F0.05 (9, 11) = 2.90
Since the calculated F is less than tabulated F, it is not significant. Hence, null hypothesis of

equality of population variances may be accepted.
Example 93. Two random samples from two normal populations are given below:
Sample I         16          26           27           23          24             22
Sample II          33          42          35           32          28             31
Do the estimates of population variances differ significantly?
Degree of Freedom (5, 5) (5, 6) (6, 5)
5% value of F 5.05 4.39 4.95
Solution.

Sample I x x-   2( )x x-         Sample II              y y-   2( )y y-
     x x – 23          y – 33.5
     16      –7 49 31 –-0.5 0.25
     26 3 9 42 8.5 72.25
     27        4 16 35 1.5 2.25
     23        0 0 32 –1.5 2.25
     24        1 1 28 –5.5 30.25
     22      –1 1 31 –2.5 6.25

   138       7 6 201 76s 113.50
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138 20123, 33.5
6 6

x yx y
n n

å å= = = = = =

2
2
1

( ) 76 15.2
1 5

x xS
n

å -= = =
-

2
2
2

( ) 113.50 22.7
1 5

y yS
n

å -= = =
-

    
2
2
2

1

22.7 1.4934
15.2

SF
S

= = =

Tabulated value of F0.05 = 5.05
Since the calculated value (1.4934) of F is less than the tabulated value of F (5.05). Hence,

the difference is not significant.        Ans.
EXERCISE 11.11

1. The diameters of two random samples, each of size 10, of bulbs produced by two machines have
standard deviations S1 = 0.01 and S2 = 0.015. Assuming that the diameters have independent
distributions, test the hypothesis that, the two machines are equally good by testing.

Ans. F=1.5,yes hypothesis is correct.
2. The mean diameter of rivets produced by two firms A and B are practically the same but their

standard deviations are different. For 16 rivets manufactured by firm A, the S.D. is 3.8 mm while
for 22 rivets manufactured by firm B is 2.9 mm. Do you think products from firm A are
better quality than those of firm B Ans. Yes

3. Mango-trees were grown under two experimental conditions. Two random samples of 11 and 9
mango-trees show the samples standard deviations of their weights as 0.8 and 0.5 respectively.
Assuming that the weight distributions are normal, test the hypothesis that the true variances
are equal, against the alternative that they are not, at the 10% level.

[Assume that P (F10,8 > 3.35) = 0.05 and P (F8,10 > 3.07) = 0.05]
Ans. F = 2.5, Not significant, hence null hypothesis of equality of population

 variances may be accepted at level of significance  = 1.0.
4. Two random samples drawn from two normal populations are:

  Sample I 20 16 26 27 23 22 18 29 25 19
 Sample II 27 33 42 35 32 34 38 28 41 23 30 37

Obtain the estimates of the variances of the populations and test whether the population
have the same variance.
(Given: F 0.05 = 3.11 for 11 and 9 d.f.)

Ans. F = 2.368, The hypothesis seems to be correct at the 0.05 level of significance.
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12
Fourier Series

12.1PERIODIC FUNCTIONS
If the value of each ordinate f(t) repeats itself at equal intervals in the abscissa, then f(t) is

said to be a periodic function.

If f (t) = f (t + T) = f (t + 2 T)  =   .... then T is called the period of the function f (t).

For example :
sin x = sin (x + 2) = sin (x + 4 ) = ... so sin x is a periodic function with the period 2. This

is also called sinusoidal periodic function.

– t ––2 0

–1
T = 2

t2

1

f(t)

12.2  FOURIER  SERIES
Here we will express a non-sinusoidal periodic function into a fundamental and its
harmonics. A series of sines and cosines of an angle and its multiples of the form.

0
1 2 3cos cos 2 cos3 ... cos ...

2 n
a

a x a x a x a nx     

1 2 3sin sin 2 sin 3 ... sin ...nb x b x b x b nx     

0

1 1

cos sin .
2 n n

n n

a
a nx b nx

 

 

   

is called the Fourier series, where a1, a2,. ..an,...b1, b2, b3. .b n . .. are constants.
A periodic function f(x) can be expanded in a Fourier Series. The series consists of the
following:

(i) A constant term a0 (called d.c. component in electrical work).

(ii) A component at the fundamental frequency determined by the values of a1, b1.
(iii) Components of the harmonics (multiples of the fundamental frequency) determined by
a2, a3...b2, b3.... And a0, a1, a2..., b1, b2. .. are known as Fourier coefficients or Fourier constants.

850
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12.3.  DIRICHLET’S CONDITIONS FOR A FOURIER SERIES
If the function f(x) for the interval (–)
(1) is single-valued (2) is bounded
(3) has at most a finite number of maxima and minima.
(4) has only a finite number of discontinuous
(5) is f (x + 2) = f(x) for values of x outside [–], then

0

1 1

( ) cos sin
2

P P

p n n
n n

a
S x a nx b nx

 

   
converges to f(x) as P   at values of x for  which f(x) is continuous and to

1
[ ( 0) ( 0)]

2
f x f x    at points of discontinuity..

12.4.  ADVANTAGES OF FOURIER SERIES
1. Discontinuous function can be represented by Fourier series. Although derivatives of

the discontinuous functions do not exist. (This is not true for Taylor’s series).
2. The Fourier series is useful in expanding the periodic functions since outside the closed

interval, there exists a periodic extension of the function.
3. Expansion of an oscillating function by Fourier series gives all modes of oscillation

(fundamental and all overtones) which is extremely useful in physics.
4. Fourier series of a discontinuous function is not uniformly convergent at all points.
5. Term by term integration of a convergent Fourier series is always valid, and it may be

valid if the series is not convergent. However, term by term, differentiation of a Fourier
series is not valid in most cases.

12.5   USEFUL INTEGRALS
The following integrals are useful in Fourier Series.

(i) 
2

0
sin 0


 nx dx (ii) 

2

0
cos 0


 nx dx

(iii) 
2 2
0

sin


  nx dx (iv) 
2 2
0

cos


  nx dx

(v) 
2

0
sin sin 0


  nx mx dx (vi) 

2

0
cos cos 0nx mx dx




(vii) 
2

0
sin cos 0


  nx mx dx (viii) 

2

0
sin cos 0


  nx nx dx

(ix) uv dx  uv1 – uv2 + uv3 – uv4 + ...

   where  v1 = 2, v dx v  = 1 v dx  and so on u = ,
du
dx

u = 
2

2
d u
dx

 and so on and

(x) sin n  = 0,  cos n  = (– 1)n where n  I
12.6  DETERMINATION OF FOURIER COEFFICIENTS (EULER’S FORMULAE)

0
1 2( ) cos cos 2 ... cos ...

2 n
a

f x a x a x a nx     

1 2sin sin 2 ... sin ...nb x b x b nx     .... (1)
(i) To find a0: Integrate both sides of (1) from x = 0 to x = 2
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2 2 2 2 20
1 20 0 0 0 0

( ) cos cos 2 .... cos ...
2 n
a

f x dx dx a x dx a x dx a nx dx
    

         
2 2 2

1 20 0 0
sin sin 2 ... sin ...nb x dx b dx b nx dx

  
      

20

0
,

2
a

dx


  (other integrals = 0 by formulae (i) and (ii) of Art. 12.5)

  
2 20

00 0

1( ) 2 , ( )
2
af x dx a f x dx

 
   

 
... (2)

(ii) To find an: Multiply each side of (1) by cos nx and integrate from x = 0 to x= 2.

2 2 2 2 20
10 0 0 0

( ) cos cos cos cos ... cos ...
2 n
a

f x nx dx nx dx a x nx dx a nx dx
   

      

                     
2 2

1 20 0
sin cos sin 2 cos ...b x nxdx b x nx dx

 
   

2 2

0
cosn na nx dx a


     (Other integrals = 0, by formulae on Page 851)

             
2

0

1 ( )cosna f x nx dx



 

By taking n = 1, 2 ... we can find the values of al, a2....

(iii) To find bn: Multiply each side of (1) by sin nx and integrate from x = 0 to x = 2.

                
2 2 2 20

10 0 0 0
( ) sin sin cos sin ... cos sin ...

2 n
a

f x nx dx nx dx a x nx dx a nx nx dx
   

       
2 2 2

1 0 0
sin sin ... sin ...nb x nx dx b nx dx

 
   

2 2

0
sinnb nx dx


                     (All other integrals = 0, Article No. 12.5)

  = bn 

 
2

0

1 ( )sinnb f x nx dx



  ... (4)

Note : To get similar formula of 0
1,
2

a has been written with a0 in Fourier series.

Example 1. Find the Fourier series representing

f (x) = x,                      0 < x < 2

 and sketch its graph from x = – 4  to x = 4 

Solution. Let 0
1 2 1 2( ) cos cos 2 ..... sin sin 2 ...

2
a

f x a x a x b x b x       ... (1)
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Hence
222 2

0 0 0
0

1 1 1( ) 2
2
xa f x dx x dx


   

         
 

2 2

0 0

1 1( )cos cosna f x nx dx x nx dx
 

 
  

       
2

2 2 2 2
0

1 sin cos 1 cos 2 1 11. (1 1) 0nx nx nx
n n n n n


                     

  
2 2

0 0

1 1
( )sin sinnb f x nx dx x nx dx

 
 
  

        
2

2
0

1 cos sin 1 2 cos 2 21.nx nx nx
n n nn


                            

Substituting the values of a0, an,  bn in (1), we get

1 1
2 sin sin 2 sin 3 ...

2 3
x x x x        

Ans.

Example 2. Given that f (x) = x + x2 for  – < x < find the Fourier expression of f(x).

Deduce that 
2

2 2 2

π 1 1 1= 1+ + + + ...
6 2 3 4

(UP. II Semester; Summer 2003)

Solution. Let 2 0
1 2 1 2cos cos 2 ... sin sin 2 ...

2
a

x+ x a x a x b x b x       ...(1)

  2
0

1 1( ) ( )a f x dx x x dx
 

 
  
   (f (x) = x odd function)

     
3 3 2

0

2 2 2
3 3 3
x


    

         

  21 1( ) cos ( ) cosna f x nx dx x x nx dx
 

 
  
   2

0

2 cosx nx dx



 

   (x cos nx is odd function)

      
2

2 3
0

2 (sin ) ( cos ) sin(2 ) (2)nx nx nxx x
n n n


           

      
2

2 3 2

2 sin cos sin 4( 1)2 2
nn n n

n n n n
                        

  21 1( )sin ( )sinnb f x nx dx x x nx dx
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0

2 sinx nx dx



  (x2 sin nx is an odd function)

2
0

2 cos sin( ) (1)nx nxx
n n


                

  3

2 cos sin( ) 2nx n
n n

       

2 2cos ( 1)nn
n n
         

12 ( 1)n

n
 

Substituting the values of a0, an, bn in (1) we get
2

2
2 2

1 14 cos cos 2 cos3 ...
3 2 3

x x x x x          

1 12 sin sin 2 sin 3 ...
2 3

x x x      
    ... (2)

Put x =  in (2),

     
2

2
2 2 2

1 1 14 1 ...
3 2 3 4
            

... (3)

Put x = –in (2), 
2

2
2 2 2

1 1 14 1 ...
3 2 3 4
            

... (4)

Adding (3) and (4)
2

2
2 2 2

2 1 1 12 8 1 ...
3 2 3 4
          

2

2 2 2

4 1 1 18 1 ...
3 2 3 4
        
2

2 2 2 2
1

1 1 1 11 ...
6 2 3 4 n n






             Ans.

Exercise 12.1
1. Find a Fourier series to represent,  f (x) =  – x for 0 < x < 2.

Ans.
1 1 1

2 sin sin 2 sin 3 ... sin ...
2 3

x x x nx
n

       
2. Find a Fourier series to represent x – x2 from x = – to  and show that

2

2 2 2 2

1 1 1 1 ...
12 1 2 3 4


    

Ans.  – 
2

2 2 2 2

cos cos 2 cos3 cos 4 sin sin 2 sin3 sin 44 ... 2 ...
3 1 2 3 41 2 3 4

x x x x x x x x                   
3. Find a Fourier series to represent: f (x) = x sin x,  for 0 < x < 2 .

Ans.   2 2 2

1 cos 2 cos3 cos 4
1 sin cos 2 ...

2 2 1 3 1 4 1
x x x

x x             
4. Find a Fourier series to represent the function f(x) = ex, for – < x < and hence derive a

series for .
sinh



              Ans. 2 2 2

2sinh 1 1 1 1cos cos 2 cos3 ..
2 1 1 2 1 3 1

x x x             

           + 2 2 2

1 2 3sin sin 2 sin 3 ... and
1 1 2 1 3 1

x x x      

1 1 11 2 ....
sinh 2 5 10
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5. Obtain the Fourier series for f (x) = e–x in the interval 0 2x   .

Ans. 
21 1 1 1 1 1 2 3cos cos 2 cos3 sin sin 2 sin3 ...

2 2 5 10 2 5 10
e x x x x x x
            

6. If 
2

( ) , 0 2 ,
2

xf x x        show that 
2

2
1

cos( )
12 n

nxf x
n






 

7. Prove that 
2

2
2

1

cos4 ( 1) ,
3 n

nxx x
n






       

Hence show that  (i) 2

1
6n


       (ii)
2

2

1
8(2 1)n



       (iii)

4

4

1
90n




8. If f (x) is a periodic function defined over a period (0, 2 )  
2 2(3 6 2 )( )

12
x xf x    



Prove that 2
1

cos( )
n

nxf x
n





  and hence show that 
2

2 2

1 11 ...
6 2 3


   

12.7FUNCTION DEFINED IN TWO OR MORE SUB-RANGES
Example 3. Find the Fourier series of the function

( )

π-1 for -π < x < -
2

π πf x 0 for - < x <
2 2
π+1 for < x < π
2










Solution. Let     0
1 2 1 2( ) cos cos 2 ... sin sin 2 ...

2
a

f x a x a x b x b x       ...(1)

           
/ 2 / 2

0 /2 /2

1 1 1 1( ) ( 1) 0 1a f x dx dx dx dx
   

   
    
      

   / 2

/ 2

1 1 1
0

2 2
x x 

 

              

           
1

( ) cosna f x nx dx




 

/ 2 / 2

/2 / 2

1 1 1
( 1)cos (0) cos (1)cosnx dx nx dx nx dx

  

  
   
    

/ 2

/ 2

sin sin1 sin 1 sin 1 sin 1 sin2 2 0

n n
nx nx n n

n n n n n n

 

 

    
                                
      

    
1 ( )sinnb f x nx dx





 

        
/ 2 / 2

/2

1 1
( 1)sin (0)sinnx dx nx dx

 

 
  
  

    / 2

1 (1)sin nx dx
n




 

f (x)

O
XX

– 1

1


2

– 

2

–
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/ 2

/ 2

cos 1 cosnx nx
n n

 

 

           

1 1 2
cos cos cos cos cos cos

2 2 2
n n n

n n n
n n n

                         

          1 2 3
2 2 2, ,

3
b b b   

  

Putting the values of a0, an, bn in (1) we get 1 2
( ) 2sin 2sin 2 sin 3 ...

3
f x x x x       

      Ans.

Example 4. Find the Fourier series  for the periodic function

  ( )
0, - π < x < 0

f x
x, 0 < x < π


 


         f (x + 2) = f (x)

Solution. Let 0
1 0 1 2( ) cos cos 2 ... sin sin 2 ...

2
a

f x a x a x v x b x       ... (1)
2 20

0 0
0

1 1 1 10.
2 2 2
xa dx x dx






    
             

 

20
0

1 1 sin coscos . (1)n
nx nxa x nx dx x

n n


            
  = 2

0

1 cos n
n

 
   

2 2 2

1 ( 1) 1 2n

n n n
 

      
when n is odd

 = 0,  when n is even.

1

20
0

1 1 cos sin 1 ( 1) ( 1)sin (1)
n n

n
nx nxb x nx dx x

n n nn

                             


Substituting the values of a0, al, a2 ... b1, b2, . .. in (1), we get

2 2 2

2 cos cos3 cos5 sin sin 2 sin3
( ) ... ...

4 1 2 31 3 5
x x x x x x

f x
                  

Ans.

DISCONTINUOUS FUNCTIONS
At a point of discontinuity, Fourier series gives the value of f(x) as the arithmetic mean of left

and right limits.
At the point of discontinuity, x = c

At 
1

, ( ) [ ( 0) ( 0)]
2

x c f x f c f c    

Example 5. Find the Fourier series for f(x), if   
, 0

( )
, 0

x
f x

x x
    

    

Deduce that 
2

2 2 2

1 1 1
...

81 3 5


   

Solution. Let 0
1 2( ) cos cos 2 ... cos ...

2 n
a

f x a x a x a nx     

1 2sin sin 2 ... sin ...nb x b x b nx     ... (1)

    0
1

( )a f x dx




 

Then  
0 0 2 2 2

0 00

1 1 1( ) ( ) ( / 2) ( / 2) ;
2

a dx x dx x x
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1

( ) cosna f x nx dx




 

0
0

20
0

1 1 sin sin cos( )cos cosn
nx x nx nxa nx dx x nx dx

n n n







                        
 

      2 2 2

1 1 1 10 cos (cos 1)n n
n n n

         2 2
1 2[( 1) 1]n

n n


   
 

 when n is odd

       
1 ( )sinnb f x nx dx





 

0
0

20
0

1 1 cos cos sin( )sin sinn
nx nx nxb nx dx x nx dx x

n n n







                        
 

     
1 1(1 cos ) cos (1 2cos )n n n

n n n
            

1 (1 2 ( 1)n

n
  

       
3

nb
n

 when n is odd

     = 
1

n


 when n is even

  2 2

2 cos3 cos 5 sin 2 3sin 3 sin 4( ) cos ... 3sin
4 2 3 43 5

x x x x xf x x x              
+... ... (2)

Putting x = 0 in (2), we get 2 2

2 1 1
(0) 1 ....

4 3 5
f

           ... (3

Now f (x) is discontinuous at x = 0.
But f (0 – 0) = – and f (0 + 0) = 0

1
(0) [ (0 0) (0 0)] / 2

2
f f f      

From (3),  2 2 2

2 1 1 1
...

2 4 1 3 5
            

or  
2

2 2 2

1 1 1
...

8 1 3 5


            Proved.

Example 6. Find the Fourier series expansion of the periodic function of period 2-, defined by

                   

if
2 2( )

31 if
2 2

x x
f x

x

         


Solution.  Let 0
1 2 1 2( ) cos cos 2 ... sin sin 2 ...

2
a

f x a x a x b x b x      

Now

3/ 23 2 2 2/ 2
2

0 / 2 / 2
/ 2 / 2

1 1 1 1( )
2 2
x xa x dx x dx x






 
 

   
                

 

     
2 2 2 2 2 21 1 3 9 3 9 1 1

0
8 8 2 8 2 8 2 8 2 8

                               

f(x)

XO – 

– 
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3/ 2
2

/2 / 2

1 1cos ( ) cosna x nx dx x nx dx




 
   
  

3/2
2

2 2
/2 /2

1 sin cos 1 sin cos(1) ( ) ( 1)nx nx nx nxx x
n nn n




 

                           

2 2

sin cos sin cos1 2 2 2 2
2 2

n n n n

n nn n

    
  

      
  

2 2

3 3sin cos sin cos1 2 2 2 2
2 2

n n n n

n nn n

    
  

       
 

2

1 3 1 3sin sin cos cos
2 2 2 2 2

n n n n
n n

                      

2

1 2
sin cos sin sin 0

2 2
n n

n n
n n
           

   
/2 3 /2

/2 /2

1 1sin ( )sinnb x nxdx x nx dx
 

 
   

  
3/2
2

0 /2

2 1sin ( )sinx nx dx x nx dx





   
  

3/ 2
2

2 2
0 /2

2 cos sin 1 cos sin(1) ( ) ( 1)nx nx nx nxx x
n nn n






                                         

2 2 2

3 3cos sin cos sin cos sin2 12 2 2 2 2 2
2 2 2

n n n n n n

n n nn n n

        
     

             
   

2 2

3cos 3sin cos3 sin1 2 2 2 2
2 2

n n n n

n nn n

    
  

       
 

2 2

1 3 3 1 3cos cos sin sin
2 2 2 2 2

n n n n
n n n

              

2 2 2

1 3 1 3 1 3
sin sin sin sin 3sin sin

2 2 2 2 2
n n n n n

n
n n n n
                     

Substituting the values of a0, a1, a2 ... b1, b2 .... we get 
2 2 2

4 sin sin3 sin 5
( ) ...

1 3 5
x x x

f x       
Ans.

Example 7. Find the Fourier series of the function defined as
forx+π 0 < x < π

f  (x)= and f  (x+ 2π) f (x).
–x – π – < x < 0


 

Solution.
0

0 0

1 1 1( ) ( ) ( )a f x dx f x dx f x dx
 

 
  
    

02 20

0
– 0

1 1 1 1( ) ( )
2 2
x xx dx x dx x x
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2 2
2 21 1 1 11 1

2 2 2 2
                                    

   
0

0

1 1 1( )cos ( ) cos ( ) cosna f x nx dx f x nx dx f x nx dx
 

 
  
    

0

0

1 1
( ) cos ( ) cosx nx dx x nx dx




      
  

0

2 2
0

1 sin cos 1 sin cos( ) ( 1) ( ) (1)nx nx nx nxx x
n nn n



 

                              

2 2 2 2 2

1 1 ( 1) 1 ( 1) 1 2 [( 1) 1]
n n

n

n n n n n
    

                

  2
4 ,na

n





   If n is odd.
   and an = 0          if n is even.

  
0

0

1 1 1
( )sin ( )sin ( )sinnb f x nx dx f x nx dx f x nx dx

 

 
  
    

0

0

1 1( )sin ( ) sinx nx dx x nx dx



      
  

0

2 2
0

1 cos sin 1 cos sin( ) ( 1) ( ) (1)nx nx nx nxx x
n nn n





                                            
1 1 2 1 2

( 1) [(1) 2( 1) (1)] [1 ( 1) ]n n n

n n n n n
                       

4 ,
n

  if n is odd.

 =  0,  if n is even.

Fourier series is            0
1 2 1 2( ) cos cos 2 ... sin sin 2 ...

2
a

f x a x a x b x b x      

2 2

4 cos cos3 sin sin3
( ) ... 4 ...

2 1 31 3
x x x x

f x
                       Ans.

Exercise 12.2
1. Find the Fourier series of the function

1 for 0
( )

1 for 0
x

f x
x

    
    

where f (x + 2) = f (x).                              Ans.
4 1 1 1 1

sin sin 3 sin5 sin 7 ...
1 3 5 7

x x x x       
2. Find the Fourier series for the function

for 0
4( )

for 0
4

x
f x

x

         
             and  f ( –) = f (0) = f () = 0, f (x) = f (x + 2 ) for all x.

Deduce that      
1 1 11 ...

4 3 5 7

     Ans. 

sin sin3 sin5 sin 7 .....
1 3 5 7

x x x x
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3. Find the Fourier series of the function

0 for 0

( ) 1 for 0
2

0 for
2

x

f x x

x


   
   


   
4. Obtain a Fourier series to represent the following periodic function

f(x) = 0 when 0 < x < 
f(x) = 1 when  < x < 2

Ans.
1 2 1 1

sin sin3 sin 5 ...
2 3 5

x x x      
5. Find the Fourier expansion of the function defined in a single period by the relations.

1 for
2 for 2

0 < x <
f(x)=

x


    

and from it deduce that 
1 1 1

1 ...
4 3 5 7

    

Ans.
3 2 1 1

sin sin3 sin 5 ...
2 3 5

x x x      
6. Find a Fourier series to represent the function

0 for 0
1 for 0
4

< x
f(x) =

x x

  



   

and hence deduce that 
2

2 2 2

1 1 1 ...
8 1 3 5


   

Ans.
2

2
1

[( 1) 1 ( 1)cos sin ...
16 44

n n

n

nx nx
nn





     
    

7. Find the Fourier series for  f(x), if
f (x) = – for  – < x  0
         = x        for      0 <  x < 


2


for x  =  0

Deduce that 
2

2 2 2

1 1 1 ...
81 3 5


   

Ans. –
2 2

2 cos3 cos5 1 3 1
cos ... 3sin sin 2 sin 3 sin 4 ...

4 2 3 43 5
x x

x x x x x
            

8. Obtain a Fourier series to represent the function
f(x) = |x|  for –  < x < 

and hence deduce
2

2 2 2

1 1 1 ...
8 1 3 5


   

Ans. 2 2

4 1 1
cos cos3 cos5 ...

2 3 5
x x x
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9. Expand as a Fourier series, the function f (x) defined as

( ) for
2

f x x x


       

          for
2 2 2

x
  

   

           for
2

x x


            Ans. 2 2 2

3 2 1 2 1
cos cos 2 cos3 ...

8 1 2 3
x x x

        
10. Obtain a Fourier series to represent the function

f (x) = |sin x| for  – < x <  ( ) sin for 0
sin for 0

f x x x
x x

      
     

Hint

Ans. 
2 4 1 1 1

cos 2 cos 4 cos 6 ...
3 15 35

x x x        
11. An alternating current after passing through a rectifier has the form

i = I sin     for 0 <  < 
    = 0           for  < < 2

Find the Fourier series of the function.

Ans. 
2 cos 2 cos 4

... sin
3 15 2

I I I         
12. If f (x) = 0 for –  < x < 0

    = sin x for 0 < x < 

Prove that 2
1

1 sin 2 cos 2( ) .
2 4 1m

x mxf x
m





  
  

Hence show that 
1 1 1 1

... ( 2)
1.3 3.5 5.7 4

     

12.8(a)  EVEN FUNCTION
A function f (x) is said to be even (or symmetric) function if, f ( – x) = f(x)
The graph of such a function is symmetric with respect to y-axis [f(x) axis]. Here y-axis is a
mirror for the reflection of the curve.

         

f (x) f (x)

O OX X

The area under such a curve from – to  is double the area from 0 to .

 0
( ) 2 ( )f x dx f x dx

 


 

(b) Odd Function f (x) f (x)

O O
X

X

11

0 3 
2

f ( )

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



862 Fourier Series

A function f (x) is called odd (or skew symmetric) function if
f (– x) = – f (x)

Here the area under the curve from – to  is zero.

( ) 0f x dx





Expansion of an even function:

0

1 2
( ) ( )f x dx f x dx

 


 
  0a

1 ( ) cosf x nx dx



 
  

π

n 0

2a f (x) cos nx dx
π

As f (x) and cos nx are both even functions.

 The product of f (x). cos nx is also an even function. page 846

π
 

π1
sin

πn -
b f(x) nx dx = 0

As sin nx is an odd function so f (x). sin nx is also an odd function. We need not to calculate bn.
It saves our labour a lot.

The series of the even function will contain only cosine terms.

 Expansion of an odd function :

1
( )f x dx




 
  00a

1 ( ) cos [ ( ).cosf x nx dx f x nx



 
  0na is odd function.]

1 ( )sinf x nx dx



 
  

π

0

2 sin
πnb f (x) nx dx

[f(x). sin nx is even function.]
The series of the odd function will contain only sine terms.

The function shown below is neither odd nor even so it contains both sine and cosine terms
Example 8. Find the Fourier series expansion of  the periodic function of period 2

2( ) ,f x x x    

Hence, find the sum of the series 2 2 2 2

1 1 1 1
- + - +...

1 2 3 4

Solution. 2( ) ,f x x x     

t

f (t)

T T
2 2
–T T

2


1
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This is an even function.   bn = 0

3 2
2

0 0 0
0

2 2 2 2( )
3 3
xa f x dx x dx


    

        
 

2

0 0

2 2
( ) cos cosna f x nx dx x nx dx

 
 
  

     
2

2 3
0

2 sin cos sin(2 ) (2)nx nx nxx x
n n n


                       

     
2

2 3 2

2 sin 2 cos 2sin 4( 1)nn n n
n n n n

      
      

Fourier series is 0
1 2 3( ) cos cos 2 cos3 ... cos ...

2 n
a

f x a x a x a x a nx      

2
2

2 2 3 2

cos cos 2 cos3 cos 44 ...
3 1 2 3 4

x x x xx          
On putting x = 0, we have

2

2 2 2 2

1 1 1 10 4 ...
3 1 2 3 4
        

2

2 2 2 2

1 1 1 1
...

121 2 3 4


    Ans.

Example 9. Obtain a Fourier expression for
f (x) =x3    for – < x < 

Solution. f (x) = x3 is an odd function.

               a0 = 0 and an = 0

3

0 0

2 2
( )sin sinnb f x nx dx x nx dx

 
 
  

1 2 3 4' " "' ...uv uv u v u v u v      
3 2

2 3 4
0

2 cos sin cos sin3 6 6nx nx nx nxx x x
n n n n


                             

3 2

3 3

2 cos 6 cos 62.( 1)nn n
n nn n

       
             



2 2 2
3

3 3 3

6 6 62 sin sin 2 sin 3 ...
1 2 31 2 3

x x x x
        

                    
Ans.

–3 –
O

f(x)

3 X
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12.9 HALF-RANGE  SERIES, PERIOD 0 TO 
The given function is defined in the interval (0, ) and it is immaterial whatever the function
may be outside the interval (0, ). To get the series of cosines only we assume that f(x) is an
even function in the interval ( –  , ).

 cos and
π

n n0

2a = f (x) nx dx b = 0
π

To expand f(x) as a sine series we extend the function in the interval ( –  , ) as an odd
function.

 sin and
π

n n0

2b = f (x) nx dx a = 0
π

Example 10. Represent the following function by a Fourier sine series:

( )

πt, 0 < t
2f t

π π
, < t π

2 2

  
 

Solution.
0

2
( )sinnb f t nt dt



 

/ 2

0 /2

2 2
sin sin

2
t nt dt nt dt

 




 
  

/2

2
/ 20

2 cos sin 2 cos(1)
2

nt nt ntt
n nn

 



                         

2

cos sin cos2 cos2 2 2
2

n n n
n

n n nn

     
    

            
      

           1
2 2 2

cos sin cos cos 0 1 [1] 1
2 2 2 2

b
                         

          2
2 cos sin cos 2 cos 2 ( 1) 1 10

2 2 2 2 2 2 2 2 2
b                                        

2 1 1
1 1

4 2 2
         

          3 2

3 3 3cos sin cos2 cos32 2 2
2 3 3 33

b

     
    

            
   

2 1 1 2 1(0) 0
2 9 3 9 3
                 

      
2 1 2 1

( ) 1 sin sin 2 sin 3 ...
2 9 3

f t t t t                                   Ans.

O–  
2

f (t)

–
2

t
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Example 11. Find the Fourier sine series for the function
f (x) = eax for 0 < x < 

where a is constant

Solution.
0

2
sinax

nb e nx dx



 

2 2
0

2 ( sin cos )
axe a n n nx

a n


 

     

    2 2sin [ sin cos ]
ax

ax ee bx dx a bx b bx
a b

 
   



2 2 2 2

2 ( sin cos )
axe na n n n

a n a n
 

        

2 2 2 2

2 2
( 1) 1 1 ( 1)

( )
a n an n

e e
a n a n

                

          1 22 2 2
2(1 ) 2.2.1(1 ),
( 1 ) ( 2 )

a ae eb b
a a

 



 
 

   

         2 2 2 2

2 1 2(1 )sin sin 2 ...
1 2

a a
ax e ee x x

a a

   
      

Ans.

Exercise 12.3
1. Find the Fourier cosine series for the function

f (x) = 
1 for 0

2

0 for .
2

x

x

  


   


Ans. 
1 2 1 1cos cos 3 cos 5 ...
2 3 5

x x x       
2. Find a series of cosine of multiples of x which will represent f (x) in (0, ) where

f (x) =
    0   for   0

2
x 

 

             2


 for    2
x

  

Deduce that  1 1 11 ...
3 5 7 4


      Ans. 1 1cos cos 3 cos 5 ...

4 3 5
x x x

   

3. Express f (x) = x as a sine series in 0 < x < . Ans. 1 12 sin sin 2 sin 3 ...
2 3

x x x     
4. Find the cosine series for f (x) =  – x in the interval 0 < x < .

Ans. 
2 2

4 cos 3 cos5cos ...
2 3 5

x xx        

5.
                    0  for  0 < x < 

2


     – x, for  2
x  




If f (x) =












1 f(x)

–
–
2

O
2



XX
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Show that:   (i)   f (x) = 2 2
4 1 1sin sin 3 sin 5 ...

3 5
x x x      

                  (ii)  f (x) = 2 2 2
2 1 1 1cos 2 cos 6 cos 10 ...

4 1 3 5
x x x        

(i) 2 2

4 1 1
( ) sin sin 3 sin 5 ...

3 5
f x x x x      

(ii) 2 2 2

2 1 1 1
( ) cos 2 cos6 cos10 ...

4 1 3 5
f x x x x

        

6. Obtain the half-range cosine series for f (x) = x2 in 0 < x <.

      Ans. 
2

2 2

4 1 1cos cos 2 cos3 ...
3 2 3

x x x       
7. Find (i) sine series and (ii) cosine series for the function

f (x) = ex   for 0 < x < .

        Ans. (i) 2
1

2 1 ( 1) sin
1

n en nx
n

   
   

  (ii)  2
1

1 2 1 ( 1) cos
1

ne e nx
n

   


  
8. If f (x) = x+ 1, for 0 < x < , find its Fourier (i) sine series (ii) cosine series. Hence deduce that

(i)
1 1 11 ...
3 5 7 4


     (ii)

2

2 2 2

1 1 11 ...
83 5 7


    

        Ans. (i) 2 1
( 2)sin sin 2 ( 2) sin3 sin 4 ...

2 3 4
x x x x

            

   (ii) 2 2

cos3 cos5
1 4 cos ...

2 3 5
x x

x
        

9. Find the Fourier series expansion of the function ( ) cos( ),f x sx x     

where s is a fraction. Hence, show that 2 2 2 2

1 2 2
cos ...

4
 

    
      

        Ans. 
sin 1 sin( ) sin( )

cos
x s n s n

nx
s s n s n
             

12.10  CHANGE OF INTERVAL AND FUNCTIONS HAVING ARBITRARY PERIOD
In electrical engineering problems, the period of the function is not always 2  but T or 2c.
This period must be converted to the length 2 . The independent variable x is also to be
changed proportionally.
Let the function f (x) be defined in the interval ( – c, c). Now we want to change the function
to the period of 2 so that we can use the formulae of an, bn as discussed in article 12.6.
2 c is the interval for the variable x.

1 is the interval for the variable =
2
x
c

2  is the interval for the variable = 
2

2
x x

c c
 


so put orx zcz x
c


 


Thus the function f (x) of period 2c is transformed to the function

cz
f  
    or  the period of F (z) is 2
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F (z) can be expanded in the Fourier series.

   0
1 2 1 2( ) cos cos 2 ...... sin sin 2 ...

2
aczF z f a z a z b z b z         

where
2 2

0 0 0

1 1
( )

cz
a F z dz f dz

          

    
2 2

0 0

1 1( ) ( )
c cxf x d f x dx

c c
       Put xz

c
   

2 2

0 0

1 1( )cos cosn
cza F z nz dz f nz dz

          

      
2

0

1
( )cos

c n x x
f x d

c c
       

2c

0

1 nπxf(x)cos dx
c c

Put
x

z
c
   

Similarly,  sin
2c

n 0

1 nπxb = f(x) dx.
c c

Cor.  Half range series [Interval (0, c)]
Cosine series:

        0
1 2

2( ) cos cos ... cos ...
2 n
a x x n xf x a a a

c c c
  

     

where             0 0 0

2 2
( ) , ( ) cos

c c

n
n x

a f x dx a f x dx
c c c


  

Sine series:          1 2
2

( ) sin sin ... sin ...n
x x n x

f x b b b
c c c
  

    

where
22

( )sin .n c

n x
b f x dx

c c


 
Example 12. A periodic function of period 4 is defined as

f(x) = |x|,   –2 < x < 2.
Find its Fourier series expansion.
Solution. f (x) = |x| –2 < x < 2.

f (x) = x 0 <  x  < 2
       = –x –2 <  x  <  0

        
2 0

0 0 2

1 1 1
( ) ( )

2 2
c

c
a f x dx xdx x dx

c  
     

      
2 02 2

0 2

1 1 1 1(4 0) (0 4) 2
2 2 2 2 4 4

x x



   
         

   

2 0

0 2

1 1 1( ) cos cos ( ) cos
2 2 2 2

c

n c

n x n x n xa f x dx x dx x dx
c c 

  
     

      
2

2 2
0

1 2 4sin (1) cos
2 2 2

n x n xx
n n

                 

           
0

2 2
2

1 2 4
( ) sin ( 1) cos

2 2 2
n x n x

x
n n 

                   

XX

–2 2O

2

f (x)
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2 2 2 2 2 2 2 2

1 4 4 1 4 4
0 ( 1) 0 ( 1)

2 2
n n

n n n n
                   

2 2 2 2

1 4 4
[( 1) 1 1 ( 1) ] [( 1) 1]

2
n n n

n n
        

 

2 2

8
n

 


if n is odd.

 = 0 if n is even
   0nb   as f(x) is even function.
Fourier series is

0
1 2 1 2

2 2
( ) cos cos ... sin sin ...

2
a x x x x

f x a c b b
c c c c
   

      

        2 2 2 2

3 5cos cos cos8 2 2 2( ) 1 ...
1 3 5

x x x

f x

   
 

       
 

Ans.

Example 13. Find Fourier half-range even expansion of the function,

1–xf (x)= , 0 x l
l

    
 

Solution.
1 1

0 0 0

2 2
( ) 1

x
a f x dx dx

l l l
       

     
2 2

0

2 2 2 11 1 1
2 2 2

l
x l lx

l l l l l
                       

0 0

2 2
( )cos 1 cos

l l

n
n x x n x

a f x dx dx
l l l l l

        

      
2

2 2
0

2 1
1 sin cos

l
x l n x l n x

l l n l l ln
                             

      2 2 2 2 2 2 2 2

2 2 2
0 cos [ ( 1) 1] [1 ( 1) ]n nl l l

n
l ln n n n
                

       2 2

4
n




when n is odd.

        = 0 when n is even.

2 2 2 2

1 4 1 1 3 1 5
( ) cos cos cos ...

2 1 3 5
x x x

f x
l l l
         

Ans.

Example 14. Find the Fourier half-range cosine series of the function
f (t) = 2 t, 0 < t < 1
       = 2 (2 – t), 1 < t < 2

Solution. f (t) = 2t, 0 <  t < 1
        = 2 (2 – t), 1 < t  <  2
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Let 0
1 2 3

2 3( ) cos cos cos ...
2
a t t tf t a a a

c c c
  

    

1 2 3
2 3

sin sin sin ...
t t t

b b b
c c c
  

    .... (1)

Hence   c = 2, because it is half range series.

Here
1 2

0 0 0 1

2 2 2( ) 2 2(2 )
2 2

c
a f t dt t dt t dt

c
     

         

22
12 2 2

10
1

2 2 1 [(4 )] 1 (8 4 4 1) 2
2
t

t t t t
  

                  

           
1 2

0 0 1

2 2 2( )cos 2 cos 2(2 )cos
2 2 2 2

c

n
n t n t n ta f t dt t dt t dt

c c
  

     

         
1

2 2
0

2 42 sin (2) cos
2 2

n t n tt
n n

                 

2

2 2
1

2 4
(4 2 ) sin ( 2) cos

2 2
n t n t

t
n n

                   

= 2 2 2 2 2 2 2 2
4 8 8 8 4 8sin cos 0 cos sin cos

2 2 2 2
n n n nn

n nn n n n
      

                

    = 
2 2 2 2 2 2 2 2
16 8 8 8cos cos 2cos 1 cos

2 2
n nn n

n n n n
              

     2 2
1

8 1( ) 1 2cos 1 cos cos
2 2n

n n tf t n
n





         
 Ans.

Example 15. Obtain the Fourier cosine series expansion of the periodic function defined by

( ) sin , 0
t

f t t l
l
     

Solution. ( ) sin , 0
t

f t t l
l
     

0 0
0

2 2 2 2 4sin cos (cos cos0) ( 1 1)
l

l t l ta dt
l l l l

                        

1

0 0

2 1sin cos sin sin
l

n
t n t t n t n t ta dt dt

l l l l l l l l
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0 0

1 1sin( 1) sin( 1)
l lt tn dt n dt

l l l l
 

    

0 0

1 ( 1) 1 ( 1)cos cos
( 1) ( 1)

l l
l n t l n t

l n l l n l
      

           

1 1
[cos( 1) cos 0] [cos( 1) cos 0]

( 1) ( 1)
n n

n n


       
   

– 1 11 1[( 1) 1] [( 1) 1]
( 1) ( 1)

n n

n n
     

   

1 1 1 1 1( 1)
( 1) ( 1) ( 1) ( 1)

n

n n n n
  

              

1 1
2 2 2

2 2 2
( 1) ( 1) 1

( 1) ( 1) ( 1)
n n

n n n
             

2

4
( 1)n




  when n is even

= 0 when n is odd.
The above formula for finding the value of al is not applicable.

1 0 0

2 1 2
sin cos sin

l lt t t
a dt dt

l l l l l
  

  

     
0

1 2 1cos (cos 2 cos0) (1 1) 0
2 2 2

ll t l
l l l

            

    0
1 2 3 4

2 3 4
( ) cos cos cos cos ...

2
a t t t t

f t a a a a
l l l l
   

     

      
2 4 1 2 1 4 1 6

cos cos cos ...
3 15 35

t t t
l l l
           

Ans.

Example 16. Find the Fourier series expansion of the periodic function of period 1
1 1f(x)= + x, – < x 0
2 2



                    0
1 1

= – x, < x <
2 2

Solution. Let     0
1 2

2( ) cos cos ...
2
a x xf x a a

c c
 

   

1 2 3
3sin sin 2 sin ...x x xb b b

c c c
  

    ... (1)

Here 2 c = 1 or   
1
2

c 

0 1/ 2

0 1/2 0

1 1 1 1 1
( )

1/ 2 2 1/ 2 2
c

c
a f x dx x dx x dx

c  

               

    
0 / /22 2

1/2 0

1 1 1 1 12 2
2 2 2 2 4 8 4 8 2
x x x x
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1 ( ) cos

c

n c

n xa f x dx
c c


 

0 1/2

1/ 2 0

1 1 1 1
cos cos

1/ 2 2 1/ 2 1/ 2 2 1/ 2
n x n x

x dx x dx


              
0 1/ 2

1/ 2 0

1 1
2 cos2 2 cos 2

2 2
x n x dx x n x dx



               
0

2 2
1/2

1 sin 2 cos 22 (1)
2 2 4

n x n xx
n n



                 
1/2

2 2
0

1 sin 2 cos 22 ( 1)
2 2 4

n x n xx
n n

                  

2 2 2 2 2 2 2 2 2 2 2

1 ( 1) ( 1) 1 1 1 ( 1)2 0 2 0
4 4 4 4

n n n

n n n n n n
       

                     

2 2

2
n




if n is odd

= 0 if n is even

         
1 ( )sin

c

n c

n xb f x dx
c c


 

0 1/ 2

1/ 2 0

1 1 1 1
sin sin

1/ 2 2 1/ 2 1/ 2 2 1/ 2
n x n x

x dx x dx


              
0 1/ 2

1/ 2 0

1 1
2 sin2 2 sin 2

2 2
x n x dx x n x dx



               
0

2 2
1/ 2

1 cos 2 sin 2
2 (1)

2 2 4
n x n x

x
n n



                     
1/ 2

2 2
0

1 cos 2 sin 2
2 ( 1)

2 2 4
n x n x

x
n n

                      

1 12 0
4 4n n

   
          

Substituting the values of a0, a1, a2, a3, . . . b1, b2, b3 ...in (1) we have

2 2 2 2

1 2 cos 2 cos6 cos10
( ) ...

4 1 3 5
x x x

f x
          

Ans.

Example 17. Prove that 
1

1 1 1 2n π x– x = sin , 0 < x < 1
2 π n l





Solution.
1

( )
2

f x x 

                  
2

0 0 0
0

1 2 1 2( ) 0
1/ 2 2 2 2

l
l l lx xa f x dx x dx

l l
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1

0 0

1 2 1 2( )cos cos
1/ 2 1/ 2 2 1

l

n
n x n xa f x dx x dx

l
     

  
12

2 2
0

2 1 1 2 1 2sin ( 1) cos
1 2 2 1 14

n x n xx
n n

             

2 2

2 2 2 2
2 1 10 cos 2
1 4 4

n
n n

 
    

  
2

2 2 2 2
2 1 1( cos 2 1) ( 1 1) 0
1 4 2

n
n n

       
 

          
1 1

0 0

1 2 1 2( )sin sin
1/ 2 1/ 2 1 2 1n

n x n xb f x dx x dx     
  

12

2 2
0

2 1 1 2 1 2cos ( 1) sin
1 2 2 1 14

n x n xx
n n

                       

22 1 1 1 1 2 1 1cos 2 . (1)
1 2 2 2 2 1 2

n
n n n n

  
            

Fourier series is

0
1 2 3

2 3( ) cos cos cos ...
2 1/ 2 1/ 2 1/ 2
a n x n x n xf x a a a  

    

1 2 3
2 3sin sin sin ...

1/ 2 1/ 2 1/ 2
n x n x n xb b b  

   

      
1 1 2 1 4 1 6sin sin sin ...
2 1 2 1 3 1

x x xx   
    

  

1

1 1 2sin
1

n x
n

 

 Prove

Example 18. Find the Fourier series corresponding to the function f (x) defined in ( –2, 2)
as follows

in –
( )

in
2 2 x 0

f x
x 0 x 2

 
   

Solution. Here the interval is ( –2, 2) and c = 2

  
0 0

0 2 2

1 1( ) 2.
2

c

c
a f x dx dx x dx

c   
       

        
22

0

2
0

1 1[2 [4 2] 3
2 2 2

xx


  
          

  
0 2

2 0

1 1( )cos 2.cos cos
2 2 2

c
n c

n x n x n xa f x dx dx x dx
c c 

               

       
0 2

2 2
2 0

1 4 2 4sin sin cos
2 2 2 2

n x n x n xx
n n n
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2 2 2 2 2 2

1 4 4 2
cos [( 1) 1]

2
nn

n n n
          

2 2

4
n




when n is odd

=  0 when n is even.

  
0 2

2 0

1 1 1( )sin 2sin sin
2 2 2 2

c

n c

n x n x n xb f x dx dx x dx
c c 

  
    

0 2

2 2
2 0

1 2 1 2 42 cos cos (1) sin
2 2 2 2 2

n x n x n xx
n n n

                           

2 2

1 4 4 1 4 4 1 4 2
cos cos sin

2 2 2
n n n

n n n n nn
                              

0
1 2 3

2 3
( ) cos cos cos ...

2
a x x x

f x a a a
c c c
  

    

1 2 3
2 3

sin sin sin ...
x x x

b b b
c c c
  

   

2 2 2

3 4 1 1 3
cos cos ...

2 2 21 3
x x      

  
2 1 1 2 1 3

sin sin sin ...
1 2 2 2 2 2

x x x       
  

Ans.

Example 19. Expand f (x) = ex in a cosine series over (0, 1).
Solution. f (x) = ex and c = 1

1

0 0 0

2 2( ) 2( 1)
1

c xa f x dx e dx e
c

    
1

0 0

2 2
( ) cos cos

1 1
c x

n
n x n x

a f x dx e dx
c c

 
  

    

1

2 2
0

2 (cos sin )
1

xe n x n n x
n

 
     

  

    2 2

2 [( 1) 1]
1

n e
n

  
 

0
1 2 3( ) cos cos 2 cos3 .....

2
a

f x a x a x a x       

2 2 2

1 1 1
1 2 cos cos 2 cos3 ...

1 4 1 9 1
x e e e

e e x x x
                    

Ans.

Exercise 12.4

1. Find the Fourier series to represent f(x), where
f (x) = –a  –c < x < 0
         = a   0 < x < c

Ans. 
4 1 3 1 5

sin sin sin ...
3 5

a x x x
c c c
        

2. Find the half-range sine series for the function
f (x) = 2x – 1 0 < x < 1.

Ans. 
2 1 1

sin sin 4 sin 6 ...
2 3

x x x          
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3. Express f (x) = x as a cosine, half range series in 0 < x < 2.

Ans. 
2 2 2 2

8 1 1 3 1 5
1 cos cos cos ...

2 2 21 3 5
x x x         4. Find the Fourier series of the function

2 for 4 2
( ) for 2 2

2 for 2 4

x
f x x x

x

     
     
   

Ans. 2 2

4 8 2 2 4 8 3 2 4
sin sin sin sin ...

4 4 3 4 2 43
x x x x               

5. Find the Fourier series to represent
f(x) = x2 – 2 from –2 < x < 2.

Ans. 2 2

2 16 1 1 3
cos cos cos ...

3 4 9 22
x x

x
         

6. If  f (x) = e–x – c < x < c, show that

2 2 2 2

1 1 1 2( ) ( ) cos cos ...
2 4

c c x xf x e e c
c c cc c

              

2 2 2 2

1 1 2sin sin ...
4

x x
c cc c
            

7. A sinusodial voltage E sin  t is passed through a half wave rectifier which clips the negative portion
of the wave. Develop the resulting portion of the function

u (t) = 0 when 0
2
T

t  

        =  E sin  t when 0
2
T

t 
2

T
   

Ans. 
2 1 1 1

sin cos 2 cos 4 cos 6 ...
2 1.3 3.5 5.7

E E E
t t t t             

8. A periodic square wave has a period 4. The function generating the square is
f (t) = 0   for –2 < t < –1

        = k   for –1 < t < 1

        = 0   for 1 < t < 2

Find the Fourier series of the function. Ans. 
2 1 3

( ) cos cos ...
2 2 3 2
k k t t

f t
        

9. Find a Fourier series to represent x2 in the interval (–l, l).

Ans. 
2 2

2 2 2

4 cos cos3cos ....
3 2 3
l l x xx         

12.11.  PARSEVAL’S  FORMULA

 2 2 2 2
0

1

1[ ( )]
2

c
n nc

n
f x dx c a a b






     
  



Solution. We know that 0

1

( ) cos sin
2 n n

n

a n x n xf x a b
c c





       .... (1)

Multiplying (1) by f(x), we get
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2 0

1 1

[ ( )] ( ) ( ) cos ( )sin
2 n n

n n

a n x n xf x f x a f x b f x
c c

 

 

 
    .... (2)

Integrating term by term from –c to c, we have

2 0

1

[ ( )] ( ) ( ) cos
2

c c c

nc c c
n

a n xf x dx f x dx a f x
c



  



   

1

( ) sin
c

n c
n

n xb f x dx
c







  .... (3)

We have the following results

0 0
1 ( ) ( )

c c

c c
a f x dx f x dx c a

c  
   

1 ( ) cos
c

n c

n xa f x dx
c c


                 ( ) cos

c

nc

n x
f x dx c a

c




1 ( ) sin
c

n c

n xb f x dx
c c


                      ( )sin

c

nc

n x
f x dx cb

c




On putting these integrals in (3), we get

 
2 2

2 2 2 2 20 0

1 1

[ ( )]
2 2

c

n n n nc
n n

a a
f x dx c c a cb c a b

 


 

 
       

 
 

This is the Parseval’s formula

Note. 1. If 0 < x < 2c, then  
22 2 2 20

0
1

[ ( )]
2

c
n n

n

a
f x dx c a b





 
   

  


   2. If 0 < x < c (Half range cosine series), 
2

2 20

0
1

[ ( )]
2 2

c

n
n

acf x a




 
  

 


   3. If 0 < x < c (Half range sine series),    
2

2 20

0
1

[ ( )]
2 2

c

n
n

acf x dx b




 
  

 


   4. R.M.S. = 

1
22[ ( )]

b

a
f x dx

b a

 
 
   



Example 20. By using the sine series for f(x) = 1 in 0 < x <  show that
2

2 2 2

1 1 11 ....
8 3 5 7


    

Solution. sine series is ( ) sinnf x b nx 

0

2 ( )sinnb f x nx dx



 

    0
0

2 2 cos 2 2(1)sin [cos 1] [( 1) 1]nnxnx dx n
n n n


               

    
2

n


 if n is odd.

     = 0 if n is even
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Then, the sine series is
4 4 4 41 sin sin3 sin 5 sin 7 .....

3 5 7
x x x x    

   
2 2 2 2 2 2

1 2 3 4 50
[ ( ) .....

2
c c

f x dx b b b b b       
2 2 2 2

2

0

4 4 4 4(1) .....
2 3 5 7

dx
                                  


  2 2 2 20

16 1 1 11 .....
2 3 5 7

x                  

2 2 2 2

16 1 1 1
1 .....

2 3 5 7
               

2

2 2 2

1 1 1
1 .....

8 3 5 7


     Proved.

Example 21. If   ( )
πx , 0 < x < 1

f x
π(2 – x) , 1< x < 2


 


               using half range cosine series, show that 
4

964 4 4

1 1 1+ + +.....=
1 3 5



Solution. Half range cosine series is

     0( ) cos
2 n
a n xf x a

c


  

      where
1 2

0 0 0 1

2 2( ) (2 )
2

c
a f x dx x dx x dx

c
          

      
1 22 2

0 1

12 (4 2) 2
2 2 2 2
x xx

                             

       = 

0

2 ( )cos
c

n
n xa f x dx

c c


 

      
1 2

0 1

2 cos (2 )cos
2 2 2

n x n xx dx x dx         

      

1 2

2 2 2 2

0 1

sin cos sin cos
2 2 2 2(2 ) ( 1)

2 24 4

x n x n x n xx
c

n nn n

         
       

             
                    

2 2 2 2 2 2 2 2

2 4 4 4 2 4
sin cos 0 cos sin cos

2 2 2 2
n n n n

n
n nn n n n

                         

      2 2 2 2 2 2 2

8 4 4 4
cos cos 2cos 1 cos

2 2
n n

n n
n n n n
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1 2 3 4 5 6
4 4

0, , 0, 0, 0,
9

a a a a a a
 

     
 

            
2

2 2 2 20
1 2 30

[ ( ) ....
2 2

c acf x dx a a a
 

     
 


21 22 2 2

2 20 1

2 16 16( ) (2 ) ....
2 2 81

x dx x dx
 

          
 

           
1 23 3 2

2 2
2 2

0 1

(2 ) 16 16 ....
3 3 2 81
x x    

              

      
2 2

2
2

1 16 10 1 .....
3 3 2 81
                 

                 
2 2

2 4 4

2 16 1 11 .....
3 2 3 5
          

             
2

2 4 4

16 1 11 .....
6 3 5
        

4

4 4

1 11 .....
96 3 5


    Ans.

Example 22. Prove that for 0 < x < 

(a)
2

2 2 2

π cos x cos4x cos6xx(π – x)= – + + +....
6 1 2 3

 
  

(b)
8

2 2 2

sin x sin3x sin5xx(π – x)= + + +....
π 1 3 5
 
  

Deduce from (a) and (b) respectively that

(c)
4

4
n=1

1 π=
90n



 (d)  
π

9456
n=1

1 =
n




Solution. Half range cosine series

2 3 3 3 2

0 0
0

2 2 2( )
2 3 2 3 3
x xa x x


       

               


0

2
( ) cosna x x nx dx


  
 

     
2

2 3
0

2 sin cos sin( ) ( 2 ) ( 2)nx nx nxx x x
n n n


                      

      2 2 2

2 ( 1) 20 0 [ ( 1) 1]
n

n

n n n
                  

      2

4
n

   when n is even

       = 0 when n is odd

Hence,   x ( – x) 
2

2 2
cos 2 cos 4 ...

6 1 2
x x       

     
2

2 2
cos 2 cos 4( ) 4 ....

6 2 4
x xx x          
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By Parseval’s formula

     
2

2 2 20

0

2 ( )
2 n
a

x x dx a


    
 

      
4

2 2 3 4
4 4 40

2 1 1 1 1( 2 ) 16 ....
2 9 2 4 6

x x x dx
                   

          
2 3 4 5 4

4 4 4
0

2 2 1 1 1 .....
3 4 5 18 1 2 3
x x x


                 

5 5 5 4

4 4 4

2 2 1 1 1 .....
3 4 5 18 1 2 3

x                  
4 4

4
1

1
15 18 n n





 
  

4

4
1

1
90n n








(b) Half range sine series

         
0

2 ( )sinnb x x nx dx


  
 

2
2 3

0

2 cos sin cos( ) ( 2 ) ( 2)nx nx nxx x x
n n n


                      

3 3 3

2 ( 1) 2 42 ( 1) 1
n

n

n n n
              

3

8
n




when n is odd

= 0 when n is even.

 3 3 3

8 sin sin 3 sin 5( ) ....
1 3 5

x x xx x          
By Parseval’s formula

2 2 2

0

2
( ) nx x dx b


   

 

         
2

2 6 6 6

64 1 1 1 ....
15 1 3 5
        

        
4

6 6 6

1 1 1
960 1 3 5


  

Let     6 6 6 6 6 6 6 6 6 6

1 1 1 1 1 1 1 1 1 1
... ..... ....

1 2 3 4 1 3 5 2 4 6
S                      

   
4 4

6 6 6 6 6 6 6

1 1 1 1 1 1 1... .....
960 9602 4 6 2 1 2 3

S                    

   
4

960 64
SS 

 

  
4 463or

64 960 64 960
S SS  

  

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Fourier Series 879

        
4 464

960 63 945
S  
  

4

6
1

1
945n n






 Proved.

Exercise 12.5
1. Prove that 0 < x < c,

2 2 2

4 1 3 1 5
cos cos cos .....

2 3 5
c c x x x

x
c c c
         

and deduce that

(i)
4

4 4 4

1 1 1 ...
961 3 5


    (ii) 
4

4 4 4 4

1 1 1 1 .....
901 2 3 4


    

12.12. FOURIER SERIES IN COMPLEX FORM
Fourier series of a function f(x) of period 2l is

0
1 2

2( ) cos cos ... cos ....
2 n
a x x n xf x a a a

l l l
  

     

1 2
2

sin sin ... sin ....n
x x n x

b b b
l l l
  

     .... (1)

We know that cos
2

ix ixe ex


 and sin
2

ix ixe ex
i




On putting the values of cos x and sin x in (1), we get

      
2 2 2 2

0
1 2 1 2( ) .... ....

2 2 2 2 2

i x i x i x i x i x i x i x i x
l l l l l l l la e e e e e e e ef x a a b b

i i

          

   
      

2 2
0

1 1 2 2 1 1 2 2( ) ( ) ... ( ) ( ) ....
2

i x i x i x i x
l l l l

a
a ib e a ib e a ib e a ib e

     

          

2 2

0 1 2 1 2.... ....
i x i x i x i x
l l l lc c e c e c e c e
    

       

0
1 1

in x in x
l l

n n
n n

c c e c e
   


 

   

           
1 1( ), ( )
2 2n n n n n nc a ib c a ib   

where        
20

0 0

1 1 ( )
2 2

la
c f x dx

l
  

2 2 2

0 0 0

1 1 1 1
( )cos ( )sin ( ) cos sin

2 2
l l l

n n
n x i n x n x n x

c f x dx f x dx c f x i dx
l l l l l l l

                 

           
2

0

1 ( )
2

in xl
l

nc f x e dx
l

 

 

            
2

0

1
( )

2

in xl
l

nc f x e dx
l
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Example 23. Obtain the complex form of the Fourier series of the function

0 0
( )

1 0
x

f x
x

   
    

Solution.          0 0

1 1
2 2

c dx


 
 

         
1 ( )

2
inx

nc f x e dx
 




 
0

0 0
0

1 1 10. 1.
2 2 2

inx
inx inx inx ee dx e dx e dx

in

   



             
  

 1 1 11 cos sin 1 ( 1) 1
2 2 2

in ne n i n
n i n i n i

                   
1 , isodd

0, iseven

n
in

n


 


     
3 5 3 51 1 1( ) .... ....

2 1 3 5 1 3 5

ix ix ix ix ix ixe e e e e ef x
i i

     
                  

     3 3 5 51 1 1 1
....

2 3 5
ix ix ix ix ix ixe e e e e e

i
             

Ans.

Exercise 12.6
Find the complex form of the Fourier series

1. ( ) , 1 1xf x e x    Ans. 2 2

( 1) (1 ) sinh1.
1

n
in x

n

in e
n






  
 

2. ( ) , 1 1axf x e x    Ans. 
2 2 4 4 6 62 2 .....

1.3 3.5 5.7

it it it it it ite e e e e e     
       

3. .f(x) = cos ax, – < x <  Ans. 2 2

( 1)sin
n inxa ea

a n








 
12.13 PRACTICAL HARMONIC ANALYSIS

Sometimes the function is not given by a formula, but by a graph or by a table of cor-
responding values. The process of finding the Fourier series for a function given by such
values of the function and independent variable is known as Harmonic Analysis. The Fourier
constants are evaluated by the following formulae :

(1)             
2

0 0

1 ( )a f x dx



 

2

0

12 ( )
2 0

f x dx



  

1Mean ( )
b

a
f x dx

b a
   

or             a0 = 2 [mean value of  f(x) in (0, 2, )]

(2)            
2 2

0 0

1 1( )cos 2 ( )cos
2 0na f x nx dx f x nx dx

 
 
   

            bn = 2 [mean value of  f (x) cos nx in (0, 2)]
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(3)             
2 2

0 0

1 1
( )sin 2 ( )sin

2 0nb f x nx dx f x nx dx
 

 
   

            bn = 2 [mean value of  f(x) sin nx in (0, 2 )]
Fundamental of first harmonic. The term (al cos x + b1 sinx) in Fourier series is called the

fundamental or first harmonic.
Second harmonic. The term (a2 cos 2 x + b2 sin 2 x) in Fourier series is called the second

harmonic and so on.
Example 24. Find the Fourier series as far as the second harmonic to represent the func-

tion given by table below :
x 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°
f (x) 2.34 3.01 3.69 4.15 3.69 2.20 0.83 0.51 0.88 1.09 1.19 1.64
Solution
x° sin x sin 2x cos x cos 2x f(x) f (x) f (x) f (x) f (x)

sinx sin2x cosx cos2x

0° 0 0 1 1 2.34 0 0 2.340 2.340
30° 0.50 0.87 0.87 0.50 3.01 1.505 2.619 2.619 1.505

60° 0.87 0.87 0.50 – 0.50 3.69 3.210 3.210 1.845 –1.845
90° 1.00 0 0 –1.00 4.15 4.150 0 0 –4.150
120° 0.87 – 0.87 –0.50 –0.50 3.69 3.210 –3.210 –1.845 –1.845
150° 0.50 –0.87 –0.87 0.50 2.20 1.100 –1.914 –1.914 1.100

180° 0 0 –1 1.00 0.83 0 0 –0.830 0.830
210° –0.50 0.87 –0.87 0.50 0.51 –0.255 0.444 –0.444 0.255
240° –0.87 0.87 –0.50 –0.50 0.88 –0.766 0.766 –0.440 –0.440
270° –1.00 0 0 –1.00 1.09 –1.090 0 0 –1.090

300° –0.87 – 0.87 0.50 –0.50 1.19 –1.035 –1.035 0.595 –0.595

330° –0.50 –0.87 0.87 0.50 1.64 –0.820 –1.427 1.427 0.820

25.22 9.209 –0.547 3.353 –3.115

0
25.222 Mean of ( ) 2 4.203

12
a f x    

1
3.3532 Mean of ( ) cos 2 0.559

12
a f x x    

2
3.1152 Mean of ( ) cos 2 2 0.519
12

a f x x 
     

1
9.2092 Mean of ( )sin 2 1.535

12
b f x x    

2
0.5472 Mean of ( ) sin 2 2 0.091
12

b f x x 
     

Fourier series is

0
1 2 1 2( ) cos cos 2 .... sin sin 2 ....

2
af x a x a x b x b x      

   = 2.1015 + 0.559 cos x – 0.519 cos 2x + .... + 1.535 sin x – 0.091 sin 2x + ... Ans.
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Example 31.  A machine completes its cycle of operations every time as certain pulley completes
a revolution. The displacement f (x) of a point on a certain portion of the machine is given in the table
given below for twelve positions of the pulley, x being the angle in degree turned through by the pulley.
Find a Fourier series to represent f (x) for all values of x.

x 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 360°
f (x) 7.976 8.026 7.204 5.676 3.674 1.764 0.552 0.262 0.904 2.492 4.736 6.824

Solution.
x sin x sin sin cos x cos cos f (x) f (x) × f (x) × f (x) × f (x) × f (x) × f (x) ×

2x 3x 2x 3x sin x sin 2x sin 3x cos x cos 2x cos 3x
30° 0.50 0.87 1 0.87 0.50 0 7.976 3.988 6.939 7.976 6.939 3.988 0

60° 0.87 0.87 0 0.50 – 0.50 – 1 8.026 6.983 6.983 0   4.013 4.013 – 8.026

90° 1.00 0 – 1 0 – 1 0 7.204 7.204 0 – 7.204 0 – 7.204 0

120° 0.87 – 0.87 0 – 0.50 – 0.50 1 5.676 4.938 – 4.939 0 – 2.838 – 2.838 5.676

150° 0.50 – 0.87 1 – 0.87 0.50 0 3.674 1.837 – 3.196 – 3.196 – 3.196 1.837 0

180° 0 0 0 – 1 1 – 1 1.764 0 0 – 1.764 – 1.764 1.764 – 1.764

210° – 0.50 0.87 – 1 – 0.87 0.50 0 0.552 – 0.276 0.480 0.480 –0.480 0.276 0

240° – 0.87 0.87 0 – 0.50 – 0.50 1 0.262 – 0.228 0.228 – 0.131 – 0.131 0.131 0.262

270° – 1.00 0 1 0 – 1.00 0 0.904 – 0.904 0 0 0 – 0.904 0

300° – 0.87 – 0.87 0 0.50 – 0.50 – 1 2.492 – 2.168 – 2.168 1.246 1.246 –1.296 – 2.492

330° – 0.50 – 0.87 – 1 0.87 0.50 0 4.736 –2.368 – 4.120 4.120 4.120 2.368 0

360° 0 0 0 1 1 1 6.824 0 0 0 6.824 6.824  6.824

 50.09 19.206 0.207 0.062 14.733 0.721  0.460

a0 = 2 × Mean value of f (x)          = 
50.092

12
   = 8.34

a1 = 2 × Mean value of f (x) cos x  = 
14.7332

12
  = 2.45

a2 = 2 × Mean value of f (x) cos 2x = 
0.7212

12
   = 0.12

a3 = 2 × Mean value of f (x) cos 3x = 
0.4602

12
   = 0.08

b1 = 2 × Mean value of f (x) sin x  = 
19.2062

12
  = 3.16

b2 = 2 × Mean value of f (x) sin 2x = 
0.2072

12
  = 0.03

b3 = 2 × Mean value of f (x) sin 3x = 
0.0622

12
  = 0.01
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Fourier series is

f (x)  = 0
1 2 3 1 2 3cos cos 2 cos 3 ... sin sin 2 sin 3 ...

2
a

a x a x a x b x b x b x       

 = 4.17 + 2.45cos x + 0.12 cos 2 x + 0.08 cos 3 x + ...
  + 3.16 sin x + 0.03 sin 2 x + 0.01sin 3 x + ...  Ans.

Example 32. Obtain the constant terms and the coefficients of the first sine and cosine terms
in the Fourier series of f (x) as given in the following table.

x 0 1 2 3 4 5
f (x) 9 18 24 28 26 20

Solution.

x
x
3
 xsin

3
 xcos

3


f (x) ( ) xf x sin
3
 ( ) xf x cos

3


0 0 0 1.0 9 0 9

1 3


0.87 0.5 18 15.66 9

2
2
3


0.87 – 0.5 24 20.88 – 12

3
3
3


0 – 1.0 28 0 – 28

4
4
3


– 0.87 – 0.5 26 – 22.62 – 13

5
5
3


– 0.87 0.5 20 –  17.4 10

= 125 = – 3.468 = 25

a0 = 2 Mean value of f (x) = 
1252

6
  = 41.67

a1 = 2 Mean value of f (x) cos 
3
x  = 

252
6


  = – 8.33

b1 = 2 Mean value of f (x) sin 
3
x

 = 
3.482
6


  = – 1.16

Fourier series is f (x) = 0
1 1cos ... sin ...

2 3 3
a x xa b 

   

= 20.84 8.33 cos ... 1.16 sin ...
3 3
x x 

    Ans.
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Exercise 12.7

1.  In a machine the displacement f (x) of a given point is given for a certain angle x° as follows:

  x°   0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°
 f(x)  7.9 8.0 7.2 5.6 3.6 1.7 0.5 0.2 0.9 2.5 4.7 6.8

Find the coefficient of sin 2 x in the Fourier series representing the above variations.
Ans. –0.072

2. The displacement f (x) of a part of a machine is tabulated with corresponding angular
moment ‘x’ of the crank. Express f(x) as a Fourier series upto third harmonic.

 x°   0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°
f (x)   1.80 1.10 0.30 0.16 0.50 1.30 2.16 1.25 1.30 1.52 1.76 2.00

Ans.    f (x)  = 1.26 + 0.04 cos x + 0.53 cos 2x – 0.01 cos 3x + ....
          –0.63 sin x – 0.23 sin 2x + 0.085 sin 3x +...

3. The following values of y give the displacement in cms of a certain machine part of the
rotation x of the flywheel. Expand f(x) in the form of a Fourier series.

  x 0
6
 2

6
 3

6
 4

6
 5

6


   f (x) 0 9.2 14.4 17.8 17.3 11.7

Ans.  f (x) = 11.733 – 7.733 cos 2 x – 2.833 cos 4 x +   .....
–1.566 sin2 x – 0.116 sin4x +...

4. Analyse harmonically the data given below and express y in Fourier series upto the second
harmonic.

  x 0
3
 2

3



4
3
 5

3


2

  y 1.0 1.4 1.9 1.7 1.5 1.2 1.0
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13
Laplace Transformation

13.1   INTRODUCTION
Laplace transforms help in solving the differential equations with boundary values without

finding the general solution and the values of the arbitrary constants.

13.2 LAPLACE TRANSFORM

Definition. Let f (t) be function defined for all positive values of t, then

   
0

stF s e f t dt
  

provided the integral exists, is called the Laplace Transform of f (t). It is denoted as

     
0

stL f t F s e f t dt


     
13.3 IMPORTANT FORMULAE

1. 1(1)L
s

 2. L   1
! ,n

n
nt

s 
  when 0, 1, 2, 3...n 

3. L   1ate
s a




 s a 4. L (cosh at) = 2 2
s

s a  2 2s a

5. L (sinh at) = 2 2
a

s a
2 2( )s a 6. L (sin at) = 2 2

a
s a

 0s 

7. L (cos at) = 2 2
s

s a  0s 

1.   11L =
s

Proof.  L(1)  =  
0 00

1 1 1 11 0 1
st

st
st

ee dt
s s s se

                   


Hence L(1)  = 
1
s Proved.

2.   1
!n

n
nL t

s 
 where n and s are positive.

Proof.    L(tn) = 
0


 st ne t dt

Putting    s t  = x          xt
s

            dt = 
dx
s
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Thus, we have    L(tn) = 
0

   
 
 

n
x x dxe

s s
 L(tn) = 1 0

1 .



  x n

n e x dx
s

1
1( )n

n
nL t
s 


       L   1
!n

n
nt

s  0
1 .

and        +1 !


   

 
  

 x nn e x dx

n n
Proved.

3.   1L ate
s a


 ,    where s > a

Proof.    L (eat) = 
0 0

. .
 

   st at st ate e dt e dt

=    
 

   0 0
0 0

1 1. . –

     


   
           

 
s a t

s a t s a t
s a t

ee dt e dt
s a s a e

= 
   1 10 1
s a s a


 
 

Proved.

4.   2 2L cosh sat
s a




Proof.  L cosh at  = L
2

at ate e 
 
 

cosh
2

at ate eat
 

   
 

=     1 1L L
2 2

at ate e  = 
1 1 1
2 s a s a
    

  1L ate
s a

   

= 2 2 2 2
1
2

s a s a s
s a s a
       

Proved.

5.   2 2L sinh aat
s a




Proof. L (sinh  at)  =  1L
2

at ate e   

                = 2 2
1 1 1 1 1[ ( ) ( )]
2 2 2

at at s a s aL e L e
s a s a s a

                 

                = 2 2
a

s a
Proved.

6.   2 2L sin aat
s a




Proof. L (sin at) L
2

iat iate e
i

 
  

 
sin

2

iat iate eat
i

 
 

 


              =       1 1
2 2

iat iat iat iatL e e L e L e
i i

         

              = 2 2
1 1 1 1
2 2

s ia s ia
i s ia s ia i s a

        
= 2 2 2 2

1 2
2

ia a
i s a s a


 

Proved.

7. 2 2L (cos ) sat
s a




Proof.                      
–

L(cos ) L
2

iat iate eat
 

   
 

             
–

cos
2

iat iate eat
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– –1 1[L( )] [L( ) L( )]
2 2

iat iat iat iate e e e    2 2
1 1 1 1 –
2 – 2

s ia s ia
s ia s ia s a

       

2 2
s

s a



Proved.

Example 1. Find the Laplace transform of f(t) defined as
, 0

( )
1,

t when t k
f t k

when t k

   
 

Solution. L [f (t)] = 
0 0

0

11.
  

 
    
               

  
kst st stk kst st

k
k

t e e ee dt e dt t dt
k k s s s

   2 2 2
0

1 1 1
kks st ks ks sk kske e e ke e e

k s s k s ss s s

         
                 

   2 2 2
1 1 1 1 [ 1]

sk ks ks
kse e e e

s k k ss s ks

  
        Ans.

Example 2. From the first principle, find the Laplace transform of (1 + cos 2 t).
Solution. Laplace transform of (1 + cos 2 t)

 
2 2

0 0
1 cos 2 1

2

it it
st st e ee t dt e dt

    
    

 
 

   
   2 2

2 2

0
0

1 1 22
2 2 2 2

s i t s i tst
s i t s i tst e e ee e e dt

s s i s i

         
              



   1 2 1 10 0 1 0 1
2 2 2s s i s i
              

2

1 2 1 1 1 2 2
2 2 2 2 4

s
s s i s i s s
               

 
2

2 2

1 2 4
4 4

s s
s s s s


  

  Ans.
13.4  PROPERTIES OF LAPLACE TRANSFORMS

(1)                       1 2 1 2L[ ]  L  L[ ]af t bf t a f t b f t    

Proof.        1 2 1 20
L[ ] [ ]


   staf t bf t e af t bf t dt

         1 20 0

 
   st sta e f t dt b e f t dt

         1 2  [ ]  [ ] a L f t b L f t Proved.
(2) First Shifting Theorem. If  L f (t) = F (s), then

                   L [eat f (t)] = F (s – a)

Proof.                     L [eat f (t)] =
0

ste
  ·eat f (t) dt =    

0

s a te f t dt
  

        =  
0

rte f t dt
  where r = s – a

         = F (r) = F (s – a) Proved.
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With the help of this property, we can have the following important results :

(1)  
  1

!L at n
n

ne t
s a 


  1

!L n
n

nt
s 

   

(2)  
 2 2

L coshat s ae bt
s a b




 
(3)  

 2 2
L sinhat be bt

s a b


 

(4)  
 2 2

L sinat be bt
s a b


 

(5)  
 2 2

L cosat s ae bt
s a b




 
Example 3. Find the Laplace transform of cas2 t.
Solution. cos 2 t = 2 cos2 t – 1

    cos2t = 
1
2

[cos 2 t+ 1]

         L (cos2 t) =      1 1L cos 2 1 L cos 2 L 1
2 2

t t       

           =  2 22

1 1 1 1
2 2 42

s s
s sss

           
Ans.

Example 4. Find the Laplace Transform of  
1
2t


.

Solution. We know that   1

1L n
n

nt
s 




Put n =  1/ 2
1/ 2 1

1 111 12 2, , where
2 2

L t
s s s


 

  
      Ans.

Example 5. Find the Laplace Transform of t sin at.

Solution.            1sin . .
2 2

iat iat
iat iate eL t at L t L t e L t e

i i


         

   
   
   

2 2

2 2 2 2

1 1 1 1
2 2

s ia s ia
i is ia s ia s ia s ia

     
     

         
   

 

2 2 2 2

22 2

2 21
2

s ias a s ias a
i s a

    




   2 22 2 2 2

1 4 2
2

ias as
i s a s a

 
  Ans.

Example 6. Find the Laplace Transform of t2 cos at.

Solution.         2 2 2 21L cos .
2 2

iat iat
iat iate et at L t L t e L t e


         

            
   
   

3 3

3 3 3 3

1 2! 2!
2

s ia s ia

s ia s ia s ia s ia

    
   

     

4. L (eat sin bt) =  2 2

b
s a b  5. L (eat cos bt) =  2 2

s a
s a b
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3 2 2 3 3 2 2 3

32 2

3 3 3 3s ias a s ia s ias a s ia

s a

      




       
 
 

2 23 2

3 32 2 2 2

2 32 6 s s as a s

s a s a


 

  Ans.

Exercise 13.1
Find the Laplace transforms of the following:

1. t +  t2 + t3 Ans. 
2 3 4
1 2 6
s s s

  2. sin t cos t Ans. 
2
1

4s 

3. 7 /2 5tt e  (M.D.U. Dec. 2009)             Ans. 9 / 2
105

16 ( 5)


s

4. sin3 2 t Ans. 
  2 2

48
4 36s s 

5. 2coste t Ans. 
2

1 1
2 2 2 4 10

s
s s s




  
6. sin 2t cos 3t Ans.

  
2

2 2
2( 5)

1 25
s

s s


 

7.  sin 2 t sin 3 t Ans.  
 2 2

12
1 ( 25)

s
s s 

8. cos at sinh at Ans. 
   2 22 2

1
2

s a s a
s a a s a a

   
     

9. sinh3 t Ans.  
  2 2

6

1 9s s 
10. cos t cos 2 t Ans.  2

2 2

5

( 1)( 9)

s s

s s



 

11. cosh at  sin at Ans. 
 2 2

4 4

2

4

a s a

s a





12.  

2 2cos ,
3 3

20,
3

t t
f t

t

        
 

Ans.  2
2 .
3 1

s s
se

 



13.5   LAPLACE  TRANSFORM OF THE DERIVATIVE OF f(t)
L [ f (t)] = s L [f (t)]– f (0)      where L [ f (t)] =F(s).

Proof.   L[ f (t)] =  
0

'ste f t dt
 

Integrating by parts, we get

       
0 0

' ·st stL f t e f t se f t dt
         

     
0

0 stf s e f t dt
       0, whenste f t t   

  = – f (0) + sLf(t)
 L [ f (t)] = s L[f (t)]– f (0) Proved.
Note. Roughly, Laplace transform of derivative of f(t) corresponds to multiplication of the

Laplace transform of f (t) by s.
13.6 LAPLACE TRANSFORM OF DERIVATIVE OF ORDER n.

         1 2 3 1[ ] [ ] (0) 0 0 ... 0n n n n n nL f t s L f t s f s f s f f         
Proof.  We have already proved in Article 13.5 that
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890 Laplace Transformation

     [ ] [ ] 0L f t s L f t f   ...(1)
Replacing f (t) by f  (t) and f  (t) by f  (t) in (1), we get

     [ ] [ ] 0L f t s L f t f    ...(2)

Putting the value of  [ ]L f t  from (1) in (2), we have

       [ ] [ [ ] 0 ] 0L f t s s L f t f f   

        2[ ] [ ] 0 0L f t s L f t sf f   

Similarly,        3 2[ ] [ ] 0 – (0) 0L f t s L f t s f s f f    

           4 3 2[ ] [ ] 0 0 0 0ivL f t s L f t s f s f s f f      

               11 2 3[ ] [ ] – 0 0 0 ...... (0)nn n n n nL f t s L f t s f s f s f f        

13.7 LAPLACE TRANSFORM OF INTEGRAL OF f ( t )

                    
0

1L F ,
t

f t dt s
s

     where L [f (t)] = F (s)

Proof. Let  (t) =  
0

t
f t dt and  (0) = 0 then t = f(t)

We know the formula of Laplace transforms of  (t) i.e.
L[(t)] = s L [ (t)] –  (0)

              L [(t)] = s L [ (t)] [ (0) = 0]

              L [(t)] =  
1
s L [ (t)]

Putting the values of  (t) and   (t), we get

       
0 0

1 1L or L
t t

f t dt L f t f t dt F s
s s

              Proved.

Note: (1) Laplace Transform of  Integral of  f(t)  corresponds to the division of the Laplace

transform of f (t) by s.

(2)        
1

0

1t
f t dt L F s

s

     
13.8  LAPLACE TRANSFORM OF t. f (t) (Multipication by t)

If L[f (t)] = F (s), then

    L [tn f (t)] = (–1)n
n

n

d
ds

[F(s)].

Proof.      L [f (t)] = F (s) =  
0

ste f t dt
  ... (1)

Differentiating (1) w.r.t. “s” we get

        
0 0

st std dF s e f t dt e f t dt
ds ds s

           
          

0 0
· ·st stte f t dt e t f t dt

        
           1L or L 1 dt f t tf t F s

ds
             

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Laplace Transformation 891

Similarly      
2

22
2L 1 dt f t F s

ds
       

     
3

33
3L 1 dt f t F s

ds
       

... ... .... ... ...

     L 1
n

nn
n

dt f t F s
ds

        Proved.
Example 7. Find the Laplace transform of t sinh at.

Solution. L (sinh at) = 2 2

a
s a

 L[t sinhat]  = 2 2

d a
ds s a
    

 L [t sinh at] =  2 2

2as
s a

Ans.

Example 8. Find the Laplace transform of t2 cos at

Solution.  L (cos at) = 2 2

a
s a

                 
   

   

2 22 2 2
22

2 2 2 2 22 2 2 2

.1 2
cos 1

s a s sd s d d a sL t at
ds dsds s a s a s a

          

        
   

22 2 2 2 2 2 3 2 2 3

4 32 2 2 2

2 .2 2 2 2 4 4s a s a s s a s s a s a s s

s a s a

        
 

 

 
 

2 2

32 2

2 3s s a

s a




 Ans.

Example 9. Obtain the Laplace transform of
t2 et. sin 4t

Solution. L (sin 4t)= 2

4
16s  ,L ( et sin 4 t)

2

4
( –1) 16s




   L (t et sin 4 t)
 

 2 22

4 2 24
2 17 2 17

sd
ds s s s s


  

   
L (t2et sin 4 t)

 22

2 24
2 17

d s
ds s s


 

 

                

      
 

22 2

42

2 17 2 2 2 2 2 17 2 2
4

2 17

s s s s s s

s s

      
 

 

                                     

 
 

2 2

32

4 2 4 34 8 16 8

2 17

s s s s

s s

     


 

                                    

 
 

 
 

2 2

3 32 2

4 6 12 26 8 3 6 13

2 17 2 17

s s s s

s s s s

     
 

    Ans.
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Exercise 13.2
Find the Laplace transforms of the following :

1. t sin 2t (Madras 2006) Ans.  
 22

4

4

s

s 
2. t sin at Ans. 

 22 2

2as

s a

3. t cosh at Ans.
 

2 2

22 2

s a

s a




4. t cost Ans.

 
2

22

1

1

s

s





5. t cosh t Ans.  
2

22

1

1

s

s



 6. t2 sin t Ans.
 
 

2

32

2 3 1

1

s

s





7. t3 e–3t Ans. 
 4

6
3s 

8. t sin2 3 t Ans.
 

2

2 22

1 1 36
2 36

s
s s

  
  

9. t eat sin a t Ans.
 

 22 2

2

2 2

a s a

s as a



 

10. 2 3

0
sin

t te t tdt Ans.     
   

2 22 2

3 2 1 1
2 2 9 2 1

s
s s s

 
              

11. t e–t cosh t Ans. 
 

2

22

2 2

2

s s

s s

 



12. t2e–2t cos t   Ans. 
 
 

3 2

32

2 6 9 2

4 5

s s s

s s

  

 
13. (a)  Laplace transform of tn e–at is

 (i)
 n

n
s a

(ii)   1

( 1)!
n

n
s a 



 (iii)  
!

n
n

s a
(iv) 

  1

1
n

n
s a 




Ans. (iv)

(b) Laplace transform of f (t) = t eat· · sin (at), t> 0

(i) 
 

 
22 2

2a s a

s a a



   
(ii)

 
 2 2

a s a

s a a



 
 (iii) 

 2 2

s a
s a a



 
(iv)  

2

2 2

( )s a
s a a



 
          Ans. (i)

(c) If f (x) = x4 P (x), where P(x) has derivatives of all orders, then L  4

4

d f x
dx

 
 
  

is given by

(i) s3 L [ f (x)] (ii) s4 L f (x)
(iii) s4 L[f 3 (x)]  (iv) none of these. Ans. (ii)

(d) The Laplace transform of te–t cosh 2 t  is

 (i)  
2

22

2 5

2 3

s s

s s

 

  (ii)
 

2

22

2 5

2 3

s s

s s

 

 

(iii)  22

4 4

2 3

s

s s



  (iv)  22

4 4

2 3

s

s s



 
Ans. (i)
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13.9 LAPLACE  TRANSFORM OF  1 f t
t (Division by t)

If             L [  f (t) ] = F (s), then      1L
s

f t F s ds
t

     

Proof.      L[  f (t) ] = F(s)        F (s)  
0

te f t
   dt ...(1)

Integrating (1) w.r.t. ‘s’, we have

      
0

st

s s
F s ds e f t dt ds

         

=    
0 0

st
st

s
s

e f t
e f t ds dt dt

t


             
  

   
0 0

0st st
s

f t f t
e dt e dt

t t
   

         

   
0

1 1· Lste f t dt f t
t t

            

       1L .
s

f t F s ds
t

      Proved.

Cor.        1 1L
s

F s ds f t
t

 

Example 10.Find the Laplace transform of   sin 2t
t

.

Solution.    L (sin 2t) = 2

2
4s 

    
1

2

sin 2 2 1L 2· tan
2 24s

s

t sds
t s


           

1 1 1tan tan tan
2 2 2
s s         

1cot
2
s Ans.

Example 11.Find the Laplace transform of  f (t) 
0

sin .
t t dt

t
 

Solution.  L sint = 2

1
1s 

       1 1
2

sin 1L tan tan
21 ss

t ds s s
t s

        1cot s

        1

0

sin 1L cot
t t dt s

t s
 Ans.

Example 12. Find the Laplace transform of   
2

1 cos t
t

 .
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894 Laplace Transformation

Solution.  L (1– cos t) = L(1) – L (cos t) = 2

1
1

s
s s




                  
   2

2

1– cos 1 1L log log 1
21s

s

t s ds s s
t s s


              

    
2

2 2
2

1 1log log 1 log
2 2 1s

s

ss s
s


           

   

2 2 2

2 2
2

2

1 1 1log 0 log log
12 2 21 11

S

s s s
s ss

s


 
                  

Again, 
2 2

2 2 2

1– cos 1 1L log log ·1
2 21 1s s

t s sds ds
t s s

                
 

Integrating by parts, we have

   
 

2 22 2

2 2 22

1 2 21 1log · ·
2 1 1

s

s s s ss ss sds
s s s


     
   



2 2
1

2 2 2

1 1 1log 2 log 2 tan
2 21 1 1s s

s ss ds s s
s s s

 

   
             


2 2

1 1
2 2

1 10 2 log 2 tan log 2 tan
2 2 21 1

s ss s s s
s s

                         
2

1
2log tan

2 2 1
s s s

s
   


2 2

1 1
2 2tan log cot log .

2 2 21 1
s s s ss s

s s
           

Ans.

Example 13. Evaluate  4 sin 3 .t tL e
t

 
  

Solution.  
1

2 2 2

3 sin 3 3 3sin 3 tan
3 33 9s

s

t sL t L ds
ts s


          

      1 1tan cot
2 3 3

s s    

     
4 1 1sin 3 4 3cot tan

3 4
t t sL e

t s
        

Ans.

Exercise 13.3
  Find Laplace transform of the following:

1.
1(1 )te
t

               Ans. 1log s
s
      2.   1 at bte e

t
  Ans. log s b

s a



3.  1 1 cosat
t

         Ans. 
2

2 2
1– log
2

s
s a

4. 21sin t
t                  Ans. 

2

2
1 4log
4

s
s
 5. 1sinh t

t
Ans. 1 1log

2 1
s
s
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6.  1 sinte t
t

            Ans.  1cot 1s  7.  1 1 cos t
t

         Ans.  2 21 [log 1 log ]
2

s s 

8. 2
0

1 sinte t dt
t

       Ans. 11 cot ( 2)s
s

  9.
3

0

t te e dt
t

  
 Ans. log 3

10.
1
t  (cos at – cos bt) Ans.

2 2

2 2

1 log
2

s a
s b





13.10  UNIT  STEP  FUNCTION
With the help of unit step functions, we can find the inverse transform

of functions, which cannot be determined with previous methods.

The unit step functions u (t– a) is defined as follows:

u (t – a) 0 when
1 when

t a
t a


  
where   a 

Example 14. Express the following function in terms of units step functions and find its
Laplace transform:

f (t) =
, 2
, 2

8 t
6 t


 

Solution. f (t) =
8 0, 2
8 2, 2

t
t

 
  

          =  0, 2 0, 2
8 8 2

2, 2 1, 2
t t
t t
  

       

    = 8–2u (t –2)

        L f(t) = 8 L (1) – 2 L u (t – 2) =
28 2

se
s s



 Ans.

Example 15. Draw the graph of  u ( t – a) – u (t – b)

Solution. As in Art 13.10 the graph of u (t – a) is  a straight line from
A to  .  Similarly, the graph of u (t – b) a straight line from B to  .

Hence, the graph of u[t – a] –u [t – b] is AB.
Example 16. Express the following function in terms of unit step
function and find its Laplace transform :

f (t) =
,

0,
E a t b

t b
 

 

Solution.         f (t) =E
1,
0,

a t b
t b
 

 
= E [u(t–a) – u(t–b)]

          L f (t) = E
as bse e

s s

  
 

 
Ans.

0 a
t

1

u t a (  – )

A

0 a
t

1

b

A B

u (t)
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Example 17. Express the following function in terms of unit step function :

     f (t) = 
1, 1 2

3 , 2 3
t t

t t
  

   

and find its Laplace transform.

Solution.      f(t) =
1, 1 2

3 , 2 3
t t

t t
  

   

      = (t– 1)[u (t –1)– u (t–2)] + (3– t) [u (t–2) –u (t–3)]
      = (t –1)u(t –1)–(t–l)u(t –2) + (3–t) u (t –2) + (t –3)u (t–3)

      = (t–1)u(t –1)–2(t –2) u(t –2) +(t –3) u(t –3)

   
2 3

2 2 22
s s se e eLf t

s s s

  

   Ans.

Laplace Transform of unit function

L [u (t – a)] = 
ase

s



.
Proof.

L [u (t – a)]  
0

ste u t a dt
  

0
0. .1 0

sta st st

a
a

ee dt e dt
s

   
     

 
 

  L [u (t – a)] = 
ase

s



Proved.

13.11   SECOND  SHIFTING  THEOREM

If L [f (t)] = F (s), then L [ f (t – a) . u (t – a)] = e–as F (s).

Proof. L [f (t – a) .u (t – a)] =
0

ste
  [ f (t – a) .u (t – a)] dt

=     
0 0

.0 1
a st ste f t a dt e f t a dt

    

=  
0

ste f t a dt
  

=    
0

s u ae f u du
   where u = t– a

=  
0

·sa sue e f u du
   sae F s Proved.

13.12 THEOREM

L f (t) u (t – a) = e–as L [f (t+ a)]

Proof.  Lf (t) .u (t – a) =
0

ste
  [f (t) .u (t – a)] dt

       
0

. . .
a st st

a
e f t u t a dt e f t u t a dt
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   0 . 1st

a
e f t dt

   
     

0 0
· ·s y a as sye f y a dy e e f y a dy

              (t–a=y)

   
0

· Las st ase e f t a dt e f t a
      Proved.

Example 18. Find the Laplace Transform of t2 u (t – 3).
Solution. t2 .u (t – 3) = [(t –3)2 + 6(t –3) + 9]u(t–3)

= (t –3)2. u(t –3) + 6(t –3). u(t–3) + 9u(t–3)
L t2 .u (t –3) = L (t –3)2. u(t –3) + 6L(t –3). u(t –3) + 9L u(t–3)

3
3 2

2 6 9se
ss s

      
Ans.

Aliter      L t2 u (t – 3) = e–3s L (t + 3)2 = e–3s L [t2 + 6t+ 9]

3
3 2

2 6 9se
ss s

     
Ans.

Example 19. Find the Laplace transform of  e–2 t u(t).

where        u(t) =
:
:

0 t
1 t





 

Solution.      u(t) =
0:
1:

t
t





 

       = u(t – )

Le–2t u(t)=Le–2tu(t –) f(t) = e–2t

          Lse f t            2 tf t e    

         
 2 2 2L Lts s te e e e e       

          
 2 1

2
se

s
  



      =
 2

2

se
s

 


Ans.

Example 20. Represent  f(t) = sin 2t, 2  < t < 4   and f(t) = 0 otherwise, in terms of unit
step function and then find its Laplace transform.

Solution.        f (t) =
sin 2 , 2 4
0,

t t
otherwise
  




          f (t) = sin 2 t [u (t – 2 ) – u (t – 4 )]
       Lf (t)  = L [sin 2 t . u (t – 2 )] – L [sin 2 t . u (t – 4 )]

       = e–2s L [sin 2 (t + 2)] – e–4.s  L [sin2 (t+ 4)]
       = e–2sL [sin2 t] –e–4sL [sin(2 t)]

       = e–2s
2

2
4s  –  e–4s 2

2
4s 

        = (e–2s    – e–4s) 2

2
4s  Ans.
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Exercise 13.4
Find the Laplace transform of the following:

1.  
1, 1 2

0, otherwise
t t

f t
  

 


Ans. 
2 2

2

s s se e e
ss

  


2.  1te u t  Ans. 
 1

1

se
s

 



3.  
21 cosh .cos
 

te tu t t t
t

Ans. 
3

2 4
2 1log

4
s s

s s s


 


4.  2 2t u t  Ans.  
2

2
3 4 4 2

se s s
s


 

5. sin t u (t – 4) Ans.  
4

2 cos 4 sin 4
1

se s
s






6.        2 2 3f t K t u t u t       Ans.  2 3
2 1s sK e s e

s
    

7.      sin 2 3tf t K u t T u t T
T


      Ans.  2 3
2 2 2

sT sTK T e e
s T

 


 
Express the following in terms of unit step functions and obtain Laplace transforms.

8.  
, 0 2

0, 2
t t

f t
t

 
  

Ans.       2

2
1 2 1

2 ,
ss e

u t u t
s

 
 

9.  
sin , 0
,

t t
f t

t t
  

   
Ans. 

 
2 2

11
1

ss e se
s s

  




10.  
4, 0 1
2, 0 3
5, 3

t
f t t

t

 
   
 

Ans. 
34 6 7s se e

s

  

     11.  The Laplace transform of  t u2 (t) is

(i) 2
2

1 2 se
ss

  
 

    (ii) 2
2

1 se
s

     (iii) 2
2

1 2 se
ss

  
 

(iv)
2

2

se
s



Ans. (i)

13.13 (1) IMPULSE  FUNCTION
When a large force acts for a short time, then the product of the force and the time is called
impulse in applied mechanics. The unit impulse function is the limiting function.

  1δ –1 , ε
ε

t a t a   

= 0, otherwise
The value of the function (height of the strip in the figure) becomes
infinite as a  0 and the area of the rectangle is unity.
(2) The Unit Impulse function is defined as follows:

           for
δ –

0 for .
t a

t a
t a

 
  

and  
0

δ . 1t a dt


  [Area of strip =1]
(3) Laplace Transform of unit Impulse function

                        
0

1δ .
a

a
f t t a dt f t dt




 

        

Mean value Throrem
b

a
f t dt b a f 




 

f (t)


1

t = a
t

t = a + 
O
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                    1ε ,
ε

a a f    where  a  < a +

 f ()

Property I:       
0

δf t t a dt f a


                      as  

Note.  If  f (t) = e–st and  L[t – a e–as

Example 21.  Evaluate  5 2te t
 


 .

Solution.  5 5 2 102te t e e
    


  Ans.

Property II:      δ ' 'f t t a dt f a



  

Proof.             
–

δ ' ·δ – ' δf t t a dt f t t a f t t a dt
 

 
      
          = 0 – 0 – f (a) = – f (a)

Example 22. Find the Laplace transform of  t3t – 4

Solution. L t3t – 4  3

0
δ 4ste t t dt

  
e–4s Ans.

Exercise 13.5
Evaluate the following :

1.    3

0
δ 4te t dt

   Ans.e–12 2. sin 2 δ
4

t t 



  
                 Ans.1.

3.   3 δ' 2te t
 


 Ans.3e–6 4.

 δ 4t
t


                               Ans.
4

4

se

5.  Laplace transforms of cos t log t (t –                                  Ans. –e–slog
6.  e–4t t –  Ans. e –3(s + 4)

13.14 PERIODIC  FUNCTIONS
Let   f (t) be a periodic function with Period T, then

               
 

0L
1

T st

sT

e f t dt
f t

e



   


Proof .    
0

L stf t e f t dt
    

 =      
2 3

0 2
..

T T Tst st st

T T
e f t dt e f t dt e f t dt      

Substituting t =u+T in second  integral and t = u + 2T  in third integral, and so on.

           2

0 0 0
L 2 ....

T T Ts u T s u Tstf t e f t dt e f u T du e f u T du             

     2

0 0 0
...

T T Tst sT su sT sue f t dt e e f u du e e f u du         

f t( )

O t = a
t
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900 Laplace Transformation

                 2 3 ....f u f u T f u T f u T        

  =      2
0 0 0

...
T T Tst sT st sT ste f t dt e e f t dt e e f t dt        

  =  2 3 2 3
0

11 ... 1 ...
1

TsT sT sT ste e e e f t dt a a a
a

                  

  =  
0

1 .
1

T st
sT e f t dt

e


  Proved.

Example 23. Find the Laplace transform of the waveform

  2 , 0 3.
3
tf t t    

 

Solution.                 
0

1
1

T st
sTL f t e f t dt

e


    

                    
3

3
3 3 20

0

2 1 2 1 2 1
3 3 31 1

st st
st

s s
t te eL e t dt

se e s

 


 

                


       
3 –3 3 3

3 2 2 3 2
2 1 3 1 2 1 3 1– .
3 31 – 1

s s s s

s s
e e e e

se s s s e s

  

 

   
          

        =  
3

23
2 2

31

s

s
e

ss e






 
Ans.

Example 24. Find the Laplace transform of the function (Half wave rectifier)

 
sin for 0

2 .0 for

t t
f t

t

         
  

(U.P. II Semester, 2010, Summer 2002)

Solution.     L f t      =  
0

1
1

T st
sT e f t dt

e


 

    =  
 

2 /

2 0

 is a periodic function1
2

1

st
s

f t
e f t dt

T
e

  






  
 



    = 
/ 2 /

2 0 /

1 sin 0

1

st st
s e tdt e dt

e

    
  


      


 

    = 
/

2 0

1 sin   

1

  








 st

s e t dt

e
 

2 2

sin cos
sin   = ax ax a bx b bx

e bx dx e
a b

 
 

 


                      [ ]L f t  =
 

/

2 2 2
0

sin cos1

1

st

s
e s t t

s
e

 






    
 

  

  = 

 
2 2 2 2

2 2

1
1

1 1

s

s

s s

e
e
s

e s e
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2 2

1

( ) 11

s

s s

e

s ee





 


 
  
  

   
     
   
   

 2 2 1
s

s e








 
  
   Ans.

Example 25.  Find the Laplace Transform of the Periodic function (saw tooth wave)

          for 0 ,ktf t t T f t T f t
T

    

Solution.      
0 0

1[ ]
1 1

T Tst st
sT sT

ktL f t e f t dt e dt
Te e

 
 


 

  

=  0
0

1 . 1.
1 1

Tst stT st
sT sT

k k e ee t dt t dt
T s se T e

 


 

 
      

 
Integrating by parts

=    2 2 2
0

1
1 1

Tst st sT sT

sT sT
k te e k Te e

s ss s sT e T e

   

 

   
           

=    2
1 1

1

sT
sT

sT
k Te e

s sT e






 
    

 =   2–
1

sT

sT
ke k

Tss e







Ans.

Example 26. Obtain Laplace transform of rectangular wave given by

Solution. 0
( )

L ( )
1

T st

sT

e f t dt
f t

e








2
0

2

( )

1

T Tst st
T

sT

e Adt e A dt

e

 



 




 

2

0
2

1

T Tst st

T

sT

e e
s s

A
e

 



   
       




2 21
1

sT sT
sT

sT

A e e e
s s s se

 



 
      
  

2

2 21 2 1
(1 ) (1 )

sT sT
sT

sT sT
A Ae e e

s e s e

 
 

   
       

       
2

–
2 2

2 2 2

1 1

(1 ) (1– ) 1

sT sT

sT sT sT

A e e
A
s

s e e e



  

   
   

    
 

  
 

t

f t A( ) = 

T
—
2 T

– A

O

A

f t( )

f t ( ) = – A
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902 Laplace Transformation

4 4

4 4

tanh
4

sT sT

sT sT

e e
A A sT
s s

e e





 
 

  
 

 
 

Ans.

Example 27. A periodic square wave function f(t), in terms of unit step functions, is
written as

f(t) = k[u0(t) – 2ua (t) + 2 u2a (t) – 2u3a(t) + ...]
Show that the Laplace transform of f(t) is given by

[ ( )] tanh
2

k asL f t
s

   
 

Solution.         f (t) = k [u0(t) – 2ua (t) + 2 u2a (t) – 2u3a(t) + ...]
     L f (t) = k [Lu0 (t) – 2Lua (t) + 2L u2a (t) – 2Lu3a (t) + ...]

              
2 31 2 2 2 ...

as as ase e ek
s s s s

   
     

 

              2 31 2 2 2 ...as as ask e e e
s

        

              2 31 2( – – ...)as as ask e e e
s

      

              
1 21 2

1 1

as as as

as as
k e k e e
s se e

  

 

    
     

    

              
2 2

2 2

1 tanh
21

as as
as

as as as

k e k e e k as
s s se

e e






 
            

      Ans.

Exercise 13.6
1. Find the Laplace transform of the periodic function

   for 0 2tf t e t    Ans. 
 

  
2 1

2
1

1 1

s

s
e

s e

 

 


 
2. Obtain Laplace transform of full wave rectified sine wave given by

  sin ,f t t     0 
 


t Ans.  

 2 2
coth

2
s

s
 

 
3. Find the Laplace transform of the staircase function

   , 1 , 0,1, 2, 3f t kn np t n p n     Ans.   1

ps

ps
ke

s e
Find Laplace transform of the following:

4.      2 , 0 2, 2f t t t f t f t     Ans.  
2 2 2 2

3 2
2 4 4

1

s s s

s
e se s e

s e

  


  



5.  
1, 0

2

1,
2

at
f t

a t a

   
  


 (U.P. II Semester, 2004) Ans. 1 tanh
4
as

s

6.  
cos ,  0

20,  

t t
f t

t

         
  

Ans. 
 2 2 1

s
s

s e
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7.      
, 0 1

    2
0, 1 2
t t

f t f t f t
t

 
    

Ans.  
 2 2

1 1

1

s

s
e s

s e





 



8.  
 

2 , 0
2

2 ,
2

t Tt
Tf t

TT t t T
T

   
   


   f t T f t  Ans. 
2

2

2 1tanh
4

1
sT

sT
Ts

s e


 
 
 
 13.15  CONVOLUTION THEOREM

     If 1 1[ ( )] ( )L f t F s  and 2 2[ ( )] ( )L f t F s

        then  1 2 1 20
( ) ( ) ( ). ( )

t
L f x f t x dx F s F s 

or
1

1 2 1 20
( ) . ( ) ( ) ( )

t
L F s F s f x f t x dx  

Proof.   We have   1 2 1 20 0 0
( ) ( ) ( ) ( )

tstL f x f t x dx e f x f t x dx dt
      

                               = 1 20 0
( ) ( )

t ste f x f t x dx dt
   

where the double integral is taken over the infinite region in the first quadrant lying
between the lines x = 0 and x = t.

On changing the order of integration, the above integral becomes

1 20 0
( ) ( )ste f x f t x dt dx

    
        ( )

1 20
( ) ( )sx s t x

x
e f x dx e f t x dt

     
         1 20 0

( ) ( )sx sze f x dx e f z dz
     , on putting t – x = z

        1 2 1 20 0
( ) ( ) ( ) ( )sx sxe f x F s dx e f x dx F s

        
         = F1(s) F2(s) Proved.

13.16 LAPLACE TRANSFORM  OF  BESSEL  FUNCTIONS J0 (x) AND J1(x)

Solution.  We know that

  
2 4 6

0 2 2 2 2 2 2( ) 1 ....
2 2 .4 2 .4 .6
t t tJ t

 
     
 

Taking Laplace transforms of both sides, we have

0 2 3 2 2 5 2 2 2 7
1 1 2! 1 4! 1 6!( ) . ...

2 2 .4 2 .4 .6
LJ t

s s s s
    

         2 4 6

1 1 1 1.3 1 1.3.5 11 ...
2 2.4 2.4.6s s s s

                      

         

2 3

2 2

1 3 1 3 5
1 1 1 1 12 2 2 2 21 ...

2 2! 3!s s s s

                                                    
  

X

O

t = x

x = t

t = 

x = 0
t
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904 Laplace Transformation

             
1
2

2

1 1
1

s s


    

   (By Binomial theorem)

             2

1
1s




Ans.

We know that   1( ) sLf at F
a a

   
 


0 2 2 2

2

1 1 1
( )

1
LJ at

a s s a
a

 




'
1 0 0 0( ) ( ) [ ( ) (0)]LJ at LJ x sLJ x J    

             2 2

1. 1 1
1 1

ss
s s

 
     

  
Ans.

13.17  EVALUATION OF INTEGRALS
We can evaluate number of integrals having lower limit 0 and upper limit  by the help
of Laplace transform.

Example 28. Evaluate   
3

0

sin .tte t dt




Solution.        
3

0 0

sin . sint stte t dt te t dt
 

       (s = 3)

                                                            2 2 2
1 2( sin ) –

1 ( 1)
d sL t t
ds s s
      

                                                            2 2

2 3 6 3
100 50(3 1)


  

 Ans.

Example 29. Evaluate 
0 0

sin sin .
te t tdt and dt
t t

 

 

Solution.     
0

sinte t dt
t



 = –

0

sin .st te dt
t



  (s = 1)

                                            = 1
20

sin 1 tan
1 s

tL ds s
t s


          

                                           1 1– tan ...(1) – tan (1)
2 2

s    (s = 1)

                                           –
2 4 4
  

  Ans.

On putting s = 0 in (1), we get

                        1

0

sin tan (0)
2

t dt
t

 
  2


 Ans.
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EXERCISE 13.7

Evaluate the following by using Laplace Transform:

1.
4

0
sintt e t dt

   Ans. 8
289

2.
2

0
sinh sinte t t dt

t


 Ans. –11 1tan

2 2

3.
2

20
sin t dt

t

 Ans.  

5
2

i 4.
4

0

t te e dt
t

  
 Ans. log 4

13.18  FORMULATION OF LAPLACE TRANSFORM

S.No. f (t) F (s)

1. eat
1

s a

2. tn
1 1
1 ! or n n

n n
s s 


3. sin at 2 2
a

s a

4. cos at 2 2
s

s a

5. sinh at 2 2
a

s a

6. cosh at 2 2
s

s a

7. u (t – a)
ase

s



8.  (t – a) ase

9. ebt sin at  2 2

a
s b a 

10. ebt cos at  2 2
s b

s b a


 

11. sin
2
t at
a  22 2

s

s a

12. t cos at  
2 2

22 2

s a

s a





13.  3
1 sin cos

2
at at at

a
  22 2

1

s a

14.  1 sin   cos  
2

at at at
a

  
2

22 2

s

s a
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906 Laplace Transformation

13.19 PROPERTIES OF LAPLACE TRANSFORM

S.No. Property f (t) F (s)

1. Scaling f (at)
1 ,sF
a a

 
 
 

a > 0

( )df t
dt s F (s) – f (0),          s > 0

2. Derivative
2

2
( )d f t

dt
       s2 F(s) – sf (0) – f  (0),        s > 0

3

3
( )d f t

dt
s3F(s) – s2f(0) – s f  (0) – f  (0), s > 0

3. Integral 0
( )

t
f t dt

1 ( )F s
s ,     s > 0

4. Initial Value 0
lim ( )
t

f t


lim ( )
s

sF s


5. Final Value lim ( )
t

f t


lim ( )
s

sF s


6. First shifting e–at f (t) F (s + a)

7. Second shifting f (t) u (t – a) e–a L f (t + a)

8. Multiplication by t t f (t) ( )d F s
ds



9. Multiplication by t n t n f (t) ( 1) ( )
n

n
n

d F s
ds



10. Division by t
1 ( )f t
t

( )
s

F s ds




11. Periodic function f (t) 0
( )

1

T st

st

e f t

e






f (t + T) = f (t)

12. Convolution f (t) * g (t) F (s) G (s)

13.20  INVERSE LAPLACE TRANSFORMS
Now we obtain f (t) when F (s) is given,then we say that inverse Laplace transform of F (s)
is f (t).

If L [f (t)] = F (s) then L–1 [F (s)] = f (t).
where L–1 is called the inverse Laplace transform operator.

From the application point of view, the inverse Laplace transform is very useful.
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13.21 IMPORTANT FORMULAE

1.
1 1L

s
  
 
 

= 1 2.
–1

1 1
( 1)!

 


n

n
tL
ns

3. 1 1L
s a




= eat 4. 1

2 2
sL

s a



 = cosh at

5. 1
2 2

1L
s a




= 

1
a  sinh at 6. 1

2 2
1L

s a



= 

1
a  sin at

7. 1
2 2

sL
s a




= cos at 8. L– 1 F(s – a) = eat f (t)

9.
 

1
2 2

1

–
L

s a b



 = 

1
b eat sin bt          10.

 
1

2 2–

s aL
s a b

 


= eat cos bt

11.
 

1
2 2

1

–
L

s a b



 = 

1
b eat sinh bt 12.

 
1

2 2

s aL
s a b

 

 
= eatcosh bt

13.
 

1
22 2

1L
s a




 = 3

1
2a

 (sin at – at cos at) 14.
 

1
22 2

sL
s a




 = 

1
2a t sin at

15.
 

2 2
1

22 2

s aL
s a

 


 = t cos at 16. L–1 (1) = s(t)

17.
 

2
1

22 2

sL
s a




 = 

1
2a [sin at + at cos at] 18.  1 1L F s

s
  
 
 

= 
0

( )
t

f t dt
Example 30.  Find the inverse Laplace Transform of the following:

(i)
1
– 2s         (ii)   2

1
– 9s      (iii)   2 –16

s
s    (iv)   2

1
25s 

   (v) 2 9
s

s 

(vi)  2

1
( – 2) 1s     (vii)  2

–1
( –1) 4

s
s  (viii)  2

1
( 3) – 4s  (ix) 2

2
( 2) – 25

s
s


  (x) 

1
2 – 7s

Solution.(i) 1 21
s – 2

tL e    (ii)  
1 1

2 2 2

1 1 3 1  . sinh 3
3 3s –9 – (3)

L L t
s

  

 (iii)  1 1
2 2 2

s   cosh 4
s –16 – (4)

sL L t
s

    (iv) 1
2 2 2

1 1 5 1 sin 5
5 5s +25 (5)

L t
s

  


  (v)    1
2 2 2

s cos3
s +9 (3)

sL t
s

  
         (vi)   

1 2
2

1 sin
(s–2) 1

tL e t 


(vii)    
1

2

s–1 cos 2
(s–1) 4

tL e t 
          (viii)    

1 3
2 2 2

1 1 2 1 sinh 2
2 2(s+3) – 4 ( 3) (2)

tL e t
s

  
 

(ix)    1 1 –2
2 2 2

s + 2 (s + 2)  cosh 5
(s + 2) – 25 (s + 2) – (5)

tL L e t  

(x)    L–1
7
21 1

2 – 7 2
t

e
s

 1 1( ) tL F as f
a a

       
Ans.

Example 31.  Find the inverse Laplace transform of
2

3 / 2

2( ) s si
s
 

                2

2 – 5( )
9 – 25

sii
s 2

– 2( )
6 20

siii
s 

Solution. (i)    
2

1 1 1/ 2 –1 1/ 2 –1
3 / 2 3 / 2

2 2s sL L s L S L
s s
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908 Laplace Transformation

       

1/ 2 1 1/ 2 1 3/ 2 1
1 1 1

1/ 2 1/ 2 3/ 2
1 1 2 2

1 1 3
2 2 2

t t tL L L
s s s

   
  


     

  

      3 / 2

1 1 4
1
2

t
tt

  
 

 Ans.

(ii)     1 1 1
2 2 2 2 2

2 2

2 5 2 5 2 5–
9 25 9 25 9 25 5 59 9

3 3

s s sL L L
s s s

s s

  

 
 

                                       

       
1

2
2

5
2 5 1 2 5 1 53cosh cosh sin
9 3 3 9 3 3 35

3

t tt L
s



 
 
    
    

  

       Ans.

(iii)   
1 1 1 1 1

2 2 2
2 2

2 2 1 1 1
10 106 36 20 6 20 6 20
3 3

s s sL L L L L
s s s s s

    
   

    

1

2

10
1 10 1 3 1 10 1 103cos cos sin

106 3 3 10 6 3 330
3

t L t t
s

    


                      Ans.

Exercise 13.8
Find the inverse Laplace transform of the following:

1.  2

3 8
4 25

s
s



   Ans. 
3 5 4 5cos sin
4 2 5 2

t t
 2. 

2 2

5

3( 2)
2

s
s


Ans. 2 43 13
2 2

t t 

3.  2 2

2 5 4 18
4 25 9

s s
s s
 


 

   Ans. 1 5 5cos sin 4cosh3 6sinh 3
2 2 2

t t t t    
 

4.    2

5 10
9 16

s
s

     Ans. 

5 4 5 4cosh sinh
9 3 6 3

t t  5. 2

1 16
4 1s s


 Ans. 

1 16sinh
4

t

13.22     MULTIPLICATION  by s
1[ ( )] ( ) (0) ( )dL sF s f t f t

dt
   

Example 32. Find the inverse Laplace transform of

(i) 2 1
s

s 
(ii) 24 25

s
s 

(iii)
3

2 9
s

s 

Solution. (i) 1
2

1 sin
1

L t
s

 


 1
2 sin sin(0) ( )

1
s dL t t

dts
   


                 = cos t Ans.

(ii)   1 1 1
2 2

2 2

5
1 1 1 1 2 1 52. sinh254 4 5 10 24 25 5

4 2

L L L t
s s s
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        1
2

1 5 1 5L sinh sinh (0)
10 2 10 24 25

s d t
dts

  


    
1 5 5 1 5= cosh = cosh

10 2 2 4 2
t t 

 
 

Ans.

(iii)      1 1 9 / 23 3 1 3L 92 9 2 2
2

tL e
s s

   
 

             
11

1 9 / 2 9 / 2(0) 23 3 3 3 9 3L
2 9 2 2 2 2 2

tts d e e e
s dt

           

    11/227 3=  –
4 2

te  Ans.
          Exercise 13.9

Find the inverse Laplace transform of the following:

1. 5
s

s  Ans. 55 te 2.  
2

3 6
s

s  Ans. 24
3

te

3. 22 1
s

s 
Ans. 

1 cosh
2 2

t
4. 

2

2 2

s
s a

Ans. sin 1a at 

5.
2

2

4
9

s
s



Ans. – 
5 sin 3 1
3

t  6.  2

1
( 3)s  (Madras, 2006) Ans. e3t.t

7.
2

–1
2 2L

( 4)
s

s  is

(i) sin 2 cos 2
2
tt t   (ii) 

1 sin 2 cos 2
4 2

tt t    (iii) 
1 sin 2 cos 2
4

t t t  (iv) 
1 sin 2 cos 2
4 4

tt t

Ans. (ii)

13.23 DIVISION BY s (multiplication by 
1
s )

1 1

0 0

( )L L [ ( )] ( )
t tF s F s dt f t dt

s
        

Example 33. Find the inverse Laplace transform of

(i)
1

( )s s a            (ii) 2

1
( 1)s s            (iii)

2

2

3
( 9)
s

s s



Solution. (i)    1 1L ate
s a

     

       
1 1

0 0
0

1 1L L
( )

tatt t at edt e dt
s s a s a a


                   

 

                               –1 1= + = 1 – 
at

ate e
a a a



  
Ans.

(ii)                1
2

1L sin
1

t
s

 


       1 1
02 20 0

1 1 1L L sin cos cos 1
1 1

t t tdt t dt t t
s s s

             
     

Ans.
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(iii)
2 2

1 1 1
2 2 2

3 9 6 1 6L L
( 9) ( 9) ( 9)
s s L

ss s s s s s
       

         

           
t t 1

020 0

6 1 2 2=1–2 sin3 =1 – L 1 2 [cos 3 ] =1+ cos 3
3 3 39

tt dt ds t t
s

         

                     
2 1 1cos3 [2cos3 1]
3 3 3

t t    Ans.

                         Exercise 13.10
Find the inverse Laplace transform of the following:

1.
1

2 ( 3)s s  Ans. 
31 1

2 3

te 
 

 
2. 

1
( 2)s s  Ans. 

21
2

te

3. 2

1
( 16)s s  Ans. 

1 [cosh 4 1]
16

t  4. 2 2

1
( )s s a Ans. 2

1 cos at
a



5.
2

2

2
( 4)
s

s s

 Ans. cos2 t 6. 2

1
( 1)s s                    Ans. 1 tt e 

7.
2

–1
2L

( 1)
s

s s  Ans. 
2

cos 1
2
t t 

8.       
2

–1
2L

( 1)
s

s s 
 is

(i) 1 – cos t                    (ii) 1 + cos t                 (iii) 1 – sin t        (iv) 1 + sin t Ans. (i)
13.24   FIRST  SHIFTING  PROPERTY

If   L–1 F (s) = f (t)  then  1 1L ( ) [ ( )]atF s a e L F s   
Example 34. Find the inverse Laplace transform of

(i) 5

1
( 2)s     (ii) 2 4 13

s
s s      (iii) 2

1
9 6 1s s     (iv) 2

1
6 25

s
s s


    (iv)  2

1
6 25

s
s s


 

Solution. (i)           
4

1
5

1L
4!
t

s
 

         then            
4

1 2
5

1L
4!( 2)

t te
s

 
 Ans.

(ii)      1 1 1 1
2 2 2 2 2 2 2

2 2 2 2L = L L L
4 13 ( 2) (3) ( 2) (3) ( 2) 3
s s s

s s s s s
                 

                               
–2 1 2 1

2 2 2 2

2 3= L L
33 3

t tse e
s s

        
–2 –22= cos3 e sin 3

3
t te t t  Ans.

(iii)      
1 1 -1 / 3 1

2 2 2 2

1 1 1 1 1 1L L L L
9 99 6 1 (3 1) 1

3

te
s s s s

s

     
     

 

/ 3
/ 31

9 9

t
t tee t


  Ans.

(iv)    
1 1 1

2 2 2 2 2

1 1 3 2L L =L
6 25 ( 3) (4) ( 3) (4)
s s s

s s s s
                         

     
1 1

2 2 2 2
3 1 4= L L

2( 3) (4) ( 3) (4)
s

s s
    

   
      

     3 31= cos 4 + sin 4
2

t te t e t Ans.
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              Exercise 13.11
Obtain the inverse Laplace transform of the following:

1. 2

8
4 5

s
s s


 

Ans. 2 (cos 6sin )te t t  2. 2( 3) 4
s

s   Ans. 3 (cos 2 1.5sin 2 )te t t 

3. 4( 7)
s

s  Ans. 
2

7 (3 7 )
6

t te t  4. 2

2
2 8

s
s s


 

Ans. (cosh 3 sinh 3 )te t t

5. 2 6 25
s

s s  Ans. 
3 3cos 4 sin 4

4
te t t    

6. 2

1
2( 1) 32s   Ans. sin 4

8

te t

7. 2

4
4( 3) 16

s
s


  Ans. 3 31 1cos 2 sin 2

4 8
t te t e t

13.25  SECOND   SHIFTING  PROPERTY

1L ( ) ( ) ( )ase F s f t a U t a      
Example 35. Obtain inverse Laplace transform of

(i) ( 3)

se
s



 (ii) 3( 1)

se
s





Solution. (i) 1 31L
3

te
s

 


     1 3( )L ( )
3

s
te e U t

s


   


       Ans.

(ii)  
2

1
3

1L
2!
t

s
 


2

1
3

1L
2!( 1)

t te
s

 



2

1 ( 1)
3

( 1)L . . ( 1)
2!( 1)

s
te te U t

s


   

 
 Ans.

Example 36. Find the inverse Laplace transform of 
/ 2

2 2

s sse e
s

  
 

in terms of unit step functions.

Solution. 1
2 2L sin t

s
 

 
 

                 
1

2 2L sin ( 1). ( 1)se t u t
s

          
sin( ). ( 1)t u t    ... (1)

and                            1
2 2L coss t

s
  

 

              
1 / 2

2 2

1 1L cos .
2 2

s se t u t
s

                   

1=sin .
2

t u t   
 

... (2)

On adding (1) and (2), we get
/ 2

1
2 2

. 1L sin ( ). sin( ). ( 1)
2

s se s e t u t t u t
s

 
                 

          
1= sin  – ( 1)
2

t u t u t        
Ans.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



912 Laplace Transformation

Example 37. Find the value of 1
2 2 2

1
( )

L
s a

   
 

  
.

Solution.     
2 2 2 2 2 2 2 2

1 1 1 1.
2( ) ( )

s d
s s dss a s a s a

       

    1
2 2 2

1
( )

L
s a

   
 

  

1
2 2

1 1
2

dL
s ds s a

        

  
1 1 1 1sin . [ sin ]
2 2

t at t at
s a a s
     
 

  0
0

1 1 cos cos. sin
2 2

t
t at att at dt t dt

a a a a
                 

  2
0

1 sincos
2

tt atat
a a a
     

   3
1 cos sin

2
at at at

a
   Ans.

                Exercise 13.12
Obtain inverse Laplace transform of the following:

1. 3( 2)

se
s



 Ans. 
2

( 2) ( 2) ( 2)
2

t te U t  


2.  
2

2( 1)( 2 2)

se
s s s



   Ans.  ( 2) 1 cos ( 2) ( 2)te t u t    

3.
1

se
s




Ans. 

( 1)

. ( 1)
( 1)

te U t
t

 


 

4.

3
2 2

2 1

s s
e e

s

 
 




Ans. 
3cot
2 2

t U t U t                

5.
4

2

( 2)
4 5

se s
s s

 
 

Ans. 2( ) cos( ) ( 4)t ue t u U t   

6. 2

ase
s



Ans. ( ) when
0 when

f t t a t a
t a

  
 

7. 2 1

se
s




Ans. – sin . ( )t u t  

Tick () the correct answers:
8. (a) The inverse Laplace transform of 3 3( ) /se s , is

(i) 3( 3) ( )t u t   (ii) 2
3( 3) ( )t u t   (iii) 2

3( 3) ( )t u t (iv) 2
3( 3) ( )t u t              Ans. (iv)

(b) If Laplace transform of a function f (t) equals 2( ) /s se e s   , then

   (i)  f (t) = 1, t > 1 ;

   (ii)  f (t) = 1, when 1 < t < 2, and 0 otherwise ;

(iii) f (t) = –1, when 1 < t < 3, and 0 otherwise ;

(iv) f (t) = –1, when 1 <  t  < 2, and 0 otherwise. Ans. (iv)
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(c) The Laplace inverse 
1 2 42 ( )s sL e e

s
     

equals

(i)  2, if 0 < t < 4 ; 0                   otherwise,      (ii) 2,  if  t  >  0

(iii) 2, if 0 < t < 2 ; 0                    otherwise,       (iv)  2, if 2 < t < 4; 0 otherwise    Ans. (iv)
(d) The Laplace transform of  tu2 (t) is

(i) 
2

2

1 2
2

se
s

  
 

    (ii) 2
2

1 se
s

        (iii) 
2

2

1 2 se
ss

  
 

         (iv)  2
2

1 se
s

 Ans. (i)

(e) The inverse Laplace transform of 
2 2

asKe
S k




is

(i) sin kt (ii)  cos kt               (iii) u (t – a) sin kt (iv) none of these.      Ans. (iv)
(f) Inverse Laplace’s transform of 1 is:

(i)  1 (ii) ( )t                    (iii) ( 1)t                      (iv) u(t)                        Ans. (ii)
13.26   INVERSE LAPLACE TRANSFORMS OF DERIVATIVES

1 1L ( ) [ ( )] ( )d F s tL F s tf t
ds

        
   or   

1 11L [ ( )] L ( )dF s F s
t ds

       

Example 38. Find inverse Laplace transform of 1 1tan
s



Solution.
1 1 1 11 1 1L tan L tand

s t ds s
            

                   
1 1

2 2

2

1 1 1 1 1= – L L1 11t ts s
s

 

 
             
 

                   
sin t

t
 Ans.

Example 39. Obtain the inverse Laplace transform of 
2

2

1log s
s


.

Solution.     
2 2

1 1
2 2

1 1 1L log L logs d s
t dss s

     
    

   

 1 2 1
2

1 1 2 2 1= – L log( 1) 2log L [2cosh 2]
1

d ss s t
t ds t s ts

                 

               
2 [1 cosh ]t
t

 

Example 40. Find 1 1cot (1 )L s    .

Solution.   
1 1 1 11cot (1 ) cot (1 )dL s L s

t ds
            

          
1 1

2 2

1 1 1 1
1 ( 1) ( 1) 1

L L
t ts s

    
           

          
1 sinte t
t

 Ans.
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                  Exercise 13.13
Obtain inverse Laplace transform of the following:

1.  
2

2log 1
s

 
 

 
     Ans. 

2 cos 2t
t

               2.  2 41
s

s s 
 Ans. 

2 3sin sinh
2 23

tt

3. 2 2 2( )
s

s a         Ans. 
sin
2

t at
a                        4. 

1

2
log cot

1

ss s
s




Ans. 2

1 cos t
t



5.
2 2

2

1 log
2 ( )

s b
s a

 
 

 
Ans. 

cosate bt
t

 
           6. 1tan ( 1)s   Ans. 

1 sinte t
t



13.27   INVERSE LAPLACE TRANSFORM OF INTEGRALS
1 1( ) 1L ( ) L [ ( )]

s

f tf s ds F s
t t

             or    1 1L [ ( )] L ( )
s

F s t F s ds
      

Example 41. Obtain 
1

2 2

2L
( 1)

s
s



 .

Solution.  
1 1 1 1

2 2 2 2 2 2

2 2 1 1L L L L 0
( 1) ( 1) 1 1s

s

s sdst t t
s s s s


                    

= t sin t Ans.
13.28  PARTIAL FRACTIONS METHOD

Example 42. Find the inverse transforms of

         2

1
– 5 6s s  .

Solution. Let us convert the given function into partial fractions.

         
1 1

2

1 1 1L =L
3 2– 5 6 s ss s

           

1 1 3 21 1=L – L
3 2

t te e
s s

             
Ans.

Example 43. Find the inverse Laplace transforms of 2

4
( 1)( 4)

s
s s s


 

Solution. Let us first resolve 2

4
( 1)( 4)

s
s s s


  into partial fractions.

2 2

4
1( 1)( 4) 4

s A B Cs D
s ss s s s

 
  

         ...(1)

                  2 24 ( 1)( 4) ( 4) ( ) ( 1)s A s s Bs s Cs D s s        
Putting s = 0, we get 4 = –4A or A = –1
Putting s = 1, we get 5 = B . 1. (1 + 4)    B = 1
Equating the coefficients of s3 on both sides of (1), we have

0 = A+ B + C      0 = –1+ 1+ C    C = 0.
Equating the coefficients of s on both sides of (1), we get

1 = 4A + 4B – D               1 = –4 + 4 – D    D = –1
On putting the values of A, B, C, D in (1), we get

2 2

4 1 1 1
1( 1)( 4) 4

s
s ss s s s
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1 1

2 2

4 1 1 1L L
1( 1)( 4) 4

s
s ss s s s

              

           
1 1 1

2 2

1 1 1 2= –L L L
1 2 2s s s

                   

            
11 sin 2
2

te t    Ans.

        Example 44. Find the Laplace inverse  of

      
2

2 2 2 2( )( )
s

s a s b 
Solution. Let us convert the given function into partial fractions.

    
2 2 2

1 1
2 2 2 2 2 2 2 2 2 2 2 2

1 1L L . .
( )( )

s a b
s a s b a b s a a b s b

    
            

2 2
1 2 2

2 2 2 2 2 2 2 2

1 1 1 1= L sin sina b a at b bt
a ba b s a s b a b

                        

           2 2

1 [ sin sin ]a at b bt
a b

 
 Ans.

Exercise 13.14
Find the inverse transform of:

1.
2

3

2 6s s
s

 
Ans. 21 2 3t t 

2. 2

1
7 12s s 

Ans. 4 3t te e

3. 2

2
4 13

s
s s


 

Ans. 2 24cos3 sin 3
3

t te t e t

4. 2

3 1
( 1)( 1)

s
s s


  Ans. 2cos sinte t t 

5.
2

3 2

11 2 5
2 3 3 2

s s
s s s

 
  

Ans. 2 / 232 5
2

t t te e e  

6.
22 6 5

( 1)( 2)( 3)
s s

s s s
 

   Ans. 2 31 5
2 2

t t te e e 

7. 2

4
( 4) 9

s
s


  Ans. 4 cos3te t

8. 2 2

16
( 2 5)s s  Ans. (sin 2 2 cos 2 )te t t t 

9. 2

1
( 1)( 2 2)s s s   Ans. (1 cos )te t 

     10. 2

1
( 2)( 1)s s  Ans. 21 1 2cos sin

5 5 5
te t t 

     11.
2

2 2

6 7
( 4 5)

s s
s s

 
  Ans. e2t [t cos t – sin t]
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13.29   INVERSE LAPLACE TRANSFORM  BY CONVOLUTION

 1 2 1 20
( )* ( ) .( ). ( )

t
L f x f t x dx F s F s     1

1 2 1 20
( ). ( ) L ( ). ( )

t
f x f t x dx F s F s 

Example 45. Using the convolution theorem, find
2

1
2 2 2 2 ,

( )(
sL a b

s a s b
  

 
  

Solution. We have

2 2 2 2L(cos ) and L(cos )
s s

at bt
s a s b

 
 

Hence by the convolution theorem

  2

2 2 2 20
L cos cos ( )

( )( )
t sax b t x dx

s a s b
 

 
Therefore,

2
1

2 2 2 2 0
L cos cos ( )

( )( )
ts ax b t x dx

s a s b
  

  
  



0

1
= {cos( ) cos( )}

2
t

ax bt bx ax bt bx dx    

0 0

1 1= cos[( ) ] cos[( ) ]
2 2

t t
a b x bt dx a b x bt dx     

0 0

sin [( ) ] sin [( ) ]
2( ) 2( )

t t
a b x bt a b x bt

a b a b
      

        
sin sin sin sin

2( ) 2( )
at bt at bt

a b a b
 

 
 

2 2

sin sina at b bt
a b





Ans.

Example 46. Obtain 1
2 2

1
( )

L
s s a





Solution.  –1 1
2 2

1 1 sinL 1 and
( )

atL
s as a

 


Hence by the convolution theorem

2 20

sin ( ) 1 1
L 1.

t a t x
dx

a s s a
              

        
1

2 2 20
0

1 sin ( ) cos( )L 1 .
( )

t
t a t x at axdx

as s a a
                

 2

1
[1 cos ]at

a
        Ans.

                        Exercise 13.15
Obtain the inverse Laplace transform by convolution.

1.
2

2 2 2( )
s

s a      Ans.
1 1cos sin
2 2

t at at
a

    2. 2 3

1
( 1)s  Ans. 21{(3 )sin 3 cos }

8
t t t t 

3. 2 2 2( )
s

s a      Ans. 
sin
2

t at
a

                         4. 2 2 2

1
( )s s a       Ans. 3

1
[ sinh ]at at

a
 

5. 2

1
( 1)( 1)s s         Ans. 

1
(cos sin )

2
tt t e 
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13.30.  SOLUTION  OF  DIFFERENTIAL  EQUATIONS  BY  LAPLACE  TRANSFORMS
Ordinary linear differential equations with constant coefficients can be easily solved by the

Laplace Transform method, without finding the general solution and the arbitrary constants.
The method will be clear from the following examples:

Example 47. Using Laplace transforms, find the solution of the initial value problem
y'' – 4 y' + 4y = 64 sin 2t
            y (0) = 0,  y' (0) = 1.

Solution. Here, we have y'' – 4 y' + 4y = 64 sin 2t ... (1)
            y (0) = 0, y' (0) = 1.

Taking Laplace transform of both sides of (1), we have
2

2
64 2[ (0) ' (0) ] 4 [ (0)] 4

4
s y sy y s y y y

s


     
 ... (2)

On putting the values of y (0) and y' (0) in (2), we get

  
2

2
1281 4 4

4
s y s y y

s
   



    
2

2
128( 4 4 ) 1

4
s s y

s
   

 ,   
2

2
128( 2 ) 1

4
s y

s
  



                    2 2 2 2 22

1 128 1 8 16 8
2 42 2 4 2 2

sy
s ss s s s s

     
     

            
1

2 2
8 17 8

2 42
sy L

s ss

 
    

   
            y = – 8 e2t + 17t e2t + 8 cos 2t Ans.

Example 48. Using the Laplace transforms, find the solution of the initial value problem
  y+ 25y = 10cos 5t
      y (0) = 2, y(0) = 0

Solution. Taking Laplace transform of the given differential equation, we get

[s2 y  – sy (0) – y (0)] + 25 y  = 10 2 25
s

s 

          s2 y – 2 s + 25 y  = 
2

10
25
s

s 

  (s2 + 25) y   = 2

102
25
ss

s




     2 2

2 10
25 25

s sy
s s

 
 

      
1 1

2 2 22 2

2 10 10L 2 cos 5 L
25 25 25

s s sy t
s s s

 
   
      
        

     
1

2

52 cos5 L
25

dt
ds s


   
  

         = 2 cos 5 t + t sin 5 t Ans.
Example 49. Applying convolution, solve the following initial value problem

 y + y = sin 3 t
    y (0) = 0, y (0) = 0.
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Solution. y  + y = sin 3 t
Taking Laplace transform of both the sides, we have

[s2 y  – sy (0)  – y (0)] + y = 2

3
9s  ...(1)

On putting the values of y (0),y  (0) in (1), we get

 2 2
2 2

3 31
9 9

s y y s y
s s

    
 

    2 22 2

3 3 1 1
8 1 91 9

y
s ss s
        

Taking the inversion transform, we get
1 1

2 2

3 1 3 1L L
8 81 9

y
s s

  
 

3 3 1 3 1sin × sin 3 sin sin 3
8 8 3 8 8

y t t t t    Ans.

Example 50.  Solve [t D2 + (1 – 2t)D – 2] y = 0, where y (0) = 1, y(0) = 2.
(R.G.P.V. June, 2002)

Solution. Here, t D2y + (1 – 2 t) Dy – 2 y = 0  t y + y – 2 t y – 2 y = 0
Taking Laplace transform of given differential equation, we get

L (ty ) + L (y) – 2 L (ty) – 2 L (y) = 0  – 
d
ds L{y} + L{y} + 2

d
ds L (y) – 2 L (y) = 0

 –
d
ds [ s2 y – sy (0) – y (0) ] + [ s y  – y (0) ] + 2

d
ds [ s y   – y (0)] – 2 y  = 0

Putting the values of y (0) and y (0), we get

–
d
ds (s2 y  – s –2) + (s y – 1) + 2

d
ds (s y – 1) – 2 y = 0 [y (0) = 1,y(0) = 2]


2s d y
ds

 – 2 s y  + 1 + s y –1 + 2
d ys y
ds

 
  

 
 – 2 y = 0  –(s2 – 2s)

d y
ds

– s y =0


1 0

2
d y ds
y s

  
 (Separating the variables)

 0
2

d y ds
y s
 

   log y  + log(s – 2) = log C

 y (s – 2) = C  2
Cy

s





1 1
2

y C L
s

    
 

y = C e2t ...(1)
Putting y (0) = 1 in (1), we get

           1 = C e0  C  = 1
Putting C = 1 in (1), we get y = e2 t

This is the required solution. Ans.
Example 51. Using Laplace transform technique solve the following initial value problem

2

2 ,d y dy2 2y 5 sin t
dtdt

   where y (0) = y (0) = 0

Solution. We have,    y+ 2 y+ 2y = 5 sin t
    y (0) = y(0) = 0

Taking the Laplace Transform of both sides, we have

[s2 y  – sy (0) – y (0)] + 2 [s y  – y (0)] + 2 y  = 2

15
1s




...(1)
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On substituting the values of y (0), and y (0) in (1), we get

s2 y + 2 s y  + 2 y  = 2
2 2

5 52 2
1 1

s s y
s s

      

       2 2

5
2 2 1

y
s s s


  

Resolving into partial fractions, 
2 2

2 3 2 1
2 2 1

s sy
s s s

  
 

  

Taking the inverse transform, we get

1 1
2 2

2 3 2 1L L
2 2 1

s sy
s s s

               

 
 

1 1 1
2 2 2

2 1 1 2 1L L L
1 11 1

s s
s ss

  
                    

       
 

   
1 1

2 2

2 1 1L L
1 1 1 1

s

s s
 
   

   
        

– 2cos t + sin t

= 2 e–t cos t + e–t sin t – 2 cos t + sin t Ans.
Example 52. Solve the initial value problem

2 y+5y+ 2 y = e– 2t, y (0) = 1, y(0) = 1,
 using the Laplace transforms.
Solution. 2 y+ 5 y+ 2 y = e–2t, y (0) = 1, y(0) = 1
Taking the Laplace Transform of both sides, we get

     2 12 0 0 5 0 2
2

s y sy y s y y y
s

           ...(1)

On substituting the values of y (0) and y(0) in (1), we get

 2 12 1 5 1 2
2

s y s s y y
s

        

    2 12 5 2 2 2 5
2

s s y s
s

        

          

2 2

2 22 2

1 2 7 1 2 7 4 14 2 11 15
2 5 22 2 5 2 2 5 2 2 2 1 2

s s s s s sy
s ss s s s s s s s

      
   

        

       2 2

4 / 9 11/ 9 1/ 3 4 1 1 11 1 1 1
12 1 2 9 2 9 2 32 2
2

s s ss ss
     

   

   
1

2 222 11 1
9 9 3

t t ty e e t e
     Ans.

Example 53. Solve    
2

2 2 5 xd y dy y e sin x where y 0 0, y 0 1
dxdx

     

Solution.
2

2 2 5 xd y dy y e sin x
dxdx

  

Taking the Laplace Transform of both the sides, we get
[s2 y  – sy (0) – y(0)] + 2 [s y – y (0)] + 5 y = L (e –x sin x)

[s2 y  – sy (0) – y(0)] + 2 [s y – y (0)] + 5 y =  2

1
1 1s   ... (1)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



920 Laplace Transformation

On substituting the values of y (0) and y (0) in (1), we get

(s2 y  – 1) + 2 (s y ) + 5 y = 2

1
2 2s s 

   
2

2
2 2

1 2 32 5 1
2 2 2 2

s ss s y
s s s s

 
    

   

   
2

2 2

2 3
2 5 2 2

s sy
s s s s

 


   

On resolving the R.H. S. into partial fractions, we get

2 2

2 1 1 1
3 32 5 2 2

y
s s s s

 
   

On inversion, we obtain

1 1
2 2

2 1 1 1L L
3 32 5 2 2

y
s s s s

  
   

        
1 1

2 2 2 2

1 2 1 1L L
3 31 2 1 1

y
s s

  
   

                     1 1sin 2 sin
3 3

x xy e x e x  

                               1 ( sin sin 2 )
3

xy e x x  Ans.

Example 54. Using Laplace transforms, find the solution of the initial value problem

y+ 9y = 9u (t – 3), y (0) = y(0) = 0
where u (t – 3) is the unit step function.
Solution. y + 9y = 9u (t – 3) ...(1)
Taking Laplace transform of (1), we have

s2 y  – sy (0) – y (0) + 9 y = 
3

9
se

s



...(2)
Putting the values of y (0) = 0 and y (0) = 0 in (2), we get

   
3

2 99
ses y y

s



 

  
3

2 9 9
ses y

s



 

                  
3 3

1
2 2

9 9L
9 9

s se ey y
s s s s

 
  

 

 1
2

3L sin 3
9

t
s

 


             3
02 0

33L 3 sin 3 cos3 1 cos3
9

t tt dt t t
s s

     
 

  
3

1
2

9L
9

sey
s s






    1 cos3 3 3y t u t      Ans.
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Example 55. A resistance R in series with inductance L is connected with e.m.f. E. (t).
The current i is given by

 diL Ri E t
dt
 

If the switch is connected at t = 0 and disconnected at t = a, find the current i in terms of t.
(UP., II Semester; Summer 2001)

Solution. Conditions under which current i flows are i = 0 at t = 0,

    
, 0

0,
E t a

E t
t a
 

  

Given equation is     L di Ri E t
dt

  ...(1)

Taking Laplace transform of (1), we get

         L [ si – i(0)] + R i  =  
0

ste E t dt
 

           
0

L stsi Ri e E t dt
    [i(0) = 0]

                                
0 0

.
ast st st

a
Ls R i e Edt e Edt e Edt

        

      
0

0 1
ast

as ase E E EE e e
s s s s


  

          

       
asE Eei

s Ls R s Ls R



 
 

On inversion, we obtain       
   

1 1L
asE Eei L

s Ls R s Ls R


    

    
       

...(2)

Now we have to find the value of 
 

1L E
s Ls R

  
 

  

                     
1 1E E EL L

Rs Ls R L s s
L

 

 
  
  

          

(Resolving into partial fractions)

           
1 1 1 1

R t
LE L EL eRL R s Rs

L



 
   

      
  

 

and               
   1 1

Ras t a
LEe EL e u t a

s Ls R R

      
         

[By the second shifting theorem]
On substituting the values of the inverse transforms in (2) we get

        
   1 1

R Rt t a
L LE Ei e e u t a

R R
     

       
   

Hence           1 for 0 < , 0
R t
LEi e t a u t a

R
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922 Laplace Transformation

 

 
for 

1 1
1

R Rt t a
L L

t aE Ei e e
u t aR R

      
            

  
 

1
R R R Rat a t t
L L L LE Ee e e e

R R
      

     
   

Ans.

Example 56. Using the Laplace transform, find the current
i (t) in the LC - circuit. Assuming L = 1 henry, C = 1 farad, zero
initial current and charge on the capacitor, and

v (t) = t, when 0 < t < l
                      = 0 otherwise.
Solution. The differential equation for L and C circuit is

        given by                      
2

2
d q qL E

Cdt
  ... (1)

Putting L = 1, C = 1, E = v(t) in (1), we get 
2

2 ( )d q q v t
dt

  ... (2)

Taking Laplace Transform of (2), we have

          2

0
(0) ' (0) ( ) sts q sq q q v t e dt

     
Substituting q (0) = 0, and q' (0) = 0, we get

              
12

0 1
0st sts q q te dt e dt

    

                   

1 1
12

2 2 20
0 0

1( 1)
st st s st s se e e e e es q t dt
s s s ss s s

        
           

     


                     2 2 2
1 1

1

s se eq
ss s s

  
    

  

                          2 2 2 2 2

1
1 1 1

s se eq
s s s s s s

 
  

  

Taking Inverse Laplace Transform, we get

                  
–1 –1 –1

2 2 2 2 2
1L L L

( 1) ( 1) ( 1)

s se eq
s s s s s s

 
  

   ... (3)

We know that
  L–11 [ ( ) ] ( ) ( )asL e F s f t a u t a    

  L–1
02 0

1 sin [ cos ] 1 cos
( 1)

t tt dt t t
s s

 
     

 
 ... (4)

  L–1
2 2 0

1 (1 cos ) sin
( 1)

t
t dt t t

s s
 

    
 

 ... (5)

In view of this, we have

  L–1
2 [1 cos ( 1) ] ( 1)

( 1)

se t u t
s s

 
     

 
[From (4)]

  L–1  1
2 2 [ ( 1) sin ( 1) ] ( 1)

( 1)

seL t t u t
s s


  

     
 

[From (5)]

Putting the above values in (3), we get
q = – [1 – cos (t – 1)] u(t – 1) – [(t – 1) – sin(t – 1)] u(t – 1) + t – sin t Ans.

V(t)

L

i

C

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Laplace Transformation 923

EXERCISE 13.16
Solve the following differential equations:

1.
2

2 0d y y
dx

  , where y = 1 and 1dy
dx

   at x = 0. Ans. y = cos x – sin x

2.
2

2 – 4 0,d y y
dx

 where y = 0 and  
dy
dx = – 6 at x = 0. Ans. 2 –23 3–

2 2
x xy e e 

3.
2

2 0,d y y
dx

  where y = 1, 1dy
dx

  at x = 0. Ans. y = sin x + cos x

4.
2

2 2 5 0,d y dy y
dxdx

   where y = 2, –4dy
dx

 at x = 0. Ans. y = e–x(2cos2 x –sin 2 x )

5.
3 2

3 22 – – 2 0,d y d y dy y
dxdx dx

  given 
2

20, 6dy d yy
dx dx

    at x = 0.  Ans. y = ex – 3 e –x + 2 e–2x

6.
2

2 3cos 2 ,d y y x
dx

  where 0dyy
dx

   at x = 0. Ans.   y = cos x –cos 2 x .

7.
2

2 – 2 1– 2 ,d y dy y x
dxdx

  given y = 0. 4dy
dx

 at x = 0. Ans. y = ex – e–2x + x

8.
2

2 ,
2 – 3 2 4 xd y dy y e

dxdx
  given y = – 3,and 5dy

dx
 at x = 0. Ans. y = – 7ex + 4e2x +4x e2x

9.
2

2 ,
2 3 2 4 xd y dy y x e

dxdx
    , where y = 1, dy

dx . = – 1 at x = 0  Ans. y = 3 + 2 x + 
1
2

e2x –2e2x –
1
2

ex.

10.
3 2

3 22 2 0d y d y dy y
dxdx dx

    , where y = 1,   
2

22, 2dy d y
dx dx

  at x = 0 Ans.  25 1
3 3

x x xe e e  

11. (D2 – D –2) x = 20 sin 2 t, x0= –1, x1 = 2        Ans. x = 2 e2t – 4 e–t + cos 2 t – 3 sin 2 t

12. (D3 + D2) x = 6 t2 + 4, x (0) = 0, x (0) = 2, x(0) = 0  Ans. x = 
1
2

t4 –2 t3 +8 t2 –16t +16 – 16e–t

13.
2

2 2 ,td x dx x e
dtdt

    where x (0) = 2, 1
dx
dt

   at t = 0 Ans. x = 2 e t –3 te t + 
1
2 t2 e t

14. (D2+ n2) x = a sin (nt + ) where x = Dx = 0 at t = 0.

Ans. x = an cos  (sin nt – nt cos nt)+
sin 2
2

a
n


(t sin nt)

15. y+ 2 y + y = t e–t  if y (0) = 1, y (0) = –2. Ans.
3

1
6

tty t e 
    

16.
2

2 cos 2 ,d y y x x
dx

   where 0
dy

y
dx

   at x = 0. Ans.
4 5

sin 2 sin cos 2
9 9 3

x
y x x x  

17.
3 2

2 2
3 23 3 ,xd y d y dy y x e

dxdx dx
    where y = 1, 

2

20, 2dy d y
dx dx

   at x = 0.
Ans. y = e2x (x2 – 6x + 12) – ex(15 x2 + 7x + 11)

18. y + 4y + 3y = t, t > 0; given that y (0) = 0 and  y (0) = 1.     Ans. 34 5
9 6 9

t tty e e     
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924 Laplace Transformation

19. y + 2 y = r (t), y (0) = 0,  y (0) = 0 where 
0, 1

( )
1, 0 1

t
r t

t


   
Ans.

1 1 cos 2
2 2

y t  .

20.
2

2 4 ( 2),d y y u t
dt

   where u is unit step function

y (0) = 0 and y (0) = 1 Ans. 
1

sin 2
2

y t for t < 2

21.
2

2 ( ) ( 2 ), (0) '(0) 0
d y y u t u t y y
dx

        

Ans. y = (1+cos t) u (t – ) – (1 – cos t)u (t – 2)
22. A condenser of capacity C is charged to potential E and discharged at t = 0 through an

inductance L and resistance R. The charge q at lime t is governed by the differential equation
2

2

d q dq qL R E
dt Cdt

  

Using Laplace transforms, show that the charge q is given by

[ sin cos ]tCEq e nt n nt
n

   where 
2
R
L

  and 
2

2
2

1
4
R

LC L
  

13.31 SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS BY LAPLACE
TRANSFORMS

Simultaneous differential equations can also be solved by Laplace Transform method.

Example 57. Solve 0dx y
dt

   and 0dy x
dt

   under the condition x (0) = 1, y (0)= 0

Solution. x +y = 0 ...(1)
y – x = 0 ...(2)

Taking the Laplace transform of (1) and (2) we get
[ (0)] 0sx x y   ... (3)

[ (0)] 0sy y x   ...(4)
On substituting the values of x (0) and y (0) in (3) and (4), we get

1 0sx y   ...(5)

0sy x  ...(6)

Solving (5) and (6) for x  and y we get

2 2

1
,

1 1
s

x y
s s

 
 

On inversion, we obtain 1 1
2 2

1
L , L

1 1
s

x y
s s

            
x = cos t, y = sin t Ans.

Example 58.  Using Laplace transforms, solve the differential equations
(D+1)y1 + (D – 1)y2 = e–t

(D+2)y1+(D+1)y2 = et

       where D = d/dt and y1 (0) = 1, y2 (0) = 0
Solution. (D + 1)y1 + (D – 1) y2 = e–t ...(1)

(D+2)y1+ (D +1)y2 = et ...(2)
Multiply (1) by (D+ 1) and (2) by (D – 1) we get

(D + 1)2 y1+ (D2 – 1)y2 = (D + 1) e–t ...(3)
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(D – 1) (D + 2) y1 + (D2– 1)y2 = (D – 1) et ...(4)
Subtracting (4) from (3) we get

(D2 + 2 D + 1 – D2 – D+ 2)y1 = (– e–t + e–t) – (et – et)

 (D + 3)y1 = 0    Dy1 + 3 y1 = 0
Taking Laplace transform we have 1 1 1(0) 3 0sy y y  

3
1 1 1

1( 3) 1
3

ts y y y e
s

     


Putting the value of y1 in (1) we get
(D+1)e–3t + (D –1)y2 = e–t

–3 e–3t + e–3t + (D –1)y2 = e–t

(D – 1)y2 = e–t + 2e–3t       Dy2 – y2 = e–t  + 2e–3t

Taking Laplace transform, we get

   2 2 2
1 2

(0)
1 3

sy y y
s s

   
 

2
1 2

( 1)
1 3

s y
s s

  
 

         2 2 2

1 2
1 2 3

y
s s s

 
  

                       
1

2 2 2 2

1 2
1 ( 1) (2)

y L
s s

  
     

           y2 = sinh t + e–t sinh 2 t
            yl = e –3t and y2 = sinh t + e–t sinh 2t Ans.

Example 59. Solve , sintdx dy
y e x t

dt dt
   

given x (0) = 1, y(0) = 0
Solution. x – y = et ... (1)

y + x = sin t ...(2)
Taking the Laplace Transform of (1) and (2), we get

1[ (0)]
1

sx x y
s

  


... (3)

2

1[ (0)]
1

sy y x
s

  


 .... 4 ... (4)

On substituting the values of x (0) and y (0) in (3) and (4), we get
11

1
sx y

s
  


.... (5)

2

1
1

sy x
s

 


     ... (6)

On solving (5) and (6), we get
4 2

2 2 2 2 2

1 1 1 1 1 1
2 1 2( 1)( 1) 1 ( 1)

s s s sx
ss s s s

   
   

    ... (7)

3 2

2 2 2 2 2

2 1 1 1 1
2 1 2( 1)( 1) ( 1) ( 1)

s s s s sy
ss s s s

   
    

    ... (8)

On inversion of (7), we obtain

1 1 1 1
2 2 2 2

1 1 1 1 1 1
L L L L

2 1 2 21 1 ( 1)
s

x
s s s s
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1 1 1 1 1cos sin (sin cos ) [ cos 2sin cos ]
2 2 2 2 2

t te t t t t t e t t t t        

On inversion of (8), we get

1 1 1 1
2 2 2 2

1 1 1 1 1L L – L L
2 1 2 21 1 ( 1)

s sy
s s s s

      
   


1 1 1 1cos sin sin
2 2 2 2

ty e t t t t    


1[– sin cos sin ]
2

ty e t t t t    Ans.
Example 60. Using the Laplace transforms, solve the initial value problem

1 1 2" 3y y y 

2 1" 4 4 ty y e 
y1 (0) = 2, y1 (0) = 3, y2 (0) = 1, y2' (0) = 2

Solution. 1 1 2" 3y y y  ... (1)

2 1" 4 4 ty y e  ... (2)
Taking the Laplace transform of (1) and (2), we get

2
1 1 1 1 2(0) '(0) 3s y sy y y y    ... (3)

2
2 2 2 1

4(0) '(0) 4
1

s y sy y y
s

   


... (4)
Putting the values of y1 (0), y (0), y2 (0), y2' (0) in (3) and (4), we get

2 2
1 1 2 1 22 3 3 ( 1) 3 2 3s y s y y s y y s                ... (5)

 2
2 1 1 2

4 42 4 4 2
1 1

s y s y y sy s
s s

        
 

      ... (6)
On solving (5) and (6), we get

2

1 2 2

(2 3) ( 3) ( 2) 2 3 1 1
( 1) ( 2) 1 2( 1) ( 3) ( 4)

s s s sy
s s s ss s s

   
   

     
2

1
t ty e e 

2
2

2 22 2

( 2) ( 3) 1
2( 3) ( 4)

ts sy y e
ss s

 
   

  Ans.

Exercise 13.17
Solve the following :

1. 4 0, 9 0
dx dy

y x
dt dt

     Given x = 2 and y = 1 at t = 0.

Ans.
2

sin 6 2cos6 , cos 6 3sin 6
3

x t t y t t    

2.
34 3 0, 2 1dy dx dx dyy x

dt dt dt dt
     

under the condition x = y = 0 at t = 0. Ans. 
6 6

11 111 1 3 1 1,
2 5 10 5 5

t tt tx e e y e e
      

3. 5 2 , 2 0
dx dy

x y t x y
dt dt

       being given x = y = 0 when t= 0.

Ans. 3 31 1 2 2 4(1 6 ) (1 3 ), (2 3 )
27 27 27 9 27

t t tx t e t y t e          
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4. sin , cos
dx dy

y t x t
dt dt

   

given that x = 2, and y = 0 when t = 0. Ans. x = et + e–t, y= e– t – et + sin t
5. (D – 1)x –2y = t , –2x+(D – 1) y = t, t > 0

where D = d/dt and x (0) = 2, y (0) = 4
6. The small oscillations of a certain system with two degrees of freedom are given by the equations

D2x + 3x –2y = 0, D2x+D2y –3x+5y= 0
If x = 0, y = 0,  Dx = 3, Dy = 2 when t = 0.

          Ans. 11 1 11 1sin sin 3 , sin sin 3
4 12 4 4

x t t y t t    

7. 3 3 5 25cos , 2 3dx dy dx dyx t
dt dt dt dt

     5 sin t with x (0) = 2, y (0) = 3.

   Ans. x = 2 cos t + 3 sin t, y = 3 cos t + 2sin 2 t
METHODS  TO  FIND  OUT  RESIDUES  ON  PAGE  590  (Art. 7.58)
13.32  INVERSION  FORMULA  FOR  THE  LAPLACE  TRANSFORM

f (x) = sum of the residues of esx F (s) at the poles of F (s).
Proof. The Laplace Transform of f (x) is defined by

   
0

·stF s e f t dt
  

Multiplying by esx

   
0

·sx sx ste F s e e f t dt
  

Integrating w.r.t. ‘s’  between the limits a + ir and a – ir, we have

       
0

·
a ir a irsx sx st

a ir a ir
e F s ds e ds e f t dt

   

 
  

Putting s = a – ip, ds = – idp=      
0

r x a ip a ip t

r
i e f t e dt dp

     

                
– 0

· .
rax ipx at ipt

r
ie e dp f t e e dt

               ...(1)

Let us now define (x) as (x) = 
 when 0

0 when 0

axe f x x
x

 



The Fourier complex integral of (x) is

(x)  1
2

ipx ipte t e dt dp


 

 
  

             
0

1
2

ax ipx at ipte f x e e f t e dt dp


   


      ... (2)

In the limiting case when r , (1) becomes

    ·
a i sx ax ipx at ipt

a i
e F s ds ie e dp f t e e dt

    

   
   ...(3)

Substituting the value of the integral from (2) in (3), we get

     2 2
a i sx ax ax

a i
e F s ds ie e f x if x 

  

 
   

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



928 Laplace Transformation

    1
2

a i sx

a i
f x e F s ds

i
 

 
  ...(4)

Equation (4) is called the inversion formula for the Laplace transform.
To obtain f (x), the integration is performed along a line

AB parallel to imaginary axis in the complex plane such that
all the singularities of F (s) lie to its left. The contour c includes
the line AB and the semicircle c (i.e. BDA).

From (4)

   1
2

sx

AB
f x e F x ds

i
 

            1
2

sx

c
e F s ds

i
 

             
'

1
2

sx

c
e F s ds

i
 

The integral over c tends to zero as r. Therefore,

   1lim
2

sx

cr
f x e F s ds

i
 

f (x) = sum of the residue of esx F (s) at the poles of F (s).
Note. Methods for finding the residue: See article 7.58 on page 590.

Example 61. Obtain the inverse Laplace transform of 
2

1
2

s
s s




Solution. Let F (s) =
2

1
2

s
s s




_ ...(1)

   
1

2

1
2

sL
s s

  
  

= Sum of the residues of est .
2

1
2

s
s s




at the poles. ...(2)

The poles of (1) are determined by equating the denominator to zero, i.e.
s2  + 2 s = 0   or  s (s + 2) = 0 i.e. s = 0, – 2

 There are two simple poles at s = 0 and s = – 2.

Residue of est . F (s) (at s = 0)      
 20 0

1 1 1lim 0 lim
2 22

st st

s s

e s e s
s

ss s 

    
      

      

Residue of est . F (s) (at s = – 2) 
   

 2

2 1
lim

2

st

s

s e s
s s

  
  

  

   2 2

2

1 2 1
lim

2 2

st t t

s

e s e e
s

 



   
   

  

Sum of the residue [at s = 0 and s = –2] 
21

2 2

te

 

Putting the value of residues in (2), we get

   
1

2

1
2

sL
s s

  
  

21
2 2

te

        Ans.

Y

D
X

Y

O

r

a

A

B (a+ir)

C
r
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Example 62. Find the inverse Laplace transform of    2

1
1 1s s 

.

Solution. Let  
  2

1
1 1

F s
s s


 

...(1)

   
1

2

1L
1 1s s


 
 

   
= sum of residues of est F (s) at the poles.       ...(2)

The poles of (1) are obtained by equating the denominator equal to zero, i.e.,
(s+ 1) (s2 + 1) = 0        s =  –1, + i,–i

There are three poles of F (s) at s = – 1, s = + i and s = –i.
Residue of est . F (s) (at s = – 1)   

    221 1
lim 1 lim

211 1

st t t

s s

e e es
ss s

 

 
   

 

Residue of  est . F (s) (at s = i)   
   2

lim –
1 1

st

s i

es i
s s


 

                 1–lim – · – 1
1 1 2 2 1 1 – 4

st it it i t

s i

e e e i ei i
s s i i i i i

    
   

Residue of est . F (s) (at s = – i)   
  2–

lim
1 1

st

s i

es i
s s

 
 

     
 –

–

–1
lim

1 – – 1 –2 4

itst it

s i

e ie e
s s i i i




  

 
Substituting the values of the residues in (2), we get

                
   1

2

1 –11L –
2 4 41 1

it itt e i e ie
s s



  
   

   

  
– – – –– –

2 4 2 4 2 2

t it it it it t it it it ite e ie ie e e e e i e e      
  

  
1 1– cos sin

2 2 2

te t t


           Ans.

Example 63. Find the inverse Laplace transform of 
 

2

22

s 1

s 1




.

Solution. Let F (s) =
 

2

22

1

1

s

s




...(1)

 
2

1
22

1L
1

s

s

  
  

= sum of residues of est . F (s) at the poles ...(2)

The poles of (1) are obtained by equating denominator to zero.
(s2 + 1)2 =  0  i.e. s =i, – i

There are two poles of second order at s = i and s = –i

Residue of  est . F (s) (at s = i)    
 

 
 

2 2
2

2 22

1 1
–

1

st st

s is i

e s e sd ds i
ds ds s is



    
    
      

       
       

 

2 2 2

4

. 1 2 2 1st st st

s i

s i e t s e s s i e s

s i
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930 Laplace Transformation

   
     

 

2 2

3

. 1 .2 1st st st

s i

s i e t s e s e s

s i


        
  

   
   

 3

2 . 2 2 2 –2 4
8 22

it it it it iti e t e i e ite te
ii

       


Residue of est . F (s) (at s = –i)  
 

 
 

 

2 2
2

2 22

1 . 1
·

1

st st

s is i

e s e sd ds i
ds ds s is



    
     
      

   
       

 

2 2 2

4

. 1 2 1 2st st st

s i

s i e t s s e e s s i

s i


         
  

   
     

 

2 2

3

. 1 2 1 2st st st

s i

s i e s s e e s

s i


        
  

   
   

   3 3

2 . 2 2 2 2 4 . .
22 2

it it it it iti e t ie e it e t e
i i

            
 

 Sum of the residues at (s = i and s = – i)
. .

cos .
2 2 2

it it it itt e t e e et t t
 

    ...(3)
Putting the value of sum of residues from (3) in (2), we get

 
2

1
22

1L
1

s

s

  
  

= t cost Ans.

Example 64. Obtain the inverse Laplace Transform of    
b se
s



.

Solution. Let  
b seF s
s



 ...(1)

    
1 1L .

2π

b s b sa i st

a i

e ee ds
s i s

  

 

 
  

 
      ...(2)

The simple pole of F (s) is at s = 0. Let us have a contour ABCDEF excluding the pole at
x = 0. The contour encloses no singularity, therefore, by Cauchy theorem.

     . 0st

ABCDEFA

e F s 

        . . . .st st st st

AB Bc CD DE

e F s ds e F s ds e F s ds e F s ds      
   . . 0st st

EF FA

e F s ds e F s ds                                    ...(3)
Let OC =OD=then along CD, s=Rei

  .
ib r

sx xR

p
CD

ee F s ds e dR
R

 
 

       .
ib Rpsx xR

EF

ee F s ds e dR
R


             (S = Re–i along EF)

X

Y

F
C

X

Y

E O

A (a–ir)

B (a+ir)

C
r

D
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         1.
ε

sx i
i

DE

e F s ds e id
e

 

 


 

ε along
1

1

i

S

b s

S e DE
e

e







 





       = –2i

          . 0, . 0sx sx

BC FA

e F s ds e F s ds  
On putting the values of the integrals in (3), we have

2 0
xs b s ib R ib Ra ir p xR

a ir

e e eds e dR i
s R


  




   


0

sin2 2
xs b sa i xR

a i

e b Rds i i e dR
s R


   

 
              

ε 0
p
 

   

          2

0

sin
1 21

2

xs b sa i u

a i

bu
e xds e du

i s u 

   

 

 
 
               

2uR
x

 
 

 
...(4)

We  know that    
2 2

0

1cos 2
2

u be bu du e
  

Integrating both sides w.r.t., “b”

   
2 2

0

sin 2 1 π
2 2

u bbue du e db
u

       

Taking limits 0 to  
2

b
x

, we have

     
2 22

2
0 0

0

sin 2 π
2 2

b
b

xu bx
bue du e db

u
     

  

       2

0
sin · . . .

2 2
u

bu
x bxe du e r f

u x


   
  

 


2

0

2. . .
x ue r f x e du


 

 
 



       
π . . .
2 2

be r f
x

 
  

 
Putting the value of the above integral in (4), we have

1 2 π1 . . .
2π π 2 2

b sa i xs

a i

e be ds e r f
i s x

 

 

 
   

 


        1 . . .
2

be r f
x

 
   

 
                               Ans.

Exercise 13.18
Find the inverse of the following by convolution theorem

1.    
 

2

22 2

s

s a
     Ans. 1 1cos sin

2 2
t at at

a
   

2.  2 2

1
s s a

Ans. 2

1 cos at
a



3.  32

1

1s 
      Ans.  21 3 sin 3 cos

8
t t t t    4. 

 22 2

s

s a
Ans.

1 sin
2

t at
a

Find the Laplace transform of the following.

5.    0
axe J bx      Ans.   2 2 2

1

2s as a b  
6.  0xJ ax Ans.

 3 / 22 2

s

s a
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932 Laplace Transformation

7.  1xJ x Ans.  3 / 22

1

1s 
Find the inverse Laplace transform of the following by residue method:

8.   
1

1 2s s  Ans.  e–t – e–2t             9.
  2

1
1 1s s 

          Ans.  1 sin cos
2

te t t 

10.     2

4 5
2 1
s

s s


 
            Ans. 21 13

3 3
t t tte e e  11.1.

   2 2

2
1 1s s 

Ans.  1 coste t t 

12.
cosh ,0 1

cosh
x s x

s s
                             Ans.      2 22 1 π

4

1

14 1. cos π 1
π 2 1 2

n n t

n

e n x
n

 



      


13.  
sinh ,

sinh
x s

x s
                           Ans.

  2 2

1

12 . .sin π
π

n
n t

n
x e n x

n








 

14. Prove that  
2

1 41 .
π

aa s
teL e

s t

 
 

 
  

15. se                             Ans.
13
421 .

2 π
tt e



13.33 HEAVISIDE’s  Inverse Formula of   
 
 

F s
G s

If F (s) and G (s) be two polynomials in s. The degree of F (s) is less than that of G (s).
Let  1, 2,3...........n be n roots of the equation G (s) = 0

Inverse Laplace formula of   
 

F s
G s

 is given by
 
 

 
 

1

1 '
i

n
i t

i i

F s F
L e

G s G







    
  



Example 65.  Find 
2

1
3 2

2 5 4
2

s sL
s s s

   
 

  
Solution. Let F (s) = 2s2 + 5s – 4
and  G(s) = s3+s2 –2s=s(s2+s –2) = s(s+2)(s –1)

G (s) = 3s2 + 2s – 2
 G (s) = 0 has three roots, 0, 1, –2.

or = 0, 2= 1, 3 = –2

By Heaviside’s Inverse formula 
 
 

 
 

1

1 '
i

n
i t

i i

F s F
L e

G s G







    
  


 
 

 
 

 
 

 
 

 
 

 
 

31 21 2 3 0 2

1 2 3

0 1 2
' ' ' ' 0 ' 1 ' 2

tt t t tF F F F F F
e e e e e e

G G G G G G
   

  


     


 0 2 264 3 2
2 3 6

t t t te e e e e 
     


Ans.

Exercise 13.19
Using Heaviside’s expansion formula, find the inverse Laplace transform of the following:

1. 2

1
3 2

s
s s


 

         Ans.  22 3t te e               2.     1 2 3
s

s s s     Ans. 2 31 32
2 2

t t te e e 

3.    
2 3

2 3 4
s

s s s


  
Ans 2 3 47 119

2 2
t t te e e  4.

2

3 2

11 2 5
2 3 3 2

s s
s s s

 
  

    Ans. 2 2 232 5.
2

t
t te e e  
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14
Integral Transforms

14.1 INTRODUCTION
Integral transforms are used in the solution of partial differential equations. The choice of a

particular transform to be used for the solution of a differential equations depends upon the nature
of the boundary conditions of the equation and the facility with which the transform F (s) can be
converted to give f (x).
14.2 INTEGRAL TRANSFORMS

The integral transform F(s) of a function f (x) with the Kernel k (s, k) is defined as

I f x F s f x k s x dx
a

b
[ ( )] ( ) ( ) ( , ) .  z

For example
1.  Laplace transform with the kernel k (s, x) = e–s x

          L f x F s f x e dxsx[ ( )] ( ) ( ). 


z0
2. Fourier Complex transform with the kernel k (s, k) = e isx

          F f x F s f x e dxi s x[ ( )] ( ) ( ) . 


z1
2

f x F s e dxi s x( ) ( )



z1

2 (Inversion formula)

3. Fourier Sine transform with the kernel k (s, x) = sin sx

         F f x F s f x sx dxs [ ( )] ( ) ( ) sin . 
z2
0

   f x F s sx dss( ) ( ) sin
z2

0
(Inversion formula)

4. Fourier Cosine transform with the kernel k (s, x) = cos sx

         F f x F s f x sx dxc [ ( )] ( ) ( ) cos . 
z2

0

    f x F s sx dsc( ) ( ) cos
z2

0
(Inversion formula)

933
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934 Integral Transforms

5. Hankel Transform with the kernel (k, s) = x J sxn ( )

H f x F s f x x J sx dxn[ ( )] ( ) ( ). ( ) 
z0

     f x s F s J sx dxn( ) ( ) ( )
z0 (Inversion formula)

6. Hilbert Transform with the kernel k s x
s x

( , ) 

1

    F s f x
s x

dx( ) ( )




z1


     f x F s
s x

ds( ) ( )





z1


(Inversion formula)

7. Mellin transform with the kernel k s x x s( , )  1

M f x F s f x x dxs[ ( )] ( ) ( ). .  
z 1

0

The students have already done “Laplace transform” and also learnt to solve the ordinary
differential equations by using Laplace transforms.

Integral transforms are used in solving the partial differential equation with boundary
conditions.

List of Formulae of Fourier Integrals

1. Fourier Integral for f (x) is f x f t u t x du dt( ) ( ) cos ( ) 


 zz1
0

2. Fourier Sine Integral for f (x) is f x f t ut ux dudt( ) ( ) sin sin
 zz2

00

3. Fourier Cosine Integral for f (x) is f (x) = 
2

00
f t ut ux dudt( ) cos cos

 zz
14.3 FOURIER INTEGRAL THEOREM

It states that f x f t u t x dt d u( ) ( ) cos ( ) 


 zz1
0

Proof. We know that Fourier series of a function f (x) in (– c, c) is given by

     f x
a

a n x
c

b n x
cn

n
n

n

( ) cos sin  








 0

1 12
  ... (1)

where a0, an and bn are given by

        a
c

f t dt a
c

f t n t
c

dt
c

c
n

c

c
0

1 1
 

 z z( ) , ( ) cos 

        b
c

f t n t
c

dtn
c

c


z1 ( ) sin 

Substituting the values of a a bn n0 , and  in (1) we get

f x
c

f t dt
c

f t n t
c

n x
c

dt
c

c

c

c

n

( ) ( ) ( ) cos cos 
 



z z1
2

1

1

 
 + 

1

1 c
f t n t

c
n x

c
dt

c

c

n

( )sin sin 




 z
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= 
1
2

1

1c
f t dt

c
f t n t

c
n x

c
n t
c

n x
c

dt
c

c

n
c

c
( ) ( ) cos cos sin sin






z  z L
NM

O
QP

   

= 
1
2

1

1c
f t dt

c
f t n

c
t x dt

n
c

c
( ) ( ) cos ( ) 





 z 

= 1
2

1 2
1c

f t n
c

t x dt
c

c

n




z  
R
S|
T|

U
V|
W|

( ) cos ( ) ... (2)

Since cosine functions are even functions i.e., cos ( )  = cos   the expression

1 2
1

   








 cos ( ) cos ( )n
c

t x n
c

t x
n n

 

Therefore, (2) becomes

          f x
c

f t n
c

t x dt
c

c
( ) ( ) cos ( ) 

R
S|
T|

U
V|
W|



z 1
2



   = 1
2

 f t
c

n
c

t x dt
c

c
( ) cos ( )




z  
R
S|
T|

U
V|
W|

... (3)

Let us now assume that c increases indefinitely, so that we may write 
n
c

u
  and 


c

du .

This assumption gives

lim cos ( )
c c

n
c

t x







R
S|
T|

U
V|
W| 

 = cos ( )u t x du


z
           = 2

0
cos ( )u t x du

z ... (4)

Substituting in (3) from (4), we obtain

          f x f t u t x du dt( ) ( ) cos ( ) RST
UVW

 z z1
2

2
0 ...(5)

Thus           f x f t u t x du dt( ) ( ) cos ( ) 


 zz1
0

Proved.

Note. We have assumed the following conditions on f (x).
(i) f (x) is defined as single-valued except at finite points in (– c, c).

(ii) f (x) is periodic outside (– c, c) with period 2c.
(iii) f (x) and f (x) are sectionally continuous in (– c, c).

(iv) | ( ) |f x dx


z  converges, i.e.,  f (x) is absolutely integrable in ( , )  .

14.4 FOURIER SINE AND COSINE INTEGRALS

          f x ux du f t ut dt( ) sin ( ) sin
 zz2

00
(Fourier Sine Integral)

          f x ux du f t ut dt( ) cos ( ) cos
 zz2

00
(Fourier Cosine Integral)
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936 Integral Transforms

Proof. We know that
  cos ( ) cos( )u t x ut ux  

or cos ( ) cos cos sin sinu t x ut ux ut ux  
Then equation (5) of article 14.3, can be written as

       f x f t ut ux ut ux du dt( ) ( ) (cos cos sin sin ) 


 zz1
0

       
0 0

1 1( ) ( ) cos cos ( ) sin sinf x f t ut dx du dt f t u t ux du dt
 

   

 
      ...

(6)
Case 1. When f (t) is odd.

    f (t) cos u t is odd hence f t u t u x d u dt( ) cos cos


 zz 
0

0

For odd function

For even function

f x dx

f x dx f x dx
a

a

a

a

a

( )

( ) ( )





L

N

MMM

O

Q

PPP




z
zz

0

2
0

From (6) we have

 f x u x d u f t u t dt( ) sin ( ) sin
 z z2

0 0
... (7)

The relation (7) is called Fourier sine integral.
Case 2. When f(t) is even.

   f (t) sin u t is odd. f t u t u x d udt( ) sin sin


 zz 
0

0

   f (t) cos ut is even.
From (6) we have

f x ux d u f t u t dt( ) cos ( ) cos
 zz2
00

... (8)

The relation (8) is known as Fourier cosine integral.
14.5 FOURIER’S COMPLEX INTEGRAL

f x e du f t e dtiux iut( ) ( ) 








z z1

2

Proof.  We know that f x dx
a

a
( )

z  0  if f (x) is odd function.

 sin ( )u t x du 


z 0 [since sin u (t – x) is odd.]

Obviously we have
1

2
0


f t dt u t x du( ) sin ( )







z z  

or
i f t dt u t x du

2
0


( ) sin ( )







z z    (Multiplying by i) ... (9)

On adding (5) and (9) we have

f x f t u t x dudt i f t dt u t x du( ) ( ) cos ( ) ( ) sin ( )   














zz zz1
2 2 
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     = 
1

2
f t dt u t x i u t x du( ) [cos ( ) sin ( )]  







 zz
      = 

1
2 






z zf t dt e duiu t x( ) ( )

or f x e du f t e dtiux iut( ) ( ) 







z z1
2

... (10)

Relation (10) is called Fourier’s Complex Integral.
Example 1. Express the function

f(x)
1 when |x| 1
0 when|x| 1





RST
as a Fourier integral. Hence evaluate

sin cos x d
0

 



z (Mysore 1975S)

Solution. The Fourier Integral for f (x) is

f x f t t x dt d( ) ( ) cos ( ) 


 zz1
0

 

     = 1 1
1

1

0
 cos ( ) ( ( ) )t x dt d f t 



 zz since

      = 
1

0 1

1






sin ( )t x dL
NM

O
QP




z

      = 
1 1 1

0
 




sin ( ) sin ( )  z x x d By sin C + sin D formula

Thus f x x d( ) sin cos


z2
0

 


 Ans.

or
sin cos ( ) 




x d f x
0 2

z 

or
sin cos | |

| |

 



x

d x

x0
2

1

0 1

z  



R
S|
T|

for

for

For |x| = 1, which is a point of discontinuity of f (x), value of integral = 
 / 2 0

2 4


 Ans.

Example 2. Find the Fourier sine integral for

f x e x( )   ( 0) 

hence show that 
  

 


2
e sin x dx




z 2 20
(Gulbarga 1996)

Solution. The Fourier sine transform of f (x) is

      f x x d f t t dt( ) sin ( ) sin
 z z2

0 0
   ... (1)
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938 Integral Transforms

Putting the value of f (x) in (1) we get

       e x d e t dtx t





 z z 


  

2
0 0

sin sin

  = 2
0 2 2 0

 
 

   


sin
( )

sin cosx d e t t
t  z 

 
L
NMM

O
QPP

b g

  = 
2 0

0 2 2
 


 

sin x d
z 



L
NMM

O
QPP

       e x dx



z


 
 


2

2 20

sin      or    
 



2 2 20
e x dx




z sin . Proved.

Example 3. Using Fourier cosine integral representation of an appropriate function, show that

   
cos w x
k w

dw e
2k2 2

kx




 z0  , x 0,k 0. 

Solution. We know that Fourier integral is

      f x u x du f t u t dt( ) cos ( )cos
 zz2

00
Putting the value of f (t) and replacing u by w we get

       e wx dw e wt dtk x k t 


 zz2
00

cos cos

  = 
2

2 2 00
cos cos sinw x d w e

k w
k wt w wt

kt 


 

L
NMM

O
QPPz l q

  = 2 0 2
0 2 2 2 20 

cos cosw x d w k
k w

k w x d w
k w

 z z


L
NM

O
QP  

or         cos wx
k w

e
k

kx

2 20 2


 z  Proved.

14.6 FOURIER TRANSFORMS
We have done in Article 14.5 that

      f x e du f t e dtiux iut( ) ( ) 







 zz1
2

  = 
1

2
e ds f t e dtisx ist







z z ( ) ( )u s   ... (1)

Putting f t e dt F sist( ) ( )


z   in (1) we get ... (2)

or      f x e F s dsisx( ) . ( ) 



z1
2

... (3)

In (2) F (s) is called the Fourier transform of f (x).
In (3) f (x) is called the inverse Fourier transform of F (s).

For reasons of symmetry, we multiply both F (x) and F(s) by 
1

2
 instead of having the

factor 
1

2
 in only one function. Thus, we obtain the definition of Fourier transforms as
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1( ) ( )
2

istF s f t e dt





 

1( ) ( )
2

isxf x F s e ds


 


 

14.7 FOURIER SINE AND COSINE TRANSFORMS
From equation (7) of Article 14.4 we know that

 f (x) = 0 0

2
sin ( )sinsxds f t st dt


 

    (s = u)

0

2( ) sin ( )f x sx ds F s



  ... (1)

0

2( ) ( )sinF s f t st dt



  ... (2)

In equation (2), F (s) is called Fourier sine transform of f (x).
In equation (1), f (x) is called the Inverse Fourier sine transform of F (s)
From equation (8) of Article 14.4, we have

0

2( ) cos ( )f x sx F s dx



  ... (3)

0

2( ) ( )cosF s f t st dt



  ... (4)

In equation (4), F (s) is called Fourier cosine transform of F (x).
In equation (3), f (x) is called the inverse Fourier cosine transform of F (s).
Example 4. Find the Fourier transform of

1 for | x | a
f(x)

0 for | x | a


 


Solution. The Fourier transform of a function f (x) is given by
1( ) ( ).
2

isxF s f x e dx





 

Substituting the value of f (x), we get

1 1 1( ) 1.
( )2 2

aisxa isx ias ias

a
a

eF s e dx e e
is is 






 
       

 


     = 1
2

2
2

1
2

2 2
  s

e e
i

sa
s

sa
s

ias ias
. sin sin

 


Ans.

Example 5. Find the Fourier transform of
21 x if | x | 1.

f(x)
0 if | x | 1.

  
 



Solution.
21 1 1

( )
0 | | 1
x x

f x
x
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The Fourier transform of a function f (x) is given by

F s f x e dxisx( ) ( ). .


z1
2

... (1)

Substituting the values of f (x) in (1), we get

F s x e dxisx( ) ( ) 
z1

2
1 2

1

1



Integrating by parts, we get   1 2 31 ' '' ...uv uv u v u v
 

   
 

F s x e
is

x e
is

e
is

isx isx isx
( ) ( ) ( )

( )
( )

( )
     

L
NMM

O
QPP

1
2

1 2 22
2 3

1

1



      = 
1
2

2 2 22 3 2 3
   
L
NMM

O
QPP

e
s

e
is

e
s

e
is

is is is is

      = 1
2

2 2
2 3

   L
NM

O
QP

 

s
e e

is
e eis is is is( ) ( )

      = 1
2

2 2 2 22 3
 L
NM

O
QPs

s
is

i s( cos ) ( sin )

       = 
1
2

4
3 s

s s s[ cos sin ]  Ans.

Example 6. Find the Fourier sine and cosine transforms of f x e ax( )   .
Solution. The Fourier sine transform of f (x) is given by

F s f x sx dx( ) ( )sin
z2

0
Putting the value of f (x) we get

F s e sx dxax( ) sin 
z2
0

     = 
2

2 2 0
e

a s
a sx s sx

ax



 [ sin cos ]

       





2
2 2 0
e

a s
a sx s sx

ax
[ sin cos ]

     = 
2 0 1 2

2 2 2 2 
 




L
NM

O
QP  a s

s s
a s

Ans.

The Fourier cosine transform is

          F (s) 


z2
0

e sx dxax cos

  1 2 31 ' '' ...uv uv u v u u
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L
NMM

O
QPP

 


L
NM

O
QP

 
2 2 02 2

0
2 2 

e
a s

a sx s sx a
a s

ax
{ cos sin }

       = 
2

2 2
a

a s
Ans.

Example 7. Find Fourier sine transform of 
1
x

.

Solution. F
xs
1F

HG
I
KJ 

z2
0

sin sx
x

dx

      
z2

0



sin

s

d
s

Putting s x =   so that s dx = d

          F
HG

I
KJ 

z2 2
2 20







 sin d Ans.

Example 8. Find the Fourier cosine transform of
  f (x) = e–2x + 4 e–3x

Solution. The Fourier cosine transform of f (x) is given by

F s f x sx dx( ) ( )cos
z2
0

Putting the value of f (x) we get

 F (s)  


 z2 4
0

2 3


( )cose e sx dxx x

         = 
2
 0

2

0

32 4





z ze sx dx e sx dxx xcos cos


 z 


 



F
HG

I
KJe bx dx e

a b
b bx a bxax

ax
cos [ sin cos ]2 2

       


 


L
NM

O
QP  




L
NM

O
QP

2 2
4

4 3
9

2 2 1
4

6
92 2 2 2 s s s s

Ans.

Example 9. Find the Fourier sine transform of

f x e
x

ax
( ) .



Solution. The sine transform of the function f (x) is given by

F s f x( ) ( )
z2

0
 sin sx dx

Substituting the value of f (x), we get

F s e
x

sx dx
ax

( ) sin
 z2

0
Differentiating both sides w.r.t. ‘s’ we get

       
d
dx

F s e
x

x sx dx
ax

[ ( )] ( cos )
 z2

0
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z2 2

0 2 2 
e ax dx a

s a
ax cos

Integrating w.r.t. ‘s’ we get

     F s a
s a

ds s
a

c( ) tan


 z 2 2
2 2

1

 
For s = 0,      F (s) = 0
Putting these values in the above equation we get

          0 = 0 + c   or   c = 0   F s s
a

( ) tan 2 1


Ans.

Example 10. Find the Fourier sine and cosine transforms of

    
1, 0

( )
0,

x a
f x

x a
 

  
Solution. Fourier sine Transform

      F(s)  
z z2 2 1

0 0 
f x sx dx sx dx

a
( )sin sin

      F(s)  LNM
O
QP   L

NM
O
QP

2 2 1

0 
cos cossx

s
as

s s

a

Fourier cosine transform

      F(s)   
L
NM

O
QP

z z2 2 1 2
0 0 0  

f x sx dx sx dx sx
s

a a

( ) cos cos sin

2 sin as
s




Ans.

Example 11. Find the Fourier cosine transform of

         x for 0 x 1
2

 

        1 – x for
1
2

x 1 

        0 for x > 1.

Write the inverse transform.
Solution. Fourier  cosine transform

       F(s) 
z2
0

f x sx dx( ) cos

  z z2 2 1
0

1 2

1 2

1

 

/

/
cos ( ) cosx sx dx x sx dx

 
F

HG
I
KJ

L
NM

O
QP

   
L

NM
O
QP

2 2 1 12
0

1 2

2
1 2

1

 
x sx

s
sx

s
x sx

s
sx

s
sin cos ( ) sin ( ) ( cos )

/

/

  L
NM

O
QP    L

NM
O
QP

2 1
2

2 2 1 2 1
2

2 2
2 2 2 2 

sin / cos / cos sin / cos /s
s

s
s s

s
s

s
s

s
s

   L
NM

O
QP

2 2 2 1
2 2 2

cos cos /s
s

s
s s Ans.

( )f x
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Example 12. Find the Fourier transform of the function

,

0

x1 a x 0
a
xf (x) 1 0 x a
a

otherwise

    

   





(U.P., III Semester, Summer 2002)

Solution. Fourier tranform of f (x) is given by

F s( )  


z1
2

f x e dxisx( )

        F
HG

I
KJ  F

HG
I
KJz z1

2
1 1

2
1

0

0 a

isx a isxx
a

e dx x
a

e dx

        F
HG

I
KJ   FHG

I
KJ 

L
NMM

O
QPP

 F
HG

I
KJ  FHG

I
KJ 

L
NMM

O
QPP

1
2

1 1 1
2

1 1
2

0

2
0 

x
a

e
is a

e
s

x
a

e
is a

e
s

isx isx

a

isx isx a

         


L
NMM

O
QPP
 


 

L
NMM

O
QPP

1
2

1 1 1 1 1
2

1 1 1 1
2 2 2 2 is a s a

e
s a

e
s is a s

isa isa

        2 2
1 2 1
2

isa isae e
as as

      

       2 2 2
1 2 2 1 2cos [1 cos ]
2 2

sa as
as as as
       

        
2

2
2

2

2 2
2

2
2

2

2 as
as

as

as
sin

sin
Ans.

Example 13. Find Fourier sine and cosine transform of (a) xn – 1. (b) 1
x

.

Solution. (a)    Fs(x
n–1)  


z2

0

1


sin sx x dxn

  F xc
n( )1  


z2

0

1


cos sx x dxn

    Fc(x
n–1) + Fs(x

n–1)  


z2
0

1


(cos sin )sx i sx x dxn

    


z2
0

1


e x dxisx n

     
F
HG

I
KJ 

F
HG

I
KJ




z2
0

1


e t

is
dt
is

t
n

Putting   isx = – t,

  x = 
t
is

,

dx dt
is

 

L

N

MMMMMM
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 z2 1 1
0

1

 ( )
( )

is
e t dtn

n t n

 L  L2 22

 
( )

( )
( )i

i s
n i

s
n

n

n n

n

n


F

HG
I
KJ L


F

HG
I
KJ L2 2 2 2 2 2



 



 cos sin cos sini n

s

n i n n

s

n

n n

Equating real and imaginary parts we get

F x n
s

n
c

n
n( ) cos 
L1 2

2


F x n
s

n
s

n
n( ) sin 
L1 2

2


Ans.

(b)           n = 
1
2

F
x

s
s s

c
1 2

1
2

4
2 1

2
1

1
2

F
HG

I
KJ   





cos

          F
x

s
s s

s
1 2

1
2

4
2 1

2
1

1
2

F
HG

I
KJ   





sin Ans.

Example 14. Find the complex Fourier transform of dirac delta function ( ).t a

Solution. F t a{ ( )}   


z1
2

e t a dtist ( )




z1
2

1


Lt
0h

a

a h
ist

h
e dt


F
HG

I
KJ


1
2

1


Lt
0h

ist

a

a h

h
e
is


F

HG
I
KJ

1
2

1


Lt
0h

isa
ish

e e
ish







e eisa

2
1 1

0 



since Lt Ans.

Note. Dirac delta function  ( )t a  is defined as

 ( ) ( )t a I h t a
h

  

Lt

0
 where

        I (h, t – a) = 
1
h

for   a < t < a + h

= 0 for   t < a and t > a + h Ans.
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Example 15. Show that

(a) F x f x d
ds

F ss c[ ( )] ( )  (b) [ ( )] ( )c s
dF x f x F s
ds



and hence find Fourier cosine and sine transform of xe.–ax

Solution. (a)   Fc (s) = 
2

0

z f x sx dx( ) cos

d
ds

F s x f x sx dxc ( ) ( )sin 
z2

0

 
2


F x f xs { ( )}

(b)    Fs (s) = 
0

2 ( )sinf x sx dx


 

           
d
ds

F ss ( ) 
z2

0
x f x sx dx( ) cos


2


F x f xc { ( )}

(c)        F xec
ax( )  d

ds
F es

ax( )




L
N
MM

O
Q
PP

d
ds

s
a s

2
2 2 (Using example 6)


 








2 2 22 2

2 2 2

2 2

2 2 2 
( ) ( )

( ) ( )
a s s s

a s
a s

a s

(d)         ( )ax
sF xe    



L
N
MM

O
Q
PP

d
dx

F e d
ds

a
a sc

ax( ) 2
2 2

(Using example 6)




2 2
2 2 2

as
a s( )

Ans.

Example 16. Find Fourier cosine transform of e a x 2 2

 and hence evaluate Fourier sine

transform of xe a x 2 2
.

Solution. F e e sx dsc
a x a x( ) cos


 z2 2 2 22

0

 = Real part of 2
0

2 2




z e ea x isx ds

 = Real part of 
2

0

2 2




 z e dsa x isx
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1

2

2

24

a
e

s
a   (Refer example)

We know that

          F x f xs ( ( )  = 
d
ds

F f xc ( )

       F xes
a x( ) 2 2  =  d

ds
F ec

a x( )
2 2

f x e a x( )   2 2

 
d

ds a
e

s
a1

2

2

24  = 
1

2 2

2

24
2a

e s
a

s
a




1

2 23
4

2

2

a
e

s
a Ans.

EXERCISE  14.1

1. Express f (x) 
L
NM

 


1
0

0for
for

x
x




 as a Fourier sine integral and hence evaluate

              
0

1z  cos
sin




 x d Ans.

4

2. Find the Fourier’s cosine integral of the function e–ax. Hence show that

              2 20

cos , 0
21

xx d e x
  

  
  Ans. 2 20

2 cos .a x d
a

 


  
3. Show that the Fourier transform of

              f (x) = 0 for x  

                    = 1 for   x

                    = 0 for x  

is 
1
2

 e e
is

i s i sF
HG

I
KJ

4. Find the Fourier transform of f (x) if

                  
, | |

( )
0, | |
x x a

f x
x a


  

Ans.
1
2

2
2

i
s

as as as( cos sin )

5. Show that the Fourier transform of
             a – | x | for | x | < a
             0      for | x | > a > 0

is 
2 1

2
 cos as

s
. Hence show that 

0

2
2

z F
HG

I
KJ 

sin /t
t

dt 

( )f x 
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6. Show that the Fourier transform of

f x a
x a

x a
( ) | |

| |
 



R
S|
T|

2
2
0

 for

for

is 
sin sa

sa

7. Show that the transform of e
x


2

2  is e
s


2

2  by finding the Fourier transform of e aa x 
2 2

0, .

8. Show that the Fourier transform of e
x 2

2  is self-reciprocal.

9. Find Fourier transform of e a x | |  is a > 0. Ans.
2

2 2
a

a s

10. Find Fourier transform of 
1
| |

.
x

11. Find the Fourier tranform of f (x) = ei kx, a < x < b
                                        = 0,   x < a and x > b

Ans.
i
k s

e ei k s a i k s b

2 ( )
( ) ( )


 

12.  Find the Fourier sine transform of e– | x |. Hence evaluate

0 21

z 

x mx
x

dxsin . Ans.
s
s

e m

1 22
, 

13. Show that the  Fourier sine transform of

f x
x

x
x
x
x

( )  
R
S|
T|
2
0

for 0 < <  1
for 1 < <  2
for         > 2

is 2 sin s (1 – cos s) / s2.

14. Show that the Fourier sine transform of x
x

as e as

1 22
is



15. Show that the Fourier cosine transform of 
1

1 2 x  is 

2

e s

16. Find the sine and cosine transforms of e–ax (a > 0) Ans.
s

a s
a

a s2 2 2 2 
,

17. Find the Fourier sine and cosine transform of cosh x – sinh x
18. Find the Fourier sine and cosine transform of ae bex x   ,  , . 0

Ans.
as

s
bs

s
a

s
b

s2 2 2 2 2 2 2 2


 


 








,

14.8 PROPERTIES OF FOURIER TRANSFORMS

(1)  LINEAR  PROPERTY.  I f F1(s) and F2(s) are Fourier transforms of f1(x) and f2 (x)
respectively, then

F af x b f x a F s b F s[ ( ) ( )] ( ) ( )1 2 1 2  
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where a and b are constants.

We know that F s1( ) 1
1

( )
2

i s xe f x dx



 




and           F s2 ( ) 2
1 ( )
2

i s xe f x dx





 

    F af x b f x[ ( ) ( )]1 2  = 1 2
1

( ) ( )
2

i s xe af x b f x dx



  




        1 2
1

( ) ( )
2

isx isxa e f x dx b e f x dx
 

 
 


 

         aF s bF s1 2( ) ( ) Proved.
(2) CHANGE OF SCALE PROPERTY

If F(s) is the complex Fourier transform of f (x), then

    F {f (a x)} = 
1
a

F s
a

F
HG

I
KJ

Proof. We know that F (s) = 
1

( )
2

i s xe f x dx





    F {f (a x)} = 1
( )

2
i s xe f a x dx




 Put ax = t   dx = 

dt
a

        
1

( )
2

t
i s

a dt
e f t

a








        
1 1

( )
2

s
i t

ae f t dt
a

 
   







       = 
1
a

F s
a

F
HG

I
KJ Proved.

(3) SHIFTING  PROPERTY
If F (s) is the complex Fourier transform of f (x), then

   F f x a e F sisa{ ( )} ( ) 

Proof. F s e f x dxi s x( ) ( )


z
  F f x a{ ( )}

1
( )

2
i sxe f x a dx





 

 [Put x – a = t,  so that dx = dt]

        
( )1

( ) ( )
2 2

isa
is t a iste

e f t dt e f t dt
 



 

 
 
 

       = eisa F (s) Proved.
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(4) F e f x F s aiax ( ) ( )o t  

Proof.   F e f xi a x{ ( )} ( )1 1
( ) ( )

2 2
iax i s x i s a xe f x e dx e f x dx

  
 

 
 
 

          = F (s + a) Proved.
(5) MODULATION  THEOREM

If F (s) is the complex Fourier transform of f(x), then

           F f x ax{ ( )cos }    
1
2

[ ( ) ( )]F s a F s a

Proof. We know that F (s) 


z1
2

e f x dxi s x ( )

           F {f (x) cos ax} 1
( )cos

2
i s xe f x ax dx









         
1

( )
22

i a x i a x
i s x e e

e f x dx












         
1 1 1 1

( )
2 22 2

i s x iax i s x i a xe f x e dx e e dx
  
 

 
 
 

         ( ) ( )1 1 1 1
( ) ( )

2 22 2
i s a x i s a xe f x dx e f x dx

  
 

 
 
 

            
1
2

1
2

F s a F s a( ) ( )

            
1
2

[ ( ) ( )]F s a F s a Proved.

(6) If F {f (x)} = F (s), then F {xn f (x)} = ( ) ( ).i d
ds

F sn
n

n

Proof. We know that

  
1

( ) ( )
2

isxF s e f x dx






 ... (1)

Differentiating (1) w.r.t. s both sides, n times, we get

         
d F s

ds

n

n
( ) 1

( ) ( )
2

n isxix e f x dx








           


z( ) ( )i x e f x dxn n i s x1
2

          ( ) ( ( ))i F x f xn n

     F x f xn( ( ))  ( ) { ( )}i d F s
ds

n
n

n

(7) F f x{ ( )}  is F s( )  if f (x)  0 as x  ± 

Proof.        F f x{ ( )}  


z1
2

e f x dxisx ( )
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z1
2

e d f x dxisx { ( )}

 1
( ) ( )

2
i s x i s xe f x e f x dx




   

1
0 ( )

2
isi s e f x dx




   


 is F s( ). Proved.

(8)   F f x dx F s
isa

xzRST UVW  
( )

( )
( )

Proof. Let      f1 (x)  zax f x dx( )   f x f x1 ( ) ( )

         F f x is F s is F f x{ ( )} ( ) ( ) ( ) { ( )}    1 1

  RST
UVWzis F f x dx

a

x
( )

  F f x dx
a

xzRST UVW( ) 



1

1( )
( )

is
F f xl q

             



1

( )
{ ( )}

( )
( )is

F f x
F s

is Proved.

Note. Fs (s) and Fc (s) are Fourier sine and cosine transforms of f (x) respectively.
Properties.

1. F af x bg x aF f x b F g xs s s{ ( ) ( )} { ( )} { ( )}  

2. F af x bg x aF f x b F g xc c c{ ( ) ( )} { { }} { ( )}  

3. F f a x
a

F s
as s{ ( )}  F

HG
I
KJ

1

4. F f a x
a

F s
ac c( )l q  F

HG
I
KJ

1

5. F f x ax F s a F s as c c( )sin [ ( ) ( )]   
1
2

6. F f x ax F s a F s ac s s{ ( )sin } [ ( ) ( )]   
1
2

7. F f x ax F s a F s as s s{ ( )cos } [ ( ) ( )]   
1
2

Proof of (5) : Fs {f (x) sin ax} = 
0

z f x( )  sin ax . sin sx dx

   
z1

2 0
f x s a x s a x dx( ){cos( ) cos( ) }

   L
NM

O
QP

 z z1
2 0 0

f x s a x dx f x s a x dx( )cos ( ) ( )cos( )
.
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= 
1
2

[ ( ) ( )]F s a F s ac c   Proved

14.9 CONVOLUTION
The Convolution of two functions f (x) and g (x) is defined as

       f x g x f x g x u du( )* ( ) ( ) ( ) 


z
Convolution  Theorem on Fourier Transform

The Fourier transform of the convolution of f (x) and g (x) is the product of their Fourier
transforms, i.e.,

    F f x g x F f x F g x[ ( )* ( )] [ ( )] [ ( )] 
Proof. We know that

       
1

( ) ( ) ( ) ( )* 2
f x g x f u g x u du




  


 ... (1)

Taking Fourier transform of both sides of (1), we have

F f x g x[ ( )* ( )]   L
NM

O
QP

zF f u g x u du( ) ( )

          
1 1

( ) ( )
2 2

i s xf u g x u du e dx
 

 

 
     

 

           1 1
( ) ( )

2 2
i s xf u du g x u e dx

 

 
 

 
 

          
1

{ ( ) ( )}
2

f u du Fg x u



   




      
1

( ) ( )
2

iusf u du e G s



 


 (using shifting property)

= 1
( ) ( )

2
iusG s f u e du









           G s F s( ) ( )
           F s G s( ) ( ) Proved.

By inversion

F F s G s f g F F s F G s    1 1 1{ ( ) ( )} * { ( )}* { ( )}
14.10   PARSEVAL’S IDENTITY FOR FOURIER TRANSFORMS

If the fourier transform of f (x) and g (x) be F (s) and G (s) respectively, then

(i) ( ) ( ) ( ) ( )F s G s ds f x g x dx
 

 
 

where G (s) is the complex conjugate of G(s) and g (x) is the complex conjugate of g(x)

(ii) 






z z[ ( )] | ( )|F s ds f x dx2 2

Proof. (i) 1[ ( ) ( ) ( ) ( )
2

i s xf x g x dx f x G s e ds ds
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Since
1( ) ( )
2

i s xg x G s e ds





 

       
1( ) ( ) ( ) ( )
2

i s xf x g x dx G s ds f x e dx
  

  
 

  

since 1
2 

z 
L
NM

O
QP

f x e dx F si s x( ) ( )  Fourier Transform

       


z G s F s ds( ) ( ) ... (1)

Putting g (x) = f (x) in (1) we get

       ( ) ( ) ( ) ( )F s F s ds f x f x dx
 

 
   

or            






z z[ ( )] [ ( )]F s ds f x dx2 2 Proved.

14.11 PARSEVAL’S IDENTITY FOR COSINE TRANSFORM

(i) 
2
 0 0

 z z  F s G s ds f x g x dxC C( ) ( ) ( ) ( )    (ii) 
2

0

2

0

2



 z z| ( )| | ( )|F s dx f x dxc

14.12 PARSEVAL’S IDENTITY FOR SINE TRANSFORM

(i) 


  
 z z 0 0

F s G s ds f x g x dxs s( ) ( ) ( ) ( )    (ii) 
2

0

2

0

2



 z zF s ds f x dxs ( ) ( )

Example. 17. Using Parseval’s identity, show that

0 2 21 4

z 


dx
x( )



Solution. Let f (x) = e–x so that Fc(s) = 
1

1 2 s
By Parseval’s identity for cosine transformation

         
2

0

2

0

2



 z z[ ( )] | ( )|F s ds f x dxc

   
2 1

1 20 2 2

2

0

2

0

2
2

0


 





 

z z z
  



L
NMM

O
QPP( )

| | | |
s

ds e dx e dx ex x
x

          
0 2

2
1

1
1
2 2 4

z 
 

( )s
ds  

Ans.

Example 18. Using Parseval’s identity, show that

0

2

2 21 4

z 


x dx
x( )



Solution. Let  f (x) = 
x

x 2 1
 so that Fs (s) = 


2

e s( )

By Parseval’s identity for sine transformation

         
2

0

2

0

2



 z zF s ds f x dxs ( ) ( )
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2 2

20 0

2
21

xx dx e ds
x

  

 

 F
HG

I
KJ
F
HG

I
KJ 



L
NMM

O
QPP




 

z2
4 2 2

2

0

2
2

0


 e ds es
s

 L
NM

O
QP 

 
2

0 1
2 4 Proved

Example 19. Using Parseval’s identity, prove that

0

z  



dt

(a t )(b t ) 2ab(a b)2 2 2 2


Solution. Let   f x e g x eax bx( ) , ( )  

Then     F s a
a s

G s b
b sc c( ) , ( )




2 2 2 2

By Parseval’s identity for Fourier cosine transformation
2

0 0

 z z F s G s ds f x g x dxc c( ) ( ) ( ) ( ) ... (1)

On substitution in (1), we get

2
0 2 2 2 2 0

 
 z z

F
HG

I
KJ 
F
HG

I
KJ  

a
a s

b
b s

ds e e dxax bx

2
0 2 2 2 2

z  

ab
a s

ds
b s( ) ( )




 z0 e dxa b x( )


 

L
NMM

O
QPP

  
e

a b

a b x( )

( )
0

 


L
NM

O
QP0 1

a b

0 2 2 2 2

z  
ds

a s b s( )( ) 



2

1
ab a b

0 2 2 2 2 2

z  



dt

a t b t ab a b( )( ) ( )


Proved

Example 20. Using Parseval’s identity, prove 
0

z F
HG

I
KJ 

sint
t

dt
2

2  .

Solution. By example we know that

if        f(x) = 
1
0

0for
for | |> > 0

| |x
x a
RST

then     F (s) 
2


sinas
s

Using Parseval’s identity

     






z z| ( )| | ( )|f t dt F s ds2 2
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z z F
HG

I
KJa

a
dt a s

s
ds( ) sin1 22

2



           2 2 2

a as
s

ds
F
HG

I
KJ

z sin

Putting  as = t, we get        

2

2 sin
2

t dt
a t a

a





 
 

    
 

 ,
dta ds dt ds
a

    

          a a t
t

dt 
F
HG

I
KJ

z sin 2

        
2

0

sin t dt
t

     
  Proved.

Example 21. Find the Fourier transform of

   
1 | | | | 1

( )
0 | | 1

x for x
f x

for x
 

  

and hence find the value of 
4

0

sint dt
t

  
 
  .

Solution.    F {f (x)} = 
1 ( )
2

i s xf x e dx


 

   
1

1

1 (1 | |) (cos sin )
2

x sx i sx dx


  
 

      
 z z1

2
1

2
1

1

1

1

1

 
( | | ) cos ( | | )sinx sx dx i x sx dx

(Even function)         (odd function)

     z2
2

1 0
0

1


( )cosx sx dx

    RST
UVW 

L
N
MM

O
Q
PPz2 1

0

1

0

1


( ) sin sinx sx

s
sx

s
dx

    
RST

UVW
L
N
MM

O
Q
PP 

F
HG

I
KJ

2 0 2 1
2

0

1

2 
cos cossx
s

s
s

Using Parseval’s identity, we get

      






z z| ( )| | ( )|F s ds f t dt2 2

         
2 1 1

2

4 1

1 2

 





z z
 

( cos ) ( | | )s
s

ds x dx
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4
1 1 2

2 1 2
0

2
2

4 1

1 2







z z F
HG

I
KJ

  
sin

( )

s

s
ds x x dx   (Odd function)

16 2 2 1
0

4

4 0

1 2



z z 
sin

( )

s

s
ds x dx  

F
HG

I
KJ 2

3
2
3

3

0

1

x x

Putting 
s x
2
 ,  we get

      
0

4

4 3

z 
sin x

x
dx 

Ans.

Example 22. Solve for f(x) from the integral equation

0


z f x sx dx e s( ) cos

Solution.              
0


z f x x dx e s( )cos ... (1)

Multiplying (1) by 
2


,  we get

     
2 2

0 


z f x sx dx e s( ) cos

          F f xc{ ( )}  2


e s

    f x( ) 
L
N
MM

O
Q
PP

 F ec
s1 2



           
L
N
MM

O
Q
PP


z2 2

0 
e sx dss cos

           0

2 cosse sx ds
 

 

           



L
NMM

O
QPP

 
2

1 2
0


e

x
sx s sx

s
{cos sin }

            


2 1
1 2 x

Ans.

Example. 23. Solve for f (x) from the integral equation

               0
f(x)sinsx dx

1
2
0

for
for
for

0 s <1
t s 2

s 2

z 
R
S|
T|


 


Solution. Multiplying by 
2


 both sides of the given equation, we get
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2

2 0 1

2 2 1 2

0 2

0





z 

 

 



R

S

|||

T

|||

f x sx dx

s

s

s

( ) sin

for

for

for

F f x

s

s

s

s ( ) 

 

 



R

S

|||

T

|||

2 0 1

2 2 1 2

0 2





for

for

for

      1( ) sf x F   (R.H.S.)

 z z2 4
0

1

1

2

 
sin sinsx ds sxds


F

HG
I
KJ 

F
HG

I
KJ

2 1 4 2
 

cos cos cosx
x

x x
x

   
2 1 2 2 2
x

x x x[ cos cos cos ]

f x
x

x x( ) ( cos cos )  
2 1 2 2


Ans.

Example 24. Find the function if its sine transform is 
e
s

s
.

Solution. Let Fs(f(x)) = 
e

s

as

Then,     f x e
s

sx ds
as

( ) sin
 z2

0
... (1)

      
df
dx

e sx dsas


z2
0

cos

 


2
2 2

a
a x

      f (x)  
z2

2 2
a dx

a x

             2 1


tan x

a
c ... (2)

At          x = 0,                 f(0) = 0 using (1)
Using this in (2),     c = 0

Hence, f (x) = 
2 1


tan . x

a

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Integral Transforms 957

Putting  a = 0, we get

       F
ss

 F
HG

I
KJ   1 1 2

2 2
 

Ans. ... (3)

Example 25. Prove (i) F {xn f (x)} = (– i)n d F s
ds

n

n
( )  and  (ii) F {f n (x)} = (– is)n F(s)

(iii) Hence solve for f (x) if 



z f t e dt xx r( ) ( )| |   is known.

Proof. (i) F (s) = 
1
2



z e f x dxisx ( )

     
1( ) ( ) ( )
2

n
n isx

n
d F s ix e f x dx
ds






 

          
1( ) ( ) ( )
2

n
n n isx

n
di F s x e f x dx
ds





 
 

       = F {xn f (x)}
(ii) Similarly,

     
1{ ( )} ( )
2

n
n isx

n
dF f x e f x dx
dx




 

 
      ( ) ( ).is F sn

Using integration by parts successively and making assumptions that f, f , .... f (n–1)   0 as
f(x)   ±  .

(iii)      | |1 1( ) ( ) ,
2 2

x tx f t e dt






 
    from the given equation

     f x e x( )*
| |

By convolution theorem,

     2
1 2 1( ) ( )
2 1

s F s
s

  
 

F s s s( ) ( ) ( ) 
1
2

1 2 

        
1
2

2[ ( ) ( ) ( )] s is s

 f (x) = 
1
2

1
2

 ( ) ( )x x   using the result derived in (ii)

EXERCISE 14.2

Using Parseval’s identity

1. Prove that 
0 2 2 22

1
2 z 


sin

( )
at

t a t
dt e

a

a
      2.   Evaluate 

0

21z F
HG

I
KJ

cos x
x

dx Ans. 

2
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14.13. FOURIER TRANSFORM OF DERIVATIVES
We have already seen that,

F f x is F sn n{ ( )} ( ) ( ) 

(i)  F u
x

is F u x s u u



F
HG

I
KJ    

2

2
2 2( ) { ( )} where  is Fourier transform of u w.r.t. x.

(ii)
2{ ( )} (0) ( )c sF f x f s F s   


    L.H.S.   
z2

0


f x sx dx( ) cos 
z2

0


cos { ( )}sx d f x

 
L
N
MM

O
Q
PP


z2

0
0


{ ( )cos } ( )sinf x sx s f x sx dx

 s F s fs ( ) ( )2 0


 assuming f x x( )  0 as 

(iii)          F f xs{ ( )} 
z2

0


sin [ ( )]sx d f x

 
L
N
MM

O
Q
PP


z2

0
0


{ ( )sin } ( ) cosf x sx s f x sx dx

( )cs F s 

(iv)         F f xc{ ( )}  
z2

0


cos [ ( )]sx d f x

   
L
N
MM

O
Q
PP


z2

0
0


{ ( )cos } ( )sinf x sx s f x sx dx

    
2 0


f s F f xs( ) { ( )}

   s F s fc
2 2 0( ) ( )


  assuming f (x),    f x x( ) 0 as

(v)         F f xs{ }( )  
L
N
MM

O
Q
PP

z2

0


sin [ ( )]sx d f x

   
L
N
MM

O
Q
PP


z2

0
0


f x sx s f x sx dx( )sin ( ) cosb g
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  s F f xc{ ( )}   
L
N
MM

O
Q
PPs s F s fs ( ) ( )2 0



  s F s s fs
2 2 0( ) ( )


 assuming f x f x x( ), ( ) .   0 as 

14.14. RELATIONSHIP BETWEEN FOURIER AND LAPLACE TRANSFORMS
Consider

      f t e g t t
t

st
( ) ( )

RS|T|





0
0
0

for 
for 

... (1)

Then the Fourier transform of f (t) is given by

           F f t{ ( )} 


z1
2

e f t dti s t ( )

( )

0

1 ( )
2

is x te g t dt



  0

1 ( )
2

pte g t dt



   where p = x –

is


1
2

L g t{ ( )}

 Fourier transform of f (t) = 
1
2

  Laplace transform of g(t) defined by (1).

14.15. SOLUTION OF BOUNDARY VALUE PROBLEMS BY USING INTEGRAL
TRANSFORM
Solution of heat conduction problems by Laplace transform.
Example 26. A semi-infinite solid x > 0 is initially at temperature zero. At time t = 0, a

constant temperature u0 is applied and maintained at the face x = 0. Find the temperature at any
point of the solid and at any time t > 0.

Solution. Let u (x, t) be the temperature at any point x and at any time t. The equation
governing the flow of heat in the solid is given by









u
t

c u
x

2
2

2 x > 0, t > 0 ... (1)

The initial and boundary conditions are
   u = 0 when t = 0 for all x x( ) 0 ... (2)
   u = u0when x = 0 for all t, ... (3)
   u is finite for all x and for all t, ... (4)

Multiplying equation (1) by e– st and integrate w.r.t. ‘t’ from 0 to  ,

        0

2

0

2

2
2

2

2





z z









u
t

e dt c u
x

e dt su c d u
dx

st st or ... (5)

( u  = Laplace transform of u)
Similarly Laplace transformation of equation (3) gives

su u 0    when  x = 0  or  u u
s

 0 ... (6)
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Equation (5) is an ordinary differential equation and its solution is given by

  
s sx x

c cu Ae Be


  ... (7)

According to condition (4), u is finite at x .
    A = 0

So (7) becomes u Be
s

c
x




Using (6) equation u u
s

 0  when x = 0, u0 / s = B

Thus (8) becomes u u
s

e
s

c
x


0

To get u from u , we invert the transformation.

   u u erf x
c t

 
F
HG

I
KJ0 1

2   Ans.

Solution of wave equation by Laplace transform
Example 27. An infinitely long string having one end at x = 0 is initialy at rest along

x-axis. The end x = 0 is given a transverse displacement f(t), when t > 0. Find the displacement of
any point of the string at any time.

Solution. Let y (x, t) be the displacement, then wave equation is










2

2
2

2

2
y

x
c y

t ... (1)

subject to the conditions

 y (x, 0) = 0 ... (2)




y
t

x( , )0 0 ... (3)

y (0, t) = f (t) ... (4) y (x, t) is bounded ... (5)
On taking Laplace transform of (1), we have

      L y
x

c L y
t




F
HG

I
KJ 




2

2
2

2

2

          s y sy x y
t

x c d y
dx

2 2
2

2
0 0 




( , ) ( , ) ... (6)

On putting y (x, 0) = 0, 




y
t

x( , )0 0  in (6), we get

           s y c d y
dx

d y
dx

s
c

y2 2
2

2

2

2

2

 
F
HG

I
KJor ... (7)

Laplace transform of (4), y s f s( , ) ( )0   at x = 0 ... (8)

On solving (7), we get y Ae Be
sx
c

sx
c 


... (9)

According to condition (5), y is finite at x  , this gives A = 0 so (9) becomes

   y Be
sx
c

 ... (10)
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Putting the value of y (0, s) = f (s) at x = 0 in (10), we get f (s) = B

Thus (10) becomes    y f s e
sx
c 


( )

To get y from y , we use complex inversion formula

    y
i

e f s ds
a i

a i t x
c

s
 

 

  F
HG

I
KJz1

2
( )

Hence     y f t x
c

 F
HG

I
KJ    Ans.

Example 28. A uniform rod of length l is at rest in its equilibrium position with the end
x = 0 fixed. At t = 0, a constant force F0 per unit area is applied at the free end. Determine the
motion of the rod for t > 0.

Solution. Let y (x, t) be the displacement in the rod. Equation of motion is given by










2

2
2

2

2
y

t
c y

x    l > x > 0,     t > 0 ... (1)

subject to the conditions

y (x, 0) = 0 ... (2)




y
t

x( , )0 0 ... (3)

y (0, t) = 0 ... (4)




y
x

l t
F
E

( , ) 0 ... (5)

where                        E = Young’s modulus.

Applying Laplace transform on (1) c d y
dx

s y2
2

2
2 ... (6)

Eq. (6) is an ordinary differential equation and its solution is

          y Ae Be
sx
c

sx
c 

 ... (7)

Putting y = 0, x = 0 from (2) in (7), we get
0 = A + B        or     B = – A, then (7) becomes

           y A e e
sx
c

sx
c 

F
HGG

I
KJJ


... (8)

Laplace transform of (3)  0Fd y
dx Es

   at x = l ... (9)

Differentiating (8) w.r.t. ‘x’ we get

       
sx sx
c cd y s sA e e

dx c c
 

  
 
 

... (10)

Putting the value of 
d y
dx  from (9) in (10), we have

        
F
ES

A s
c

e e
s
c

l s
c

l0  
F
HGG

I
KJJ


or A F

Es
c
s

e e
s
c

l s
c

l





0 1
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Putting the value of A in (8) we obtain

          y cF
Es

e e

e e

cF
E s

e

e

e

e

s
c

x s
c

x

sl
c

sl
c

s
c

x

sl
c

s
c

x

s
c

l



















0
2

0
2

2

2
1

1
.

 
F
HG

I
KJ


F
HG

I
KJ

L

N
MMM

O

Q
PPP





cF

Es
e e e

s
c

x sl
c

s
c

x l0
2

2 2 1

1 1
( )

 
F
HGG

I
KJJ

 
F
HGG

I
KJJ

L
N
MM

O
Q
PP

  c F
Es

e e e
s

c
x sl

c
s
c

x l0
2

2 2

1 1 ...
( )

           y c F
Es

e e e e
s

c
x sl

c
s

c
x l s

c
x l

    
L
N
MM

O
Q
PP

    0
2

2 2 2

1
( ) ( )

... ... (11)

Putting x = l in (11) we get
2 2 2 ( )

0
2 1 ....

s sl s l ll
c c ccF

x l y e e e
Es


   

     
  

... (12)

Applying inversion transformation on (12) we get

y
F c
E

t 0 , 0 2
 t l

c
... (13)

y F c
E

t F c
E

t l
c

  F
HG

I
KJ

0 02 2 ; 2 4l
c

t l
c

 

Putting          
2l
c
   in (13), we have

At 0 < t < 

At – 2A (t –  ),  where A = 
F C
E
0 ,   t 2 Ans.

Solution of Transmission Lines equations by Laplace Transformations.
Example 29. A semi-infinite transmission line, of negligible inductance and leakage per unit

length has its voltage and current equal to zero. A constant voltage v0 is applied at the sending
end (x = 0) at t = 0. Find the voltage and current at any point (x > 0) at any instant.

Solution. Let v and i be the voltage and current at any point x and at any time t.

     





 













O

Q

PPPP

v
x

Ri L i
t

i
x

c v
t

GV

On putting L = 0, G = 0 in above equations we get

        


 
v
x

Ri ... (1)

y
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i
x

c
v
t ... (2)

Conditions are v (x, 0) = 0 ... (3)
     i (x, 0) = 0 ... (4)
     v (0, t) = v0 ... (5)
v (x, t) finite for all x and t. ... (6)

Applying Laplace transform of (1) and (2), we get

        
dv
dx

Ri  ... (7)

         ( )d i c sv v
dx

    and v (x, 0) = 0  or 
d i c s v
dx

  ... (8)

Differentiating (7) w.r.t. ‘x’ we get 
2

2
d v d iR

dxdx
 

or         
d v
dx

R csv
2

2   ( )
dv
dx

csv F
HG

I
KJ

        
d v
dx

Rcsv d v
dx

Rcsv
2

2

2

2 0  or ... (9)

Laplace transform of (5) is v s v
s

( , )0 0 ... (10)

And Laplace transform of (6) is v x s( , )  remains finite as x . ... (11)
Equation (9) is an ordinary differential equation and its solution is

    v Ae BeRcs x Rcs x   .. (12)
As x v,  remains finite only when A = 0.

So (12) becomes     v Be Rcs x  ... (13)

Putting     v v
s

 0  and x = 0 in (13) we get 
v
s

B0 

Substituting the value of B in (13) we have

    v v
s

e Rcs x 0

On applying inversion transform we get

    v v L e
s

v erf c x Rc
t

Rcs x


L
N
MM

O
Q
PP 

L
N
MM

O
Q
PP




0
1

0
2

    v v x Rc u e du
t

Rcx
u z  

F
HG

I
KJ

0
0

3
2 4

2

2


... (14)

From (1)      1 vi
R x
 




... (15)

On differentiating (14) we get





 v

x
v x Rc

t e
Rcx

t0
3
2 4

2

2
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Putting the value of 



v
x  in (15), we obtain

     i
v x c

R
t e

Rcx
t 

 0
3
2 4

2

2


Ans.

Solution of partial differential Equations by Fourier Transform

Example 30. Solve 






     
2

2
2

2

2
0u

t
u

x
x t , ,  with conditions u (x, 0) = f(x),



u
t

 (x, 0) = g (x) and assuming u, 




u
x

0  as x  .

Solution. Taking Fourier transform on both sides of the differential equation,

d u
dt

s u
2

2
2 2  ( )  where u  is Fourier transform of u with respect to x,.

d u
dt

s u
2

2
2 2 0 

Auxiliary equation is m s2 2 2 0     m i s  

           u s t Ae Bei st i st( , )     ... (1)

Since        u (x, 0) = f (x) and 




u
t

x g x( , ) ( )0 ,

( ,0) ( ) and ( ,0) ( )duu s F s s G s
dt

   on taking transform.

Using these condition in (1),
          u s A B F s( , ) ( )0    ... (2)

        
du
dt

s i s A B G s( , ) ( ) ( )0    ...(3)

Solving       A F s G s
i s

 L
NM

O
QP

1
2

( ) ( )


     B F s G s
i s

 L
NM

O
QP

1
2

( ) ( )


Using these values in (1),

u s t F s G s
i s

e f s G s
i s

ei st i st( , ) ( ) ( ) ( ) ( )
 L

NM
O
QP  L

NM
O
QP

1
2

1
2 

 
... (4)

By inversion theorem, (4) reduces to,

u x t f x t g d
x t

( , ) ( ) ( )  
L
N
MM

O
Q
PP

z1
2

1



 





  
L
N
MM

O
Q
PP

z1
2

1f x t g d
x t

( ) ( )


 




Using the result

   F f t dt F s
is

x


zFHGG

I
K
JJ  

( ) ( )
( )

Ans.
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14.16  FOURIER TRANSFORMS OF PARTIAL DERIVATIVE OF A FUNCTION

        F u
x

s F uf




L
NMM

O
QPP
 

2

2
2 ( )  where F(u) is Fourier transform of u w.r.t. x.

        F u
x

s u s F us x s



L
NMM

O
QPP
 

2

2 0
2( ) ( ) (sine transform)

       F u
x

u
x

s F uc
x

c




L
NMM

O
QPP
 



L
NM

O
QP 



2

2
0

2 ( ) (cosine transform)

Proof. Let F [u (x, t)] be the Fourier transform of the function u (x, t), i.e.

      F u x t e u x t dxisx[ ( , )] ( , )


z
The Fourier transform of 





2

2
u

x  is given by

F u
x

e u
x

dxisx


L
NMM

O
QPP





z2

2

2

2 .

Integrating by parts, we have

F u
x

e u
x

ise u
x

dxisx isx



L
NMM

O
QPP









L
NM

O
QPz


2

2





 
L
NM

O
QPz




e u
x

i s e u is e udxisx isx isx( )2 Again integrating

  L
NM

O
QP

z0 0 2s e udxisx .
u u

x
x







 

L

N
MMM

O

Q
PPP

0 0,

when   

Thus F u
x

s F u x t


L
NMM

O
QPP
 

2

2
2 [ ( , )]

Similarly the Fourier sine transform of 




2

2
u

x  is given by

          F u
x

u
x

sx dxs



L
NMM

O
QPP





z2

2 0

2

2 sin

or           F u
x

s u x t s F u s ts x s




L
NMM

O
QPP
 

2

2 0
2[ ( , )] [ ( , )] (sine transform)

and            F u
x

u
x

s F u s tc
x

c



L
NMM

O
QPP
 




L
NM

O
QP 



2

2
0

2 [ ( , )] (cosine transform)
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Solution of heat conduction problems by Fourier sine Transforms
Example 31. Solve the equation

      








u
t

u
x

2

2 , x 0 t 0 ,

subject to the conditions
  (i)   u = 0 when x = 0, t > 0

 (ii)   u = 
1
0

0 x 1
x 1
 


RST when t = 0

(iii)   u (x, t) is bounded.

(Note. If u at x = 0 is given, take Fourier sine transform and if 



u
x  at x = 0 is  given, use

Fourier cosine transform.)
Solution. In view of the initial conditions, we apply Fourier sine transform

0 0

2

2

 z z







u
t

sx dx u
x

sx dxsin sin

           



  
zt

u sx dx s u s su
0

2 0sin ( ) ( ) u = 0 when x = 0

    
2 2or 0u us u s u

t t
 

   
 

      u Ae s t  2 ... (1)

     u u s t u x t sx dx 
z( , ) ( , ) sin
0

     u u s u x sx dx 
z( , ) ( , ) sin0 0

0

          u s sx dx sx
s

s
s

( , ) sin cos cos0 1 1
0 0

1

  
L

NM
O
QP 

z ... (2)

From (2) putting the value of u  (s, 0) in (1) we get 
1


cos s
s

A

 u s
s

e s t
 1 2cos  or

2

0

2 1 cos sins tsu e xs ds
s

      

Example 32. Solve 






 
u

dt
k u

x
for x t

2

2
0 0,  under the given conditions u = u0 at x = 0,

t > 0 with initial condition u (x, 0) = 0, x  0
Solution. Taking Fourier sine transforms

         F u
t

F k u
xs s




F
HG

I
KJ 




F
HG

I
KJ

2

2

d
dt

u k s u su t  
L
N
MM

O
Q
PP

2 2 0


( , )
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           ks u k su2
0

2


 where u  is the Fourier sine transform of

u.

      
du
dt

sk u s ku 2
0

2


This is linear in u .

 u e ku s e dtks t ks t2 22
0 z

 
2 0 2


u
s

e cks t ... (1)

Since, u (x, 0)= 0, u  (s, 0) = 0. Using this in (1)

0 2 0 


u
s

c    c u
s

 
2 0



      e u
s

eks t ks t2 22 10 
 e j           u u

s
eks t 

2 10 2

 e j
By inversion theorem,

     u x t u e
s

sx ds
ks t

( , ) sin .
F

HG
I
KJ

z2 10

0

2


Ans.

Example 33. Solve 






   

u
t

k u
x

for x t
2

2 0 0,  given the conditions

  (i) u (x, 0) = 0  for x  0  (ii) 



 
u
x

t a( , )0  (constant)

(iii) u(x, t) is bounded.

Solution. In this problem, 



u
x  at x = 0 is given. Hence, take Fourier cosine transform on

both sides of the given equation.

  F u
t

F k u
xc c




F
HG

I
KJ 




F
HG

I
KJ

2

2

         
du
dt

k s u u
x

t   



F
HG

I
KJ

2 2 0


( , )

    ks u ka2 2


using condition (ii)

          
du
dt

ks u ka 2 2


This is linear in u .  Therefore, solving

     ue kae dtks t ks t2 22
 z 

 
2

2

2
ka e

ks
c

ks t

    u s t a
s

c e ks t( , )   2
2

2


... (1)
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Since   u (x, 0) = 0 for    x  0.
  u s( , ) .0 0

Using this in (1), we get

   u s c a
s

( , )0 2 02  


          c a
s

 
2

2
Substituting this in (1)

   u s t a
s

e ks t( , )   2 12

2

 e j
By inversion theorem,

  u x t a e
s

sx ds
ks t

( , ) cos . 


 z2 1

0
2

2

 Ans.

EXERCISE  14.3

1. Use Fourier sine transform to solve the equation

                                   








u
t

u
x

2
2

2

Under the conditions u (0, t) = 0, u (x, 0) = e–x, u (x, t) is bounded.

Ans. u x t s
s

e sx dss t( , ) sin



z2

10 2
2


2. A tightly stretched string with fixed end points x = b and x = c is initially in a position given by

y = b sin 
 x
c

F
HG

I
KJ.  It is released from rest in this position.  Show by the method of Laplace transform

that the displacement y at any distance x from one end and at any time t is given by

                                    y b x
c

q
c

t sin cos . 

and y satisfies the equation 









2

2
2

2

2
y

x
a y

t
3. A string is stretched tightly between x = 0 and x = l and both ends are given displacement y = a sin pt

perpendicular to the string. If the string satisfies the differential equation

                









2

2 2

2

2
1y

x c
y

t
Show that the oscillations of the string are given by

                                  y a Pl
c

Px
c

Pl
c

pt 
F
HG

I
KJsec cos sin .

2 2
4. An infinite cable with resistance R ohms/km, capacitance C Farads/km, and negligible inductance and

leakage is subjected to constant E.M.F. E0 at the home end at time t = 0. Using the operational
method show that the entering current at any subsequent time t is
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                                I t E C
Rt

( )
/


F
HG

I
KJ0

1 2


5. Solve the equation for high voltage semi-infinite line with the following initial and boundary condi-

tions
v (x, t) = 0 and i (x, 0) = 0, v (0, t) = v0 u (t), v (x, t) is finite as x  .

Ans. v v u t x LC x t
LC

v x t
LC

  

 

0

0

[ ], for and

for

6. Solve 








u
t

u
x

2

2  if

(i) 



 
u
x

t t( , ) .0 0 0for                (ii) u (x, 0) = 
0 1

0 1
x x

x
 

 
(iii) and u (x, t) is bounded for x > 0, t > 0

Ans. u x t s
s

s
s

e sx dss t( , ) sin cos cos 
F

HG
I
KJ

L

N
MMM

O

Q
PPP


z2 1

0
2

2



14.17. FINITE FOURIER TRANSFORMS
Let f (x) denote a function which is sectionally continuous over the range (0, l). Then the

finite Fourier sine transform of f (x) on this interval is defined as

             F p f P f x p x
l

dxs s

l

( ) ( ) ( )sin  z
0



where p is an integer (Instead of s, we take p as a parameter)
Inversion formula for sine transform

If fs (p) = Fs (p) is the finite Fourier sine transform of f (x) in (0, l) then the inversion formula
for sine transform is

2( ) ( )sins
p l

p xf x f p
l l






 

Proof. For the given function f (x) in (0, l), if we find the half range Fourier sine series, we
get.

            f x b n x
ln

n( ) sin





1


... (1)

where                b
l

f x n x
l

dxn

l

 z2

0

( ) sin 

    b
l

f x p x
l

dxp

l

 z2

0

( ) sin  
2
l

f ps ( )  by definition

Substituting in (1), we get
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 f x
l

f p p x
lp

s( ) ( )sin




2

1


Ans.

Finite Fourier Cosine Transform
Let f (x) denote a sectionally continuous function in (0, l).
Then the Finite Fourier cosine transform of f (x) over (0, l) is defined as

F p f p f x p x
l

dxc c

l

( ) ( ) ( ) cos  z
0

  where p is an integer..

Inversion formula for cosine transform
If fc  (P) is the finite Fourier cosine transform of f (x) in (0, l). then the inversion formula for

cosine transform is

f x
l

f
l

f p p x
lc

p l
c( ) ( ) ( ) cos 





1 0 2 

where f f x dxc

l

( ) ( ) .0
0

 z
Proof. If we find half range Fourier cosine series for f (x) in (0, l), we obtain.

             f x a a n x
ln

n

( ) cos 




0

1
2


... (2)

where   a
l

f x n x
l

dxn

l

 z2

0

( )cos 

    a
l

f pp c
2 ( )

   a
l

f x dx
l

0
0

2
 z ( )

       
2 0
l

fc ( ).

Substituting in (2), we get,

1

1 2( ) (0) ( ) cosc c
p

p xf x f f p
l l l




  

Example. 34. Find the finite Fourier sine and cosine transforms of
(i) f (x) = 1 in  (0, )

(ii) f (x) = x in  (0, l)
(iii) f (x) = x2 in  (0, l)
(iv) f (x) = 1 in  0 < x /2

     = – 1 in /2 < x < 
(v) f (x) = x3 in  (0, l)

(vi) f (x) = eax in  (0, l)
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(i) fs  (p)  =  Fs (1)  z
0

1





.sin p x dx  
F
HG

I
KJ

cos px
p 0




1 cos p

p
 if  p  0

    f pc ( )  = 
0

1
z  cos px dx 

F
HG

I
KJ   

sin ( )px
p p0

1 0 0 0


(ii) f p F p x p x
l

dxs s

l

( ) ( ) sin  z
0




F

H
GGG

I

K
JJJ
 

F

H

GGGG

I

K

JJJJ

L

N

MMMM

O

Q

PPPP
( )

cos
( )

sin
x

p x
l

p
l

p x
l

p
l

l







1 2 2

2
0


l
p

l p


( cos )





l

p
P

2
1


( ) if  p  0

        fc (p) = Fc (x) = 
0

l

x p x
l

dxz cos 



F

H
GGG

I

K
JJJ
 

F

H

GGGG

I

K

JJJJ

L

N

MMMM

O

Q

PPPP
( )

sin
( )

cos
x

p x
l

p
l

p x
l

p
l








1 2 2

2
0

1

  
l

p
p

2

2 2 1 1


[( ) ]  if  p  0

(iii)  sf (p) = Fs (x
2)  z

0

2
l

x p x
l

dxsin 

 

F

H
GGG

I

K
JJJ
 

F

H

GGGG

I

K

JJJJ


F

H

GGGG

I

K

JJJJ

L

N

MMMM

O

Q

PPPP
( )

cos
( )

sin
( )

cos
x

p x
l

p
l

x

p x
l

p
l

p x
l

p
l

l

2
2 2

2

3 3

3
0

2 2
















   
l

p
l

p
p p

3 3

3 31 2 1 1
 

( ) ( ) if  p  0

    f p x p x
l

dxc

l

( ) ( ) cos z
0

2 

= 2
2 2 3 3

2 3
0

sin cos sin
( ) (2 ) (2)

l
p x p x p x
l l lx xp p p

l l l
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= 2 1
3

2 2
l

p
p


( ) if p  0

(iv)           
/2

0 /2

{ ( )} sin ( 1)sinsF f x pxdx pxdx
 



   

= 
F
HG

I
KJ 

F
HG

I
KJ

cos cos
/

/

px
p

px
p0

2

2







=  F
HG

I
KJ  F

HG
I
KJ

1
2

1 1
2p

p
p

p pcos cos cos




= 1
cos 2 cos 1

2
p

p
p
  

    
 

if p  0

           F f x px dx px dxc ( ( )) cos cos
/

/

 z z
0

2

2







= 
sin sin sin

/

/

px
p

px
p p

pF
HG

I
KJ 

F
HG

I
KJ 

0

2

2

2
2








If p  0

(v)   F x x p x
l

dxs

l

( ) sin3 3

0

 z 

= ( )
cos

( )
sin

( )
cos

( )
sin

x

p x
l

p
l

x

p x
l

p
l

x

p x
l

p
l

p x
l

p
l

l

3 2
2 2

2

3 3

3

4 4

4
0

3 6 6

F

H
GGG

I

K
JJJ
 

F

H

GGGG

I

K

JJJJ


F

H

GGGG

I

K

JJJJ
 

F

H

GGGG

I

K

JJJJ

L

N

MMMM

O

Q

PPPP

















=    
l
p

l
p

p
p P

 
( ) ( )1 6 1

4

3 3 if p  0

F x x p x
l

dxc

l

( ) cos3 3

0

 z 

= ( )
sin

( )
cos

( )
sin

( )
cos

x

p x
l

p
l

x

p x
l

p
l

x

p x
l

p
l

p x
l

p
l

l

3 2
2 2

2

3 3

3

4 4

4
0

3 6 6

















F

H
GGG

I

K
JJJ
 

F

H

GGGG

I

K

JJJJ



F

H

GGGG

I

K

JJJJ


F

H

GGGG

I

K

JJJJ

L

N

MMMM

O

Q

PPPP

= 3 1 6 1 1
4

2 2

4

4 4
l
p

l
p

p p

 
( ) [( ) ]    if p  0

(vi) F e e p x
l

dxs
ax ax

l

( ) sin z
0
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= e

a p
l

a p x
l

p
l

p x
l

ax

l

2
2 2

2
0


L

NM
O
QP

R
S
||

T
||

U
V
||

W
||



  sin cos

= e

a p a
l

p
l

a p
l

p
l

ax
p

2
2 2

2
2

2 2

2

1 1


 F

HG
I
KJ 



F
HG

I
KJ. ( )





    
F e e

a p
l

a p x
l

p
l

p x
lc

ax
ax

l

( ) cos sin


L
NM

O
QP

R
S
||

T
||

U
V
||

W
||2

2 2

2
0


  

 =
e

a p
l

a
a p

l

a
al

p

2
2 2

2
2

2 2

2

1 1


 


 

( ) b g

Example 35. Find f (x) if its finite Fourier sine transform is 
2 13

1
p

p( )   for p = 1, 2, ...,

0 < x <  .
Solution. By inversion Theorem,

    f x
p

px
p

p( ) ( ) sin 



2 2 13

1

1




   = 4 1 1

3
1

( ) sin 






p

p p
px

Example 36. Find f (x) if its finite Fourier sine transform is given by

(i) F p 1 cos p
ps 2 2( )   


for p = 1, 2, 3, ... and 0 < x < 

(ii) F p 16 1
ps

p 1

3( ) ( )


 
for p = 1, 2, 3, .... and 0 < x < 8

(iii) F p
cos 2 p

3
2p 1s 2( )

( )






for p = 1, 2, 3, ... and 0 < x < 1.

Solution. By inversion theorem

(i) f x p
p

px
p

( ) cos .sin
F

HG
I
KJ



2 1
2 2

1



   = 2 1

3 2
1

F
HG

I
KJ



 cos .sinp
p

px
p

(ii) f x
l

F p p x
ls

p

( ) ( )sin F
HG

I
KJ





2

1



       = 2
8

16 1
8

1

3
1

( ) sin F
HG

I
KJ








p

p p
p x     = 4 1

8

1

3
1

( ) sin F
HG

I
KJ








p

p p
p x (since l = 8)

(iii) f x
l

F p p x
ls

p

( ) ( ) sin F
HG

I
KJ





2

1


  = 2

2
3

2 1 2
1

cos

( )
sin ( )





p

p
p x

p

F
HG

I
KJ





  (since l  1 )   Ans.
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Example 37. Find f (x) if its finite Fourier cosine transform is

  (i) F (p) 1
2p

p
2c  F

HG
I
KJ


for p = 1, 2, 3, ....

         = 

4

for p = 0 given 0 x 2  

(ii) F p
6sin p

2
cos p

2p 1c ( )
( )










for p = 1, 2, 3, ....

           = 2


for p = 0 given 0 < x < 4

(iii) F p
cos 2p

3
2p 1c 2( )

( )


F
HG

I
KJ





for p = 1, 2, 3, ...

           = 1 for p = 0 given 0 < x < 1
Solution: By inversion theorem,

f x
l

F
l

F p p x
lc c

p

( ) ( ) ( ).cos 




1 0 2

1

 .

(i) Here            F lc ( ) /0 4 2  and

           f x
p

p p x

p

( ) sin cos F
HG

I
KJ 

F
HG

I
KJ

F
HG

I
KJ





1
2 4

2
2

1
2 2 21




 


       = 1
8

1
2

1
2 21

 F
HG

I
KJ

F
HG

I
KJ








p
p px

p

sin cos

(ii) Here            Fc( )0 2

  and l = 4

          f x

p p

p
p x

p

( )
sin cos

( )
cos F

HG
I
KJ 

F
HG

I
KJ


F
HG

I
KJ





1
4

2 2
4

6
2

2 1 41







       = 1
2

1
2

6
2
2 1 41 







F
HG

I
KJ


F
HG

I
KJ






sin cos

( )
.cos

p p

p
p x

p

(iii) Here           Fc (0) = 1, l = 1

 f x
p

p p x
p

( )
( )

cos .cos ( ) 


F
HG

I
KJ





1
1

2
1

1
2 1

2
32

1




       = 1 2

2
3

2 1 2
1



F
HG

I
KJ






cos

( )
cos ( )

p

p
p x

p



 Ans.

Example 38. Find the finite Fourier sine transform of f (x) = 1 in (0,  ). Use the inversion
theorem and find Fourier series for f (x) = 1 in (0,  ). Hence prove

(i) 1 1
3

1
5

1
7

4    .... / (ii) 1
1

1
3

1
5

82 2 2   .... /2
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Solution.            F p x dxs ( ) .sin1 1
0

 F
HG

I
KJz 





          f p
p

ps ( )
cos


1 

 if p  0

By inversion theorem,

         f x
l

F p p x
ls

p

( ) ( )sin




2

1



              1 2 1

1


 






( ) .sin

p

p p
px since l  

   1 4 1
3

3 1
5

5   L
NM

O
QP

sin sin sin ...x x x .... (1)

This is the half range Fourier sine series for f (x) = 1 in ( , )0   getting x   / 2 .

On putting x  
2

 in (1) we get

4 1 1
3

1
5

1
7

1


   L
NM

O
QP ....

 1 1
3

1
5

1
7

4    .... /

In the half Fourier sine series l
nn 

4 1


.  for n odd

By using Parseval’s Theorem

(Range) 1
2

12 2

0
b dxn zL

NM
O
QP  ( )







1

2
16 1

2 2
1 3 5

.
. . .... nn


L
N
MM

O
Q
PP 

i.e.,
1

82

2

1 3 5 nn






 

. .

Ans.

EXERCISE 14.4

Find the finite Fourier sine and cosine transforms of

1. f x x( )  2  in (0, 4) Ans.  ( )

32 (1 ), 0
0

0,
s s

ws s s
sF

s

     


2. f x( )  = x in (0,  ) Ans. 
1 2

2

( 1) 1,( 1) , 0 0
( ) , ( )

0 0
0, ,

2

s
s

s c
s sssF s F s
s s
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3. f (x) = cos ax in (0,  ) Ans.   
2 2( ) [1 ( 1) cos ], ( ) 0s

s c
sF s a F s

s a
    



4. f (x) = 1 x


 in (0,  ) Ans.  2
1 1( ) , ( ) [1 cos ]s cF s F s s
s s


   



5. f (x) = 
x

x
in

in
( , / )

( / , )
0 2

2


  
RST Ans.

2 2
2 1( ) sin , ( ) [1 cos ]

2s c
sF s F s s

s s


   

6. Find finite Fourier cosine transform of 1 0
2

F
HG

I
KJ  

x x


. .          Ans. 
2

2 , 0
( )

, 0
3

c

s
sF s

s

   
 

7. Find f x f p

p

p
pc( ) ( )

sin
,if 

F
HG

I
KJ


2

2  = 1, 2, 3 ... and

                       = 

4  if p = 0 given 0 < x < 2 .      Ans.  

1

sin1 1 2 cos
8 2 2p

p
p x

p








 

8. f x x x( )   


3 2

2
 in [0, ]         Ans.  3

1( )
6sF s

s



 [2 cos p + 6 cos p, + 2p2 – 6], 2

1( )cF s
s



14.18  FINITE FOURIER SINE AND COSINE TRANSFORMS OF DERIVATIVES
Using the definition and the integration by parts, we can easily prove the following results.

For 0  x l,

  (i) F f x p
l

f ps c( ( )) ( )  


  (ii) F f x f l f p
l

f pc
p

s{ ( )} ( ) ( ) ( ) ( )    1 0 

  (iii)         
2 2

2{ ( )} ( ) (0) ( 1) ( )p
s s

p pF f x f p f f l
ll

         

  (iv)        
2 2

2{ ( )} ( ) ( ) ( 1) (0)p
c c

p
F f x f p f l f

l


      

Proof: (i)  
0

( ( )) ( )sin
l

s
p xF f x f x dx
l
    = 

0

sin { ( )}l p x d f x
l




= 
0

0
( )sin ( ).cos

l
lp x p x pf x f x dx

l l l
     

  

= 
p
l

f pc
 ( )                 ... (1)

(ii)         
0

{ ( )} ( )cosl
c

p xF f x f x dx
l
    = 

0 0

( )cos ( ). sin
l

lp x p p xf x f x dx
l l l
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= ( ) ( ) ( ) ( )  1 0P
sf l f p

l
f p

    ... (2)

(iii)
0

[ ( )] sin [ ( )]l
s

p xF f x d f x
l
 

= 
0 0

( )sin ( )cos
l

lp x p p xf x f x ds
l l l
     

  

= ( 1) '( ) (0) ( )p
s

p p
f l f f p

l l
  

     
                [Using (2)]

= 
2 2

2 ( ) (0) ( 1) ( )p
s

p p
f p f f l

ll
          ... (3)

(iv)         
0

{ ( )} cos [ ( )]
l

c
p xF f x d f x
l
  

= 
0 0

( ) cos ( ) sin
l

lp x p p xf x f x dx
l l l
       

= ( 1) ( ) (0) ( )p
c

p pf l f f p
l l
        

                          [Using (1)]

= 
2 2

2 ( ) ( ) ( 1) (0)p
c

p
f p f l f

l


                                ... (4)

Note. If u u x t ( , ),  then

  F u
x

p
l

F us c


L
NM

O
QP 

  ( )

            F u
x

p
l

F u u t u l tc s
p


L
NM

O
QP    

 ( ) ( , ) ( ) ( , )0 1

          F u
x

p
l

F u p
l

u t u l ts s
p



L
NMM

O
QPP
   

2

2

2 2

2 0 1 ( ) [ ( , ) ( ) ( , )]

           F u
x

p
l

F u u
x

l t p u
x

tc c



L
NMM

O
QPP
  








2

2

2 2

2 0
( ) ( , ) cos ( , )

Example 39. Using finite Fourier transform, solve

      







u
t

u
x

2

2  given u (0, t) = 0 and u (4, t) = 0

   and u (x, 0) = 2x where 0 < x < 4, t > 0
Solution. Since u (0, t) given, take finite Fourier sine transform.







z zu
t

p x dx u
x

p x dx
0

4 2

2
0

4

4 4
sin sin 
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d
dt

u F u
xs s



F
HG

I
KJ

2

2  = 
2 2

[ (0, ) ( 1) (4, )]
16 4

p
s

p pu u t u t 
   

         = 
p us

2 2

16


 [using u(0, t) = 0, u(4, t) = 0]

   
d u
u

p dts

s
 

2 2

16


Integrating log u p t cs   
2 2

16


       u Aes

p t



2 2

16 ... (1)

Since u(x, 0) = 2x

   u p x p x dxs ( , ) ( ) sin0 2
4

0

4

 F
HG

I
KJz 

  = 
32
p

p


cos ... (2)

Using (2) in (1),

         u p A
p

ps ( , ) cos0
32

  


 .

Substituting in (1),

        u
p

es
p

p t
  

32 1
2 2

16




( )

By inversion Theorem,

      u x t
p

e p x

p

p
p

( , ) ( ) sin  F
HG

I
KJ




 

2
4

32 1
41

1 16

2 2






Ans.

Example 40. Solve 






  
u
t

u
x

0 x 6, t 0
2

2 ,

given      







u
x

t 0 u
x

6 t( , ) , ( , )0  = 0 and u (x, 0) = 2x.

Solution. Since 



u
x

t( , )0  is given, use finite Fourier cosine transform

   






z zu
t

p x dx u
x

p x dx
0

6 2

2
0

6

6 6
cos cos 

        
d
dt

u p u u
x

t p u
x

tc c  







2 2

36
6 0

( , ) cos ( , ) = 
p uc

2 2

36


         
d u
u

p dtc

c
 

2 2

36


      log u p t cc   
2 2

36
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u A ec

p t



2 2

36


... (1)

   u x x( , )0 2 .
 At t = 0

u p x p xdxc ( , ) ( ) cos0 2
6

0

6

 z  = 
72 12 2p

p


(cos ) ... (2)

Using this in (1), we get  u p A
p

pc ( , ) (cos )0 72 12 2  




Substituting in (1), we get   u p t
p

pc ( , ) (cos )
72
2 2



By inversion theorem,

  u x t
l

f f p p x
lc c

p

( , ) ( ) ( ) cos 
 F

HG
I
KJ





1 0
1 1



   = 1
6

2
2
6

72
1

62 2
10

6
36

2 2

( ) (cos ) .cosx dx
p

p e p x

p

p t
 

F
HG

I
KJ



 

z 





   = 6
24 1

62 2
1

36

2 2


 F

HG
I
KJ



 



 
(cos )

cos .
p
p

e p x

p

p t
Ans.

Example 41. Solve 






  

u
t

u
x

x t2 0 4 0
2

2 , ,

given u (0, t) = 0;     u (4, t) = 0;      u (x, 0) = 3 sin  x x 2 5sin .
Solution. sin u (0, t) is given, take finite Fourier sine transform. The equation becomes (as in

example 39 on page 977)

d
dt

u p u p u t u tc s
p    

L
NMM

O
QPP

2
16 4

0 1 4
2 2  { ( , ) ( ) ( , )}  = 

p us

2 2

8


Solving we get,             u Aes

p t



2 2

8


... (1)

    u x x x( , ) sin sin0 3 2 5  
Taking sine Transform,

  u p x x p x dxc ( , ) ( sin sin )sin0 3 2 5
4

0

4

 z  


 = 0 if p   4, p   20.

If p = 4,     us ( , )4 0 6

If p = 20, us  (20, 0) = – 4

     u x t u p t p x
s

p

( , ) ( , ) sin F
HG

I
KJ





2
4 41
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   = 1
2

6 4 5
2 2 2 4

8 8[ sin sin ]e x e x
p t p t 


 

 

where p in the first term is 4 and p in the second term is 20

   = 3 2 52 502 2
e x e xt t   sin sin . Ans.

EXERCISE 14.5

1. Solve 







  

u
t

u
x

x t
2

2 0 6 0, ,  given that u t u t u x
x
x

( , ) ( , ) ( , )0 0 6 0
1 0 3
0 3 6

  
 
 

RSTand
for
for

2 2

36

1

1 cos2 2( , ) sin
6

p t

p

p
p xu x t e

p











        
   

 

Ans.

2. Solve 








v
t

v
x

2

2  subject to conditions v (0, t) = 1, v ( , t ) = 3

v x x t( , ) ,0 1 0 0   for 

2

1

4 cos 2( , ) sin 1p t

p

p xv x t e px
p


 






  Ans.

3. Solve 








 
t x

2

2 Ans.   (x, t) = 
21

1
( 1) sinp p t

p
e px


 




given     ( , ) , ( , ) , ( , ) ,0 0 0 0 2 0 0t t x x x t     for

TABLE

Function f (x) Fourier Sine Transform Fs (s)

1 0
0

 


RST
x b

x b
1 cosbs

s

x1 x
2

x
x b2 2


2

e bs

e bx
s

s b2 2

x en bx 1
( ) sin( tan / )

( ) /
n n s b

s b n





1

2 2 2

xe bx 2 

4 3 2
42

b
se s b

/
/

x1 2/

2s

x n
 s n

n
n

n
 

1 2
2

0 2
sec( / )

( )
,
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sin bx
x

1
2

In s b
s b



F
HG

I
KJ

cos bx
x

0
4
2

s b
s b
s b





R
S|
T|



/
/

tan ( / )1 x b

2s

e bs

csc bx
 

2 2b
s
b

tanh

1
12e x 

 
4 2

1
2

cot h s
s

F
HG

I
KJ 

1 0
0

 


RST
x b

x b
sin bs

s

1
2 2x b

e
b

bs

2

x n
 s n

n
n

n
 

1 2
2

0 1
sec( / )

( )
,



ln 
x b
x c

2 2

2 2




F
HG

I
KJ

e e
s

cs bs 


sinbx
x2




/
/
2
4

0

s b
s b
s b





R
S|
T|

sin bx2


8 4 4

2 2

b
s
b

s
b

cos sin
F
HG

I
KJ

cos bx2

8 4 4

2 2

b
s
b

s
b

cos sin
F
HG

I
KJ

sech bx
 
2 2b

s
b

sec h

cosh( / )
cosh( )





x
x
2  

2
2cosh( / )

cosh( )
s

s

e
x

b x 
2

2 2
s

b s b s{cos( ) sin( )}
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15
Numerical Techniques

15.1 INTRODUCTION

In this chapter, we shall deal with the methods for solving the equations. Sometimes, a rough
approximation of a root can be found by graph and more accurate results by the following methods:

(i)   Newton Raphson method or successive substitution method.

(ii)  Rule of false position method (Regula falsi method).

(iii) Iteration method.

15.2  SOLUTION OF THE EQUATIONS GRAPHICALLY

Step1. Find a small interval (a, b) between wich the root of the equation lies.

Let f (x) = 0 ...(1)

and f (a) = –ve and f (b) = + ve

then the root of the equation (1) lies between a and b.

For example  f (x) = 2x2  +  x – 15 = 0

 f (2) = 8 + 2  – 15 = –5 = –ve

  f (3) = 18 + 3  – 15 = + 6 = + ve

 The root of the equation lies between 2 and 3.

Step 2. Write the equation  f (x) = 0 as (x) =  (x)

    For example 2x2 + x –15 = 0    or    2x2  = 15 – x

Step 3. Prepare two tables for y = (x) and y =  (x) taking values of x between a and b.

Step 4. Plot these points and join them to get smooth curves

Step 5. Note down the abscissa of the point of intersection of the curves y = (x) and y = (x).
This is the required root of the equation  f (x) = 0

Note. Sometimes we do not write f (x) = 0 as (x) =  (x). We adopt the following  method:

(i) Find a small interval (a ,b )between which the root lies f (a) and f (b) are of opposite signs.

(ii) Prepare a table of the different values of x between a and b, for y = f (x).

(iii) Plot these points and join them to get smooth curve.

(iv) The real root of the equation f (x) = 0 is the abscissa where the curve cuts the x– axis Note it.
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Example  1.  Find graphically the positive root of the equation x3 – 6x – 13 = 0.

Solution.

f (x) = x3 – 6x – 13 = 0. ...(1)

f (3) = 27 – 18 – 13 = – 4 = – ve

f (4) = 64 – 24 – 13 = 27 = + ve

The root of (1) lies between 3 and 4 as f (3) and f (4) are
opposite in sign.

(1) is written as x3 = 6x + 13,  y = x3

and       y = 6x + 13

Let us draw two curves for y = x3 and y = 6x + 13.

 y = x3

x 3 3.2 3.4 3.6 3.8             4.0

y 27 32.8 39.3 46.7  54.9          64

y = 6x + 13

x 3 3.2 3.4 3.6 3.8              4

y 31 32.2 33.4 34.6 35.8            37

Let the origin be (3,0).

The  graphs of y = x3 and y = 6x + 13 are sketched in the figure. The abscissa of the point of
intersection of two curves is 3.2.

 The root  of the given equation is 3.2 Ans.

Example 2. Solve graphically the equation x – 1 = sin x.

Solution. x – 1 = sin x

We take two equations y = x – 1 and y = sin x. Let us find out the abscissa of the point of
intersection of the line y = x – 1 and the curve y = sin x and give a rough estimate of the root.

For the straight line y = x – 1, we have the table:

   x   0  1                            3

      y = x– 1 – 1                        0                             1.4

For the sine curve, we have the following table:

        x          0  

   y = sinx          0         0.71 1.00              0.71                       0

On the same axes, and with same scale construct the graphs of
y = x – 1 and y = sin x.

From the graph , we get x = 1.95 radians approximately.
Ans.

O 3.0 3.2 3.4 3.6 3.8 4.0

10

20

30

40

50

60

70

Y = x3

Y = 6X + 13

Y

X

O

0.8

0.8

Y

Y `

y =
x – 1

y = sin
x


4


2

3
2
  X
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EXERCISE  15.1

1. Draw the graph of y = x3 and y = – 2x + 20 and find the apporoximate solution of the equation
x3 + 2x – 20 = 0. Ans. 2.47

2. Solve graphically x3 – 2x – 5 = 0. Ans.  2.099

3. Solve graphically x5 – x – .2 = 0. Ans. – 0.2

4. Solve graphically e3x – 5x2 – 17 = 0. Ans.   1.04

5. Draw the graph of y = ex – 1 and find graphically the values of the root equation 3 – x = ex –1

Ans. 1.44
15.3  NEWTON-RAPHSON METHOD OR SUCCESSIVE SUBSTITUTION  METHOD

By this method, we get closer approximation of the root of an equation if we already know its
approximate root.

Let the equation be f (x) = 0. ...(1)
Let  its approximate root be a and better approximate root be a + h.
Now we  proceed to find h.

f (a + h ) = 0 approximately   [as a + h ,is the root of f (x) = 0] ...(2)
By Taylor’s theorem

f (a + h) = f (a) + hf (a) +
2

2
h

  f (a) + ...

or f (a + h) = f (a) + h  f(a) ...(3)
Since h is small , we neglect the h2 and higher power of h.
From (2) and (3), we have

0 = f (a) +h f(a)      h =
( )
'( )

f a
f a

or a +h = a –
( )
'( )

f a
f a

 = a1 [First approximate root = a]

Second approximate root a2 = a1 – 1

1

( )
'( )

f a
f a

Similarly third approximate root,  a3 =
2

2
2

( )
–

'( )
f a

a
f a

By repeating this operation, we get closer approximation of the root.

Note.  (1) In the beginning, we guess two numbers b and c such that f (b) and f (c) are of
opposite sign. Then the first approximate root a lies between b and c.

   (2) If f (x) is zero or nearly zero, this method fails.

Example 3. Starting with x0 = 3, find a root of x3 –3x – 5 = 0, correct to three decimal
places. Use Newton-Raphson method
Solution.        f (x) = x3 – 3x – 5 = 0, f  (x) = 3 x2  – 3

f (3) = 27 – 9 – 5 = 13, f  (3) = 27 – 3 = 24

     x1= 
0

0
0

( ) (3) 13– 3 – 3 –
'( ) '(3) 24

f x fx
f x f

   = 3 – 0.5417 = 2.4583
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2
(2.4583) 2.48122.4583 – 2.4583 – 2.4583 – 0.1640 2.2943
'(2.4583) 15.1297

fx
f

   

  3
(2.2943) 0.19392.2943 – 2.2943 – 2.2791
'(2.2943) 12.7914

fx
f

  

     f (2.2791) =  0.0010
Hence the required root = 2.2791 Ans.
Example 4. Find the real root of the following equation, correct to three decimal places,
using Newton-Raphson method

    x3 – 2x – 5 = 0
Solution.  x3 – 2x – 5 = 0 ...(1)
Let                   f (x) = x3– 2 x – 5

               f (2) = 8 – 4 – 5 = –1

                f (2.5) =  (2.5)3 –  2 (2.5) – 5 = + 5.625

Since f (2) and f (2.5) are, of opposite sign, the root of  (1) lies between 2 and 2.5 ; f (2) is near
to zero than f (2.5), so 2 is better appropriate root than 2.5.

f(x) = 3x2 – 2 f(2) = 12 – 2 = 10
Let 2 be an approximate root of (1). By Newton-Raphson method

1
( ) (2) –1– 2 – 2 – 2.1
'( ) '(2) 10

f a fa a
f a f

   

                f (2.1)  = (2.1)3 –  2 (2.1) – 5 = 9.261 – 4.2 – 5 = 0.061

              f (2.1) = 3 (2.1)2 – 2 = 11.23

                     a2   =   2.1
(2.1) 0.0612.1–
'(2.1) 11.23

f
f

 = 2.1 – 0.00543 = 2.09457

                       f (2.09457) = (2.09457)3 –  2 (2.09457) – 5
                          = 9.1893 – 4.18914 – 5 = – 0.00016

                   f(2.09457) = 3 (2.09457)2 – 2  = 13.16167 – 2 = 11.16167

 a3 = 2.09457 –
(2.09457) 0.000162.09457 –
'(2.09457) 11.16167

f
f


  = 2.09457 + 0.000014 = 2.09456

Hence, a3 = a2 correct upto four places of decimal, so the root of (1) is 2.0945 Ans.
Example 5. Find an interval of length 1, in which the root of

f (x) = 3x3 – 4x2 – 4x –7= 0 lies. Take the middle point of this interval as the starting
approximation and iterate two times, using the Newton- Raphson method.

Solution. f (x) = 3x3 – 4 x2 – 4 x – 7 = 0 ...(1)
f (2)  = 24 – 16 – 8 – 7 = –7
f (3)  = 81 – 36 – 12 – 7 = + 26

The root of (1) lies between 2 and 3 as f (2) and f (3) are of opposite signs.
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The middle point of this interval is 2.5.
                f (2.5) = 46.875 – 25 – 10 – 7 = 4.875 and f(x) = 9 x2 – 8x – 4
              f (2.5) =  56.25 – 20 – 4 = 32.25

By Newton-Raphson method

                     a1= ( )–
'( )

f aa
f a

                     a1 =  2.5 
(2.5) 4.875– 2.5 –
'(2.5) 32.25

fa
f

  = 2.5 – 0.15  = 2.35

             f (2.35) = 38.93 – 22.09 – 9.4 – 7 = 0.44
          f (2.35) =  49.7 – 18.8 – 4 = 26.9

                    a2 = 2.35=
(2.35) 0.442.35 –
'(2.35) 26.9

f
f

  = 2.35 – 0.016 = 2.334

            f (2.334) = 38.14 – 21.79 – 9.34 – 7 = 0.01 which is nearly zero.
Hence the required root is 2.334 Ans.
Example 6. By using Newton-Raphson’s method find the root of x 4 – x – 10 = 0, which is
near to x = 2 correct to three places of decimal.
Solution.                f (x) = x4 – x – 10 = 0, and   f(x) = 4 x3 – 1

               f (2)  = 16  – 2  – 10 = 4    and  f (2) =  32  – 1 = 31

By Newton-Raphson’s method

                a1= 
( ) (2) 4– 2 – 2 – 2 – .129 1.871
'( ) '(2) 31

f a fa
f a f

   

       f (1.871) = (1.871)4 – 1.871– 10  = 12.25 – 1.871– 10 = 0.379
       f (1.871) = 4 (1.871)3 – 1 = 4 × 6.5497 – 1 = 25.1988.

       a2 = 1.871–
(1.871)
'(1.871)

f
f

= 1.871– 
0.379

25.1988
= 1.871 – 0.0150  = 1.856

      f(1.856) = (1.856)4 – (1.856) – 10 = 11.8662 – 11.856 = 0.0102
     f (1.856) = 4 (1.856)3 – 1 = 4 × 6.3934 – 1 = 24.5736

      a3 = 1.856 – 
(1.856)
'(1.856)

f
f =  1.856 – 

0.0102
24.5736  = 1.856  – 0.00042 = 1.8556

f (1.8556)   =  (1.8556)4 – 1.8556 – 10 = 0.00038

f (1.8556)  =  4 (1.8556)3 – 1 = 24.5572

            a4 = 1.8556 – 
(1.8556)
'(1.8556)

f
f

= 1.8556 – 0.00038
24.5572

= 1.8556  –  0.00002 = 1.85558

                        Required root = 1.85558 Ans.
Example 7. Determine the root of x4 +x3 – 7 x2 – x + 5 = 0 which lies between 2 and 3
correct to three decimal places.
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Solution. f (x) = x4 + x3 – 7x2 – x + 5 = 0

 f (2) = 16 + 8 – 28 – 2 + 5 = – 1
 f (3) =  81+ 27 – 63 – 3 + 5 = + 47.
Root lies between 2 and 3.
Taking x1 = 2 as first approximate root.

x2 = x1 – 1

1

( ) (2)2 –
'( ) '(2)

f x f
f x f



2
–1 12 – 2 2.067
15 15

x   

2
3 2

2

( ) (2.067)– 2.067 –
'( ) '(2.067)

f x fx x
f x f

 

      = 2.067 – 
– 0.0028
18.422

= 2.067 + 0.0001519 = 2.0671519 Ans.

Example 8. Using Newton-Raphson method evaluate to two decimal figures, the root of
the equation ex = 3x lying between 0 and 1.

Solution. f (x) = ex – 3x = 0
f (0)  = 1
f (1)  =  e1 – 3  =  – 0.2817

The middle point of the interval (0, 1) is 0.5.
                     f (0.5) =   e0.5  – 3 (0.5) = 1.649 – 1.5 = 0.149

                    f(x)  = ex – 3,  f(0.5) = e0.5 – 3 = 1.649 – 3 = – 1.351

By Newton - Raphson method al = a –
( )
'( )

f a
f a

so    1
(0.5) 0.1490.5 – 0.5 –
'(0.5) –1.351

fa
f

  =  0.5  +  0.11 = 0.61

                 f (0.61) = e0.61 –  3 (0.61) = 1.84 – 1.83 = 0.01

                f (0.61) = e0.61 – 3 = 1.84 – 3 = – 1.16

                         a2 = 0.61–
(0.61) 0.010.61–
'(0.61) –1.16

f
f

 = 0.61 + 0.0086 = 0.6186

             f (0.6186) = e0.6186 – 3 (0.6186) = 1.8563 – 1.8558 = 0.0005

    x = 0.6186 Ans.
Example 9. Compute the real root of  x log10 x – 1.2 = 0

Solution.  x log10 x – 1.2 = 0
Let f (x) = x log10 x – 1.2  or  f (3) = 3 log10   3 – 1.2
 f (3) = 3 × 0.4771 – 1.2 =  1.4313 – 1.2 = + 0.2313
and f (2) = 2 × 0.3010 – 1.2 =  0.6020 – 1.2 = – 0.5980
f (3) is + ve and f (2) is –ve, so the root of the given equation lies between 3 and 2.

f (x) = x log10 x  – 1.2  =  0.4343 x loge x – 1.2
                     f  (x) = 0.4343 loge x + 0.4343 = log10 x + 0.4343

3 2'( ) 4 3 –14 –1
'(2) 32 12 – 28 –1 15

f x x x x
f
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Taking x1 = 3 as first approximation, we have

    
1

2 1
1

( )
–

'( )
f x

x x
f x

 (By Newton’s method)

   
10

2
10

3log 3–1.2 0.23133 – 3 – 3 – 0.2538 2.7462
log 3 0.4343 0.9114

x    


10
3

10

2.7462log 2.7462 –1.2 0.00482.7462 – 2.7462 – 2.7407
log 2.7462 0.4343 0.8730

x   
 Ans.

Example 10. Write the Newton-Raphson procedure for finding 3 N , where N is a real number..

Use it to find 3 18  correct to 2 decimals, assuming 2.5 as the initial approximation.

Solution. Let x  = 3 N   x3 = N     x3 – N = 0

          Let f (x) = x3 – N = 0   f (x) = 3x2

By Newton – Raphson Method, xn +1 = ( )
–

'( )
n

n
n

f x
x

f x

xn +1 = 
3 3

2 2

– 2
– , 0,1, 2, ....

3 3
n n

n
n n

x N x N
x n

x x


 

Let N = 18, x = app. cube root of 18 = 2.5

      
3

1 2

2(2.5) 18 2.62667
3 (2.5)

x 
 



Repeat this method.
Exercise 15.2

Solve the following equations by Newton’s methods
1. x3 – 2x – 5 = 0 Ans. 2.0946
2. x3 – 2x + 0.5 = 0 Ans. 0.2578
3. 3x3 + 8x2 + 8x + 5 = 0 Ans. –1.67
4. x3 – 5x + 3 = 0 Ans. 0.6565
5. x – 2 sin x = 0 Ans. 1.8955
6. xex – 2  = 0 Ans. 0.853
7. x2 – 4 sin x  = 0 Ans. 1.9337
8. Apply Newton-Raphson method to find an approximate solution of the equation ex – 3x = 0 correct

upto three significant figures (assume x = 0.4 as an approximate root of the equation). Ans. 0.619
9. Determine approximately the root of the equation x + log10 x = 3.375 correct to two significant

figures. Ans.  2.911
10. Determine approximately the smallest positive root of the equation x2 + 2x – 2 = 0, correct

to two significant figures using Newton-Raphson method. Ans. 0.7482
11. Design a Newton-Raphson iteration to compute the cube-root of a positive number, N. Perform

two iterations of this method to compute (2)1/3 starting from x0 = 1. Ans. 1.264

12. A root of the equation ex = 1 + x +
2 2 0.3

2 6

xx x e
  is close to 2.5. Find this root to three decimal

places, using Newton-Raphson method. Ans. 2.364
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15.4  RULE OF FALSE POSITION (REGULA FALSI)
Let    f (x) = 0  ...(1)
Let   y = f (x) be represented by the curve AB.
The curve AB cuts the x-axis at P.
The real root of (1) is OP.
The false position of the curve AB is taken as the
chord AB. The chord AB cuts the x-axis at Q. The
approximate root of f (x) = 0 is OQ.
By this method, we find OQ.
Let A [a, f (a)] , B [b, f (b)] be the extremities of
the chord AB.
The equation of the chord AB is

y – f (a)  = 
( ) – ( )

–
f b f a

b a (x – a) (Two points form)

To find OQ, put y = 0,  – f (a) = ( ) – ( ) ( – )
–

f b f a x a
b a

– ( – ) ( )( – )
( ) – ( )
b a f ax a

f b f a
      x =  a +

( – ) ( )
( ) – ( )

a b f a
f b f a

         
( ) – ( )
( ) – ( )

af b bf ax
f b f a



   Repeat the above rule.
Example 11. Find an approximate value of the root of the equation x3 + x – 1 = 0 near

x = 1, using the method of false position (regula falsi) two times.
Solution. f (x) = x3 + x – 1 = 0

f (1) = 1 + 1 – 1 = +1
f (0.5) = (0.5)3 + (0.5) – 1 = – 0.375, f (1) . f (0.5) < 0

The root lies between 0.5 and 1.
Let a = 0.5 and b  = 1

x1 =
( ) ( )
( ) ( )




a f b b f a
f b f a     1

0.5 (1) 1 (0.5)
(1) (0.5)





f fx

f f

=
0.5 (1) 1 ( 0.375) 0.6363

1 0.375
 




Now f (0.6363) = (0.6364)3 + 0.6364 – 1 = – 0.1059
and f (1) = 1

    Root lies between 0.6363 and 1.            f (0.6363) . f (1) < 0
a = 0.6363, b = 1

x2 =
0.6363 (1) 1 (0.6363) 0.6363 1( 0.1059)

(1) (0.6363) 1 0.1059
f f

f f
  


 

= 0.6712
Now, f (0.6712) = – 0.0264 and f (1) = 1

a = 0.6712  and b = 1 [f (0.6712) . f (1) < 0]

x3 =
0.6712 (1) – 1 (0.6712) 0.6712 ( 0.0264)

(1) (0.6712) 1 ( 0.0264)
 


  

f f
f f  = 0.6797     Ans.

xO P N

[(b, f (b)]
B

A

M Q

Y

Y´

[(a, f (a)]

[b, f (b)]

[a, f (a)]
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Example 12. Find the root of the equation 2x – log10 x = 7 which lies between 3.5 and 4,
correct to five places of decimal, using method of false position.
Solution. 2x  – log10 x = 7    2x – log10 x – 7 = 0

       f (x) = 2x – log10 x – 7

        f (4) = 8 – log10  4 – 7 = 1 – 0.60206 = 0.39794

     f (3.5) = 7 – log10  3.5 – 7 = – 0.54407
The root x3 lies between 3.5 and 4.
By False position method

          
1 2 2 1

3
2 1

( ) – ( ) 3.5 (4) – 4 (3.5)
( ) – ( ) (4) – (3.5)

x f x x f x f fx
f x f x f f

 

=   
3.5 (3.39794) – 4(– 0.54407) 1.39279 2.17628 3.56907 3.78878

0.39794 – (– 0.54407) 0.94201 0.94201


  

 f (3.78878) = 7.57756 – 0.57850 – 7 = – 0.00094
Again applying False position method

x4

3.78878 (4) – 4 (3.78878) 3.78878 0.39794 – 4 (–0.00094)
(4) – (3.78878) 0.39794 – (–0.00094)

f f
f f

 
 

   =
1.50771 0.00376 1.51147 3.78928

0.39888 0.39888


  Ans.

Example 13. Find by the method of Regula Falsi a root of the equation
x3  + x2 – 3x – 3 = 0  lying between 1 and 2.

Solution. f (x) = x3 + x2 – 3x – 3 = 0
                  f  (1) = 1 + 1 – 3 – 3 = – 4 = – ve
               f (2) = 8 + 4 – 6 – 3 = + 3 = + ve

The root lies between 1 and 2 as f (1) is –ve and f (2) is + ve.
By Regula Falsi method:

1
1 (2) – 2 (1) 1 3– 2 4 11 1.571

(2) – (1) 3 – (–4) 7
f fx
f f

 
   

            f (1.571) = (1.571)3 + (1.571)2 – 3 (1.571) – 3
      = 3.877 + 2.468 –  4.713 – 3 = –1.368 = – ve

The root lies between 1.571 and 2 as f (1.571) is –ve and  f (2) is + ve.

2
1.571 (2) – 2 (1.571)

(2) – (1.571)
f fx

f f


     =   
1.571 3 – 2 (–1.368) 4.713 2.736 1.705

3 – (–1.368) 4.368
  

 

             f (1.705) = (1.705)3 + (1.705)2 – 3 (1.705) – 3 = 4.960+ 2.908 – 5.115 – 3

      = – 0.252 = – ve.
The root lies between 1.705 and 2 as f (1.705) is – ve  and f (2) is + ve.

3
1.705 (2) – 2 (1.705) 1.705 3 – 2 (–0.252) 1.728

(2) – (1.705) 3 – (–0.252)
f fx

f f
 

   Ans.
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Example 14. Find the approximate value, correct to three places of decimals, of the real root which
lies between – 2 and –3 of the equation x3– 3x + 4 = 0, using the method of false position three times
in succession.
Solution.  f (x) =  x3 – 3x  +  4 = 0

 xl =  – 2, x2 = – 3

       f (x1) =  f (–2) = (–2)3– 3 (–2) + 4 = –8 + 6 + 4 = 2.

       f (x2)  =  f (– 3) = (–3)3 – 3 (–3) + 4 = – 27 + 9 + 4 = – 14

  
1 2 2 1

2 1

( ) – ( ) –2 (–3) – (–3) (–2) –2(–14) – (–3) (2) 28 6 34
( ) – ( ) (–3) – (–2) (–14) – (2) –16 –16

x f x x f x f fx
f x f x f f


    

            = – 2.125

          f (–2.125) = (– 2.125)3 – 3 (–2.125) + 4 = – 9.596 + 6.375 + 4 = + 0.779

                 f (–3) = – 14  and  f  (–2.125) = + 0.779
  Root lies between – 2.125 and – 3.

     
(–2.125) (–3) – (–3) (–2.125) (–2.125) (–14) – (–3) (0.779)

(–3) – (–2.125) (–14) – (0.779)
f fx

f f
 

                                = 
29.750 2.337 32.087 2.171

–14.779 –14.779


  

               f (– 2.171) = (– 2.171)3– 3 (– 2.171) + 4 = – 10.22 + 6.513 +  4 = + 0.293.

        f ( –3) = –14 and f (–2.171) = + 0.293
 Root lies between – 3 and – 2.171.

   
(–2.171) (–3) – (–3) (–2.171) (–2.171)(–14) – (–3) (0.293)

(–3) – (–2.171) –14 – 0.293
f fx

f f
 

= 
30.494 0.879 31.273 –2.188

–14.293 –14.293


  Ans.

Example 15. The negative root of the equation 3 x3 + 8x2 + 8x + 5 = 0 is to be determined. Find the
root by Regula Falsi method. Stop iteration when f (x2) < 0.02 (A.M.I.E., Summer 2001)

Solution.      f (x) = 3 x3 + 8 x2 + 8 x + 5 = 0

   f  (–1)  = – 3 + 8 – 8 + 5 = + 2
f (–1.5)  = 3 (– 1.5)3  + 8 (–1.5)2  + 8 (–1.5) +  5 = –10.125  + 18 – 12 + 5 = + 0.875
f (–1.6)  = 3 (–1.6)3  + 8 (– 1.6)2  + 8 (–1.6) +  5 = –12.288 + 20.48 – 12.8 +  5 =  +  0.392
f  (–1.7)  =  3 (–1.7)3 + 8 (–1.7 )2  +  8 (–1.7) + 5 = –14.739  + 23.12 – 13.6 + 5  = –  0.219
Since f (–1.6) and f (–1.7) are of opposite signs so the root lies between –1.6 and – 1.7
By Regula Falsi method:

     1
–1.6 (–1.7) – (–1.7) (–1.6) –1.6(–0.219) (–1.7) (0.392)

(–1.7) – (–1.6) –0.219 – (0.392)
f fa
f f


 

          = 
0.3504 0.6664 1.0168– –1.664

–0.611 0.611


 

f (–1.664) = 3 (–1.664)3  + 8  (–1.664) 2 + 8 ( –1.664) + 5

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



992 Numerical Techniques

    = – 13.822 + 22.151 – 13.312 + 5 = 0.017
         f (–1.664) = 0.017 < 0.02

Hence the negative root of the given equation is – 1.664 Ans.
Example 16. Determine the root of

x4 + x3 –7x2– x+5 = 0
which lies between 2 and 3 correct to three decimal places.
Solution. f (x) = x4 + x3 – 7x2 – x + 5 = 0

f (2) = 16 + 8 – 28 – 2 + 5 = –1
f (3)  =  81 + 27 – 63 – 3 + 5 =  + 47
f (2)  = –1 is nearer to zero than + 47.

  Root is near to 2.
Let us try on 2.1.
f (2.1) = (2.1)4  +  (2.1)3 – 7 (2.1)2  – (2.1) + 5 = 19.4481 + 9.261 – 30.87 – 2.1 + 5 = + 0.7391.
Now the root lies between 2 and 2.1.
By the method of False position :

1
( ) – ( ) 2 (2.1) – 2.1 (2) 2(0.739) – 2.1(–1)
( ) – ( ) (2.1) – (2) (0.739) – (–1)

af b bf a f fx
f b f a f f

  

     
1.4782 2.1 3.5782 2.0576

1.739 1.739


  

   f (2.0576) = (2.0576)4 + (2.0576)3 – 7 (2.0576)2 – (2.0576) + 5
    = 17.9244  +  8.7113 – 29.6360 – 2.0576 + 5 = – 0.0579

2
2.0576 (2.1) – 2.1 (2.0576) 2.0576 (0.7391) – 2.1(–0.0579)

(2.1) – (2.0576) 0.7391– (–0.0579)
f fx

f f
 

     
1.5208 0.1216 1.6424 2.0607

0.7970 0.7970


  

   f (2.0607) = (2.0607)4 + (2.0607)3  – 7 (2.0607)2 – (2.0607) + 5
    = 18.0326 + 8.7507 – 29.7254 – 2.0607 + 5 = – 0.0028.

3
2.0607 (2.1) – 2.1 (2.0607) 2.0607 (0.7391) – 2.1(– 0.0028)

(2.1) – (2.0607) 0.7391– (–0.0028)
f fx

f f
 

    
1.5231 0.0059 1.5290 2.0609

0.7419 0.7419


  

The root of the given equation is 2.0609. Ans.

Exercise 15.3
Solve the following equations by Regula Falsi method :
1.  x3 – 2x – 5 = 0 Ans. 2.0946 2. x3 – 10x2 + 40x  – 35 = 0 Ans. 1.1975.
3.  x3 + x2 + 3x + 4 = 0 Ans. – 1.22248 4. x6 – x4 – x3 – 1 = 0 Ans. 1.4036
5.  x3 –9x + 1 = 0 (Root between 2 & 3) Ans. 2.9416 6. x3 – 5x – 7 = 0 Ans. 2.746
7.   x3 – x – 1 = 0 Ans. 1.315 8. 3x3 – 5x2 + 3x – 5 = 0 Ans. 1.6629
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9. The smallest positive root of the equation x = e–x is to be determined. Show that the root lies
in (0,1). Using the Regula Falsi method, find the root correct to three decimals.    Ans. 0.6065

10. Obtain a root of the equation x3 – 4x – 9 = 0,  correct to three decimal places using the
method of false position.                Ans. 2.7064

11. Use the method of false position to find the root of the equation x3 – 18 = 0, given that it lies
between 2 and 3. Write down three steps of the procedure.                Ans. 2.621

12. Find the root of the equation tan x + tanhx = 0 which lies in the interval (1.6, 3.0) correct to
four significant digits using any one of the numerical methods.           Ans. 2.365 app.

15.5  ITERATION METHOD
Let  f (x) = 0 ...(1)
(1) can be written as x = (x) ...(2)
where |  (x) | < 1
  Let first approximate root be x1 = a
Second Approximation x2
Putting x = x1 in R.H.S. of (2), we have x2 = (x1)
Similarly x3 = (x2)

By repeating this method, we get the better approximation of the root.

Example 17. Use the method of iteration to solve the equation x = exp (– x), starting with
x = 1.00. Perform four iterations, taking the readings upto four decimal places.

Solution. x = e–x ...(1)
 (x) = e–x ,  (x) = – e–x |  (x) | = e–x

|  (1) | = e–1   = 
1 0.3679 1
e
 

Putting  x = 1 in (1) we get x1 = e–1 = 0.3679

Putting x = 0.3679 in (1) we have x2 = e–0.3679 = 0.692

Putting  x = 0.692 in (1), we obtain x3 = e– 0.692 = 0.5

Putting x = 0.5 in (1), we get x4 = e– 0.5 = 0.6065 Ans.

Example 18. Find a real root of the equation x3 + x2 – 1 = 0 by the method of iteration.

Solution. f (x) = x3 + x2 – 1 ...(1)

            f (0.7) = 0.343 + 0.49 – 1 = – 0.167 =   – ve
           f  (0.8) = 0.512 + 0.64 – 1 =  + 0.152 = + ve

As f (0.7) and f (0.8) are of opposite sign, so that root lies between 0.7 and 0.8. Let the first
approximate root be 0.7.

 x3 +  x2 – 1 = 0  or  x3  = 1 – x2

               x =  (1 – x2)1/3 x = (x)                                 where (x) = (1– x2)1/3

|  (0.7) | = 0.73 < 1
               x1 =  [1– (0.7)2]1/3  = (1 – 0.49)1/3 = (0.51)1/3 = 0.799

                x2 =  [1– (0.799)2]1/3 = (1– 0.63840)1/3 = (0.316)1/3 = 0.712
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                 x3 =   [1– (0.712)2]1/3 = [ 1– 0.507]1/3 = (0.493)1/3 = 0.79

                 x4 =  [1– (0.79)2]1/3    = [1– 0.6341]1/3 = (0.3759)1/3 = 0.722

                 x5 =  [1– (0.722)2]1/3   = 1 – 0.5212]1/3 = (0.4788)1/3 = 0.782

     f (0.782) = (0.782)3  + (0.782)2 – 1 = 0.478+ 0.611– 1 = 0.089
           Root = 0.782 Ans.

Example 19. Find a solution of x3 + x – 1 = 0 by iteration.
Solution. f (x) = x3 + x – 1 = 0
The approximate root of the given equation is 1 as shown by rough sketch. We can write the
equation in the form

    2

1
1

x
x




 thus     1 2

1
1n

n

x
x 



Let              2 2 2

1 2 1( ) , | '( ) | , | '(1) | 1
21 (1 )

xx x
x x

     
 

   1 2

1 0.5
1 1

x  


  2 2

1 0.800
1 1(0.5)

x  


3 2

1 0.610
1 (0.8)

x  


4 2

1 0.729
1 (0.610)

x  


Similarly x5 = 0.653, x6 = 0.701.
The exact root is 0.682328.        Ans.

Exercise 15.4
Solve by iteration method

1. 1+ log x  = 
2
x

  Ans. 5.36

2. sin x  =
1
1

x
x



[Hint.  Approximate  root  = – 5.5]   Ans. – 5.5174

3. Use the method of iteration to find a root, near 2, of the equation x3   = x2 + x + 1. Carry out five
iterations. Ans. 1.8408

15.6  SOLUTION OF LINEAR SYSTEMS
Here we shall discuss two methods for solving the linear systems i.e., Gauss-Seidel and Crout’s
methods.

Gauss method
By this method elimination of unknown is done more systematically and we have a check to
detect the errors. The method is explained in the following example :
Example 20. Solve the following simultaneous equations

2 x + 3 y + z = 13
x – y – 2 z = –1

           3x + y + 4z = 15
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Step 1. We write the equation, first, which has unity as coefficient of x, otherwise divide the
equation by the coefficient of x to make it unity. Thus

    x – y – 2z = –1

 2x + 3y + z = 13
  3x + y + 4z  = 15

Step 2. To eliminate x, subtract suitable multiples of first equation from the remaining
equations, and we get

  x – y – 2z = –1
     5y + 5 z = 15 (2) – 2 (1)
    4 y  + 10z = 18 (3) –3 (1)

Step 3. The coefficient of y is made unity in none of the resulting equations and we have
  x – y – 2z = –1
        y + z   = 3 1/5 (2)
 4 y  +  10  z  = 18

Step 4. To eliminate y, subtract suitable multiple of second equation from the third. Thus
we have

   x – y – 2z = –1

            y + z = 3
               6z  = 6

Step 5. Start from bottom and substitute.
              6z  = 6    z = 1
           y + z = 3     y+ 1 = 3     y= 2
             x – y – 2z = –1  x – 2 – 2 = – 1   x = 3

Now the solution is presented in the table given below in a compact form. It contains only
the coefficients of the unknowns and constant term from step 1. One additional column contains
the sum of all the numbers appearing in each row.

Step No. of row x y z Constant Check sum Explanation
1 1 1 –1 –2 – 1 – 3

2 2 3 1 13 19
3 3 1 4 15 23

2 4 1 –1 – 2 – 1 – 3
5 0 5 5 15 25 (2) – 2 (1)
6 0 4 10 18 32 (3) – 3 (1)
7 1 1 3 5 1/5 (5)
8 0 6 6 12 (6) – 4 (7)
9 1 1 2 1/6  (8)

                   Check sum  7   12 24 69 112

From (9), z = 1

From (7),   y + z = 3    y + 1 = 3  y = 2

From (4)     x – y – 2 z  = –1  x – 2 – 2 = –1  x = 3
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Note: (1) Sum of the numbers in the check column should be equal to the sum of the numbers
in last check row. If the two do not tally some mistake has been made and must be rectified.

(2) In each step the coefficient of the first unknown is called the pivotal coefficient.

15.7  CROUT’S  METHOD
In Gauss elimination method, the number of steps increase rapidly with the number of
unknowns, that method is laborious and time-consuming. To save labour, there is one method
known as Crout’s method or Cholesky’s method. It will greatly facilitate solution if we
could transform the equations.

11 12 13 1

21 22 23 2

31 32 33 3

a x a y a z b
a x a y a z b
a x a y a z b

   
   
   

...(1)

into the equations of the triangular form

      

12 13 1

23 2

3

x u y u z c
y u z c

z c

   
  
 

...(2)

Equation (2) on backward substitution gives the values of x, y, z.
Let us write down equation (1) and (2) in the matrix form as upper triangular matrices.

AX =  B ...(3)
and UX = C ...(4)

where    A =

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
  

  and U =  

12 13

23

1
0 1
0 0 1

u u
u

 
 
 
  

are upper triangular matrices.

1 1

2 2

3 3

X , ,
x b c
y B b C c
z b c

     
            
          

Now if A = LU
where L is a lower triangular matrix.
On putting the value of A = LU in (3), we get

LUX = B    or    LC = B [Since UX = C, from (4)]
Since LU = A and LC = B,
By combining these two relations, we get L (U/C) = (A/B) ...(5)
where (U/C) are augmented matrix of (3) and (4).
From (5), we have

    

11 12 13 1 11 12 13 1

21 22 23 2 21 22 23 2

31 32 33 3 31 32 33 3

0 0 1
0 0 1

0 0 1

l u u c a a a b
l l u c a a a b
l l l c a a a b

     
          
          

On multiplication, we have

            

111 11 12 11 13 11 11 12 13 1

121 21 12 22 21 13 22 23 21 22 2 21 22 23 2

131 31 12 32 31 13 32 23 33 31 32 2 33 3 31 32 33 3

cl l u l u l a a a b
cl l u l l u l u l l c a a a b
cl l u l l u l u l l l c l c a a a b
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  11 11 21 21 31 31, ,l a l a l a  

           11 12 12 11 13 12 11 1 1, ,l u a l u a l c b  


12 12 1

12 13 1
11 11 11

, or or ;
a a b

u u c
l l l

  

    21 12 22 23 31 12 32 32,l u l a l u l a    ,

 22 23 21 12 32 32 31 12– , or – ;l a l u l a l u 

               21 13 22 23 23 21 1 22 2 2,l u l u a l c l c b   

              23 23 21 13 22 2 2 21 1 22( – ) / or ( – ) / ;u a l u l c b l c l 

        31 13 32 23 33 33 31 1 32 2 33 3 3, ;l u l u l a l c l c l c b     

               33 33 31 13 32 23 3 3 31 1 32 2 33– – or ( – – ) /l a l u l u c b l c l c l 

Thus values of u’s and c’s are known. On substitution in (2) we get the values of x, y, z.
A table is prepared. The upper half of the table contains the coefficients of the original

equations. The lower half of the table contains the element of L and U. An additional column in
the table is for check sums.

 After the upper half is completed, the entries in the lower half are made in the flollowing
order :

(1) First column (2) First row (3) Second column (4) Second row and so on.
`General formulae for calculating l’s, u’s and c’s are

–1

1
– ( ),

s

rs rs ri is
i

l a l u r s


 
–1

1

– / ( ),
r

rs rs ri is rr
i

u a l u l r s


 
  
 


–1

1

– /
r

r r ri i rr
i

c b l c l


 
  
 


B’s are the check sums and C’s are calculated in the following two ways :

(i)  C1 = 
1

11

B
l ,  C2 = (B2 – l21C1 ) /l 22

(ii) C1= 1 + u12 + u 13 + c1,   C2 = 1 + u23 + c2

If the values of C obtained by two different ways differ, some mistake has been made in
computation, and must be rectified before we proceed further.
Example 21. Solve the following equations by Crout’s method:

4x + y – z = 13,   3x + 5y + 2z = 21, 2x + y + 6z = 14.
Solution. The above equations are written in the form of

12 13 1

23 2

3

x u y u z c
y u z c

z c

   
  
 

...(1)

     11 11 21 21 31 314, 3, 2l a l a l a     

 a11 a12 a13 b1 B1
a21 a22 a23 b2 B2

 a31 a32 a33 b3 B3

l11 u12 u13 c1 C1

l21 l22 u23 c2 C2

 l31 l32 l33 c3 C3
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1312 1
12 13 1

11 11 11

1 –1 13, ,
4 4 4

aa b
u u c

l l l
     

22 22 21 12
1 17– 5 – 3 ,
4 4

l a l u   

32 32 31 12
1 1– 1– 2
4 2

l a l u   

               23 23 21 13 22
1 17 11( – ) / 2 – 3 – /
4 4 17

u a l u l               

                2 2 21 1 22
13 17 45( – ) / 21 – 3 /
4 4 17

c b l c l         

               33 33 31 13 32 23
1 1 11 105– 6 – 2 – –
4 2 17 17

l a l u l u          
   

3 33 31 1 32 2 33
13 1 45 105( – – ) / 14 – 2 – / 1
4 2 17 17

c b l c l c l       
 

On putting the values of u’s and c’s in (1), we get

1 1 13 11 45– , , 1
4 4 4 17 17

x y z y z z    

By backward substitution, we get
      z  =  1

         
11 45 11 45 2
17 17 17 17

y z y y      

1 1 13 1 1 13– – 3
4 4 4 2 4 4

x y z x x      

    x = 3, y = 2, z= 1 Ans.
The table is filled as follows:
(i) The upper half of the table is the augmented matrix of

the given system of equations.
(ii) The lower half is completed in the following order:
First column is the same as first column of upper half.

l11 = 4; l12 = 3, l13 = 2.
First row. First element l11 is 4. The other elements are
obtained by dividing the corresponding elements of the first
row of upper half by l11.

Second column. First element u21 = 
1
4

Second element          l22 = a22 – l21u12

= corresponding element in the upper half
    – (Product of the elements of the left to l22 and u12 ).

Third element           l33 = a33 – l31u12

 = corresponding element in the upper half
     – (Product of the elements of the left to l32 and u12 ).

and so on.

4 1 –1 13 17
3 5 2 21 31
2 1 6 14 23

4
1
4

1–
4

13
4

17
4

3
17
4

11
17

45
17

73
17

1 1052 1 2
2 17
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Example 22. Solve the following equations by Crout’s method:
         4x + 3y + z – w = 14
      2x + 5y + 2 z + w = 17
     x  + 4y + 4z + 6w  = 20
         3x  + y – z + 5w = 12

Solution. The given equations can be written as
     x + u12  y + u13 z + u14 w = c1

    y + u23  z + u24 w= c2
             z + u34 w = c3

               w = c4
where l’s and therefore u’s and c’s are obtained by the following formulae

  
–1 –1 –1

,
1 1 1

– , – / – /
s r r

rs rs ri is rs rs ri is rr r r ri rr
i i i

l a l u u a l u l c b l c l
  

   
     

   
  

The entries in the table given below are made with the above formulae.

Therefore        
3 7–
4 4 4 2

zx y  
ω

                   
3 3 20
7 7 7

y z w  

            
68 101
33 33

z w 

        w = 1

Now  w = 1,   z + 
68
33 = 

101
33      z = 1

             
3 3 20
7 7 7

y           y = 2

             
3 1 1 7– 2
2 4 4 2

x x    

x = 2,  y = 2,  z = 1, w =1      Ans.
Example 23. Solve the following
system by Crout’s method

x + 2y + z = 4, 2x– 3y – z = –3,
      3x + y+2z =3
Solution. By Crout’s method

11 12 13 1

21 22 23 2

31 32 33 3

0 0 1 1 2 1 4
0 0 1 2 –3 –1 –3

0 0 1 3 1 2 3

l u u c
l l u c
l l l c

     
          
          

111 11 12 11 13 11

121 21 12 22 21 13 22 23 21 22 2

131 31 12 32 31 13 32 23 33 31 32 2 33 3

1 2 1 4
2 –3 –1 –3
3 1 2 3

cl l u l u l
cl l u l l u l u l l c
cl l u l l u l u l l l c l c

   
         
         

11 11 12 11 13 11 11, 2, 1, 4l l u l u l c   
21 21 12 22 21 13 22 23 21 1 22 22, –3, –1, –3l l u l l u l u l c l c      
31 31 12 32 31 13 32 23 33 31 1 32 2 33 33, 1, 2, –3l l u l l u l u l l c l c l c        

4 3 1 –1 14 21
2 5 2 1 17 27
1 4 4 6 20 35
3 1 –1 5 12 20

4 3
4

1
4

1
4


7
2

21
4

2 7
2

3
7   

3
7

20
7

33
7

1 13
4

33
14

68
33

101
33

202
33

3 5
4


17
14


2030
231   1 2
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The following enteries are made in the following order :
(1) First column (2) First row (3) Second Column (4) Second row and so on.

l11 = 1 u12 = 2 u13 = 1         c1 = 4

l21 = 1 l22 = –7 u23 = 
3
7         c2 = 

11
7

l31 = 3 l32 = –5 l33 = 
8
7         c3 = –1

x + 2y + z = 4
     or x + 2y +z = 4

3 11
7 7

y z  ,

            z = –1

    
3 11– 2
7 7

y y  

x + 4 –1 = 4  x = 1 Ans. x = 1, y = 2, z = –1
15.8  ITERATIVE METHODS OR INDIRECT METHODS

We start with an approximation to the true solution and by applying the method repeatedly
we get better and better approximation till accurated solution is achieved.
There are two iterative methods for solving simultaneous equations.
(1) Jacobi’s method (Method of simultaneous correction).
(2) Gauss-Seidel method (Method of successive correction).

15.9 JACOBI’S METHOD
The method is illustrated by taking an example.
Let

11 12 13 1

21 22 23 2

31 32 33 3

a x a y a z b
a x a y a z b
a x a y a z b

   
   
   

...(1)

After division by suitable constants and transposition, the equations can be written as

1 12 13

2 21 23

3 31 32

x c k y k z
y c k x k z
z c k x k y

   
   
   

...(2)

Let us assume x = 0, y = 0 and  z = 0 as first approximation, substituting the values of x, y,
z on the right hand side of (2), we get x = c1, y = c2, z = c3. This is the second approximation
to the solution of the equations.
Again substituting these values of  x, y, z in (2) we get a third approximation.
The process is repeated till two successive approximations are equal or nearly equal.
Note: Condition for using the iterative methods is that the coefficients in the leading diagonal
are large compared to the other. If are not so, then on interchanging the equation we can make
the leading diagonal dominant diagonal.
Example 24. Solve by Jacobi’s method

4x + y + 3z = 17
x + 5y + z   = 14

            2 x – y + 8 z   = 12

1 2 1 4
3 110 1
7 7

0 0 1 –1

x
y
z
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Solution. The above equations can be written as

17 3– –
4 4 4

14 – –
5 5 5
3 –
2 4 8

y zx

x zy

x yz

 





  


              ...(1)

On substituting  x = y = z = 0 on the right hand side of (1), we get 17 14 3, ,
4 5 2

x y z  

Again substituting these values of x, y, z on R.H.S. of (1), we obtain
17 7 9 97– –
4 10 8 40

x  

14 17 3 33– –
5 20 10 20

y  

3 17 7 63–
2 16 20 80

z   

Again putting these values on R.H.S. of (1) we get next approximations.
17 33 189 1039– – 3.25
4 80 320 320

x   

14 97 63 863– – 2.16
5 200 400 400

y   

3 97 33 176– 1.1
2 160 160 160

z    

Substituting, again, the values of x, y, z on R.H.S. of (1) we get

            
17 2.16 3(1.1)– – 2.885
4 4 4

x  

            
14 3.25 1.1– – 1.93
5 5 5

y  

             
3 3.25 2.16– 0.96
2 4 8

z   

Repeating the process for x = 2.885, y =1.93, z = 0.96 we have
17 1.93 3– – (0.96)
4 4 4

x  =  4.25 – 0.48 – 0.72 = 3.05

14 2.885 0.96– –
5 5 5

y   =  2.8 – 0.577– 0.192  =  2.03

3 2.885 1.93–
2 4 8

z   = 1.5 – 0.721 +  0.241 = 1.02

This can be written in a table
Iterations 1 2 3 4 5 6
17 3– –
4 4 4

y zx  0
17
4

= 4.25       
97 2.425
40

    
1039 3.25
320

 2.885 3.05

14 – –
5 5 5

x zy  0
14 2.8
5
           

33 1.65
20


863 2.16
400

 1.93 2.03

3 –
2 4 8

x yz   0
3 1.5
2
            

63 0.7875
80


176 1.1
160

 0.96 1.02
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After 6th iteration
x = 3.05,   y = 2.03, z = 1.02

The actual values are
x = 3,  y = 2,  z = 1. Ans.

15.10  GAUSS-SEIDEL  METHOD
Gauss-Seidel method is a modification of Jacobi’s method. In place of substituting the

same set of values in all the three equations (2) of Article 15.9, we use in each step the value
obtained in the earlier step.

Step 1. First we put y = z = 0 in first of the equation (2) of Article 15.9 and x = c1. Then in
second equation we put this value of x i.e., ci and z = 0 and obtain y. In the third equation we use
the values of x and y obtained earlier get z.

Step 2. We repeat the above procedure. In the first equation we put the values of y and z
obtained in step 1 and redetermine x. By using the new value of x and value of z obtained in step
1 we redetermine y and so on.

In other words, the latest values of the unknowns are used in each step.
Example 25. Solve by Gauss-Seidel method

   6x + y + z = 105
                         4 x  + 8 y+ 3 z = 155

5x + 4 y– 10z    = 65.
Solution. The numbers 6, 8, – 10 in the leading diagonal are the largest, so we can apply Gauss-

Seidel method to solve the given equations.
The above equations can be written as

         
35 1 1– –
2 6 6

x y z ...(1)

             
155 1 3– –

8 2 8
y x z ...(2)

          
13 1 2–
2 2 5

z x y   ...(3)

Putting y = z = 0 in equation (1), we get

                    
35
2

x 

Putting 
35
2

x  and z = 0 in equation (2), we have

                    
155 35 85– – 0

8 4 8
y  

Substituting 
35
2

x  ,
85
8

y   in equation (3), we obtain

                     
13 35 17 13–
2 4 4 2

z    

Again starting from equaion (1) and putting 
85 13, ,
8 2

y z   we get

                      
35 85 13 703– – 14.64
2 48 12 48

x   
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Similarly the process is carried on and the roots so obtained are given in the following table :
Iterations 1 2 3 4

35 – –
2 6 6

y zx  35 17.5
2
       14.64    15.12 14.98

155 3– –
8 2 8

xy z
85 10.6
8
    9.62 10.06 9.98

13 2–
2 2 5

xz y   13 6.5
2
       4.67 5.084 4.98

At the end of fourth iteration the roots are x = 14.98, y = 9.98, z = 4.98.
But the actual roots are x = 15,   y = 10,   z = 5 Ans.
Example 26. With the following system of equations

3x +2y = 4.5
 2x+3y – z = 5
        –y + 2z = – 0.5,

set up the Gauss-Seidel iteration scheme for solution. Iterate two times, using the initial
approximation as x0 = 0.4,  y0 = 1.6,  z0 = 0.4
Solution. The given equations can be written as

      x = 1.5 –
2
3 y ...(1)

    
5 2–
3 3 3

zy x 

     z = – 0.25 + 0.5 y ... (2)

     x0 = 0.4,   y0= 1.6,   z0 = 0.4 ... (3)

Putting  y = 1.6 in (1) we get x = 0.433

Putting   x = 0.433 and z = 0.4 in (2), we have  y = 1.511
Putting  y = 1.511 in (3), we get z = 0.506

Again starting from equation (1) and putting y = 1.511 in (1), we get x = 0.493

Similarly the process is carried on and the roots so obtained are given in the following
table :

Iterations 1 2 3 4
21.5 –
3

x y 0.433       0.493 0.495 0.4973

5 2–
3 3 3

zy x  1.511    1.507 1.505 1.504

  z = – 0.25 + 0.5 y 0.506 0.504 0.503 0.502

At the end of fourth iteration the roots are
x = 0.497, y = 1.504, z = 0.502

But the actual roots are
x = 0.5,  y = 1.5,   z = 0.5 Ans.
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Example 27. The following system of equations is given:
2x1– x2+2x3 = 3
x1+3x2+ 3x3= –1
x1+2x2+5x3 = 1

Iterate two times using the Gauss-Seidel method, starting with the initial approximations
x1 = 0.3,  x2 = – 0.8 and x3 = 0.3.

Solution. x1 = 0.3, x2 = – 0.8,   x3 = 0.3

2x1– x2 + 2x3 = 3
    x1+3x2+3x3 = –1
     x1+2x2+5x3 = 1

The above equations can be written as

      2
1 3

3 –
2 2

x
x x  ... (1)

                                              1
2 3

1 –
3 3

xx x   ... (2)

     1
3 2

1 2– –
5 5 5

xx x ...(3)

Putting x2 = – 0.8 and x3 = 0.3 in eq. (1) we get
xl = 1.5 –  0.4 – 0.3 = 0.8

Putting x1 = 0.8 and x3 = 0.3 in eq. (2) we get

                 2
1 0.8– – – 0.3 –0.9
3 3

x  

Putting x1 = 0.8 and x2 = – 0.9 in eq. (3), we get

           3
0.8 20.2 – – ( 0.9) 0.4
5 5

x   

Again starting from eq (1) and putting x2 = –0.9, x3 = 0.4, we get

     1
0.91.5 – – 0.4 0.65
2

x  

Similarly the process is carried on and the roots so obtained are given in the following table :
Iterations 1    2 3 4 5 6

2
1 3

3 –
2 2

x
x x  0.8      0.65       0.575    0.538 0.518 0.509

1
2 3

1– – –
3 3

xx x – 0.9     – 0.95  – 0.975 – 0.988 – 0.994 – 0.997

1
3 2

1 2– –
5 5 5

xx x 0.388   0.45 0.475  0.488 0.494 0.497

Exact roots are xl= 0.5, x2 = – 1, x3 = 0.5 Ans.
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Example 28. Apply Gauss-Seidel method to solve
                5x+2y + z = 12

        x + 4y + 2 z = 15
        x + 2 y + 5 z = 20

correct upto decimal places, taking x0 = y0 = z0 = 0
Solution. The given equations can be written as

12 2– –
5 5 5

zx y ...(1)

15 – –
4 4 2

x zy  ... (2)

24 – –
5 5
x yz  ...(3)

Putting y = z = 0 in eq. (1) we have x = 2.4
Putting x = 2.4,  z = 0 in eq. (2), we have

1 5 2 .4– – 0 3.1 5
4 4

y  

Putting x = 2.4,  y = 3.15 in eq. (3), we have
2.4 2 3.154 – – 2.26
5 5

z 
 

Again starting from eq. (1) and putting y = 3.15, z = 2.26, we get
12 2 2.26– 3.15 – 0.688
5 5 5

x   

Similarly the process is carried on and the roots so obtained are given in the following table:

Iterations 1 2 3      4 5
12 2– –
5 5 5

zx y 2.4 0.688 0.84416 0.962612 0.99426864

15 – –
4 4 2

x zy   3.15 2.448 2.09736 2.013237 2.00034144

24 – –
5 5
x yx  2.26 2.8832 2.99222 3.0021828 3.001009696

Ans. Exact roots x = 1, y = 2, z = 3
EXERCISE 15.5

1. Solve by Gauss elimination method
       6 x – y – z = 19

3x + 4y + z = 26
 x + 2y+ 6 z = 22 Ans. x = 4,  y = 3,  z = 2

2. Use Gauss-Seidel method to solve the system of equations
 3x + y + z= 1

   x +3y–z  = 11
  x– 2y + 4y = 21              Ans. x  =  – 7,y = 10, z = 12

3. Solve by Crout’s method

              

1

2

3

3 1 1 4
1 2 2 3
2 1 3 4

x
x
x

     
          
          

Ans. x1 = 1, x2 =
1
2

, x3 = 
1
2
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4. Use Crout’s method to solve
2x + 3y – 4z+ 2 w = – 4
   x + 2y + 3z – 4 w = 7
  4x – y + 2 z  – 2 w = 7

3 x + 5y – z + 6w = 5.     Ans. x = 1, y = 
1
2

, z = 2, w = 
1
4

5. Use Jacobi’s method to solve
10x – 2y – 3 z = 205
2 x – 10 y + 2 z  = –154
2 x  +  y – 10z  = –120               Ans. x = 32, y = 26, z = 21

upto the end of sixth iteration.
6. Use Jacobi’s method to solve

5x +2y + z = 12
x + 4y + 2 z = 15
x + 2y + 5z = 20

upto the end of eighth iteration.    Ans. x = 1.08, y = 1.95, z = 3.16
7. Solve Question (6) by Gauss-Seidel method upto fifth iteration. Ans. x = 1, y = 2, z = 3
8. Solve by Gauss-Seidel method

(A) 13 x + 5y – 3z + w = 18 (B)   6x + y + z = 6
2x + 12 y + z – 4 w = 13  x + 8y  + 2z =  4

3x – 4y  + 10z  + w = 29 3x + 2y  + 10z = –1

2 x + y– 3z + 9 w  = 31 Initial values x = 0.8,  y =  0.4, z = – 0.45

 Ans. Exact roots x = 1,y = 2, z = 3, w = 4. Ans.
1 11, , –
2 2

x y z  

9. Determine how many iterations of Gauss-Seidel method are needed in order to find solution of the
system of equations :

9.9 x1– 1.5 x2+ 2.6.x3 = 0
                     0.4 x1 + 13.6 x2– 4.2.x3 = 8.2
                         0.7 x1 + 0.4 x2 + 7.1x3 = –1.3  with an accuracy of  10–4

15.11  SOLUTION OF ORDINARY  DIFFERENTIAL  EQUATIONS
A number of differential equations cannot be solved by analytical methods. It is, therefore,
imperative to solve them by numerical methods. We will discuss the following methods :

(1) Taylor’s series method
(2) Picard’s method
(3) Runge-Kutta method.

15.12  TAYLOR’S SERIES METHOD
Let us consider the first order differential equation

( , )dy f x y
dx

 ... (1)

under the condition y = 0 for x = x0.
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Method.

On differentiating (1) again and again, we get 
2 3 4

2 3 4, ,d y d y d y etc
dx dx dx

.

On putting x = x0 and y = 0 in the above equations we get the values of
2 3 4

2 3 4, , ,dy d y d y d y
dx dx dx dx

.....

Substituting the values of y, y, y , y   ... in Taylor’s  series, we get

        
2 3

0 0
0 0 0 0

( – ) ( – )( – ) [ '( )] [ "( )] [ "'( )] ...
2! 3!o

x x x xy y x x y x y x y x    

Thus we can obtain a power series for y (x) in powers of (x – x0).
The method is illustrated by the example.
Example 29. Using Taylor’s series method, obtain the solution of 

dy
dx = 3x + y2 and y = 1,

when x = 0
Find the value of y for x = 0.1, correct to four places of decimals.

Solution.
dy
dx  = 3x + y2 ...(1)

y (0) = 1 ...(2)
Differentiating (1) w.r.t ‘x’, we get

    
2

2 3 2d y dyy
dxdx

  ...(3)

   
23 2

3 22 2d y d y dyy
dxdx dx

    
 

...(4)

   
4 3 2 2

4 3 2 22 2 4d y d y dy d y dy d yy
dx dxdx dx dx dx

          
    

...(5)

and so on

From  (1),     
dy
dx = 0 + (1)2 = 1

From  (3),   
2

2

d y
dx

= 3+2(1) (1) = 5

From  (4),                   
3

3

d y
dx

= 2 (1) (5) + 2 (1)2 = 12

From (5),                     
4

4

d y
dx

= 2 (1) (12) + 2 (1) (5) + 4 (1) (5) = 54

We know by Taylor’s series expansion
2 3 4

0 0 0
0 0 0 0 0 0

( – ) ( – ) ( – )( – )( ') ( ") ( "') ( ) ...
2! 3! 4!

ivx x x x x xy y x x y y y y                    ...(6)

On substituting the values of y (0), y (0), y (0), y (0), yiv (0) etc. in (6), we get

2 3 4

1 (5) (12) (54) ...
2! 3! 4!
x x xy x     
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         y (x) = 1+ x +
5
2  x2 + 2x3+

9
4

x4  +...

                                y (0.1) = 1 + 0.1 + 
5
2 (0.01) + 2 (0.001) +

9
4

(0.0001) + ...

            = 1 + 0.1 + 0.025 + 0.002 + 0.000225 = 1.127225 Ans.
Example 30. Use Taylor’s series method to solve the equation

– , (0) 1dy xy y
dx

 

Solution.     y– xy ... (1)
             y(0) = 0.

Differentiating (1) repeatedly, we find

   y =  –  x y – y, y (0) = –1

 y =  – x y – 2y  y (0) = 0

  yiv =  –  x y – 3 y,  yiv (0) = 3

                                yv  =  – xyiv – 4y yv  (0) = 0

yvi  =  –  xyv – 5yiv, yvi (0) = –15

By Taylor’s series expansion
2 2 3 4

( ) (0) '(0) "(0) "'(0) (0) ...
1! 2! 3! 4!

ivx x x xy x y y y y y     

           =  
2 4 6

1 0 (–1) 0 (3) 0 (–15) ...
2! 4! 6!
x x x

      

           = 
2 4 6

1– – ...
2 8 48
x x x

  Ans.

Example 31. Apply Taylor series method of second order to integrate y= 2t + 3y.
y (0) = 1, t  [0, 0.1] with h= 0.1.

Solution.
d y
d t  = 2t + 3y,,

d y
d t  = 0 + 3 (1) = 3, y (0) = 1

2

2

d y
d t = 2 + 3

dy
dt ,

2

2

d y
d t = 2 + 3 × 3 = 111

3 2

3 23 ,d y d y
d t d t


3

3 3 11 33d y
d t

  

4 3

4 33 ,d y d y
d t d t


4

4 3 33 99d y
d t

  

5 4

5 43d y d y
d t d t

 ,
5

5

d y
d t = 3 × 99 = 297

and so on.
We know by Taylor’s series expansion
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2 32 3
0 0

0 0 2 3
0 0 0

( – ) ( – )( – )
2! 3!t t t

t t t tdy d y d yy y t t
dt dt dt  

           
     

+
4 54 5

0 0
4 5

0 0

( – ) ( – ) ...
4! 5!

t t

t t t td y d y
dt dt

 

   
    

   

        
2 3 4 511 33 99 2971 3 ...

2 3! 4! 5!
t t t ty t      

        2 3 4 511 33 99 2971 3(0.1) (0.1) (0.1) (0.1) (0.1)
2 6 24 120

y      

2 3 4 511 11 33 99(0.1) 1 3(0.1) (0.1) (0.1) (0.1) (0.1) ...
2 2 8 40

y       

 y (0.1) = 1+ 0.3 + 0.055 +  0.0055 + 0.0004125 +  0.00002475
 y (0.1) = 1.36093725 Ans.

Example 32. Find the solutions u(0.1) and u (0.2) , of the initial value problem
u = x (1 –2 u2) ; u (0) = 1

using the first three non zero terms of the Taylor Series method and h = 0.1.

Solution. 2(1– 2 )du x u
dx



          
2

2
2 (1– 2 ) – 4d u duu x u

dxdx
    
 

          
23 2

3 2– 4 – 4 – 4 – 4d u du du du d uu u x u
dx dx dxdx dx

      
   

 = –
2 2

28 – 4 – 4du du d uu x u
dx dx dx

     
   

        
2 24 2 2

4 2 2–8 –8 –4 – 4d u du d u du d uu u
dx dxdx dx dx

          
     

2 2 3

2 2 3–8 –4 – 4du d u du d u d ux u
dx dxdx dx dx

     
  

Putting x = 0, u  = 1 in 
2 3 4

2 3 4, , ,du d u d u d u
dx dx dx dx

, we get

  
2

20,du d u
dx dx

  =  [1– 2 (1)2]  +  0  =  –1

3

3

d u
dx

= 0 + 0  = 0,

4

4

d u
dx

= 0 – 8 (+1) (–1) + [0 – 4 × 1(–1)]+ 0 = 12

By Taylor ’s series
2 3

0 0 0
0 0 0 0

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
1! 2! 3!

x x x x x xu x u x u x u x u x  
      

4
0

0
( ) ( ) ...

4!
ivx x u x

 

       u (0.1) = u (0) + (0.1– 0) u (0) +
2 3 4(0.1 – 0) (0.1 – 0) (0.1 – 0)" (0) "'(0) (0) ...

2! 3! 4!
ivu u u  

     = 1+ 0 + 
0.01

2
(–1) + 0 + 

0.0001
24

(12) = 1 – 0.005 + 0.00005 = 0.99505
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Putting x = 0.1 and u = 0.99505 in 
2

2and ,du d u
dx dx

 we get

    2(1 2 )du x u
dx

 

   
du
dx = 0.1 [1 – 2 (0.99505)2] = 0.1 (– 0.98025) = – 0.098025

  
2

2
2 (1 2 ) 4d u duu x u

dxdx
     
 

  
2

2

d u
dx

=  [1 – 2 (0.99505)2] + 0.1 (– 4 × 0.99505 × – 0.098024)

            = – 0.98025 +  0.03902 = – 0.94123
Putting x = 0.2, x0 = 0.1, u (0.1)  and u (0.1) in Taylor’s series (1), we get

                               u (0.2) = u (0.1) + (0.2 – 0.1)  u (0.1) + 
2(0.2 – 0.1) " (0.1) ...

2!
u 

           = 0.99505 + 0.1 ( – 0.098025) + 
0.01

2
 (– 0.94123)

         = 0.99505 – 0.0098025 – 0.005 × 0.94123
         = 0.98054135

Exercise 15.6
Using Taylor’s method, solve the following differential equations :

1. 2 ,given (0) 0.dy x y y
dx

          Ans. 2 51 1 ...
2 20

y x x  

2.     
2

2

d y
dx

+ xy = 0, subject to x = 0,  y = c and
dy
dx = 0. Ans. y = c

3
6 91 4 1 4 71– ...

3! 6! 9!
x x x

   
   

 

3.
dy
dx = x2 y –1, given y (0) = 1, and find  y (0.03).           Ans. 

2 4

1– – ...,0.97001
3 4
x xy x  

4.
dy
dx – y2 – x = 0, for y (0) = 0, find y when x = 0.2     Ans. y = 0.020016

15.13  PICARD’S METHOD OF SUCCESSIVE  APPROXIMATIONS
Let us consider the first order differential equation

( , )dy f x y
dx

 ...(1)

and y = y0 for x = x0

Method. Integrating (1) between the limits x0 and x, we get

( , )
o o

y x

y x
dy f x y dx  or    ( , )

o

x

o x
y y f x y dx  

        ( , )
o

x

o x
y y f x y dx   ... (2)

Equation (2) is the solution of (1). But (2) contains the unknown y under the integral sign on
right hand side.
On putting y0 for y on R.H.S. of (2), we get a first approximation y1.

1 0 0( , )
o

x

x
y y f x y dx   ... (3)
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From(3) we get the value of y1and we put y1for y on R.H.S.of (2) to get second approximation y2.

Thus 2 0 1( , )
o

x

x
y y f x y dx  

Similarly third approximation is y3 = y0 + 
0

x

x f (x, y2) dx and so on.

In this way we get a better approximation each time than the preceding one.
Note. This method is used to solve the differential equation if the succession integration

can be performed easily.
The method is now illustrated by an example.

Example 33. Using Picard’s method, find a solution of  
dy
dx =1 + xy upto the third approximation,

when x0 = 0, y0 = 0

Solution.
dy
dx =1 + xy ...(1)

Integrating (1) w.r.t. ‘x’ between the limits 0 and x, we get

0 0
(1 )

y x
dy xy dx        

0
(1 )

x
y xy dx  ...(2)

On putting y (0) = 0 for y on R.H.S. of (2), we have

1 0
(1 0)

x
y dx            y1 = x

On substituting y1 = x for y on R.H.S. of (2), we obtain

                            
3

2
2 0

(1 )
3

x xy x dx x   
3 4

2
3 0 0

1 1
3 3

x xx xy x x dx x dx
    

         
    

 

3 5

3 3 15
x xy x   . Ans.

Example 34. Given the differential equation
2

21
dy x
dx y




with the initial condition y = 0 when x = 0, use Picard’s method to obtain y for x = 0.25, 0.5
and 1.0 correct to three places of decimals.

Solution.
2

21
dy x
dx y




                          
2 3

2
0 20 0

( ) 0
31

x xx xy x y dx x dx
y
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Now using this value of y, we have
2 3

–1
20 3

0 tan
3

1
3

x x xy dx
x

  
 

  
 



If x = 0.25, then y = 
3

–1 –1 –1(0.25) 0.015625tan tan tan 0.005208 0.0052
3 3

  

If x = 0.5, then y = 
3

–1 –1 –1(0.5) 0.125tan tan tan 0.042 0.0420
3 3

  

If x = 1.0, then y = tan–1
1
3 = tan–1 0.3333 = 0.3218 Ans.

Example 35. Perform two iterations of Picard’s method to find an approximate solution of

the initial value problem
y= x + y2 ; y (0) = 1.

Solution. 2dy x y
dx

  ...(1) y (0) = 1

Integrating (1) w.r.t. ‘x’ between 0 and x, we get
2

0 0
( )

y x
dy x y dx  

      2
0 0

( )
x

y y x y dx   ...(2)
On putting y (0) = 1 for y on R.H.S. of (2), we have

2

1 0
1 ( 1) 1

2
x xy x dx x     

On substituting the value of y1 for y on R.H.S of (2), we get

                           

22

2 0
1 1

2
x xy x x dx
  
      
   



                         
4

2 2 3
2 0

1 1 2
4

x xy x x x x x dx
 

        
 



                         
4

2 3
2 0

1 1 3 2
4

x xy x x x dx
 

      
 



                         
2 3 4 5

2
3 21
2 3 4 20
x x x xy x      Ans.

Example 36. Using three successive approximations of Picard’s method. Obtain
approximate solution of the differential equation y = x2 + y2 satisfying the initial condition
y (0) = 0

Solution. 2 2dy x y
dx

  ...(1) y (0) = 0

Integrating (1) w.r.t, ‘x’ between the limit 0 and x, we get

2 2

0 0
( )

y x
dy x y dx   ... (2)

On putting y (0) = 0 for y on R.H.S. of (2), we have
3

2
1 0

( 0)
3

x xy x dx  
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On putting 
3

3
x

for y on R.H.S. of (2), we obtain

6 3 7
2

2 0 9 3 63
x x x xy x dx
 

    
 


23 7 6 10 14

2 2
3 0 0

2
3 63 9 189 3969

x xx x x x xy x dx x dx
    
          
     

 

      = 
3 7 11 152

3 63 2079 59535
x x x x

   Ans.

Example 37. Use Picard’s method to solve 
dy
dx =  –  xy,  y (0) = 1

Solution. y (x) = y0 – 0

x
xy dx

        
2

0 0
1– (1) 1– 1 –

2
x x xx dx xdx   

Now using this value of y, we have
2 3 2 4

0 0
1– 1– 1– – 1–

2 2 2 8
x xx x x xy x dx x dx

   
      

   
 

   
2 4 3 5 2 4 6

0 0
1– 1– 1– – 1– –

2 8 2 8 2 8 48
x xx x x x x x xx dx x dx

   
        

   
 

Repeating once again we shall obtain
2 4 6 8

1– –
2 8 48 384
x x x xy   

  Ans.

Example 38. Use Picard’s method to solve the equations

– ,dx dyy x
dt dt

 

given that x = 1, y = 0 when t = 0.

Solution. –dx y
dt

 ...(1)

dy x
dt

 ...(2)

Integrating (1) w.r.t ‘t ’ from t = 0 to t, we get

                         1 0
[ ] –

txx y dt     
0

–1 –
t

x y dt 

0
1 –

t
x y dt  ...(3)

Integrating (2), w.r.t., ‘t’  from t = 0 to t, we get

                         0 0

xyy x dt     
0

– 0
t

y x dt 

0

t
y x dt  ...(4)

Replacing y by 0 in (3) and x by 1 in (4), we have

0
1 – 0 1

t
x dt     and

0
1.

t
y dt t 
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2 2 3

0 0
1– 1– , 1– –

2 2 6
t tt t tx t dt y dt t

 
    

 
 

3 2 4

0
1– – 1–

6 2 24
t t t tx t dt
 

   
 


2 4 3 5

0
1– – ,

2 24 6 120
t t t t ty dt t
 

    
 
       Ans.

and so on
Exercise 15.7

Using Picard’s method, solve the following

1. 2 , given (0) 0dy x y y
dx

   . Upto third approximation.

Ans. 2 5 8 111 1 1 1
2 20 160 4400

y x x x x   

2. Apply Picard’s iteration method to find approximate solutions to the initial value problem
y = 1 + y2,  y (0) = 0

3.
dy
dx = x – y, given y (0) = 1 and find y (0.2) to five places of decimals.

Ans. y = 1– x + x2
3 4 5 6

– –
3 12 60 720
x x x x

  ,0.83746

4.
dy
dx = y + x, given y (0) = 1, find y (1),               Ans. y = 1 + x + x2+

3 4 5 6

3 12 60 120
x x x x

   , 3.434.

5.
dy
dx = x2 + y2, for y  (0) = 0, find y (0.4). Ans. 0.0214.

6.
dy
dx = 2y + z, 

dz
dx = y + 2z given y (0) = 0, z (0) = 1

Ans. y = x + 2x2 3 4 2 3 413 5 5 7 41..., 1 2 ...
6 3 2 3 40

x x z x x x x        

15.14  EULER’S  METHOD
This is purely numerical method for solving the first order differential equations. This is an

elementary method and which will demonstrate the procedure underlying these methods. This
method should not be used for practical solution.

Consider the differential equation

( , )dy f x y
dx

 ...(1)

Let  y =  (x) be the solution of (1). ...(2)
Let (x0, y0), (x1, y1)... (xn, yn), (xn+ 1, yn +1)  be the points on the curve of (2).

x0, x1,....xn,xn +1... are equispaced at equal interval h.
     yn + 1 = ( xn + 1)           [(xn + 1 , yn + 1 )lies on (2).]

= ( xn + h) (xn + 1 = xn + h)

=   (xn) + h  (xn) + 
1
2

h2  (xn) + ... ...(3)

=  (xn) + h (xn) (h is very small)
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=  (xn) + hf (xn,yn) since ( , )dy f x y
dx

   

    y n +1  = yn + hf (xn, yn)                         [since yn = (xn) from (2)]    ...(4)

This formula (4) can be used to find yn +1, where yn is
known.

On substituting the value of y0, (n = 0) in (4) we get y1,

Similarly putting the value of y1, (n = 1) in (4), we obtain
y2 and so on.

Note. Since we have neglected 1/2 h2  (xn) and higher
powers of h from formula (4) there will be a larger error
in yn +1. Therefore it is not used in practical problems.

Geometrically
Let y =  (x) be a solution curve PQ. The ordinate of P i.e. yn is known.
Now we have to find the ordinate yn +1 of any point Q.

    yn +1 = MQ = MR + RQ = PL+ RT + TQ (TQ = Error)

           = yn+ h tan  = yn+ h ( , )n n n
dy y hf x y
dx

    
 

Example 39. Using Euler‘s method, find an approximate value of y corresponding to

x = 2, given that 
dy
dx = x + 2 y and y = 1 when x = 1.

Solution.              f (x, y) = x + 2y
yn +1= yn+ hf (xn, yn) = yn + 0.1 (x + 2y)

Method: In column 3 we record the value of x + 2y and in column 4 we enter the sum of the
value of y and the product of 0.1 with the value of x + 2y. This value entered in 4th column
is transfered to second column for the next calculation.

x y                        x + 2y =
dy
dx old y + 0.1

dy
dx

 
 
 

= new y

1.0 1.00 3.00 1.0 + 0.1 (3) = 1.30
1.1 1.3 3.70 1.3 + 0.1 (3.7)= 1.67
1.2 1.67 4.54 1.67 + 0.1 (4.54) = 2.12
1.3 2.12 5.54 2.12 + 0.1 (5.54) = 2.67
1.4 2.67 6.74 2.67 + 0.1 (6.74) =  3.34
1.5 3.34 8.18 3.34 + 0.1 (8.18) = 4.16
1.6 4.16 9.92 4.16 + 0.1 (9.92) =5.15
1.7 5.15 12.00 5.15 + 0.1 (12.0) =6.35
1.8 6.35 14.50 6.35 + 0.1 (14.50) =7.80
1.9 7.80 17.50 7.80 + 0.1 (17.50) = 9.55
2.0 9.55

Thus the required approximate value of y = 9.55 Ans.

O

Y
Q(X , Y )n+1 n+1

Error

P 

h
R

T

Approx
value(x , y ) n n

xn h

L M
X
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Exercise 15.8

1. Using Euler’s method, find an approximate value of corresponding to x = 1, given that

dy
dx = x + y and y = 1 when x = 0.                    Ans. 3.18

2. Using Euler’s method, find an approximate value of y corresponding to x = 1.4, given 
1
2dy xy

dx
 and

y = 1 when x = 1.                   Ans. 1.49857.

3. Using Euler’s method, find an approximate value of y corresponding to x = 1.6, given 2 –dy yy
dx x

 and

y = 1 when x = 1.                   Ans. 1.1351

15.15   EULER’S MODIFIED FORMULA
In equation (3) of Art 15.14 the expansion of yn +1  is

2 3
1

1 1( , ) "( , ) "' ( , ) ...
2 3!n n n n n n n ny y hf x y h x y h x y        ...(1)

In Euler’s formula we omit 21 ( , )
2 n nh " x y and higher powers of h.

The error due to this omission is called Truncation error.
Now the formula is derived with small error.
Differentiating (1) w.r.t. x we get

2

1

1( , ) ( , ) ...
2n n n n

n n

dy dy hf x y h "' x y
dx dx

           
   

                    2
1 1

1( , ) ( , ) ( , ) ( , ) ...
2n n n n n n n nf x y f x y hf x y h "' x y        ... (2)

              21( , ) ( , ) ( , ) ...
2n n n n n nf x y h '' x y h "' x y     

Multiplying (2) by 
2
h

and subtracting from (1) we get :
3

1 1 1
1– ( , ) ( , ) – ( , )
2 2 12n n n n n n n n

h hy hf x y y f x y "' x y     

Neglecting terms containing h3 and higher powers of h, we obtain

1 1
1

( , ) ( , )
2

n n n n
n n

f x y f x yy y h  


     
... (3)

Equation (3) is the Euler’s modified formula.
But f (xn+1 , yn+1) which occurs on the right hand side of equation (3), cannot be calculated
since yn+1 is unknown. So first we calculate yn+1 from Euler’s first formula.

yn+1 = yn+hf (xn,yn)
Thus for each stage we use the following two formulae.

yn +1 = yn+hf (xn,yn)

yn +1 =  yn+ 2
h

[f (xn,yn) + f ( xn+1 , yn+1)]

Example 40. Apply Euler’s modified method to solve 
dy
dx = x + 3 y subject to y (0) = 1 and

hence find an approximate value of y when x = 1.
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Solution. f (x,y)  = x + 3y
                               yn +1 = yn+hf (xn , yn)

      yn +1= yn+ 2
h

[f (xn,yn)+ f  ( xn +1 , yn+1)]

This gives      yn+1 = yn+ 0.1(xn+ 3yn)
                             yn +1 = yn+ 0.05 [(xn+3yn) + (xn +1+3yn+1)].

The following table shows the computation work.

n xn yn xn + 3 yn

Euler’s formula
xn+1 xn+1+ 3yn+1

 Euler’s
yn + 1 modified yn+1

0 0.0 1 3 1.3 0.1 4 1.35
1 0.1 1.35 4.15 1.765 0.2 5.495 1.832
2 0.2 1.832 5.695 2.402 0.3 7.506 2.492
3 0.3 2.492 7.776 3.270 0.4 10.21 3.391
4 0.4 3.391 10.573 4.448 0.5 13.844 4.612
5 0.5 4.612 14.336 6.046 0.6 18.738 6.266
6 0.6 6.266 19.398 8.206 0.7 25.318 8.502
7 0.7 8.502 26.206 11.123 0.8 34.169 11.521
8 0.8 11.521 35.363 15.057 0.9 46.071 15.593
9 0.9 15.593 47.679 20.361 1.0 62.083 21.081
10 1.0 21.081

Hence the required value of y at x = 1 is 21.081.
The exact solution gives y = 21.873 for x = 1. The error is 0.792 i.e., 3.6%. Ans.
Procedure. We calculated yn +1 by Euler’s formula i.e., yn +1 = yn + 0.1 (xn+ 3 yn) and
entered in 5th column. In 7th column we record the sum i.e. xn +1 + 3yn + 1 . Then we
computed the value of   yn +1 by Euler’s modified formula i.e.,

yn +1 = yn+ 
0.1
2

 [(xn+3yn) + (xn +1+3yn+1)]. and entered in 8th column.

EXERCISE 15.9

1. Using Euler ’s modified formula, find an approximate value of y when x = 0.3, given that

dy
dx = x +y and y = 1 when x = 0. Ans. 1.3997

2. Using Euler’s modified formula, find an approximate value of y when x = 0.06, given that
dy
dx  = x2 + y  and y (0) = 1, taking the interval 0.02. Ans. 1.0619

3. Using Euler’s modified formula, solve 
dy
dx = 1– 2 xy given y = 0 at x = 0 from x = 0 to 0.6

taking the interval h = 0.2. Ans. 0.4748

15.16 RUNGE’S  FORMULA

Euler’s modified formula is   yn +1= yn+ 2
h

[ f (xn, yn) + f  ( xn +1 , yn+1)]

   yn+1 = yn+ 2
h

[f (xn, yn)+ f (xn+ h, yn+hfn)] ... (1)
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Let k1 = hf (xn, yn)
and k2 = hf  [xn + h, yn + hf (xn, yn)]    k2 = hf (xn + h, yn + k1)
Putting the values of k1 and k2 in (1), we get

1 1 2
1 ( )
2n ny y k k    ...(2)

This is known as Runge’s formula of order 2.
Example 41. Apply Runge ‘s formula of order 2 approximate value of y when x = 1.1,given

dy
dx = 3 x + y2 and y = 1.2 when x = 1.

Solution.   Here we have x0 = 1, y0 = 1.2,  h = 0.1

             f (x,y)= 3x + y2, f (x0, y0) = 3 (1) + (1.2)2  = 4.44

   k1. = hf (x0 ,y0) = 0.1 × 4.44 = 0.444
    k2 = hf (x0 + h, y0 + k1) = 0.1f (1.1, 1.2 + 0.444) = 0.1f (1.1, 1.644)
       = 0.1 [3 × 1.1 + (1.644)2] = 0.600

                        yn +1 = yn+
1
2

(k1 + k2)

    y1= 1.2 +
1
2

 (0.444 + 0.600) = 1.722 Ans.

EXERCISE 15.10
1. Apply Runge’s formula of second order to find approximate value of y when x = 1.1, given that

dy
dx = x – y and y = 1 when x = 1. Ans. 1.005

2. Apply Runge’s formula of second order to find approximate value of y when x = 0.02, given that

    
dy
dx = x2 + y and y (0) = 1.       Ans. 1.0202.

15.17  RUNGE’S  FORMULA (THIRD ORDER)

                 1 0 1 4 3
1 ( 4 )
6

y y k k k   

where k1 = hf (x0,  y0),   k2 = hf (x0 + 
2
h

, y0 + 1

2
k

)

k3 = hf (x0 + h, y0 + 2k2 –  k1),   y1 = y0 + 
1
6  (k1 + 4k2 + k3)

This is the Runge’s Formula (third order) with an error of the order h4.

Example 42. Using Runge ‘s Formula (third order), solve the differential equation
dy
dx = x – y

subject to y = 1 when x = 1.
Solution.     f (x, y) = x – y
Here h = 0.1,  x0 = 1, y0 = 1

  k1= hf (x0, y0) = 0.1 (x – y) = 0.1 (1 –1) = 0

  k2 = hf 1
0 0,

2 2
khx y   

 
 = 0.1 f (1.05, 1 + 0) = 0.1 (1.05 – 1) = 0.005

  k3 = h f (x0 + h, y0 + 2k2 – k1) = 0.1 f (1.1, 1.01) = 0.1 (1.1 – 1.01) = 0.009
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      1 1 4 3
1 ( 4 )
6

y y k k k   

1
(0.1) 1 (0 0.02 0.009) 1 0.004833 1.004833

6
y                Ans.

15.18   RUNGE-KUTTA FORMULA  (FOURTH ORDER)

A fourth order Runge-Kutta Formula for solving the differential equation is

1 2 2
60 1 2 3 4y = y + (k + k + k + k )

where 1
1 0 0 2 0 0( , ), ,

2 2
khk hf x y k hf x y      

 2
3 0 0 4 0 0 3( , ), ,

2 2
kh

k hf x y k hf x h y k     

0 1 2 3 4
1

[ 2 2 ]
6

y y k k k k    

This is known as Runge-Kutta Formula. The error in this formula is of the order h5. This
method have greater accuracy. No deviatives are required to be tabulated.
It requires only functional values at some selected points on the sub interval.
Example 43. Apply Runge-Kutta method to find an approximate value of y when x = 0.2,
given that

,dy x y
dx

                          y = 1 when x = 0

Solution. Let h = 0.1
Here               x0 = 0,   y0 = 1,           f (x, y) = x + y
Now              k1= h f (x0, y0) = 0.1 (0 + 1) = 0.1

              1
2 0 0, 0.1 (0 0.05, 1 0.05) 0.1[0.05 1.05] 0.11

2 2
khk hf x y f          

 
2

3 0 0, 01 (0 0.05, 1 0.055) 0.1(0.05 1.055] 0.1105
2 2

khk hf x y f           
k4 = hf (x0 +h, y0 +k3) = 0.1f(0 + 0.1,  1 + 0.1105)

     = 0.1f (0.1, 1.1105) = 0.1(0.1 + 1.1105) = 0.12105

According to Runge-Kutta (Fourth order) formula

0 1 2 3 4
1 [ 2 2 ]
6

y y k k k k    

             0.1
1 1

1 (0.1 0.22 0.221 0.12105) 1 (0.66205) 1.11034
6 6

y        

For the second step
x0 = 0.1,      y0 = 1.11034,           h = 0.1
k1 = hf (x0, y0) = 0.1(0.1 + 1.11034) = 0.121034

             1
2 0 0, 0.1 (0.1 0.05, 1.11034 0.060517)

2 2
khk hf x y f        

    = 0.1 (0.15 + 1.170857) = 0.1320857
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2
3 0 0, 0.1 (0.1 0.05, 1.11034 0.0660428)

2 2
khk hf x y f        

    = 0.1 (0.15 + 1.1763828) = 0.13263828

k4 = hf (x0 + h, y0 + k3) = 0.1 (0.1 + 0.1, 1.11034 + 0.13263828)
       = 0.1 (0.2 + 1.24297828)   = 0.144297828

  1 0 1 2 3 4
1

[ 2 2 ]
6

y y k k k k    

= 1.11034 + 
1
6

 [0.121034 + 2 × 0.1320857 + 2 × 0.13263828 + 0.144297828]

=  1.11034 + 
1
6

[0.121034 + 0.2641714 + 0.26527656 + 0.144297828]

= 1.11034 + -
1
6

×  0.794779788 = 1.11034 + 0.132463298

= 1.242803298 Ans.
Example 44. Apply Runge-Kutta method (fourth order), to find an approximate value of y

when x = 0.2, given that 2dy
x y

dx
  and y = 1 when x = 0.

Solution. Let h = 0.1,
Here  x0 = 0,         y0 = 1,          f (x, y) = x + y2

Now  k1 = hf (x0, y0) = 0.1 (0 + 1) = 0.1

21
2 0 0, 0.1 (0 0.05, 1 0.05) 0.1[0.05 (1.05) ] 0.11525

2 2
khk hf x y f           

2
3 0 0, 0.1 (0 0.05, 1 0.057625)

2 2
khk hf x y f        
       = 0.1[0.05 + (1.057625)2] = 0.11685

k4 = hf (x0 + h, y0 + k3) = 0.1f(0 + 0.1, 1 + 0.11685) = 0.1 [0.1 + (0.11685)2] = 0.13474
According to Runge-Kutta (fourth order) formula

      1 0 1 2 3 4
1 ( 2 2 )
6

y y k k k k    

                  0.1
11 [0.1 2 (0.11525) 2 (0.11685) 0.13474]
6

y     

      y0.1 = 1 + 0.1165 = 1.1165
For the second step         x0 = 0.1, y0 = 1.1165

       k1. = 0.1 (0.1 + 1.2466) = 0.1347
        k2 = 0.1 (0.15 + 1.4014) = 0.1551
       k3 = 0.1 (0.15 + 1.4259) = 0.1576
        k4 = 0.1 (0.2 + 1.6233) = 0.1823

    0.2 0.1 1 2 3 4
1 ( 2 2 )
6

y y k k k k    

          
1

1.1165 [0.1347 2(0.1551) 2(0.1576) 0.1823]
6

    

         = 1.1165 + 0.1571 = 1.2736 Ans.
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Example 45. Use the fourth order Runge-Kutta method to find u (0, 2), of the initial value
problem u '  = –2 t u2, u (0) = 1, using h = 0.2.
Solution. h = 0.2
Here        t = 0, u = 1, f (t, u) = –2 tu2

  k1. = hf(t0, u0) = 0.2 (–2 tu2) = 0.2 (0) = 0

1
2 0 0,

2 2
khk hf t u     

= 0.2f(0.1, 1 + 0) = 0.2 f(0.1, 1) = 0.2 (–2 × 0.1 × 12) = –0.04

2
3 0 0, 0.2 (0 0.1, 1 0.02) 0.2 (0.1, 0.98)

2 2
khk hf t u f f         

= 0.2f [–2 × 0.1 × (0.98)2] = –0.2[0.2 × 0.9604] = – 0.038416
  k4 = hf(t0 +h, u0 + k3)     = 0.2 f(0.2, 1 – 0.038416) = 0.2(–2) × (0.2) × (0.961584)2

= – 0.08 × 0.924644 = – 0.073972

  0 1 2 3 4
1 1[ 2 2 ] 1 [0 2( 0.04) 2( 0.038416) ( 0.073972)]
6 6

u u k k k k            

11 [0.08 0.076832 0.073972]
6

   

11 (0.230804) 1 0.038467 0.961533
6

      Ans.

Example 46. Find the solution y (0.1) of the initial value problem y ' = –2 t y2, y (0) = 1,
with h = 0.1, using

(i) Taylor series method of order four, and
(ii) Runge-Kutta method of order four

Solution. 22 , (0) 1, 0.1,
dy

ty y h
dt

    If t = 0 then 22(0)(1) 0dy
dt

  

2
2

2 2 4 ,
d y dyy ty

dtdt
  

If t = 0,
2

2
2 2(1) 0 2d y

dt
    

23 2

3 24 4 4 4d y dy dy dy d yy y t ty
dt dt dtdt dt

       
23 2

3 28 4 4d y dy dy d yy t ty
dt dtdt dt

      

 If  t = 0,
3

2
3 8(1)(0) 4(0)(0) 4(0)(1)( 2) 0d y

dt
     

2 2 34 2 2 2 3

4 2 2 38 8 4 4 4 4 4d y dy d y dy dy d y dy d y d yy t y t ty
dt dt dt dt dtdt dt dt dt

                      

If t = 0,
4

2 2 3
4 8(0) 8(1) ( 2) 4(0) 4(0)(0)d y

dt
      

–4 (1) (–2) – 4(0) (0) (–2) – 4 (0) (1) (0) = 24
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(i) By Taylor series method

        
2 2 3 3 4 4

0 2 3 4

( 0) ( 0) ( 0) ( 0) ...
1! 2! 3! 4!

t dy t d y t d y t d yy y
dt dt dt dt

   
     

   2 3 4
2 41 (0) ( 2) (0) (24) 1

2 6 24
t t ty t t t        

           y (0.1)= 1 – (0.1)2 + (0.1)4 = 1 – 0.01 + 0.0001 = 0.9901        Ans.
(ii) By Runge-Kutta method of order four

  0 1 2 3 4
1 ( 2 2 )
6

y y k k k k    

where   k1 = hf (t0, y0) = h(–2 ty2) = 0.1[ –2 × 0 × (1)2] = 0

  1
2 0 0

0, 0.1 0 0.05, 1
2 2 2

khk hf t y f             
= 0.1 f (0.05,  1) = 0.1[–2 (0.05)  (1)2]  =  – 0.01

2
3 0 0

0.01, 0.1 0 0.05, 1
2 2 2

khk hf t y f              
= 0.1 f  (0.05, 0.995) = 0.1 [ – 2 (0.05) (0.995)2] = – 0.00990025

 k4 = hf (t0 + h, y0 + k3) = 0.1 f (0 + 0.1, 1 – 0.00990025)

= 0.1 f (0.1, 0.99009975) =  0.1 [–2 (0.1) (0.99009975)2] =  –  0.01960595

   0 1 2 3 4
1

( 2 2 )
6

y y k k k k    

11 [0 2( 0.01) 2( 0.00990025) 0.01960595]
6

      

11 [ 0.02 0.01980050 0.01960595]
6

    

11 [ 0.05940645] 1 0.009901075 0.99009892
6

            Ans.

Example 47. Use the Runge-Kutta fourth order method to find y(0.2) with h = 0.1 for the
initial value problem.

/ , (0) 1dy dx x y y  

Solution. h = 0.1, x0 = 0, y0 = 1,  f (x, y) = x y

Now            k1. = hf (x0, y0) = 0.1 0 1  = 0.1

1
2 0 0, 0.1 (0 0.05, 1 0.05) 0.1 (0.05, 1.05)

2 2
khk hf x y f f        

 
            0.1 0.05 1.05 0.1 1.1 0.10488   

2
3 0 0, 0.1 (0 0.05, 1 0.05244)

2 2
khk hf x y f        

     0.1 (0.05, 1.05244) 0.1 0.05 1.05244 0.1 1.10244 0.104997f    

k4 = hf (x0 +h, y0 + k3) = 0.1f (0 + 0.1, 1 + 0.104997)

      0.1 (0.1, 1.104997) 0.1 0.1 1.104997 0.1 1.204997 0.10977f    
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According to Runge-Kutta (fourth order) formula

   1 0 1 2 3 4
1

( 2 2 )
6

y y k k k k    

0.01
11 (0.1 0.20976 0.209994 0.10977)
6

y     

        
1

1 (0.629524) 1 0.10492 1.10492
6

    

For the second step      x0 = 0.1, y0 = 1.10492,  h = 0.1

1 0 0( , ) 0.1 0.1 1.10492 0.1 1.20492 0.109769k hf x y    

1
2 0 0, 0.1 (0.1 0.05, 1.10492 0.0548845)

2 2
khk hf x y f        

     0.1 (0.15, 1.1598045) 0.1 0.15 1.1598045 0.1 1.3098045 0.114447f    

2
3 0 0, 0.1 (0.1 0.05, 1.10492 0.0572235)

2 2
khk hf x y f       

 

     0.1 (0.15, 1.1621435) 0.1 0.15 1.1621435 0.1 1.3121435 0.1145488f    
  k4 = hf (x0 + h, y0 + k3) = 0.1f (0.1 + 0.1, 1.10492 + 0.1145488)
      0.1 (0.2, 1.2194688) 0.1 0.2 1.2194688 0.1 1.4194688 0.1191415f    

0.2 0 1 2 3 4
1

( 2 2 )
6

y y k k k k    

       
1

1.10492 (0.109769 0.228894 0.2290976 0.1191415)
6

    

11.10492 0.6869021 1.10492 0.1144837
6

    

= 1.2194037 Ans.
EXERCISE 15.11

1. The initial value problem y '  = x (y + x) – 2, y (1) =  2 is given. Find the value of y (1.2) with h = 0.2
using the Runge-Kutta method of fourth order.         Ans. y (1.2) = 2.3138

2. Use the Runge-Kutta method of fourth order to find y (0. 8) with h = 0.2 for the initial value problem.

, (0.4) 0.41dy x y y
dx

           Ans. 0.8489912
3. Find y (0.2) for the equation

, (0) 1,dy xy y
dx

   using Runge-Kutta method.

4. Apply the Runge-Kutta method to obtain y (1.1) from the differential equation

1/3 , (1) 1,
dy

xy y
dx

   taking h =0.1.

5. Apply Runge-Kutta (fourth order) formula to find an approximate value of y when x = 1.1, given that
dy

x y
dx

  and y = 1 at x = 1. Ans. 1.004837

15.19  HIGHER ORDER  DIFFERENTIAL  EQUATIONS

   Let 0 0 0 0( , , ), ( , , ), ( ) , ( )dy dzf x y z g x y z y x y z x z
dx dx
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Formulae for the application of Runge-Kutta method are as follows :
   1 1( , , ), ( , , )n n n n n nk hf x y z m hg x y z 

   1 1
2 , ,

2 2 2n n n
k mhk x y z      

  1 1
2 , ,

2 2 2n n n
k mhm hg x y z      

   2 2
3 , ,

2 2 2n n n
k mhk hf x y z      

  2 2
3 , ,

2 2 2n n n
k mhm hg x y z      

   k4 = hf (xn + h, yn + k3, zn + m3)
 m4 = hg (xn + h, yn + k3, zn + m3)

xn+1 = xn + h

             1 1 2 3 4
1

( 2 2 )
6n ny y k k k k     

             1 1 2 3 4
1

( 2 2 )
6n nz z m m m m     

Higher order differential equations are best treated by transforming the given equation into
a system of first order simultaneous equations which can be solved by one of the aforesaid methods.

Consider, for example the second order differential equation :

0

2

0 0 02 , , ; ( ) , '
x x

d y dy dyf x y y x y y
dx dxdx 

        
   

Substituting ,
dy

z
dx

 we get

  ( , , )
dz

f x y z
dx



y(x0) = y0, z(x0) = y0
'

These constitute the equivalent system of simultaneous equations.
Example 48. Use Runge-Kutta method to find y (0.2) for the equation

2

2

d y dyx y
dxdx

 

given that y = 1, 0
dy
dx

  when x = 0.

Solution. Substituting ( , , )
dy

z f x y z
dx

 

The given equation reduces to 
2

2 ( , , )d y xz y g x y z
dx

  

The initial conditions are given by x = 0, y = 1, z = 0.
Also   h = 0.2

k1. = hf (x, y, z) = hz = 0.2 × 0 = 0

1 ( , , ) ( ) 0.2(0 0 1) 0.2m hg x y z h xz y       
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1 1 1
2

0.2, , 0.2 0 0.02
2 2 2 2 2

k m mhk hf x y z h z                  
    

1 1 1 1
2 , ,

2 2 2 2 2 2
k m m kh hm hg x y z h x z y

                             

     
0.2 0.02 00.2 0 0 1 0.2[ 0.01 1] 0.202
2 2 2

                        

2 2 2
3

0.202, , 0.2 0 0.0202
2 2 2 2 2

k m mhk hf x y z h z                       

2 2 2 2
3 , ,

2 2 2 2 2 2
k m m kh hm hg x y z h x z y

                               

      
0.2 0.202 0.020.2 0 0 1 0.2[ 0.0101 0.99] 0.20002
2 2 2

                           
  k4 = hf (x + h, y + k3, z + m3) = h (z + m3) = 0.2 (0 – 0.20002) = –0.040004
  m4= hg(x + h, y + k3, z + m3) = h[(x + h) (z + m3) – (y + k3)]

     = 0.2 [(0.2) (– 0.20002) – (1– 0.0202 )] = 0.2 [ – 0.040004 – 0.9798] = – 0.2039608
This gives, at x = 0.2

     y (0.2)  = y (0) + 
1
6

 [k1. + 2k2 + 2k3 + k4] = 1 + 
1
6

 [0 + 2 (– 0.02 ) + 2 (– 0.0202) + ( – 0.040004)]

       = 1 + 
1
6

 ( – 0.04 – 0.0404 – 0.040004) = 1 + 
1
6

 (– 0.120404) = 0.97993266

     z (0.2) = z (0) + 
1
6

 (m1 + 2m2 + 2m3 + m4)

        = 0 + 1
6

[– 0.2 + 2 (– 0.202) + 2 (– 0.20002 ) – 0.2039608]

          = 
1
6

 [ – 0.2 – 0.404 – 0.40004 – 0.2039608]

        = 
1
6

 (– 1.2080008) = – 0.201333466 Ans.
EXERCISE 15.12

1. Find y(0.4) for the equation  2 2dy
x y

dx
  ,  y (0) = 0 by Picard’s method.           Ans. 0.0214.

2. Use Picard’s method to solve 2 , 2dy dzy z y z
dx dx

    ; given that y(0) = 0, z(0) = 1.

Ans. 2 3 4 2 3 413 5 5 7 412 ..., 1 2 ...
6 3 2 3 24

y x x x x z x x x x          

3. Employ Runge-Kutta method to find y for x = 0.2 from 
22

2
2

d y dyx y
dxdx

    

given that y = 1, 0
dy
dx

  for x = 0.         Ans. y (0.2) = 0.9801;  y ' (0.2) = – 0.1970

4. Describe Runge-Kutta method (4th order) for obtaining solution of initial value problem :

0 0 0 0" ( , , '), ( ) , '( ) 'y f x y y y x y y x y  
5. State clearly the conditions under which the method is applicable.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



1026 Numerical Methods

16
Numerical Methods for Solution of Partial

Differential Equations

16.1 GENERAL  LINEAR  PARTIAL  DIFFERENTIAL  EQUATIONS
General partial differential equation is of the form

2 2 2

2 2( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0u u u u uA x y B x y C x y D x y E x y F x y u G x y
x y x yx y

    
      

    

This equation is called
(i) Elliptic, if B2 – 4 AC < 0

e.g.
2 2

2 2 0u u
x y
 

 
  Laplace Equation

2 2

2 2 ( , )u u f x y
x y
 

 
  Poisson’s Equation

(ii) Parabolic, if B2 – 4 AC  = 0 e.g.    
2

2
2

u uC
t x

 


 
One dimensional heat conduction equation.

(iii) Hyperbolic, if B2 – 4 AC > 0 e.g.
2 2

2
2 2

u uC
t x

 


 

Example 1. Determine the type of
2 2 2

2 2
2 22 0u u ux xy y

x yy x
  

  
      (A.M.I.E.T.E., Dec. 2006)

Solution. Here, A = x2, B=2xy, C= y2.
         B2 – 4 AC = 4x2 y2 – 4x2 y2 = 0. Hence, it is a parabolic equation. Ans.

16.2  FINITE-DIFFERENCE  APPROXIMATION TO DERIVATIVES
By Taylor formula

2 3
2 3

2 3

1 1( , ) ( , )
2! 3!

h u u uu x h y u x y h h
x x x
  

     
  

.... ...(1)
2 3

2 3
2 3

1 1( , ) ( , )
2! 3!

u u uu x h y u x y h h h
x x x

  
    

  
+ ....        ...(2)

From (1) , neglecting h2 and higher powers of h, we get

( , ) – ( , )u u x h y u x y
x h
 


 (Forward difference formula)     ...(3)

Form (2), neglecting h2 and higher powers of h, we have

( , ) – ( – , )u u x y u x h y
x h





(Backward difference formula)  ...(4)

Subtracting (2) from (1) and neglecting h3 and higher powers of h, we get

( , ) – ( – , ) 2 uu x h y u x h y h
x
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1 [ ( , ) ( , )]

2
u u x h y u x h y
x h


   


(Central difference formula)                 ...(5)

Similarly,

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
2

u u x y k u x y u x y u x y k u x y k u x y k
y k k k
       

  
 ...(6)

Adding (1) and (2), neglecting h5 and higher powers of h, we get

 u(x+h, y) + u(x – h,y) = 2u(x,y) + h2
2

2

u
x



2

2 2

1u
x h





[u (x + h, y) – 2 u (x, y)+ u (x – h, y)] ...(7)

Similarly
2

2 2

1u
y k



 [u (x,y + k) – 2 u (x, y) + u (x,y – k)] ...(8)

and
2 1

4
u

x y hk



  [u(x+h,y+k) – u(x – h, y + k) – u(x + h, y – k) + u(x – h, y – k)] ...(9)

The given region (rectangle ABCD) is divided into smaller
rectangles of sides  x = h and y = k. The origin is taken at the
centre of the rectangle and the coordinates axes are drawn. The
rectangle is divided into 36 small rectangles. Here there are 49
mesh-points or lattices or nodal points or grid points.The values
of the function u are uij, ui + 1, j , ui + 2, j...ui, j+1, ui, j+2...at the
mesh-points.

Let these values satisfy the given partial differential equation.
At the centre of the rectangle:
Equations (5), (6), (7), (8) and (9) are rewritten on the nodal points as below:

1, 1, , 1 , 1
1 1( ), ( )
2 2i j i j i j i j

u uu u u u
x h y k   

 
   

 

2

1, , 1,2 2

1
( 2 )i j i j i j

u u u u
x h  


  


2

, 1 , , 12 2

1 ( 2 )i j i j i j
u u u u

y k  


  


2

1, 1 1, 1 1, 1 1, 1
1 ( )

4 i j i j i j i j
u u u u u

x y hk        


   

 

16.3 SOLUTION OF PARTIAL  DIFFERENTIAL  EQUATION (LAPLACE EQUATION)
2 2

2 2 0u u
x y
 

 
  ... (1)

On substituing the values of 
2

2

u
x



and
2

2

u
y

 , we get

2 2

1 1
[ ( , ) 2 ( , ) ( , )] [ ( , ) 2 ( , ) ( , )] 0u x h y u x y u x h y u x y k u x y u x y k

h k
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For values of h = k i.e. for square grid of the mesh size h, the above equation can be written as
u(x + h, y) – 2u(x, y) + u(x – h,y) +u(x, y + h) –2u(x, y) + u(x, y – h) = 0

u(x, y) = 
1
4

[u(x + h,y) + u(x – h,y) + u(x, y+h) +u(x, y – h)]

Denoting any mesh point (x, y) = (ih, jh) as simply i, j, the above difference equation can be
written as

1, 1, , 1 , 1
1

( )
4i i j i j i j i ju u u u u       ...(2)

Equation (2) shows that the value of u (x, y) is the average of its four neighbours to the East,
West, North and South. The formula (2) is called the Standard five points formula and is written as

1, 1, , 1 , 1 ,4 0i j i j i j i j i ju u u u u       

This formula is also known as Liebman’s averaging procedure.

A formula similar to the formula (2) is sometimes used with convenience. It is given as

, 1, 1 1, 1 1, 1 1, 1
1 ( )
4i j i j i j i j i ju u u u u           ...(3)

This is known as diagonal five-point formula as these points lie on the diagonals. Although
formula (3) is less accurate than formula (2), still it is a good
approximation for obtaining as starting values in the iteration
procedure.

Whenever possible, Standard five-point formula is preferred
in all commutations.

Procedure. We use the following diagonal five point formula
to get the initial value of u at the centre.

u5 = 1
4

[b1+ b5 + b9 + b13]

Then the approximate values of diagonal interior points u1,
u3, u7, u9 are calculated by the diagonal five-point formula

1 1 3 5 15 3 3 5 7 5

7 15 5 11 13 9 5 7 9 11

1 1[ ], [ ]
4 4
1 1[ ] [ ]
4 4

u b b u b u b b b u

u b u b b u u b b b

       

       

The values of the remaining interior points i.e. u2, u4, u6 and u8
are obtained by the standard five point formula.

       2 3 3 5 1 4 1 5 7 15
1 1[ ], [ ]
4 4

u b u u u u u u u b       

b13

b14

b15

b16

b1 b2 b3 b4 b5

u7

u4

u1

u8

u5

u2

u9

u6

u8

b8

b7

b6

b12 b11 b10 b9

(i–1,j+1)

(i–1,j–1)

(i+1,j+1)

(i+1,j–1)

(i,j)
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6 3 7 9 5 8 5 9 11 7
1 1[ ] [ ]
4 4

u u b u u u u u b u       

Having obtained all values u1, u2,  ...u9 once, their accuracy can be improved by the
repeated application of either Jacobi’s iteration formula or Gauss-Seidel iteration formula.
16.4   JACOBI’S ITERATION FORMULA

Let ,
n
i ju be the nth iterative value of ui, j

. Then Jacobi’s iterative procedure is given below..

1,1, , 1 , 1( )( 1) ( ) ( ) ( )1 [ ]
4

iij i j i j i jn jn n n nu u u u u      

16.5   GAUSS-SEIDEL METHOD
This method utilises the latest iterative value available and scans the mesh points symmetrically

from left to right along successive rows. The formula is given below.

, 1, 1, , 1 , 1( 1) ( 1) ( ) ( 1) ( )1 [ ]
4

i j i j i j i j i jn n n n nu u u u u        

16.6 SUCCESSIVE OVER-RELAXATION OR S.O.R. METHOD
Gauss-Seidel formula can be written as

, , 1, 1, , 1 , 1( 1) ( ) ( 1) ( ) ( 1) ( ) ( ) , ( ) ,
, .

1 1[ – 4 ]
4 4

i j i j i j i j i j i jn n n n n n n i j n i j
i ju u u u u u u u R           

It gives the change 
1
4

Ri, j in the value of ui, j for one Gauss-Seidel iteration. In the S.O.R. method,

larger change than this is given to ,( )i jnu and the iteration formula is given below:

, , 1, 1, , 1 , 1 ,( 1) ( ) ( 1) ( ) ( 1) ( ) ( )
,

1 1 [ ] (1 )
4 4

i j i j i j i j i j i j i jn n n n n n n
i ju u wR w u u u u w u            

Here w is called the accelerating factor and lies between 1 and 2.

Example 1.  Solve 
2 2

2 2 0u u
x y
 

 
  in the domain of the figure given below by Gauss-Seidel method.

Solution. Initially u1 = u2 = u3 = u4 = 0

 ( 1) ( ) ( )
1 2 1

1 1 1
4

n n nu u u    

 ( 1) ( 1) ( )
2 1 3

1 2 2
4

n n nu u u    

 ( 1) ( 1) ( 1)
3 1 3

1 2 2
4

n n nu u u     

( 1) ( 1) ( 1)
4 1 3

1
[2 2 ]

4
n n nu u u     

First iteration
 1
1

1 (1 0 1 0) 0.5
4

u       1
2

1 (2 0 2 0.5) 1.125
4

u     

 1
3

1 (1 1.125 1 0) 0.781
4

u       1
4

1 (2 0.781 2 0.5) 1.320
4

u     

Second iteration
 2
1

1
[1 1 1.125 1.320] 1.111

4
u       2

2
1 [2 2 1.111 0.781] 1.473
4

u     

1

2

2

1

1 2

2 1
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 2
3

1 [1 1 1.473 1.320] 1.198
4

u       2
4

1 [2 2 1.111 1.198] 1.577
4

u     

Third iteration

 3
1

1[1 1 1.473 1.577] 1.263
4

u       3
2

1 [2 2 1.263 1.198] 1.615
4

u     

 3
3

1[1 1 1.615 1.577] 1.298
4

u       3
4

1 [2 2 1.263 1.298] 1.640
4

u     

Fourth iteration

 4
1

1 [1 1 1.615 1.640] 1.314
4

u       4
2

1 [2 2 1.314 1.298] 1.653
4

u     

 4
3

1 [1 1 1.653 1.640] 1.323
4

u       4
4

1 [2 2 1.314 1.323] 1.659
4

u     

Fifth iteration

 5
1

1[1 1 1.653 1.659] 1.328
4

u       5
2

1[2 2 1.328 1.323] 1.663
4

u     

 5
3

1 [1 1 1.663 1.659] 1.331
4

u       5
4

1[2 2 1.328 1.331] 1.665
4

u     

Sixth iteration
 6
1

1 [1 1 1.663 1.665] 1.333
4

u       6
2

1 [2 2 1.332 1.331] 1.666
4

u     

 6
3

1[1 1 1.666 1.665] 1.333
4

u       6
4

1 [2 2 1.332 1.333] 1.666
4

u     

u1 = 1.333, u2 = 1.667,          u3 = 1.333, u4 = 1.667 Ans.

Example 2. Solve 
2 2

2 2 0T T
x y

 
 

 
 in the domain of the figure given below by Gauss-Seidel

method.

Solution.

T1 = 
1
4

 [0+ T 2+ T4 + 0] T2  = 
1
4

 [ 0 + T3 + T5 + T1]

T3 = 
1
4

 [0 + 0 +T2 + T6] T4  = 1
4

[T1 + T5 + T7 + 0]

T5 = 
1
4

 [T2 + T6 + T8 + T4] T6  = 1
4

[T3 + 0 + T9 + T5 ],

T7 = 
1
4

 [T4 +T8 +1 + 0] T8  = 1
4

[T5 + T9 +1 + T7 ]

T9 = 
1
4

 [T6 +0 +1 + T8]

Gauss-Seidel Method
Initial approximations are

T1 = T2 =  T3 = T4 = T5 = T6 = T7 =T8 = T9 = 0

T7

T4

T1

T8

T5

T2

T9

T6

T3

1 1 1

0 0

0 0

0 0

0 0 0
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Ten successive iterates are given below:
First Iteration

( 1) ( ) ( )
1 4 2

1[0 0]
4

n n nT T T     , (1)
1

1[0 0 0 0] 0
4

T     

( 1) ( 1) ( ) ( )
2 1 5 3

1
[ 0]

4
n n n nT T T T     , (1)

2
1

[0 0 0 0] 0
4

T     

( 1) ( 1) ( )
3 2 6

1
[ 0 0]

4
n n nT T T     , (1)

3
1

[0 0 0 0] 0
4

T     

( 1) ( ) ( ) ( 1)
4 7 5 1

1[0 ]
4

n n n nT T T T     , (1)
4

1
[0 0 0 0] 0

4
T     

( 1) ( 1) ( ) ( ) ( 1)
5 4 8 6 2

1 [ ]
4

n n n n nT T T T T      , (1)
5

1[0 0 0 0] 0
4

T     

( 1) ( 1) ( ) ( 1)
6 5 9 3

1 [ 0 ]
4

n n n nT T T T      , (1)
6

1[0 0 0 0] 0
4

T     

( 1) ( ) ( 1)
7 8 4

1
[0 1 ]

4
n n nT T T     , (1)

7
1

[0 1 0 0] 0.25
4

T     

( 1) ( 1) ( ) ( 1)
8 7 9 5

1 [ 1 ]
4

n n n nT T T T      , (1)
8

1[0.25 1 0 0] 0.312
4

T     

( 1) ( 1) ( 1)
9 8 6

1 [ 1 0 ]
4

n n nT T T      (1)
9

1 [0.312 1 0 0] 0.328
4

T     

Second Iteration
(2)

1
1

[0 0 0 0] 0
4

T      , (2)
2

1
[0 0 0 0] 0

4
T     

(2)
3

1[0 0 0 0] 0
4

T      , (2)
4

1 [0 0.25 0 0] 0.062
4

T     

(2)
5

1 [0 0.312 0 0] 0.078
4

T      , (2)
6

1 [0 0.328 0 0] 0.082
4

T     

(2)
7

1
[0 1 0.312 0] 0.328

4
T      , (2)

8
1

[0.25 1 0.328 0] 0.394
4

T     

(2)
9

1 [0.312 1 0 0] 0.328
4

T     

Third Iteration
(3)

1
1 [0 0.062 0 0] 0.016
4

T      , (3)
2

1 [0.016 0.078 0 0] 0.024
4

T     

(3)
3

1
[0.024 0.082 0 0] 0.027

4
T      , (3)

4
1

[0 0.328 0.078 0.016] 0.106
4

T     

(3)
5

1 [0.106 0.394 0.082 0.024] 0.152
4

T      ,

(3)
6

1 [0.152 0.328 0 0.027] 0.127
4

T     

(3)
7

1
[0 1 0.394 0.106] 0.375

4
T      (3)

8
1 [0.375 1 0.328 0.152] 0.464
4

T     

(3)
9

1 [0.464 1 0 0.127] 0.398
4

T     

     and so on.       Ans.
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Iteration T1 T2 T3 T4 T5 T6 T7 T8 T9
4 0.032 0.053 0.045 0.140 0.196 0.160 0.401 0.499 0.415

5 0.048 0.072 0.058 0.161 0.223 0.174 0.415 0.513 0.422

6 0.058 0.085 0.065 0.174 0.236 0.181 0.422 0.520 0.425

7 0.065 0.092 0.068 0.181 0.244 0.184 0.425 0.524 0.427

8 0.068 0.095 0.070 0.184 0.247 0.186 0.427 0.525 0.428

9 0.070 0.097 0.071 0.186 0.249 0.187 0.428 0.526 0.428

10 0.071 0.098 0.071 0.187 0.250 0.187 0.428 0.526 0.428

Example 3.  Solve 
2 2

2 2 0u u
x y
 

 
   by Leibman’s iteration process for the domain of the figuree

given below:

Solution. Values given on the figure are symmetrical about middle line.
 u1 = u3 = u9 = u7

u2 = u8, u4 = u6

u5 = 
1
4

 (2000 + 2000 + 1000 + 1000) = 1500          (Standard formula)

u1 = 
1
4

 [0 + 1000 + 1500 + 2000] = 1125            (Diag. formula)

Similarly u1 = u3 = u9 = u7= 1125

u2 = 
1
4

 (1000 + 1125 + 1500 + 1125)  1188           (Standard formula)

Similarly u8 =  u2 = 1188

u4 = 
1
4

[1125 + 2000 + 1125 + 1500]  1438           (Standard formula)

Similarly u4 = u6 = 1438
So ul = 1125,  u2 = 1188, u3 = 1125, u4 = 1438, u5 = 1500,  u6 = 1438, u7 = 1125, u8 = 1188, u9 = 1125

Gauss-Seidel Method:

, , 1 , 1( 1) ( 1) ( )( 1) ( )
1, 1,

1 [ ]
4

i j i j i jn n nn n
i j i ju u u u u  
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( 1) ( ) ( ) ( 1) ( 1) ( 1)
1 2 4 3 5 7

1[1000 500 ]
4

n n n n n nu u u u u u         

( 1) ( 1) ( 1) ( 1) ( 1)
2 1 3 5 8

1
[ 1000 ]

4
n n n n nu u u u u        

( 1) ( ) ( 1) ( 1) ( 1)
4 5 1 7 6

1
[2000 ]

4
n n n n nu u u u u       

( 1) ( 1) ( 1) ( 1) ( 1)
5 4 6 2 8

1 [ ]
4

n n n n nu u u u u       

First Iteration

(1)
1u = 1

4
[1000 + 1188 + 500+ 1438]  1032 = (1)

3u = (1)
9u = (1)

7u

(1)
2u = 1

4
[1032 + 1032 + 1000 + 1500] = 1141 = (1)

8u

                ( 1)
4

nu  = 1
4

[2000 + 1500 + 1032+ 1032] = 1391 = (1)
6u

               ( 1)
5

nu  = 1
4

[1091 + 1391 + 1141+ 1141] = 1266

Second Iteration

(2)
1u = 1

4
[1000 + 1141 + 500 + 1391] = 1008= (2) (2) (2)

3 9 7u u u 

(2)
2u = 1

4
[1008 + 1008 + 1000 + 1266] = 1069 = (2)

8u

(2)
4u = 1

4
[2000 + 1266 + 1008 + 1008] = 1321 = (2)

6u

(2)
5u = 1

4
[1321 + 1321 + 1069+ 1069] = 1195

Similarly

Iteration u1 = u3= u9= u7            u2 = u8 u4 = u6 u5
Third 973 1035 1288 1162
Fourth 956 1019 1269 1144
Fifth 947 1010 1260 1135
Sixth 942 1005 1255 1130

Seventh 940 1003 1253 1128
Eighth 939 1002 1252 1127
Ninth 939 1001 1251 1126

Very small difference is in the eighth and ninth iteration
Thus, u1 = u3 = u7 = u9 = 939

u2 = u8 = 1001,
u4 = u6 = 1251,
u5  = 1126 Ans.
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1

0

1

0

0 0

0 0

u4

u1

u3

u2

Example 4. Solve 
2 2

2 2 0u u
x y
 

 
   in the domain of the figure given below by

(a) Jacobi’s method, (b) Gauss-Seidel method and
(c) Successive Over-Relaxation method

Solution. (a) Jacobi’s Method
(1)
1

1
[0 0 0 1] 0.25

4
u     

(2)
2

1
[0 0 0 1] 0.25

4
u     

(1)
3

1
[1 1 0 0] 0.5

4
u     

(1)
4

1[1 1 0 0] 0.5
4

u     

Seven successive iterates are given below:
u

l
u

2
u

3
u

4

0.1875 0.1875 0.4375 0.4375
0.15625 0.15625 0.40625 0.40625
0.14062 0.14062 0.39062 0.39062
0.13281 0.13281 0.38281 0.38281
0.12891 0.12891 0.37891 0.37891
0.12695 0.12695 0.37695 0.37695
0.12598 0.12598 0.37598 0.37518

(b) Gauss-Seidel Method
Five successive iterates are given below:

      

u
l

u
2

u
3

u
4

0.25 0.3125 0.5625 0.46875
0.21875 0.17187 0.42187 0.39844
0.14844 0.13672 0.38672 0.38086
0.13086 0.12793 0.37793 0.37646
0.12646 0.12573 0.37573 0.37537

       (c) Successive Over-Relaxation method. Three successive iterates are given below:

          

u
1

u
2

u
3

u
4

0.275 0.35062 0.35062 0.35062
0.16534 0.10683 0.38183 0.37432
0.11785 0.12181 0.37216 0.37341

16.7   POISSON  EQUATION
2 2

2
2 2 ( , )u uu f x y

x y
 

   
 

In this case the standard five-point formula is of the form
2

1, 1, , 1 , 1 ,4 ( , )i j i j i j i j i ju u u u u h f ih jh       
On applying the above formula we get equations. These equations can be solved by Gauss-

Seidel iteration method.
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Example 5. Solve the Poisson’s equation 
2 2

2 2
2 2 8u u x y

x y
 

 
  for the square mesh of the figuree

given below with u (x, y) = 0 on the boundary and mesh length = 1.
Solution.  Here h = 1
The standard five-point formula for the given equation is

2 2
1, 1, , 1 , 1 ,4 8i j i j i j i j i ju u u u u i j        ...(1)

For u1 (i = –1, j = + 1), equation (1) becomes
0 + u2+ 0 + u2 – 4u1 =  8(– 1)2 (1)2   4u1 = 2u2 – 8 ...(2)

For u2 (i = 0, j = 1), equation (1) becomes
u1+ u1 +  0 + u3 – 4u2 = 0           4u2 = 2u1+ u3 ...(3)

For u3 (i = 0, j = 0), equation (1) becomes
u2 + u2 + u2 + u2 – 4u3 = 0   4u3 = 4u2    u3 = u2 ...(4)

Putting u2 for u3 in (3), we get
4u2 = 2u1+ u2 or 3u2 = 2u1

Putting 12
3
u

for u2 in (2), we get

4u1 = 14
3
u

– 8  12u1 = 4u1 – 24

8u1 = – 24  u1 = – 3

   u2 = 12 2
3

3 3
u       = – 2,    u3 = u2 = – 2

  u1 =  – 3,   u2 =  – 2,  u3 =  – 2 Ans.

Exercise 16.1
1. Given the values of u (x, y) on the boundary of the square in the figure given below, evaluate

the function u (x, y) satisfying the Laplace equation
2 2

2 2 0u u
x y
 

 
 

at pivotal points of this figure.       Ans. u1 = 1208, u2 = 792, u3 = 1042, u4 = 458
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2. Solve 
2 2

2 2 0u u
x y
 

 
 

for the square mesh with boundary values as shown in the figure given below. Iterate until
the maximum difference between successive values at any point is less than 0.005.

Ans. u1 = 10.188, u2 = 0. 5, u3 = 1.188, u4 = 0.25, u5 = 0.625, u6= 1.25.

3. Solve
2 2

2 2 0u u
x t
 

 
 

   within the square given in the figure below..

Ans. u1 = 26.66, u2= 33.33, u3 = 43.33, u4 = 46.66.

4. Solve 
2 2

2 2
2 2 10( 10)u u x y

x y
 

    
 

over the square with x = 0 = y, x = 3 = y with
u = 0 on the boundary and mess length = 1.
            Ans. u1= 75, u2 = 82.5, u3 = 67.05, u4= 75.

5. Solve 
2 2

2 2 0u u
x y
 

 
   with boundary values as shown in the

figure given below.
Ans.          u1= 10.188, u2 = 0.5, u3 = 1.188

  u4 = 0.25, us = 0.625, u6 = 1.25
16.8   HEAT  EQUATION  (PARABOLIC  EQUATION)

2
2

2

u uc
t x

 


 

We know that
( , ) ( , )u u x t k u x t

t k
  




2

2 2

( , ) 2 ( , ) ( , )u u x h t u x t u x h t
x h
    




On putting the values of u
t




and 
2

2

u
x



 in (1), we get

2
2

( , ) ( , ) ( , ) 2 ( , ) ( , )u x t k u x t u x h t u x t u x h t
c

k h
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u (x, t+k) = 
2 2 2

2 2 2

2
( , ) ( , ) ( , ) ( , )

c k c k c ku x h t u x t u x t u x h t
h h h

    

 u (x, t+k) = au(x+h, t) + (1 – 2a)u (x, t) + au(x – h,t)

     If 
1
2

a 

u (x, t + k) = 
1
2

u (x + h, t)+ 
1
2

u (x – h,t)   ui, j + 1 = 
1
2

[ui+1,j + ui –1, j]

It means that the value of u at xi, at time t is the mean of the values of u at xi – 1 and xi + 1 at the
previous time tj.

This relation is known as Bendre-Schimidt recurrence relation.

Example 6. Find the values of u (x, t) satisfying the parabolic equation 
2

24u u
t x

 


 
with

boundary conditions u (0, t) = 0 = u (8, t) and u (x, 0) = 4 x – 
1
2

x2 at the points.

x = i :i = 0, 1, 2, 3, ..., 7   and   t = 
1
8

j : j = 0, 1, 2, 3, ..., 5.

Solution.    c2 = 4, h = 1, k = 1
8

, a =
2

2

4 1/ 8 1
(1) 2

c k
h


 

Then the equation is

           
, 1 1, 1,

1
( )

2i j i j i ju u u    ... (1)

 Given u (0, t) = 0 =  u (8,  t)
      u (0, j) = 0 = u (8, j) for all values of j = 1, 2, 3, 4, 5

and    u (x, 0) = 4 x – 
1
2

x2, ui, 0 = 4 i –
1
2

i2

u0,0=  0, u1,0=  4 (1) –  1
2

(1)2 = 3.5, u2,0 = 4 (2) – 
1
2

(2)2 = 6

u3, 0 = 7.5, u4, 0 = 8,     u5, 0 = 7.5, u6, 0 = 6, u7, 0 = 3.5.
These entries are shown in the following table :

  j          i 0 1 2 3 4 5 6 7 8

0 0 3.5 6 7.5 8 7.5 6 3.5 0
1 0 3 5.5 7 7.5 7 5.5 3 0
2 0 2.75 5 6.5 7 6.5 5 2.75 0
3 0 2.5 4.625 6 6.5 6 4.625 2.5 0
4 0 2.3125 4.25 5.5625 6 5.5625 4.25 2.3125 0
5 0 2.125 3.9375 5.125 5.5625 5.125 3.9375 2.125 0

Putting  j = 0 in (1) we have

ui, 1 = 1
2

(ui – 1, 0  + ui + 1, 0)

u1, 1 = 1
2

(u0,  0  + u2, 0) = 1
2

(0 + 6) = 3

u2, 1 = 1
2

(u1,  0  + u3, 0) = 1
2

(3.5 + 7.5) = 5.5
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u3, 1 = 1
2

(u2,  0  + u4, 0) = 1
2

(6 + 8) = 7

u4, 1 = 1
2

(u3,  0  + u5, 0) = 1
2

(7.5 + 7.5) = 7.5

u5, 1 = 1
2

(u4,  0  + u6, 0) = 1
2

(8 + 6) = 7

u6, 1 = 1
2

(u5,  0  + u7, 0) = 1
2

(7.5 + 3.5) = 5.5

u7, 1 = 1
2

(u6,  0  + u8, 0) = 1
2

(6 + 0) = 3

Putting j = 1 in (1), we get

ui, 2 = 1
2

(ui – 1, 1  + ui + 1, 1 )

u1, 2 = 1
2

(u0, 1  + u2, 0 ) = 1
2

(0 + 5.5) = 2.75

u2, 2 = 1
2

(u1, 1  + u3, 1 ) = 1
2

(3 + 7) = 5

u3, 2 = 6.5, u4, 2 = 7, u5, 2 = 6.5 , u6, 2 = 5, u7, 2 = 2.75
Putting j = 2 in (1), we get

ui, 3 = 1
2

(ui – 1, 2  + ui + 1, 2 )

u1, 3 = 1
2

(u0, 2  + u2, 2 ) = 1
2

(0 + 5) = 2.5

u2, 3 = 1
2

(u1, 2  + u3, 2 ) = 1
2

(2.75 + 6.5) = 4.625

u3, 3 = 6, u4, 3 = 6.5, u5, 3 = 6 , u6, 3 = 4.625, u7, 3 = 2.5

Putting j = 3 in (1), we get

ui, 4 = 1
2

(ui – 1, 3  + ui + 1, 3 )

u1, 4 = 1
2

(u0, 3  + u2, 3 ) = 1
2

(0 + 4.625) = 2.3125

u2, 4 = 1
2

(u1, 3  + u3, 2 ) = 1
2

(2.5 + 6) = 4.25

u3, 4 = 0.5625, u4, 4 = 6, u5, 4 = 5.5625 , u6, 4 = 4.25, u7, 4 = 2.3125
Putting j = 4 in (1), we get

ui, 5 = 1
2

(ui – 1, 4  + ui + 1, 4 )

u1, 5 = 1
2

(u0, 4  + u2, 4 ) = 1
2

(0 + 4.25) = 2.125

u2, 5 = 1
2

(u1, 4  + u3, 4 ) = 1
2

(2.125 + 5.5625) = 3.9375

u3, 5 = 5.125, u4, 5 = 5.625, u5, 5 = 5.125 , u6, 5 = 3.9375, u7, 5 = 2.125
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16.9   WAVE EQUATION (HYPERBOLIC EQUATION)

2 2
2

2 2

u uc
t x

 


 
...(1)

We know that
2

2 2

( , ) 2 ( , ) ( , )u u x t k u x t u x t k
t k

    



 and  

2

2 2

( , ) 2 ( , ) ( , )u u x h t u x t u x h t
x h
    




Putting the values of 
2

2

u
t




 and 
2

2

u
x



 in (1) we have

2
2 2

( , ) 2 ( , ) ( , ) ( , ) 2 ( , ) ( , )u x t k u x t u x t k u x h t u x t u x h t
c

k h
       



 u (x, t+ k) – 2 u (x, t) + u (x, t – k) = 
2 2

2

c k
h

[u (x + h, t) – 2 u (x, t) + u (x – h, t)]

 ui, j + 1 – 2 ui, j + ui, j – 1 =  a2c2 [ui + 1,  j – 2ui, j + ui – 1, j]
k

a
h

   

 ui, j + 1 = 2(1 – a2c2)ui, j + a2c2 (ui – 1, j+ ui + 1, j) – ui , j – 1 ...(2)

If a2c2 = 1, Equation (2) reduces to

ui, j + 1 = ui – 1, j+ ui + 1, j – ui , j – 1              ...(3)

Example 7. Solve 
2 2

2 2

u u
t x

 


 
with conditions u (0, t) = u (1, t) = 0, u (x, 0) = 1/2 x (1 – x) and

u ( x, 0) = 0, taking h = k = 0.1  for 0 0.4t  . Compare your solution with the exact solution
x = 0.5 and t = 0.3.
Solution. c2 = 1. The difference equation for the given equation is

ui, j + 1 = 2 (1 – 2)ui, j+ 2 (ui – 1, j+ ui + 1, j) – ui,j – 1 ...(1)

where 
k
h

  . But 
0.1

1
0.1

  

Equation (1) reduces to

ui, j + 1 = ui – 1, j+ ui + 1, j – ui,j – 1            ...(2)
u(0,t) = u(1,t) = 0,u0,j = 0   and  u10,j= 0

i.e., the entries in the first column are zero.

since     u (x, 0) = 
1
2

x(1 – x) u (i, 0) = 
1
2

i (1 – i)

            = 0.045, 0.08, 0.105, 0.120, 0.125, 0.120, 0.105 for
i = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 at t = 0

These are the entries of the fist row.
Finally since ux (x, 0) = 0


, 1 ,–

0i j i ju u
k

   for j = 0 (t = 0), ui,1 = ui, 9

Putting  j = 0 in equation (2), we get
ui,1 = ui – 1, 0 + ui + 1, 0 – ui, – 1
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      = ui – 1, 0 + ui + 1, 0 – ui , 1             (ui, 1 = ui, – 1)

             2ui , 1 = ui – 1, 0 +ui + 1, 0 ,        ui, 1 =
1
2

[ui – 1, 0 + ui + 1, 0 ]

For i = 1 u1, 1 = 
1
2

[u0, 0 + u2, 0 ] = 
1
2

[0 + 0.080] = 0.040

For i = 2 u2, 1 = 
1
2

[u1, 0 + u3, 0 ] = 
1
2

[0.045 + 0.105] = 0.075

For i = 3 u3, 1 = [u2, 0 + u4, 0 ] = 
1
2

[0.08 + 0.120] = 0.100

For i = 4 u4, 1 = 
1
2

[u3, 0 + u5, 0 ] = 
1
2

[0.105 +  0.125] = 0.11515

For i = 5 u5, 1 = 
1
2

[u4, 0 + u6, 0 ] = 
1
2

[0.120 + 0.120] = 0.120

For i = 6 u6, 1 = 
1
2

[u5, 0 + u7, 0 ] = 
1
2

[0.125 + 0.105] = 0.11515

Putting j = 1 in equation (2), we get
ui, 2 = ui – 1, 1 + ui + 1, – ui, 0

For i = 1 u1, 2 =  u0, 1+ u2, 1 –  u1, 0 =  0 + 0.075 – 0.045 = 0.03

For i = 2 u2, 2 =  u1, 1+ u3, 1 –  u2, 0 =  0.040 + 0.100 – 0.08 = 0.060

For i = 3 u3, 2 =  u2, 1+ u4, 1 –  u3, 0 =  0.075 + 0.115 – 0.105 = 0.085

For i = 4 u4, 2 =  u3, 1+ u5, 1 –  u4, 0 =  0.100 + 0.120 – 0.120 = 0.100

For i = 5 u5, 2 =  u4, 1+ u6, 1 –  u5, 0 =  0.115 + 0.115 – 0.125 = 0.105
Similarly for      j = 2

ui, 3 = ui – 1, 2 + ui + 1, 2 – ui, 1

u1, 3 = 0.020,  u2, 3 = 0.040, u3, 3 = 0.060, u4, 3 = 0.075, u5, 3 = 0.80

For j = 3 ui, 4 = ui – 1, 3 + ui + 1, 3 – ui, 2

u1, 4 = 0.010,    u2, 4 = 0.02,

u3, 4 = 0.030,     u4, 4 = 0.040,  u5, 4 = 0.048

0 0.1 0.2 0.3 0.4 0.5 0.6
        i     

j  
0 1 2 3 4 5 6

0 0 0 0.045 0.080 0.105 0.120 0.125 0.120
0.1 1 0 0.040 0.075 0.100 0.115 0.120 0.115
0.2 2 0 0.030 0.060 0.085 0.100 0.105
0.3 3 0 0.020 0.040 0.060 0.075 0.080
0.4 4 0 0.010 0.020 0.030 0.040 0.048

The analytical (exact) solution of the given equation is

3 3
1

2 1 (1 cos )sin cos
n

u n n x n t
n
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Comparison of two solutions is given below:

    i  =  0.3 x= 0.1 0.2 0.3 0.4 0.5
Numerical solution u = 0.02 0.04 0.06 0.075 0.08
Exact solution u= 0.02 0.04 0.06 0.075 0.08

Ans.
EXERCISE 16.2

1. Solve 
2

2 2
u u

tx
 




under conditions u (0, t) = u(4,t)=0 and u (x,0)= x (4– x), taking h =1,find the values upto t = 5.
Ans. u1, 0 = 3, u2, 0 = 4, u3, 0 = 3;  u1, 1 = 2, u2, 1 = 3, u3, 1 = 2
u1, 2 = 1.5, u2, 2 = 2, u3, 2 = 1.5;  u1, 3 = 1, u2, 3 = 1.5, u3, 3 = 1

u1, 4 = 0.75, u2, 4 = 1, u3, 4 = 0.75; u1, 5 = 0.5, u2, 5 = 0.75, u3, 5 = 0.50

2. Solve 
2

2 ; 0 1, 0u u x t
t x

 
   

 
 under the conditions that

u (0, t) = u (1, t) = 0 and u (x, 0) = 2 x  for 
1 10 (1 ) for 1.
2 2

x x x     
   Ans. u1= 0.1989, u2 = 0.3956, u3= 0.5834, u4 = 0.7381, u6 = 0.7591

3. Solve 
2

2 ; 0 1, 0u u x t
t x

 
   

 
 under the conditions that

0, at 0
0

0, at 1
sin at 0, 0 1

u x
t

u x
u x t x

  
  

    
find u for x = 0.8 at t = 1.          Ans. 0.4853

4. Solve 
2

2

u u
tx

 

 under the conditions that u (0, t) = u (5, t) = 0, u (x, 0) = x2(25 – x2) taking

 h = 1 and k =
1
2

.
                 Ans. u1, 0 = 24,  u2, 0 = 84, u3, 0 = 144, u4, 0 = 144

u1, 1 = 42, u2, 1 = 78, u3, 1 = 78, u4, 1 = 57
u1, 2 = 39, u2, 2 = 60, u3, 2 = 67.5, u4, 2 = 39
u1, 3 = 30, u2, 3 = 53.25, u3, 3 = 49.5, u4, 3 = 33.75

u1, 4 = 26.625, u2, 4 = 39.75 , u3, 4 = 43.5, u4, 4 = 24.75

u1, 5 = 19.875, u2, 5 = 35.06, u3, 5 = 32.25, u4, 5 = 21.75

5. Solve 
2 2

2 216 u u
x t
 


 

taking h = 1, upto t = 1.25, under the conditions
u (0, t) = u (5, t) = 0, ut (x, 0) = 0 and u (x, 0) = x2 (5 – x).

 Ans. u1, 0 = 4,  u2, 0 = 12,  u3, 0 = 18,  u4, 0 = 16
u1, 1 = 4,  u2, 1 = 12,  u3, 1 = 18,  u4, 1 = 16
u1, 2 = 8,  u2, 2 = 10,  u3, 2 = 10,  u4, 2 = 2
u1, 3 = 6,  u2, 3 = 6,    u3, 3 = – 6,   u4, 3 = – 6

u1, 4 = – 2,  u2, 4 = – 10 , u3, 4 = – 10,  u4, 4 = – 8

u1, 5 = – 16,  u2, 5 = – 18,  u3, 5 = – 12,  u4, 5 = – 4
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17.1   INTRODUCTION
The calculus of variations primarily deals with finding maximum or minimum value of a definite

integral involving a certain function.
17.2 FUNCTIONALS

A simple example of functional is the shortest length of a curve through two points A (x1, y1) and
B (x2, y2). In other words, the determination of the curve y = y(x) for which  y = (x1) = y1,  y (x2) = y2
such that

                                                    

2

1

1
x

x

dy dx
dx
  
           ...(1)

is a minimum.
An integral such as (1) is called a Functional.
In general, it is required to find the curve y = y (x) where y (x1) = 1y and

y (x2) = 2y  such that for a given function , , ,dyf x y
dx

 
 
 

2

1

, ,
x

x

dyf x y dx
dx

 
 
       ...(2)

is maximum or minimum.
Integral (2) is known as the functional.
In differential calculus, we find the maximum or minimum value of functions. But the calculus of

variations deals with the problems of maxima or minima of functionals.
      A functional I [y (x)] is said to be linear if it satisfies.
       (i) I [cy (x)] = c I [y (x)], where c is an arbitrary constant.

       (ii) I [yl (x)+ y2 (x)] = I [yl (x)] +I [y2 (x)], where yl (x) M and y2   .x M

17.3   DEFINITION
A functional I [y (x)] is maximum on a curve y = y (x), if the values of I [y (x)] on any curve close

to y = y1 (x) do not exceed I [y1 (x)]. It means I = I [y (x)] – I [y1 (x)]  0 and I = 0 on y = y1 (x).
       In case of minimum of I [y (x)], I = 0.
     Extremal: A function y = y (x) which extremizes a functional is called extremal or extremizing
function.
17.4   EULER’S EQUATION IS

                                              – 0f d f
y dx y

  
   

0

Y

X

A (X ,Y )1 1

B (X ,Y )1 1

1042

Calculus of Variation

17

(X2, Y2)
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This is the necessary condition for  
2

1

, , '
x

x

I f x y y dx  to be maximum or minimum.

       Proof: Let y = y (x) be the curve AB which makes the given function I an extremum.
Consider a family of neighbouring curves

                                             Y y x x         ... (1)
where a is a parameter, – rr and (x) is an arbitrary

differentiable function.
At the end points A and B,

            1 2 0x x   
when  = 0, neighbouring curves become y = y (x), which is
extremal.
         The family of neighbouring curves is called the family of
comparison functions.

If in the functional  2

1
, , '

x

x
f x y y dx  We replace y by Y, we get

         
2

2

1 1

, , ' , , ' ' .
x x

x x
f x Y Y dx f x y x x y x x dx      

which is a function of , say I ().

                                                     
2

1

, , '
x

x

I f x Y Y dx  
For  = 0, the neighbouring curves become the extremal, an extremum for   = 0.
The necessary condition for this is I () = 0 ...(2)
Differentiating  I under the integral sign byLeibnitz’s rule, we have

 
2

1

''
'

x

x

f x f Y f YI dx
x Y Y
                

 
2

1

'' 0 as αis independent of
'

x

x

f Y f Y xI dx x
Y Y
                     ...(3)

On differentiating (1), w. r. t. ‘x’, we get,    ' ' 'Y y x x 

Again differentiating w.r. t. ‘’, we get  ' 'Y x
 



Differentiating (1), w. r. t. , we get         Y x
 



Now (3) becomes      
2

1

' '
'

x

x

f fI x x dx
Y Y
         

Integrating the second term on the right by parts, we get

                    
22 2

11 1
' '

xx x

xx x

f f d fx dx x x dx
Y Y dx Y

                      
 

0

Y

X

A

B

y=y(x)
(x ,y )1 1

(x ,y )2 2

y1

y2

y=y(x
)+

n(x)
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2 2

1 1

2 1' ' '

x x

x x

f f f d fx dx x x x dx
Y Y Y dx Y
                       

                        
2 2 2

1 1 1

1 20 0
' '

x x x

x x x

f d f f d fx dx x dx x dx x x
Y dx Y Y dx Y
                                 
  

for extremum value,  ' 0I  

 
2

1

0
'

x

x

f d f x dx
Y dx Y

           


 x is an arbitrary continuous function.

                  0
'

f d f
y dx y

  
    

 which is a required Euler’s equation.

Note: Other Forms of Euler’s equation

1.   ', , '
'

d f dx f dy f dyf x y y
dx x dx y dx y dx

  
  
  

or                                       ' "
'

df f f fy y
dx x y y

  
  
   ...(4)

But                           ' ' "
' ' '

d f d f fy y y
dx y dx y y

     
         

...(5)

On subtracting ( 5 ) from ( 4 ), we have

                                 ' ' '
' '

df d f f f d fy y y
dx dx y x y dx y

      
            

                             ' ' ' 0 0 '
' '

d f f f d ff y y y Euler s equation
dx y x y dx y

      
              

          Hence        – ' – 0
'

d f ff y
dx y x

  
   

...(6)

Which is an another form of Euler’s equation.

2. We know that '
f
y

 is also a function of , , 'x y y  say  , , ' .x y y

           
' ' "

' ' '
d f dx dy dy y y
dx y x dx y dx y dx x y y

       
             

                             
2 2 2

2
' " ' "

' ' ' ' ' ' '
f f f f f fy y y y

x y y y y y x y y y y
             

                        

             Putting the value of '
d f
dx y

 
  

in Euler’s equation, we get

                                       
2 2 2

2– – ' – " 0
' ' '

f f f fy y
y x y y y y

   


     
...(7)

         This is the third form of Euler’s equation.
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17.5   EXTREMAL
       Any function which satisfies Euler’s equation is known as Extremal. Extremal is obtained by
solving the Euler’s equation.

Case 1. If f is independent of , . ., 0.fx i e
x





       On substituting the value of  
f
x

  in (6), we have ' 0

'
d ff y
dx y

 
   

       Integrating, we get – '
'

ff y
y



= constant

        Case 2. When f  is independent of y, . ., 0.fi e
y





        Putting the value of 
f
y



 in Euler’s equation, we get

                                 ´
d f
dx y

 
  

= 0, Integrating we get '
f
y



 = constant

Case 3. If f is an independent of ', . .,
'

fy i e
y



= 0. On substituting the value of 
'

f
y



in the

Euler’s equation, we get 
f
y



 = 0

         This is the desired solution.
       Case 4. If f is independent of x and y,

       we have 
f
x



 = 0 and 0f
y





   or   
2

0
'

f
x y



 

  and   
2

0
'

f
y y



 

       Putting these value in Euler’s equation (7), we have 
2

2" 0
'
fy

y





If 
2

2
0

'
f

y





 then y = 0 whose solution is y = ax+b.

Example 1. Test for an extremum the functional

       
1

2 2

0
2 ' , 0 1, 1 2I y x xy y y y dx y y       

Solution. Euler’s equation

                                    0
'

f d f
y dx y

  
    

...(1)

         Here  2 22 'f xy y y y  

                                                         2 4 'f x y yy
y


  


and  22
'

f y
y


 


                                                       22 4 '
'

d f d y yy
dx y dx

 
     

        Putting these values in (1), we get  2 4 ' 4 ' 0x y yy yy    
or

       
12 0 At 0, 0; At 1, .

2 2
xx y or y x y x y        

This extremal does not satisfy the boundary conditions y (0) = 1, y (1) = 2.
Hence there is no extremal. Ans.
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Example 2. Prove that the shortest distance between two points is along a straight line.

Solution. Let A  1, 1x y and B (x2, y2) be the two given points and s the length of the arc joining
these points.

Then  
2 2 2

1 1 1

2
21 1 '

x x x

x x x

dys ds dx y dx
dx

      
           ... (1)

                                                    1 1, 2 2y x y y x y 
If s satisfies the Euler’s equation, then it will be minimum

                        0
'

f d f
y dx y

  
    

(Euler’s equation)

Here in (1),  21 'f y 

f is independent of y, i.e., 0f
y





                                                                    
   

 
1

2 2 2
2

1 '1 ' 1 ' 2 '
' ' 2 1 '

d f d d d yy y y
dx y dx y dx dx y

     
                

Putting these values in Euler’s Equation, we have

 
'0 0

1 '
d y
dx y

 


 or     
 2

' 0
1 '

d y
dx y




On integrating 
 2

'

1 '

y

y
 constant (c), i.e., (y’)2 = c2  21 'y

or  2 2 2' 1y c c   or 
2

2 2
2'

1
cy m

c
 


  or   ' dyy m or m

dx
 

Integrating                  y = mx + c        ... (2)
which is a straight line.                       Ans.

Now                 1 1 2 2andy x y y x y 
                                              1 1 2 2andmx c y mx c y    ...(3)

on subtracting, we get

or             2 1
2 1 2 1

2 1

y y
y y m x x or m

x x


   


 Subtracting (3) from (2), we get

 1 1y y m x x  

2 1
1 1

2 1

( )
y y

y y x x
x x


  
 Proved.

Example 3. Find the curve connecting the points (x1, x2) and (x2, y2) which when rotated about
the x-axis gives a minimum surface.

Find the external of the functional.

 
2 2

1 1

22 2 1 '
x x

x x

y ds or y y dx   

Subject to y (xl) =  1 2 2,y y x y

0

Y

X

A (x ,y )1 1

B (x ,y )2 2
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Solution. 2  is constant so we have to find the extremal of

 
2

1

21 '
x

x

y y dx

Here f = y  21 'y  which is independent of x.

One form of Euler’s equation is

                          ' 0 ' 0
' '

d f f d ff y f y
dx y x dx y

     
            

             0f
x
   

On integrating, we get, f – y '
f
y

 = constant (c)        ...(1)

Putting the values of  f and '
f
y



in (1), we have

               
 

2

2

2 '1 ' '
2 1 '

yy y y y c
y

   


or  
 

   
2

2 2 2 2

2

'1 ' or 1 ' ' 1 '
1 '

yyy y c y y yy c y
y

      


                                                                  2 2 2 21 ' 1 'y c y or y c y   

or                                                           
2 2 2 22 2

2
2' '

y c y cy c dyy or y or
c dx cc
 

  

                                                    
–1

2 2 2 2
cosh

– –

dy dx dy dx y x
b

c c c cy c y c
      

 y = c cosh 
x b
c

  
 

 which is the equation of catenary. This is the required extremal.           Ans.

Example 4. Find the curve connecting two points (not on a vertical line), such that a particle
sliding down this curve under gravity (in absence of resistance) from one point to another reaches in
the shortest time. (Brachistochrone problem).

Solution. Let the particle slide on the curve OA from O with zero velocity. Let OP = s and time
taken from 0 to P = t. By the law of conservation of energy, we have

K.E. at P – K.E. at O = potential energy at P.

21 0
2

mv mgh 

or  
21 2

2
ds dsm mgh or gy
dt dt

    
 

Time taken by the particle to move from O to A

     
 1 1 1

2

0 0 0 0

1 '1 1
2 2 2

x x xT yds dsT dt dx
y ygy g g


      

Here,
 21 'y

f
y


 which is independent of x,i.e., 0.f

x





y x0

Y

Z

(x ,y )1 1

(x ,y )2 2
ds

O

A

X

P(x,y)

 (x ,y )1 1
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and               
   2 2

1 2 ' '
' 2 1 ' 1 '

f y y
y y y y y


 

  

Solution of Euler’s equation is

'
'

ff y
y



 = constant c

On substituting the values of  f  and 
'

f
y



,we get

 
 

2

2

1 ' ''
1 '

y yy c
y y y


 




2

2

2
1

(1 )

yy c y
y

  


   or   2 2 21 ' ' 1 'y y c y y   

  21 1 'c y y  or  
2

2

11 dy
dx yc

   
 

  or  
2

2

1 ycdy
dx yc




                                     
21/ c y a ydy

dx y y
 

  2

1 a
c

  
 

                                  

ydx dy

a y

                          0
0

 
   

 
y

x yx dx dy
a y                     

2Put sin
2 sin cos

y a
dy a d

 
   

2
2

20
0 0

sin sin2 sin cos 2 sin cos 2 sin
cossin

ax a d a d a d
a a

 
                     
  

                                                           
00

sin 21 cos 2
2

a d a
        

 

                                                       x  2 sin 2
2
a

    and   2sin 1 cos 2
2
ay a    

On putting 
2
a A  and 2                

 
 

sin

1 cos

x A

y A

   


   
which is a cycloid.

EXERCISE 17.1
 1. Find the external of the functional

  1

0

2

2

1
'

x

x

yI y x dy
y


    Ans.  2
1sinhy c x c 

2. Solve the Euler’s equations for  1

0
' ' .

x

x
x y y dx Ans.

2

1 24
   

xy c x c
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3. Solve the Euller’s equation for 
1

0

2(1 ') '
x

x

x y y dx Ans. y = cx-1 + c2

Find the extremals of the functional and extremism value of the following:

4.
1

0

2

2

1[ ( )]
'

x

x

yI y x dx
y


  Ans. y = sinh (c1 x + c2)

5. 
1

2 2

1
2

1[ ( )] subject to 1, (2) = 4.
2

I y x x y dx y y   
   Ans.

cy d
x

   , value = 1

6.
2

2

0

[ ( )] ( – ') subject to (0) 0, (2) = 4.I y x x y dx y y  Ans. 
2

2
xy cx d   , value = 2

7.
2

2 2

0

( ' – ) subject to (0), 1y y dx y y



     Ans. y = sin x, value = 0

8.
1

2

0

( ' 12 ) subject to (0) 0, 1y xy dx y y    Ans. 3 21, value
5

y x 

9.
22

1

(1 ' )
subject to (1) 0, 1.

y
dx y y

x


   Ans. y = x3

17.6    ISOPERIMETRIC PROBLEMS
The determination of the shape of a closed curve of the given perimeter enclosing maximum area

is the example of isoperimetric problem. In certain problems it is necessary to make a given integral.
2

1

( , , ')
x

x

I f x y y dx  ....(1)

maximum or minimum while keeping another integral
2

1

( , , ') (Constant)
x

x

I g x y y dx K         ... (2)

Problems of this type are solved by Lagrange’s multipliers method. We multiply (2) by  and add
to (1) to extremize (1)

2 2 2

1 1 1

( , , ') ( , , ') (say)
x x x

x x x

I f x y y dx g x y y dx F dx     

Then by Euler’s equation – 0
'

F d F l
y dx y

  
   

Note. Isoperimetric problem. To find out possible curves having the same perimeter, the one
which encloses the maximum area.

Example 5. Find the shape of the curve of the given perimeter enclosing maximum area.
Solution. Let P be the perimeter of the closed curve,

Then
2

1

2= 1 '
x

x

P y dx ...(1)
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The area enclosed by the curve, x-axis and two perpendicular lines is
2

1

=
x

x

A y dx ....(2)

We have to find the maximum value of (2) under the condition (1).
By Lagrange’s multiplier method.

2= y + 1+ y'F 
For maximum or minimum value of A, F must satisfy Euler’s equation

        – 0
'

F d F
y dx y

  
   

1–2 2
2

1 '1– (1 ' ) (2 ') 0 or 1– 0
2 1 '

d d yy y
dx dx y

  
           

Integrating w.r.t. ‘x’, we get  2

'–
(1 ' )

yx a
y






or
2

'

(1 ' )

y

y





x – a  or  2 y´2 = (1 + y´2) (x – a)2

[2 – (x – a)2] y´2 = (x – a)2

or 2

–'
[ – ( – ) ]

x ay
x a




 or       
2

–

– ( – ) ]

dy x a
dx x a




Integrating w.r.t. (x), we obtain

2– [ – ( – ) ]y x a b  

or 2– – [ – ( – ) ]y b x a      (y – b)2 = 2 – (x – a)2      or        (x – a)2 + (y – b)2 = l2

This is the equation of a circle whose centre is (a, b) and radius . Ans.

Example 6. Find the extremal of the functional 
2

1

( – )
t

t

1A x y y x dt
2

 
 

subject to the integral

constraint 
2

1

t
2 2

t

1 ( – ) = .
2

x y dt l
 



Solution. Here 1 ( – )
2

f x y x y
 

, 
• •
2 2g = –x y

F f g 

2 21 ( – )
2

F xy yx x y
  

  

For A to have extremal F must satisfy the Euler’s equation

              – 0F d F
x dx x



  
 

   
...(1)
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– 0F d F
x dx x



  
 

   
 ...(1)

– 0F d F
x dx y

  
   

...(2)

From (1)

2 2

1 2– – 0
2 2

2

d y xy
dt

x y






 

 
 

  
  

2 2

– 0
2

d xy
dt

x y




 

 
 

 
  

...(3)

From (2)

   2 2

1– – 0
2 2

d x yx
dt x y




  
  
  

...(4)

2 2

– 0d yx
dt

x y




 

 
   
  

Integrating (3) and (4), we have

1
2 2

– xy c
x y




 



     or   1

2 2

– xy c
x y




 



...(5)

1
2 2

– yx c
x y



 





      or     2

2 2

– yx c
x y




 



...(6)

Squaring (5) , (6) and adding, we get

2 2
2 2 2

2 1
2 2

( – ) ( – ) x yx c y c
x y

 

 

 
       

2 2 2
2 1( – ) ( – )x c y c  

This is the equation of circle. Ans.

Example 7.   Find the solid of maximum volume formed by the revolution of a given surface area.
Solution.    Let the curve PA pass through origin and it is rotated about the x - axis.

0

2π
a

S yds 
2

0

2π (1 )
a

S y y dx  ...(1)
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2

0

π
a

V y dx  ...(2)

Here we have to extremize V with the given S.

Here 2π ,f y 22π (1 – ' )g y y

F f g  

2 2π λ2π (1 ' )F y y y  

For maximum V, F must satisfy Euler’s equation. But F does not contain x.

   – '
'

FF y C
y





or
2 2

2

1 2 2 '2 (1 ' ) – '
2 (1 ' )

y yy y y y C
y

 
     



or
2

2 2

2

2πλ 'π 2π λ (1 + ' ) –
(1 + ' )

yyy y y C
y

 

or
2

2

2π λπ
(1 ' )

yy C
y

 


As the curve passes through origin (0, 0), so C = 0.

2

2

2π λπy 0
(1+ ' )

y
y

 

or      2

2λ 0
(1+ ' )

y
y

        or    
2(1 ' ) –2λy y 

or                   
2

2
2

4λ1 'y
y

       or    
2 2 2

2
2 2

4λ 4λ –' –1 yy
y y

 

or       
2 2(4λ – )ydy

dx y


   2 2(4λ – )

ydy dx C
y

  

      2 2– 4λ – y x C  ...(1)

or         2 24λ – – –y x C

The curve passes through (0, 0). On putting x = 0,  y = 0 in (1) we get
  – 2λC 

(1) becomes       2 24λ – – 2λy x 

Y

O A

P
(x,y)

X
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Squaring          2 2 24λ – ( – 2λ)y x

or                2 2 2( – 2λ) 4λx y 

This is the equation of a circle.
Hence, on revolving the circle about x- axis, the solid formed is a sphere. Ans.

EXERCISE 17.2
1. Show that an isosceles triangle has the smallest perimeter for a given area and a given base.
2. Find the external in the isoperimetric problem of the extremum of

1
2 2

0

( ' ' – 4 '– 4 )y z xz z dx

subject to
1

2 2

0

( ' '– ' ) 2,y xy z dx  y (0) = 0, z (0) = 0, y (1) = 1, z  (1) = 1.

Ans.
2–5 7 , .

2 2
x xy z x  

3. Find the surface with the smallest area which encloses a given volume.             Ans. Sphere

4. Find the external of the functional 
2

1

2 2 2 2 2 2 2subject to .
t

t

x y z dt x y z a    

Ans. Arc of  a great circle of a sphere.

5. Find the extremals of the isoperimetric problem 
1 1

0 0

2' subject to
x x

x x

y dx y dx = c.     Ans. y  =  x2 + ax+b

17.7  FUNCTIONALS OF SECOND ORDER DERIVATIVES
Let us consider the extremum of a functional.

2

1

[ ( , , ', '')]
x

x

f x y y y  dx        ... (1)

The necessary condition for the above mentioned functional to be extremum is

2

2– 0
' ''

f d f d f
y dx y ydx

     
         

Proof. Let the boundary conditions be
y(x1) = y1, y(x2) = y2, y(x1) = y1, y(x2) = y2

Let  be a parameter and x   is a differentiable function.

At the end points  1 2( ) ( ) 0x x     and 1 2'( ) '( ) 0x x   

Putting ( )y x for y in (1), we have

2

1

[ , ' ' '' ''( )]
x

x

f x y x y x y x dx       

Writing         
2 2

1 1

[ , ' ' '' ''( )] 1
x x

x x

f x y x y x y x dx Fdx          
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For extremum value of  (1)

0dI
d




2

1

x

x

dI F dx
d




  

Differentiating under the sign of integral, we get
2

1

' ''
' ''

x

x

F y F y F y dx
y y y

      
         


2

1

( ) ( ') ( '')
' ''

x

x

F n F n F n dx
y y y

         
         


But 0dI
d




 when   =  0

          
2

1

0 ' ''
x

x

f f f dx
y y y

   
        
     or

2 2 2

1 1 1

' '' 0
' ''

x x x

x x x

f f fdx dx dx
y y y
  

     
    

Integrating by parts, w.r.t. ‘x’, we have
2 2

2 2 2

1 1 11 1

2

2– '– .
' '' '' ''

x xx x x

x x xx x

f f f f d f d fdx dx dx
y y x y y dx y ydx

              
                                

  

But n (x1)  = n (x2)  =  0  and  1 2' ( ) '( ) 0x x   

So
2

1

2

2– 0
' ''

x

x

f d f d f x dx
y dx y ydx

      
             

      
2

2– 0
' ''

f d f d f
y dx y ydx

     
         

  Proved.

EXERCISE 17.3

 1. Find the extremal of  
1

0

2 2 2(16 – '' )
x

x

y y x dx . Ans. y= cle
2x +c2e

–2x+ c3 cos 2x+ c4 sin 2x

 2. Find the extremal of 2

–

1( '' )
2

c

c

ay by dx  subject to y ( – c) = 0, y’ ( – c) =  0,

y (c) =  0, y’ (c) =  0. Ans.
2 2 2– ( – )

24
ay x c

b


3. Find the extremal of 2

0

''
x

y dx  subject to 2

0

1
x

y dx  , y (0) = y (p) = 0, y’’ (p) = 0.

Ans. y = a1 sin x + a2 sin2x + ......

4. Find the extremal of 
1

0

2(2 ''' )
x

x

xy y dx . Ans.
7

7!


xy + c1x
5 + c2 x

4 + c3 x
3 + c4 x

2 + c5 x + c6
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59
Tensor Analysis

18.1 INTRODUCTION
Scalars are specified by magnitude only, vectors have magnitude as well as direction. Tensors
are associated with magnitude and two or more directions. For example, the stress of an
elastic solid at a point depends upon two directions. One of the directions is given by the
normal to the area, while the other is that of the force on it.
Tensors are similar to vectors. A vector can be specified by its components (Magnitude and
direction). A tensor can be specified only by its components which depend upon the system
of reference. The components of the same tensor will be different for two different sets of
axes with different orientations.
Tensors analysis is suitable for mathematical formulation of natural laws in forms which are
invariant with respect to different frames of reference. That is why Einstein used tensors for
the formulation of his Theory of Relativity.

18.2 CO-ORDINATE TRANSFORMATION
If we have two systems of rectangular co-ordinate axes OX,
OY, OZ; OX’, or, OZ’ ; having same origin such that the
direction cosines of the lines

OX’, OY’ , OZ’ relative to the system OX YZ are

1 1 1 2 2 2 3 3 3, , ; , , ; , ,l m n l m n l m n

Two equivalent systems of transformation equations express
x ' , y ' , z ' in terms of x, y, z and vice versa.

1 1 1

2 2 2

3 3 3

'
'
'

x l x m y n z
y l x m y n z
z l x m y n z

   
   
   

      ... (1)

1 2 3

1 2 3

1 2 3

' ' '
' ' '

' ' '

x l x l y l z
y m x m y m z
z n x n y n z

   
   
   

      ... (2)

where (x ' ,  y ' , z ' ) and (x, y, z) are co-ordinates of point P relative to two systems of co-ordinate axes.
System of transformation eq. shown above in (1) and (2) can be written as

x y z
x ' l1 m1 n1

y ' l2 m2 n2

z ' l3 m3 n3

Tensor Analysis

18

Y
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(l , l , l )11 12 13

(l , l , l )11 21 31

(l , l , l )21 22 23

(l , l , l )13 23 33

(l , l , l )31 32 33

(l , l , l )

12
22

32

O

X3

X2

X2

X3

X1
X1

18.3 SUMMATION CONVENTION

The sum of the following alx1 + a2 x2 + a3 a3 +.... + anxn ...(1)

       can be written in brief as   
1

i n

i i
i

a x



   ... (2)

More simplified and compact notation for (2) used by Einstein is aix
i. ...(3)

In (3) we have omitted   -sign.
1 2 3

1 2 3 3 ....i n
i na x a x a x a x a x   

We write x1, x2, x3, ... xn as x1, x2, x3, ... xn in tenser analysis. These superscripts donot
stand for powers of x but indicate different symbols. The power of xi is written as

2 3( ) , ( ) ....i ix x

Example 1. Write out  ( , 1, 2, 3.... )s
rs ra x b r s n   in full:

Solution. ars x
s = br

aisx
s + a2sx

s + a3sx
s + ... + ansx

n =  b1 + b2 + b3 + .... + bn      (r occurs 1 to n)
(a11x

1 + a12x
2  +  a13x

3  + .... a1nx
n) + (a21x

1 + a22x
2 + a23x

3 + ... + a2nx
n)

+ (a31x
l + a32 x

2 + a33x
3 + ... +....a3nx

n )  + ... = b1 + b2 + b3 +....+ bn

Example 2. If  f = f (xl, x2, x3 , ... xn) then show that i
i

f
df dx

dx




Solution.    1 2
1 2 ... n

n

f f f
df dx dx dx

dx dx dx
  

    i
i

f dx
x



 Proved.

18.4 SUMMATION OF CO-ORDINATES

The equations of co-ordinates can be written in very compact form in terms of summation
convention. We write (x1, x2, x3) and ( 1 2 3, ,x x x ) instead of (x, y, z) and (x ' , y ' , z ' ) and denote the

co-ordinate axes as OX1, OX2, OX3 and 1 2 3, ,OX OX OX . Also we denote ,i jx x  as the co-ordinates
of a point P relative to the two systems of axes; where i = 1, 2, 3, j = 1, 2, 3.
Let lij denote the cosines of the angles between ,i jOX OX . In general ij jil l

The eq. of co-ordinate transformation can be written as

1 11 1 21 2 31 3

2 12 1 22 2 32 3

3 13 1 23 2 33 3

x l x l x l x
x l x l x l x
x l x l x l x

   
   
   

     ... (1a)

1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

x l x l x l x
x l x l x l x
x l x l x l x

   
   
   

     ... (1b)

These equations of co-ordinate transformation can be
represented by means of a table form such that

1 2 3

1 11 21 31

2 12 22 32

3 13 23 33

x x x
x l l l
x l l l
x l l l

Adopting summation on convention i.e.,
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a11 + a22 + a33 = aij
ausip biq = alpb1q+ a2p b2q + a3pb3q we re-write above equations as

1 1 1 1

2 2 2 2

3 3 3 3

i i j j

i i j j

i i j j

x l x x l x
x l x x l x

x l x x l x

 

 

 

We can re-write these equations in single equation in the form.
,j ij i i ij jx l x x l x 

which are complete equivalents of the equations of co-ordinate transformation from either
system to another.

18.5 RELATION BETWEEN THE DIRECTION COSINES OF THREE MUTUALLY
PERPENDICULAR STRAIGHT LINES

The direction cosines of any three mutually perpendicular straight lines 1 2 3, ,OX OX OX
relative to the system OX1, OX2, 0X3 are l11, l21, l31, l12, l22, l32, l23, l33.
The relation between these direction cosines are
l11l11 + l21l21 + l31l31 = lj1 lj1 = 1 l12l12 + l22l22 + l32l32 = lj2lj2 = 1
l13l13 + l23l23 + l33l33 = lj3 lj3 = 1.
Similarly,
l11l12 + l21l22 + l31l32 = lj1  lj2 = 0 l12l13 + l22l23 + l32l33 = lj2lj3 = 0
l13l11 + l23l21 + l33l31 = lj3  lj1 = 0
Finally, we can write these equations by means of a single equation as

1, when
0, whenij kj

i k
l l

i k


  
or

1, when
0, whenik

i k
i k


   

where ik  is the kronecker delta.
or           ik ij kjl l 

Now, we know that  j ij ix l x

Multiplying both sides by ljk then

or        jk j ij jk i jk j ik il x l l x l x x   

putting  i = k i.e.,  ik = 1 when i= k

kk k jk j k jk jx l x x l x   

18.6  TRANSFORMATION OF VELOCITY COMPONENTS ON CHANGE FROM ONE
SYSTEM OF RECTANGULAR AXES TO ANOTHER

We know that with the help of parallelogram law of velocities, that any given velocity can be

represented by means of its three components along three mutually perpendicular lines and the

three components characterise velocity completely. The components change as we pass from
one system of mutually perpendicular lines to another.
Let OX1, OX2, OX3 and O X 1, O X 2, O X 3 are two systems of rectangular axes and suppose

that ,i jl l are the direction cosines of the line of action of the velocity and v, denote the
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magnitude of the velocity. Then
,i j jv l v v vl          ... (1)

where vi and jv , denotes the components of velocity relative to the two systems of axes.
By the equation of co-ordinate transformation, we have

,j ij i i ij jl l l l l l         ... (2)
From (1) and (2).

, .j ji i
ij ij

v vv v
l l

v v v v
  i.e., j ij iv l v

Thus we see equation of transformation of velocity components are same as for the
transformation of co-ordinate of points.

18.7 RANK OF A TENSOR
The rank of a tensor is the number (without counting an index which appears once as a

subscript) of indices in the symbol representing a tensor. For example
Tensor Symbol Rank
Scalar A zero
Contravariant Tensor Bi 1
Covariant Tensor Ck 1
Covariant Tensor Dy 2

Mixed Tensor il
jklE 3

In an n-dimensional space, the number of components of a tensor of rank r is nr.
18.8  FIRST ORDER TENSORS

Definition. Any entity representable by a set of three numbers (called components)
relatively to a system of rectangular axes is called first order tensors, if its components ai, aj

relatively to any two systems of rectangular axes OX1, OX2, OX3, O X 1, O X 2, O X 3 are connected

by the relation, j ij ia l a       ...(3)

 i ij ja l a

lij being cosines of angle between OXi and O X j. A tensor of first order is also called a vector..

Note. Consider any two tensors of first order and let , , , ;i j p qa b a b be the components
of the same relatively to two different systems of axes, we have

,p ip i q jq ja l a b l b 
where lip and ljq have their usual meanings. This gives

p q ip i jq ja b l a l b ip jq i jl l a b ... (1)
The R.H.S. of (1) denotes the sum of 9 terms obtained by giving all possible pair of values
to the dummy suffixes i,j so that each components of p qa b is expressed as a linear combination
of nine components of the set ai, bJ; the coefficient being dependent only upon the positions of

the two systems of axes relative to each other and not on the components of the sets ,p q i ja b a b

18.9 SECOND ORDER TENSORS
Definition. Any entity representable by a two suffixes set relatively to a system of

rectangular axes is called a second order tensor, if the sets ,ij pqa a representing the entity
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relative to any two systems of rectangular axes OX1, OX2, OX3, 1 2 3, ,OX OX OX are connected by
relation.

pq i p j p i ja l l a

18.10 TENSORS OF ANY ORDER
Definition. Any entity representable by a set with m, suffixes relatively to a system of rectangular

co-ordinate axes is called a tensor of order m, if the set aijkl, ...... , pqrsa .... representing the entity

relatively to any two systems of rectangular axes OX1, OX2, OX3, 1 2 3, ,OX OX OX are connected
by the relation

..... .... ....pqrs ip jq kr ls ijkla l l l l a
We say that a ijkl ..... are the components of tensor relatively to the rectangular system

of axes OX1, OX2, OX3.
18.11 TENSOR OF ZERO ORDER

Definition. Any entity representable by a single number such that the same number
represents the entity irrespective of any underlying system of axes is called a tensor of order
zero. A tensor of order zero is also called a scalar.

18.12 ALGEBRAIC OPERATIONS ON TENSORS
Theorem. If aijkl ...., bijkl ....  are two tensors of the same order then

cijkl .... = aijkl .... + bijkl ...
is a tensor of the same order.

Proof. Let aijkl ...., bijki ..... and ....., ...pqrs pqrsa b be the components of the given tensors relatively to

two systems OX1, OX2, OX3, 1 2 3, ,OX OX OX .

We write

....... ........ ........,ijkl ijkl ijklc a b 

....... ........ ........pqrs pqrs pqrsc a b 

Let lij denote the cosine of the angle between OXi and jOX .

....... ........ .......pqrs ip iq kr ijklc l l l c         ... (1)

As aijkl ..... and bijkl ...... are tensors, we have

....... ........ .......pqrs ip jq kr ls ijkla l l l l a        ... (2)

....... ........ .......pqrs ip jq kr ls ijklb l l l l b       ... (3)

Adding (2) and (3), we obtain (1).
Hence the theorem
Similarly, we can show for difference

....... ...... ........ .... .....pqrs pqrs ip jq kr ls ijkl ijkla b l l l l a b    
....... ........ .........pqrs ip jq kr ls ijkld l l l l d

18.13  PRODUCT OF TWO TENSORS
Theorem. If aijkl ...., bpqrs ....be two tensors of order  and  respectively, then
cijkl.... pqrs ..... = aijkl .... bpqrs .... is a tensor of order  + .
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Proof. Let aijkl ....., bpqrs ...... and
1 1 1 1 1 1 1 1 1 1 1 1.....,....., .....i j k l p j k l p q r sa b b  be the components of given

tensor relatively to two systems OX1, OX2, OX3, 1 2 3, ,OX OX OX we write

cijkl ...pqrs  =  aijkl..... bpqrs

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1....... ..... ..... .....i j k l p q r s i j k l p q r sc a b

Let lij be the direction cosines of the angle between OXi and jOX , then

1 1 1 1 1 1 1 1 1 1....... ... ............ ..... ....i j k l p q ii jj pp qq ijk pqrc l l l l c       ... (1)

As aijkl ..... and bpqrs ...... are tensors we have

1 1 1 1 1 1 1
..... ..... .....i j k l ii jj kk ijkla l l l a        ... (2)

1 1 1 1 1 1 1
..... ..... ....p q r s pp qq rr pqrsb l l l b        ... (3)

Multiplying (2) and (3) we get (1). The new tensor obtained is called product of the tensors.
18.14 QUOTIENT LAW OF TENSORS

Thorem. If there be an entity representable by a multisuffix set aij relatively to any given system
of rectangular axes and if aijbi is a vector, where bi is any arbitrary vector whatsoever then aij is a
tensor of order two.

Proof. aijbi= cj so that cj is a vector. Let aijbi, cj  and , ,pq p qa b c be the components of the
given entity and two vectors relatively to two systems of axes OX1, OX2, OX3, 1 2 3, ,OX OX OX , then
we have

aijbi = c j      ... (1)

            pq p qa b c      ... (2)

Also, bi, cj being vectors, we have

   q jq jc l c      ... (3)

    i ip pb l b      ... (4)

From these, we have

pq p qa b c jq j jq ij i jq ij ip p ip jq ij pl c l a b l a l b l l a b   

i.e.,     0pq ip iq ij pa l l a b 

As the vector pb is arbitrary, we consider three vectors whose components relatively to
1 2 3, ,OX OX OX are 1, 0, 0 ; 0, 1, 0 ; 0, 0, 1.
For these vectors, we have from (5)

1 2 2 3 30, 0, 0q il jq ij q i jq ij q i jq ija l l a a l l a a l l a     
These are equivalent to

0pq ip jq ija l l a 

i.e., ,pq ip jq ija l l a [This shows that aij is of second order]
so that the components of the given entity obey the tensorial transformation laws. Hence the

result.
18.15  CONTRACTION THEOREM

Theorem. If aijkl ...... is a tensor of order m, then the set obtained on identifying any two
suffixes is a tensor of order (m –2).

Proof. Let aijkl ..... , pqrsa ....., be the components of the given tensor relatively to two coordinate
systems of axes OX1, OX2, OX3, 1 2 3, ,OX OX OX , so that we have,
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..... .... .....pqrs ip jq kr ijkla l l l a       ... (1)

Let us identify q and s then,

..... .... .....pqrs ip js kr ls ijkla l l l l a

..... .... .....pr ip kr jl ijkla l l a 
0,

1,
jl

jl

j l

j l

   
 

    



           .... .... .... ....ip kr ilkl ip kr ikl l a l l a 

This shows that the order of the tensor reduces by two.
Hence the theorem.

18.16 SYMMETRIC AND ANTISYMMETRIC TENSORS

If     , ,ork k r s s r
rs sr k kA A A A 

then k
rsA (or k

srA ) are said to be symmetric tensors.

If     ork k rs sr
rs sr k kB B B B   

then k
rsB (or sr

kB )are known as antisymmetric tensors.

The symmetric (or antisymmetric) property is conserved under a transform of co-ordinates.
18.17 SYMMETRIC AND SKEW SYMMETRIC TENSORS

Invariance of the symmetric and skew-symmetric character of the sets of components of
tensors

Theorem. Show that if aijkl ..... is symmetric (skew-symmetric) in any two suffixes, then
so is also .....pqrsa in the same suffixes.

Proof. Let ....., .....ijkl pqrsa a be the components of a tensor respectively to two systems of axes OX1,

OX2, OX3, 1 2 3, ,OX OX OX . Then we have

..... .... .....pqrs ip jq kr ls ijkla l l l l a ...(1)
Now, suppose that aijkl ...... is symmetric in the second and fourth suffixes. Interchanging q

and s on the two sides of (1) we obtain
..... .... .....psrq ip js kr lq ijkla l l l l a         ... (2)

As j and l are dummy, we can interchange them. Then interchanging j and l on the R.H.S. of
(2) we get

..... .... .....psrq ip ls kr jq ijkla l l l l a         ... (3)

..... .... .....psrq ip jq kr ls ijkla l l l l a

The set aijkl .........is symmetric in the second and fourth suffixes.
Now from (1) and (3) we have

..... .......pqrs psrqa a

Hence the result.
Definition. A tensor is said to be symmetric (skew-symmetric) in any two suffixes if its components

relatively to every co-ordinate system are symmetric (skew-symmetric) in the two suffixes, in question.
A tensor is said to be symmetric (skew-symmetric) if it is so in every pair of suffixes, e.g.,
If ui, vj be any two vectors then the two second order tensors uivj+ ujvi, uivj – ujvi are respectively

symmetric and skew-symmetric.
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18.18 THEOREM
Every second order tensor can be expressed as the sum of a symmetric and a skew-symmetric

tensor.
  Proof. Let aij be any tensor of order 2. Now,

pq ip jq ija l l a  = ljpliqaji ...(1)
where we have interchanged the two dummy suffixes i and j. Then (1) shows that aij is

also a tensor of order two.

Now,
1 1
2 2ij ij ji ij jia a a a a         

       =  symmetric + skew-symmetric

Thus aij is the sum of symmetric and skew symmetric tensors.

18.19 A FUNDAMENTAL  PROPERTY  OF  TENSORS
Theorem. If the components of a tensor relatively to any one system of co-ordinate axes are

all zero, then the components relatively to every system of co-ordinate axes are also zero.
Proof. Consider a tensor whose components relatively to the systems of axes OX1, OX2,

OX3, 1 2 3, ,OX OX OX are aijkl ...., pqrsa ......and let aijkl . ...= 0 for every system of values
of i, j, k, l...... we have

..... .... .....pqrs ip jq kr ls ijkla l l l l a    = 0

for every system of values of p, q, r, s......
18.20  ZERO TENSOR

Def. A tensor whose components relatively to one co-ordinate system and, also relatively to
every co-ordinate system are all zero is known as zero tensor.

A zero tensor of every order is denoted by 0.
EXERCISE 18.1

1. Write the following using summation convention:
(a) (x1)1 + (x1)2 + (x1)3 ..... (x1)n Ans. (x1)i

(b) (x1)2 + (x2)2 + (x3)2 + ... (xn)2 Ans. (xi)2

(c)  
1 2

1 2 .....
n

n

df f dx f dx f dx
dt dt dt dtx x x

  
   
  

Ans. 
i

i
df f dx
dt dtx





2. Write out all the tensor in S = aijx
i xi taking n = 3.

Ans. S = (a11x
1x1  + a12x

1x2 + a13x
1x3)  + (a21x

2x1  + a22x
2x2 + a23x

2x3) + (a31x
3x1  + a32x

3x2 + a33x
3x3)

3. Write the tensor contained in xpq , xqr if n = 2

 Ans.  (x11 + x21)x11 + (x11 + x21)x12 + (x12 + x22)x21 + (x12 + x22)x22

4. How many equations in a four dimensional space are represented by 0rpR
               Ans. 8

5. Show that every tensor can be expressed as the sum of two tensors, one of which is symmetric
and the other skew-symmetric in a pair of covariant or contravariant indices.

6. Show that the symmetric (or antisymmetric) property of a tensor is conserved under a
transformation of co-ordinates.
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7. If Al and Bj, are components of a contravariant and covariant tensor of rank one, then show that
i i
j jC A B are the components of a mixed tensor of rank 2.

8. Write down the laws of transformation for the tensors ij
kA  and ij

klmB

Ans. ,
i j r i j r s t

ij pq ij rq
k r klm rstp q k p q k l m

x x x x x x x xA A B B
x x x x x x x x
       

 
       

9. Evaluate (a) i i
j k  (b) i j k

j k l   Ans.   (a) i
k (b) i

j
10. Show that the velocity of a fluid at any point is a contravariant tensor of rank one.

18.21 TWO SPECIAL TENSORS
1. Alternate tensor
Consider an abstract entity of order 3 and dimension 3 such that its components relatively to

every system of co-ordinate axes are the same and given by ijk where

0 if any two  of  are equal
1   if  is a cyclic permutation 1, 2, 3
–1   if  is an anti cyclic  permutation 1, 2, 3

ijk

ijk
ijk

ijk


  



Thus for unequal values of the suffixes, we have
123 312 231 132 213 3211, 1        

Let OX1, OX2, OX3, 1 2 3, ,OX OX OX be two systems of rectangular axes. We want to show that

ijk is a tensor of order three. Consider, now expression
ip jq kr ijkl l l   .    ...    (1)

For any given system of values p, q, r, the expression (1) consists of a sum of 33 = 27 terms
of which 6 only are non-zero, for the other 21 terms corresponds to a case when atleast two of i,
j, k are equal. The expression (1) can be written as in the form of determinant

2 3

1 2 3

1 2 3

ip p p

q q q

r r r

l l l
l l l
l l l

From properties of determinants,

0if  any two of ,  ,   have equal value.
Above determinant 1 if ,  ,   is a cyclic permutation of 1, 2, 3

–1 if ,  ,   is a non cyclic permutation of 1, 2, 3

p q r
p q r

p q r


 



Thus we see that the components of the given entity in any two systems of rectangular axes
satisfy the tensorial transformation equations so that the entity is a tensor. This tensor is known
as Alternate tensor. Thus, we see alternate tensor is same as skew-symmetric tensor.  ijk, always
denote the alternate tensor.
18.22 KRONECKER TENSOR

The symbol k
l  kronecker delta is defined as

0 whenk
l k i  

1 whenk
l k i  

It mean 1 2 3 1 3
1 1 1 2 2..... 1 and = = =.......=0n

n

           

In general         1 2
1 2 1.... ....i k n

ij k i k i k ik k n kA A A A A          
      = 0 + 0 + .... + Aik(1) + ..... + 0 = Aik
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Example 3. If Aij are the cofactors of aij in a deteminant  of order three, then show that

            kj k
ij ia A  

Solution. We know that
11 12 13

11 12 13a A a A a A           ... (1)

               21 22 23
11 12 13 0a A a A a A          ... (2)

31 32 33
11 12 13 0a A a A a A          ... (3)

These three equations can be written in brief as
1 j

ija A   ... (4) 2 0j
ija A     ... (5)        3 0j

ija A         ... (6)
Using kronecker delta, equations (4), (5), (6) can be combined into a single equation:

1
kj k

ija A         ... (7)
Similarly six more equations are given by

2 2
kj k

ja A   .... (8) and    3 3
kj k

ja A          ... (9)
Equations (7), (8),  (9) can be written as a single equation.

kj k
ij ia A        ... (10)

All the nine equations of the determinant are included in one equation (10).
18.23 ISOTROPIC TENSOR

A tensor which has the same set of components relatively to every system of co-ordinate
axes is called an Isotropic tensor.
18.24  RELATION  BETWEEN  ALTERNATE  AND  KRONECKER  TENSOR

Prove that ijm klm ik jl il jk        . Here each side is a tensor of order 4 so that tensor
equality is equivalent to set of 81 scalar equality. We have to prove that

1 1 2 2 3 3ij kl ij kl ij kl ik jl il jk             

Proof: Case I. When i = j or k=1. There will be 45 such equations and for all these equations
L .H. S. = 0 = R.H.S.

Case II. If the pair (i, j) such that i   j is different from the pair (l, k), l   k we see that there
will be 24 such scalar equations for which L.H.S. = 0 = R.H.S.

Ex. (i, j) = (1, 2), (j, k) = (1, 3), (3, 1), (2, 3), (3, 2)
(i, j) = (2, 1), (j, k) = (1, 3), (3, 1), (2, 3), (3, 2).

Case III. Thus we are left to consider the possibility when i, j and k, l take the pairs of values,
(1, 2); (1, 3); (2, 3); (2, 1); (3, 1); (3, 2).

Consider the first case we have
i =1, j = 2, k= 1, l = 2; i=1, j = 2, k = 2, l = 1; i = 2, j= 1, k = 1, l = 2; i=2, j = 1, k = 2, l = 1.
Each pair of (i, j) i.e (1, 2) gives two scalar equations. Thus 6 pairs of (i, j) give 12 such

scalar equations. In these cases we have
L.H.S. = 1 = R.H.S., L.H.S. = –1 = R.H.S.
L.H.S. = – 1 = R.H.S., L.H.S. = 1 = R.H.S.

This result is also true for other five cases. Hence we have the result.

Example 4. Prove that 2ilm jlm ij   

Proof. We know ilm jkm ij lk ik ij      

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Tensor Analysis 1065

Taking k =l we get

         ilm jlm ij ll il lj       

Now 11 22 33 1 1 1 3ll          

                  il lj ij ij im jma a    

             3ilm jlm ij ij       =2 ij Proved.

Example 5. Prove that 6ijk ijk  

Proof. ilm jkm ij lk ik lj       
Taking k =l, we get

2ilm jlm ij   
Taking i = j (Contraction)

2 2 3 6ilm ilm ii       Proved.
18.25  MATRICES AND TENSORS OF FIRST AND SECOND ORDER

Consider any vector. Its components ai relatively to any system of axes may be written in the
form of a row or a column matrix as

[a1a2a3]   or  

1

2

3

a
a
a

 
 
 
  

We shall be writing ai = [a1a2a3]   or  ai = 

1

2

3

a
a
a

 
 
 
  

Now consider second order tensor. Its components aij relatively to any system of rectangular
axes can be written as the form of matrix such that aij occurs at the intersection of the ith row and
jth column. Thus we shall write

         

11 12 13

21 22 23

31 32 33

ij

a a a
a a a a

a a a

 
      
  

A matrix obtained by interchanging rows and columns of a given matrix is called the transpose
of the same. Transpose of [aij] will be denoted by [aij] '  .

Sum of two matrices of the same type is the matrix whose elements are the sums of the
corresponding elements of two matrices.
18.26  SCALAR AND VECTOR PRODUCTS OF TWO VECTORS

Def. 1.  Scalar product. The scalar ui vi is called the scalar product of the two vectors ui, vj.
Thus the scalar product = u1v1 + u2 v2 + u3v3.

Def. 2. Vector product The vector Eijkuivj is called vector product of two vectors ui, vj taken
in this order. Components of these vectors are u2 v3 = u3v2, u3v1 = u1v3, u1v2 = u2 v1.
18.27 THE THREE SCALAR INVARIANTS OF A SECOND  ORDER  TENSOR

I. aii or a11 + a22 + a33

II.  
1

( )
2 ii jj ij jia a a a or 11 22 22 33 33 11 12 21 23 32 31 13a a a a a a a a a a a a    
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III.
11 12 13

21 22 23

31 32 33

or   ij

a a a
a a a a

a a a

Proof. I. Identifying i, j we see that aii is scalar. Thus
aii = a11 + a22 + a23 ...(1)

is invariant.
II. Consider now the tensor of 4th order, aijapq. Identifying i with q and j with p we see that

aijaji is scalar.

Thus 2 2 2
11 22 33 12 21 23 32 31 13( ) ( ) ( ) 2 2 2ij jia a a a a a a a a a a             ... (2)

is invariant.Subtracting(2) from square of (1) and dividing by 2. We establish invariance of II.

(III) If aij, pqa denote the components of tensor relatively to any two co-ordinate systems of
axes, then is the usual notation, we have

pq ip jq ija l l a

pq ip jq ija l l a

since ip jql l


2

pq ip ija l a but
2

1ipl 

 pq ija a

Hence it is an invariance.
18.28  SINGULAR AND NON-SINGULAR TENSORS OF SECOND ORDER

A tensor of second order is said to be singular or non-singular according as its determinant
is zero or non zero.
18.29  RECIPROCAL OF A NON-SINGULAR TENSOR

Suppose aij be a second order tensor such that 0ija 

Lemma 1. We form another matrix

Cofactor of in the determinantij ij
ij

ij

a a
A

a


Now, by theory of determinants, we know
          Aki aij = kj ...(1)

We shall now show that Aij is a second order tensor, we can not do so, by using Quotient law,
from equation (1) since aij is not an arbitrary tensor. Let cj be an arbitrary vector, then

cjaij = di         ... (2)
So that di is also a vector. We shall prove that this is an arbitrary vector. Now (2) is equivalent

to a set of 3 linear equations in the components of cj and as the determinant of aij  0, we may
assign any arbitrary values to di and the resulting equations can be uniquely solved for the
components of cj. Thus di is an arbitrary vector. We now have

i ki ij j ki ki ij j kj j kd A a c A A a c c c    

      ck = diaki ..               ..(3)
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Therefore by quotient law Aki is a second order tensor.

Lemma 2.
Cofactor of in the detterminantij ij

ij
ij

A A
e

A


We know from the theory of determinants.
1 But 0ij ij ijA a a 

Hence determinant 0ijA 

We shall now show that    eij = aij

  ekiAij =  kj

Take inner product with aji

ekiAijajl =  kiajl

  eki  il = akl

        ekl = akl

Def. Two second order non-singular tensors aij and Aij are said to be conjugate (or reciprocal)
tensors if they satisfy the equation

  Aki aij, =  kj

18.30 EIGEN VALUES AND EIGEN VECTORS OF A TENSOR OF SECOND ORDER

Def. A scalar,  , is called an eigen value of second order tensor aij,  if there exists a non-
zero vector x, such that aijxj =  xi. This equation is equivalent to

ij j ij ja x x 

or   0ij ij ja x           ... (1)

since 0jx  ,   Hence 0ij ija    ...(2)

This is a necessary condition for  , to be eigen value. Eq. (2) is cubic eq. in  and therefore
in general will give us three eigen values may not all be distinct corresponding to the tensor aij.

Consider now any system of co-ordinate axes OX1, OX2, OX3, and let aij be the component of the
given tensor in this system. Consider now a vector xj, whose components relatively to OX1, OX2, OX3

are given on solving (1). As the components of xi are not zero relatively to one system OX1, OX2,
OX3, this vector can be zero vector i.e. its components relatively to any system of axes can not all be
zero.

The tensor eq. (1) being true for one system OX1, OX2, OX3 will be true for every system of
axes.

Thus we see that every second order tensor possesses three eigen values, not necessarily all

distinct. These eigen values are the roots of the cubic 0ij ija     in  . Also to each eigen
value corresponds an eigen vector. The vector xi corresponding to eigen value  is called an
eigen vector.
18.31 THEOREM

Orthogonality of eigen vectors corresponding to distinct eigen values of a symmetric second
order tensor.

Proof. Let aij be a symmetric second order tensor, and let xi and yi be the eigen vectors
corresponding to the distinct eigen values 1  and 2 ( 1 2   )we have
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  1ij j ia x x  ...(1)
  2ij j ia y y  ...(2)

Now, 1 i i ij j ix y a x y 
           = aji xj yi              [ aij = aji]
           = aij yjxi              (Interchanging dummy indices)

1 i i ij j ix y a y x 

    1 2i i i ix y y x   or    1 2 0i ix y   

Since 1 2 0      0i ix y 
Thus x and yi are orthogonal i.e . the eigen vectors are orthogonal.

18.32  REALITY OF THE EIGEN VALUES
Theorem. The eigen values of symmetric second order tensor are real
Proof. Let  be any eigen value so that we have a relation

aijxj =  xi        ... (1)
Here the components of xj cannot be assumed to be all real. Taking complex conjugate

(denoted by bar) in (1), we get
.ij j i

ij j i

a x x

a x x

 

 

       
is symmetric

(all elements are real)
ij ij ji

ij ij

a a a

a a

 






Take inner product by xi

           ij j i i ia x x x x 

           ( )i i ji j ix x a x x          [By symmetry]

      ij i ja x x             [Interchanging dummy indices]
      ij i ja x x           [ i ix x  = real]
     ij i ja x x  = real            [ (a  – ib) (a + ib)= a2 + b2 which is  real]

This shows that the right hand side is real. Hence   is real. Thus   is real i.e. eigen values
are real.  Proved.
18.33 ASSOCIATION OF A SKEW SYMMETRIC TENSORS OF ORDER TWO AND

VECTORS

We associate the skew symmetric tensor of order two.

ij ijk ka a         ... (1)
The tensor aij is skew symmetric for

ji jlk k ijk k ija a a a     
The relation (1) is equivalent to statements

a23 = a1, a32 = –a1; a31 = a2, a13 = – a2; a12 = a3, a21 = – a3;  a11 = 0, a22 = 0; a33 =0.
On the inner multiplication with ijm we obtain from (1)

ijm ij ijm ijk k ijk pqk ip jq iq jpa a          

2 mk k ijk pjk ip jj jp ija         

2 when 3 2m ip ip ipa k m       

Hence ij
1
2m ijma a 
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This shows that association is one-one.
18.34 TENSOR FIELDS

A tensor field or a tensor point function is said to be defined when there is given a law which
associates to each point of given region of space a tensor of the same order. Thus a tensor field
aij...... of any order is defined if the components aij....... are functions of x1, x2, x3.
18.35 GRADIENT OF TENSOR FIELDS:GRADIENT OF A SCALAR FUNCTION.

Let u be a scalar point function so that there is a value of u associated with each point of a
given region of space. Thus if OX1, OX2, OX3 and O X 1, O X 2, O X 3 be any two systems, then u
is a function of xi and px  which are co-ordinates of any point P relatively to the two systems of
axes. For any point P, ,i px x  are different but the values of u are same. Consider now two sets of
first order

,
i p

u u
x x
 
  we have p

i p i

xu u
x x x

 


  
We know that p ip ix l x


p

ip
i

x
l

x



                  ip

i p

u ul
x x
 


 

Thus we see that 
i

u
x

  is a tensor of order one i.e. a vector. This is usually denoted by u, i,

        grad u = u, i

If components 
i

u
x



and 
p

u
x



relatively to two systems of axes OX1, 0X2, OX3 and O X 1,

O X 2, O X 3 obey the tensorial transformation law. This vector is called the gradient of scalar u.
18.36 GRADIENT OF VECTOR

Consider now any tensor field ui of order one. If ui, pu be the components relatively to two
systems of axes OX1, 0X2, OX3 , O X 1, O X 2, O X 3 we have p ip iu l u

 .p i i k
ip ip

j j k j

u u u xl l
x x dx x

   
 

    = 
i

ip kj
k

u
l l

x



k kj j

k
kj

j

x l x

x l
x



 

We see 
i

k

u
x

  is a tensor of second order. It is denoted by symbol ui,j and is called the gradient of ui,j.

18.37 DIVERGENCE OF VECTOR POINT FUNCTION
The scalar of the gradient of a vector point function is called the divergence of the point function.
Thus if ui is a vector point function so that

,
i

i j
j

u
u

x



 is its gradient,then

31 2
,

1 2 3

i
i i

i

u uu u
u

x x x x
  

   
     is called div ui

div ui = ui,i.
18.38  CURL OF A VECTOR POINT FUNCTION

The vector of the gradient of a vector point function is called the curl of the point function.
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Thus if ui is a vector point function so that ,
i

i j
j

u
u

x



 is its gradient, then the vector of a tensor

i.e. the vector ,jik i ju is called the curl of  ui denoted by the symbol curl id, ,i jik i ju u .

Example 6. Prove the following results

(i) grad ( ) grad grad               (ii) grad ( . ) curl curl . .f g f g g f f g g f       
        

(iii) div ( ) div  gradf f f    
  

        (iv) div ( ) . curl   .curlf g g f f g  
    

(v) curl ( ) grad ×  curlf f f    
  

     (vi) curl ( )  div div . .f g f g g f g f f g      
        

Proof. (i) grad ( ) ( ), , , grad grad .i i i           

(ii) 'grad ( . ) ( )i i jf g f g
 

      = figi.j + gifi,j        ... (1)

Now   , ,curl pkm p jik i j pmk jik p i jf g f g f g      
 

                     , , ,pj mi pi mj p i j pj mi p i j pi mj p i jf g f g f g              

Identifying p, j and m, i in first part and p, i and m, j in second part, we get

, , , ,curl pp mm p m p pp mm p p m p m p p p mf g f g f g f g f g         
 

   = ,. p p mf g f g  
 

       ... (2)

Similarly, ,curl . p p mg f g f g f    
  

... (3)

Substituting the values of fp gp,m, gp fp, m from (2) and (3) into (1), we get

grad( . ) curl . curl .f g g f g f f g f g       
         

or grad ( . ) curl curl . .f g g f f g g f f g       
         

(iii) , , , ,div ( ) ( ) div div .gradi i i i i i i if f f f f f f f              
   

(iv) , , , , ,div ( ) ( ) { }ijk i j k ijk i j k j i k ijk i j k ijk j i kf g f g f g g f f g g f      
 

   , , , ,– { }kji i j k kij j i k i kji j k j kij i kf g g f f g g f        

.(curl ) .(curl ) .(curl ) .(curl )f g g f g f f g    
       

(v) , , ,curl ( ) ( )jik i j jik i j jik j if f f f       


, ,= (curl ) (grad )jik i j jik i jf f f f         
 

(vi)          , , , curl ( ) ( ) [ ]mkn ijk i j m mnk ijk i j m j i mf g f g f g g f       
 

, ,= –[ – ][ ]mi nj mj nj i j m j i mf g g f     , , , ,= –[ g – + – ]mi nj i j m mj ni i j m mi nj j i m mj ni j i mf f g g f g f       

, , , ,= – g + mm nn m n m mm nn n m m mm nn n m m mm nn m n mf f g g f g f         

, , , ,= – g + . (div ) (div ) .
.

m n m n m m n m m m n mf f g g f g f f g g f f g f g        
       

= div div . .
.

f g g f g f f g    
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18.39  SECOND ORDER DIFFERENTIAL OPERATORS

(i) div (grad  ) =  2  (ii) curl (grad  ) = 0

(iii) div (curl f


) = 0 (iv) grad (div , f


) = cur1(curl, f


) + 2 f


Proof. (i) div (grad 2
, , ,) ( )i i ii       

(ii) curl (grad , ,) ( )jik i i  

     ,jik ij I   ,say       ... (1)

, ,ij ji  
2 2

x y y x
    

     
Now,    , ,jik ji ijk ijI     ...(2)

From (1) and (2)   ,2 ( )jik ijk ijI     

,2 ( ) 0ijk ijk ijI       

Hence, I = 0 or curl (grad  ) = 0

(iii)        div (curl , ,) ( )jik i j kf f 


, (say)jik i jkf I  ... (1)

Because             , ,i jk i kjf f

Then ,jik i kjI f ,kij i jkf  ...(2)

From (1) and (2) , ,2 ( ) ( ) 0jik kij i jk jik jik i jkI f f      

Hence,    I = 0 or div (curl f


) = 0

(iv)             grad (div f


) = (f i,i),j = f i,ij       ... (1)

, , ,1( 1 ) ( ) ( )mkn jik i j m nmk jik i jm nj mi ni mj i jmcur cur f f f f          


     , , , ,( )nn mm m nm nn mm n mm m nm n mmf f f f       

     2
, , grad (div )m mn n mmf f f f    

 
[From (1)]

Thus,          2grad(div ) 1( 1 )f cur cur f f 
  

18.40 TENSORIAL FORM OF GAUSS’S AND STOKE’S THEOREM

Gauss’s divergence theorem.

If  F


, is a continuously differentiable vector point function and S is a closed surface enclosing
a region V, then

         ˆ. div
Vs

F nds F dv 
 
 ...(1)

where ̂  is a unit vector ,
i

i i i iVs i

F
F n ds F dV dV

x


 
  




18.41 STOKE’S THEOREM
If F
  is any continuously differentiable vector point function and S is a surface bounded by

a curve c, then
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ˆ. cur1 .
Sc

F dr F ds  
 
 ...(2)

where ̂  is a unit vector ,( )i jik i j kSc i
F dr F n ds  



Example 7.  By means of divergence theorem of Gauss’s, show that

2S qpi p ijk j k qn a x ds a V  
where V is the volume enclosed by the surface S, having the outward drawn normal n. The

position vector to any point in V is xi and ai, is an arbitrary constant vector.

Proof. L.H.S. = S ipq ijk p j kn a x ds 

= ( )S qj pk qk pj p j k S k q k S j j qn a x ds n a x ds n a x ds          
qk

q S k k j S j q q V j V
k j

xxa n x ds a n x ds a dv a dv
x x


   

        q kk j qja v a v   

3 2q q qa v a v a v   Proved.

Example 8. If q w r 
  

, show that 2w q 
 

 using the index notation. The vector w


 is a
constant.

Solution. k ijk i jq w x    (given)

     , ,( )lkm k l lkm ijk i j lm
q q w x     


     , , ,( )mlk ijk i j l j l l mlk ijk i j lm
q w x x w w x       


Since w


is a constant vector

       , ,0 ( )i l mi ij mj li i j lw w x        = , , 3m l l l m l m ll i ml m mw x w x w w w w      

2 mm
q w w   


Hence         2 .q w 
 

Proved.

18.42  RELATION BETWEEN ALTERNATE AND KRONECKER TENSOR
1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

i i i l l l il im in

ijk lmn j j j m m m jl jm jn

k k k n n n kl km kn

l l l l l l
l l l l l l
l l l l l l

  
       

  

Identifying k and 1, we get

3

ik im in ik im in

ijk kmn jk jm jn jk jm jn

kk km kn km kn

     
         

    

 kk =   11 +  22 + 33 = 1 + 1 + 1 = 3.
Expanding the determinant, we have

 i jk


kmn ik (jm kn– jn km ) + im  (jn –jk kn) +in (jk km – 3jm )
jm in – jn im + im jn – im jn + in jm – 3in  jm
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 i jk


kmn im jn – in jm

18.43 THE THREE SCALAR INVARIANTS OF A SECOND ORDER TENSOR
Let aij be a second order tensor
(i) aii

Proof. pqa = lip ljq aij

Identifying p and q, we have  ppa =  lip ljp aij

                        ppa = ij  aij = aii Hence aii is an invariant.

(ii) 
1
2

 (aii ajj – aij aij )

We know that aii and ajj  are invariants. Now we have to show that aijaji  is also an invariant. Then
(aii ajj – aij aij ) will also be invariant.

Let pqa = lip ljp aij     and rsa =  lmr  lns  amn

Now consider the tensor of 4th  order

        pqa rsa = lip ljq lmr  lns  aij amn

First identifying r and q and then identifying p and s we have

          pqa qpa = lis ljr lmr lns aij amn = in jm aij amn = aij aji

Hence aij aji is an invariant.    Therefore 
1
2

(aii ajj– aij aji) is invariant

(iii)  | aij |    Proof.   pqa = lip ljq  aij         | pqa | = |lip | |ljq| | aij|

We know by the property of determinants  |lip | |ljq| =1       | pqa | = | aij|

Hence | aij| is an invariant.

18.44 TENSOR  ANALYSIS

Example 9. What is a mixed tensor of second rank? Prove that q
P  is a mixed tensor of the

second rank
Solution. The N2 quantities As

q are called components of a mixed tensor of the second rank if
p s

p q
r sq r

x xA A
x x

 

 

Now, if s
q defined by s

q = 
0 if
1 if

p q
p q


 

is a mixed tensor of second rank, it must transform according to the rule 
i q

i p
k qp k

x x
x x

 
  

 

The right side equals
j p

j
kp k

x x
x x

 
 

 

since j j
k k   = 1 if  j = k, and 0 if j  k, if follows that p

r is a mixed tensor of rank two.

Example 10. Evaluate (i) p
q qr

sA  (ii)  p
q p

r

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



1074 Tensor Analysis

Solution.    (i )  p
q qr

sA  =  p
q pr

sA  = pr
sA

           (ii) p
q p

r   =   p
p p

r = p
r

                       1p
q 

Example 11. Show that every tensor can be expressed as the sum of two tensors one of which is
symmetric and the other skew-symmetric in a pair of covariant or contravariant indices.

Solution. Consider the tensor Bpq, we have

Bpq=
1
2

( Bpq + Bqp) +
1
2

( Bpq – Bqp)

But Rpq =
1
2

(Bpq + Bqp )= Rqp is symmetric and

Spq = 
1
2

(Bpq – Bqp )= Rqp   is skew-symm.

Thus Bpq= symm tensor + skew-symm tensor.

By similar reasoning the result is seen to be true for any tensor.

Example 12. What is contraction as applied to tensors? Prove that the contraction of the

tensor p
qA is a scalar or invariant.

Solution. Contraction. If one contravariant and one covariant index of a tensor are set equal,
the result indicates that a summation over the equal indices is to be taken according to the
summation convention. This resulting sum is a tensor of rank two less than that of the original

tensor. The process is called contraction. For example, in the tensor of rank 3, ,mp
qB set p = q we get

Bq
mp = Cm, a tensor of rank 1.

To prove that contraction of p
qA  is a scalar or invariant.

we have
j q

j p
qk p k

x xA A
x x

 

 

putting  j = k,
j q

j qp p p
j q p ppp j

x xA A A A
x x

 
   
 

Then j p
j qA A and it follows that Ap

p must be an invariant. Since p
qA is a tensor of rank two

and contraction with respect to a single index lowers the rank by two. Therefore, an invariant is
a tensor of rank zero.                               Proved.

Example 13. A covariant tensor has components xy, 2y – z2, xz in rectangular co-ordinates. Find
its covariant components in spherical co-ordinates.

Solution. Let Aj denote the covariant component in rectangular co-ordinates

  xl = x, x2 = y, x3 = z.

Then A1 = xy = x1 x2

A2 = 2y – z2 = 2x2 – (x3)2

A3= xz  = x1 x3

Let kA denote the covariant component in spherical co-ordinates  1 2 3, ,x r x x    

Then                 
j

k jk

xA A
x





... (1)
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In spherical co-ordinates

  x = r sin  cos 

or 1 1 2 3sin cosx x x x ...(2)

  y  = r sin  sin

or 2 1 2 3sin sinx x x x ...(3)

   z = r cos 

or 3 1 2cosx x x ...(4)

Therefore equation (1) yields the covariant component.

1 2 3

31 1 21 1 1

x x xA A A A
x x x

  
  
  

= (sin 2x cos 3x ) (x1 x2) + (sin 2x  sin 3x ) × [(2x2 – (x3)2)]+ (cos 2x ) (x1 x3)

= (sin  cos )) (r2 sin2  sin  cos ) + (sin  sin ) (2r sin  sin  – r2 cos2 )

                + (cos ) ( r2 sin  cos  cos )
1 2 3

32 1 22 2 2

x x xA A A A
x x x

  
  
  

=    1 2 3 1 2 1 2 3 2 3 2 1 2 1 2cos cos ( ) cos sin [(2 – ( ) )] (– sin ) ( )x x x x x x x x x x x x x x 

or 2A = (r cos  cos ) (r2 sin2  sin  cos ) + (r cos  sin ) (2r sin  sin  – r2 cos2 )

 + (–r sin ) (r2 sin  cos  cos ) 
1 2 3

33 1 23 3 3

x x xA A A A
x x x

  
  
  

     = (– r sin  sin ) (r2 sin2  sin  cos ) + (r sin  cos ) (2r sin  sin  – r2 cos2 ).            Ans.
Example 14. Define symmetric and skew-symmetric tensors. Prove that a symmetric tensor of

rank two has at most
( 1)

2
N N 

 different components in N-dimensional space VN.

Solution. Symmetric Tensor. A tensor is called symmetric with respect to two contravariant
or two covariant indices if its components remain unaltered upon interchange of the indices.

Thus if mpr
qsA = pmr

qsA , the tensor is symmetric in m and p. If a tensor is symmetric with respect
to any two contravariant and any two covariant indices, it is called symmetric.

Skew-symmetric. A tensor is called skew-symmetric with respect to two contravariant or
two covariant indices if its component change sign upon interchange of the indices. Thus, if

–mpr pmr
qs qsA A the tensor is skew symmetric in m and p. If a tensor is skew-symmetric with respect to

any two contravariant and any two covariant indices it is called skew-symmetric.

Let Apq be a tensor of rank 2. The number of its all components in VN  is N2.

The components of Apq are

A11    Al2   A13 ............ A1N
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A21    A22   A23 ............ A2N

....................................................................................

ANI   AN2  AN3 ..............ANN

There are N  independent components of the form
                  A11 , A22 , A33 ............ ANN

Hence number of components of the form Al2,  A23, A34, ............in which there are distinct subscripts
will be N2 –N. But these component are symmetric. i.e.,  Al2 = A21 etc.

Hence number of different component of this form are 
1
2

(N2 –N)

 Total number of different components are

= 
1
2

(N2 –N) + N  = 
2 ( 1)

2 2 2
N N N N 

 

Example 15.  Define a metric or fundamental tensor. Determine the components of the fundamental
tensor in cylindrical co-ordinates.

Solution. Metric or Fundamental Tensor.

In rectangular coordinates (x, y, z) the differential of arc length ds is obtained from

ds2 = dx2 + dy2 + dz2. By transforming to general curvilinear co-ordinates this becomes

ds2 = 
3 3

1 1
pq p q

p q
g du du

 
 

Such spaces are called three-dimensional Euclidean spaces. We define the line element ds in
this space to be given by the quadratic form, called the metric form or metric,

ds2 =
1 1

N N
p q

pq
p q

g dx dx
 
  ...(1)

 ds2 = gpq  dxp  dxq

The quantities gpq are the components of a covariant tensor of rank 2 called the metric tensor
or fundamental tensor.

We know that ds2 = dx2 + dy2 + dz2

In cylindrical co-ordinates,
 x    = r cos , y = r sin , z = z

                  dx   = – r sin  d  + cos  dr
dy  = r cos  d  + sin  dr
dz  =  dz
ds2 = dx2 + dy2 + dz2

      = (– r sin d  + cos  dr)2 + (r cos  d  + sin  dr)2 + (dz)2

or ds2 = (dr)2 + r2 (d )2 + (dz)2

Also metric is given by
ds2 = gpq dxp dxq         ... (2)
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If xl = r, x2 = ,  x3 = z

then comparing (1)  & (2), we have

g11 = 1, g22 = r2, g33 = 1, g12 =g21 = 0, g13 = g31= 0, g23 = g32 = 0.

Metric tensor is given by

11 12 13

21 22 23

31 32 33

g g g
g g g
g g g

 
 
 
 
 

Metric tensor in cylindrical co-ordinates =
2

1 0 0
0 0
0 0 1

r
 
 
 
 
 

      Ans.

Example 16. Define what is meant by invariant? Show that the contraction of the outer
product of the tensors Ap and Bq is an invariant.

Solution. Scalar or Invariant. Suppose  is a function of the co-ordinates xk, and let denote

the functional value under a transformation to a new set of co-ordinates kx . Then  is called a

scalar or invariant with respect to the co-ordinate transformation if =  .

Since AP and Bq are tensors.

      ,
j q

j p
k qp k

x xA A B B
x x

 
 
 

Then
j q

j p
k qp k

x xA B A B
x x
 


 

By contraction (putting  j = k)

j q
j p

j qp j

x xA B A B
x x

 

 

q p p
p q pA B A B   Proved.

and so AP Bp is an invariant.

Example 17. What do you understand by associated tensors ?

Solution. Associated Tensors. Given a tensor we can derive other tensors by raising or
lowering indices. For example, given the tensor Apq we obtain by raising the index p, the tensor

p
qA ,the dot indicating the original position of the moved index. By raising the index q also we

obtain APq . We shall often write APq . These derived tensors can be obtained by forming inner
products of the given tensor with the metric tensor gpq or its conjugate gPq. Thus, for example

p
qA  = grq Arqq, , Apq = grP gsq Ars

All tensors obtained from a given tensor by forming inner products with the metric tensor
and its conjugate are called associated tensors of the given tensor. For example; Am and Am are
associated tensors, the first are contravariant and the second covariant components. The relation
between them is given by

Ap = gpq  Aq    AP = gpq Aq.

For rectangular co-ordinates gpq = 1 if p = q, and 0 if p   q, so that  AAp = AP, which explains why
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no distinction was made between contravariant and covariant components of a vector for rectangular
co-ordinates.

18.45  CONJUGATE OR  RECIPROCAL TENSORS
Let g= |gpq| denote the determinant with elements gpq and suppose g  0. Define gpq  by

cofactor of pqpq g
g

g


Then gpq is a symmetric contravariant tensor of rank two called the conjugate or Reciprocal
tensor of gpq.

Also gpq grq = p
r

18.46  CHRISTOFFEL SYMBOLS

       The symbols
1[ , ] – ; [ , ]
2

pr qr pq sr
q p r

g g g s
pq r g pq r

pqx x x
               

are called the Christoffel symbols of the first and second kind respectively.

Example 18.       Prove that [pq, r] = grs

s
pq

 
 
 

Solution.      [ , ]sr
ks ks

s
g g g pq r

pq
   
 

= r
k [ pq, r]  =  [pq, k]

      [pq, k] = gks 

s
pq

 
 
 

ie.         [pq, r] = grs

s
pq

 
 
 

Proved.

Example 19. Prove that (i) [pq, r] = [qp, r] (ii)
s s

pq qp
      
   

.

Solution.  (i)     1[ , ] –
2

pr qr pq
q p r

g g g
pq r

x x x
   

     

   = 
1 –
2

qr pr qp
p q r

g g g
x x x

   
    

      [pq, r] = [qp, r]

(ii)
s

pq
 
 
 

=  gsr [ pq,r ] = [ , ]sr s
g qp r

qp
   
 

Proved.

Example 20. Prove that pq
m

g
x




= [pm, q] + [qm, p]

Solution. [pm, q] + [qm, p]

1 1– –
2 2

pq mq pm qp mp qm
m p q m q p

g g g g g g
x x x x x x

        
              

 = 
1 1
2 2

pq qp pq
m m m

g g g
x x x

  
 

  

Example 21.  Prove that – –
pq

pn qn
m

q pg g g
mn mnx
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Solution.  ( ) 0jk k
ij im mg g

x x
 

  
 

Then 0
jk

ijjk
ijm m

g gg g
x x
 

 
 

            –
i j

jk
ij jk

m m

ggg g
x x




 
Multiplying by gir

i.e. – [ , ] [ , ]
jk

r ir jk
j m

g g g im j jm i
x


  



     – –
rk

ir jk
m

k rg g g
im jmx
        

    

Replace  r,  k,  i,  j  by  p, q, n, n , we get  – –
pq

pn qn
m

q pg g g
mn mnx
        

    
Proved.

Example 22. Derive transformation laws for the christoffel symbols of the first and the
second kind.

Solution. Since   
p q

jk pqj k

x xg g
x x
 


 

 
2 2p q r p q p q

jk pq
pq pqm j k r m j m k m j k

g gx x x x x x xg g
x x x x x x x x x x x
       

  
          

       ...  (1)

By cyclic permutation of indices n, k, m and p, q, r
2 2q r p q r q r

qrkm
qr pqj k m p j k j m j k m

gg x x x x x x xg g
x x x x x x x x x x x

       
  

          
...(2)

2 2r p q r p r p
mj rp

rp rpk m j q k m k j k m j

g gx x x x x x xg g
x x x x x x x x x x x

       
  

          
...(3)

Subtracting (1) from the sum of (2) and (3) and multiplying by 
1
2

, we obtain on using the
definition of the Christoffel symbols of the first kind,

2

[ , ] [ , ]
p q r p q

pqj k m j k m

x x x x xjk m pq r g
x x x x x x
    

 
     

        ... (4)

18.47 TRANSFORMATION  LAW  FOR  SECOND KIND

Multiplying (4) by nmg

n m
nm st

s t

x xg g
x x
 


 

we get

               
2

[ , ] [ , ]
p q r n m p q n m

nm st st
pqj k m s t j k m s t

x x x x x x x x xg jk m g pq r g g
x x x x x x x x x x
        

 
         

Then
2

[ , ]
p q n p n

r st q st
t t pqj k s j k s

n x x x x xg pq r g g
jk x x x x x x
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2p q n p n

j k s j k p

n sx x x x x
jk pqx x x x x x

           
        

       ... (5)

(4) and (5) are required transformation laws.
Example 23. If (ds)2 = r2 (d)2 + r2 sin2  (d)2, find the value of

(a)  [22, 1] (b)   [12, 2] (c)   [1, 22] (d)  [2, 12].

Solution. (ds)2 = r2 (d)2 + r2 sin2  (d )2

g11 = r2,  g22 = r2 sin2 ,  g12 = 0 = g21

2
11 12 4 2

2 2
21 22

0
sin

0 sin

g g r
g r

g g r
   



2 2
11 11

4 2 2
cofactor of g sin 1

sin
rg

g r r


  


2
22 22

4 2 2 2
cofactor of g 1

sin sin
rg

g r r
  

 

The christoffel symbols of first kind are

1[ , ] –
2

jk ijik
i j k

g ggij k
x x x

  
  

   

(a) 21 21 22
2 2 1

1[22,1] –
2

g g g
x x x

        

2 21 (0) (0) ( sin )–
2

r    
     

          = r2 sin  cos 

(b)                22 12 12
1 2 2

1[12, 2] –
2

g g g
x x x

        

2 21 ( sin ) (0) (0)–
2

r    
     

         = r2 sin  cos 

(c) The christoffel symbols of second kind are

 ,klk
g ij l

ij
   
 

1
22
 
 
 

= g1l [22, l ]  = g11  [22, 1] g12 [22, 2]

          = 2

1
r

[– r2 sin  cos ] + 0 (g12 = 0) = –sin  cos 

(d)       
2

12
 
 
 

= g2l  [22, l ]  = g21 [12, 1] + g22 [12, 2]

                = 2
2 2

1 cos0 [ sin cos ] cot
sinsin

r
r


     

  = r4 sin  cos  Ans.
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Example 24.    If  (ds)2 = (dr)2 + r2 (d)2 + r2 sin2  (d)2, find the value of
(a)  [22, 1], (b)  [33, 1], (c)  [13, 3], (d)  [23, 3],

(e )  
1

22
 
 
 

, (f) 
1

33
 
 
 

, (g) 
3

13
 
 
 

, (h) 
3

23
 
 
 

Solution. (ds)2 = (dr)2 + r2 (d)2 + r2 sin2  (d)2

  x1 = r, x2  = ,   x3 = 
 g11 = 1,  g22 = r2,  g33 = r2 sin 
g12 = 0 = g13  = .....

         g =
11 12 13

2 4 2
21 22 23

2 2
31 32 33

1 0 0
0 0 sin
0 0 sin

g g g
g g g r r
g g g r

  



                    

2

2 2 4 2
11 11

4 2 4 2

0
0 sincofactor of g sin 1

sin sin

r
r rg

g r r
 

   
 

     
2 2 2 2

22 22
4 2 4 2 2

1 0
0 sincofactor of g sin 1

sin sin
r rg

g r r r
 

   
 

     
2 2

33 33
4 2 4 2 2 2

1 0
0cofactor of g 1

sin sin si n
r rg

g r r r
   

  
The christoffel symbols of the first kind are

1[ , ] –
2

jk ijik
i i k

g ggij k
x x x

  
     

(a) 21 21 22
2 2 1

1[22,1] –
2

g g g
x x x

        

21 (0) (0) ( ) 1– (–2 ) –
2 2

r r r
r

   
       

(b) 31 31 33
3 3 1

1[33,1] –
2

g g g
x x x

        

2 2
2 21 (0) (0) ( sin ) 1– (–2 sin ) – sin

2 2
r r r

r
    

         

(c) 33 13 13 33
1 3 3 1

1 1[13,3] –
2 2

g g g g
x x x x

           

2 2
21 ( sin ) sin

2
r r

r
  

    

(d) 33 23 23 33
2 3 3 2

1 1[23,3] –
2 2

g g g g
x x x x

           
 = 2 2 21 ( sin ) sin cos

2
r r

   


The christoffel symbols of the second kind are

[ , ]klk
g ij l

ij
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(e)
11

[22, ]
22

lg l
   
 

= g111 [22, 1] + g12 [22, 2] + g13 [22, 3]  = (1) (–r) + 0 + 0 = – r

(f)
11

[33, ]
33

lg l
   
 

= g111 [33, 1] + g12 [33, 2] + g13 [33,3] = (1) (– r sin2 ) + 0 + 0 = – r sin2 

(g)
33

[13, ]
13

lg l
   
 

= g31 [13, 1] + g32 [13, 2] + g33  [13, 3]

         = 0 (r sin2) + 0 [0] + 2
2 2

1 1[ sin ]
sin

r
rr

 


(h)
33

[23, ]
23

lg l
   
 

= g31 [23, 1] + g32 [23, 2] +g33 [23, 3]

 = 0 [0] + 0 [0] + 2 2

1
sinr  (r sin  cos ) = cot  Ans.

Example 25. Prove that logq

p
g

pq x
    

 

Solution.  g = gjk G ( j, k)  (Sum over k only)

where G ( j, k) is the cofactor of gjk in the determinant g= |gjk|  0 since G ( j,k ) does not
contain gjk explicitly,

jr

g
g

 = G ( j, r)

Then, summing over j and r

( , )jr jr
m m m

jr

g gg g G j r
gx x x

  
 
   = jrjr

m

g
g g

x



= g gjr ( [ jm,r] + [rm,j])

     2m

j r jg g g
jm rm jmx

                        

Thus
1

2 m

jg
jmg x

    
  

       or   logm

j g g
jm x

    
 

Replacing  j by p and m by q, logq

p
g

pq x
    

 
Proved.

18.48  CONTRAVARIANT, COVARIANT AND MIXED TENSOR

If Ai be a set of n functions of the co-ordinates x1, x2, x3 ....xn (xi). They are transformed in another

system of co-ordinates x–1, x–2, x–3 ....xn according to 
j

i ji
xA A
x





Ai are called the components of a covariant tensor.

If  (x1, x2 ....xn) be a scalar functions, then 
1 2

1 2 ....
n

i i i n i

x x x
x x x x x x x
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then 1 2, .... nx x x
  
   are the components of a covariant vector..

Since x is a function of xi (i.e., x1, x2, ... xn)

so 1 2
1 2 ....
i i i

i n
n

x x xdx dx dx dx
x x x
  

   
  

         ... (2)    1
1

ix dx
x





On comparing (1) and (2) we can say that dx1, dx2,... dxn is an example of a contravariant tensor.

If q and s varry from 1 to n, then Aqs will be n2 functions.

If N2 quantities Aqs in a co-ordinate system (x1, x2, ... xN) are related to N2 other quantities
prA in another system 1 2( , ,... )Nx x x by the transformation equations

1 1

p rN N
pr qs

q s
s q

x xA A
x x 

 


 
     

p r
pr qs

q s

x xA A
x x
 


 

they are called contravariant components of a tensor of the second rank.

If the transformation law is ,

q s
pr

qsp r

x xA A
x x
 


 

then quantities Aqs are called components of covariant tensor of second rank.

The N2 quantities q
sA are called components of a mixed tensor of second rank if

p s
p q

r sq r

x xA A
x x
 


 

EXERCISE 18.2

1. If Ai are the components of an absolute contravariant tensor of rank one, show that 
i

j

A
x

 are the components of

a mixed tensor.

2. If ,Aji and Aij are reciprocal symmetric tensors and xi are the components of a covariant tensor of rank one,

show that Aij  xi xj = Aij xi xj, where xi =Aix .

3. If the components of a tensor are zero in one co-ordinate system, then prove that the components are

zero in all co-ordinate systems.

4. Show that the expression A (i,j, k) is a tensor if its inner product with an arbitrary tensor jl
kB is a

tensor.

5. Aij is a contravariant tensor and Bi a covariant tensor. Show that Aij Bk is a tensor of rank      three, but
Aij Bj is a tensor of rank one.

6. If gij denotes the components of a covariant tensor of rank two, show that the product gijdxi dxj

is an invariant scalar.

7. Find g and gij corresponding to the metric

ds2 = 5 (dx1)2 + 3 (dx2)2 + 4 (dx3)2 – 6 dx1 dx2 + 4dx2 dx3.

 Ans.  g = 4, gl 1 = 2, g22 = 5, g33  = 1.5, g12 = 3, g23 =–2.5, g13 = –1.5
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8. Find the values of g and gij , if
2

2 2 2 2 2
2

2

( sin )
1–

drds r d d
r
R

      , where R is constant

Ans .  
4 2 2

11 22 33
2 2 2 2 2

2

sin 1 1; 1– , , , 0 ( )
sin1–

ijr rg g g g g i j
r R r r
R


     



9. Prove that the angle 12,23, 1 between the co-ordinate curves in a three dimensional co-ordinate
system are given by

23 3112
12 23 31

11 22 22 33 33 11
cos ,cos ,cos

g gg
g g g g g g

     

10. Prove that for an orthogonal co-ordinate system

(a)  g12 = g23 =
  g31 = 0 (b)   

11 22 33

11 22 33

1 1 1, ,g g g
g g g

  

11. Surface of a sphere is a two dimensional Riemannian space. Find its fundamental metric tensor.
If a be the fixed radius of the sphere.

Ans. g11 = a2, g22= a2 sin2 , g= a4 sin2 

                   
11 22 12 21

2 2 2

1 1, 0
sin

g g g g
a a

   


.
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Infinite Series

20.1 SEQUENCE

A sequence is a succession of numbers or terms formed according to some definite rule. The
nth term in a sequence is denoted by un.

For example, if un = 2n + 1.
By giving different values of n in un, we get different terms of the sequence.
Thus, u1 = 3, u2 = 5, u3 = 7, ...
A sequence having unlimited number of terms is known as an infinite sequence.

20.2 LIMIT

If a sequence tends to a limit l, then we write lim ( )nn
u

 
 = l

20.3 CONVERGENT SEQUENCE

If the limit of a sequence is finite, the sequence is convergent. If the limit of a sequence does
not tend to a finite number, the sequence is said to be divergent.

e.g., 2
1 1 1 11, , , , ..., ...
4 9 16 n

 . is a convergent sequence.

 3, 5, 7, ..., (2n + 1), ... is a divergent sequence.

20.4 BOUNDED SEQUENCE

u1, u2, u3 ..., un ... is a bounded sequence if un < k for every n.

20.5 MONOTONIC SEQUENCE

The sequence is either increasing or decreasing, such sequences are called monotonic.
e.g.,  1, 4, 7, 10, ... is a monotonic sequence.

1 1 11, , , , ...
2 3 4

 is also a monotonic sequenece.

1, –1, 1, –1, 1, ... is not a monotonic sequence.
A sequence which is monotonic and bounded is a convergent sequence.

EXERCISE 20.1
Determine the general term of each of the following sequence. Prove that the following sequences are
convergent.

1. 1 1 1 1, , , , ...
2 4 8 16

Ans.
1

2n
2.

1 2 3 4, , , , ...
2 3 4 5 Ans.

 1
n

n

3. 1, –1, 1, –1, ... Ans. (–1)n – 1 4.
2 2 2 2 21 2 3 4 5, , , , , ...

1! 2 ! 3 ! 4 ! 5 !
Ans.

2

!
n
n

20

1119
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1120 Infinite Series

Which of the following sequences are convergent ?

5.
1

n
nu

n


 Ans. Convergent 6. un = 3n Ans. Divergent

7. un = n2 Ans. Divergent 8. un = 
1
n

Ans. Convergent

20.6 REMEMBER THE FOLLOWING LIMITS

(i) lim 0n
n

x
 

  if x < 1 and lim n
n

x
 

   if x > 1

(ii)
 

lim 0
!

n

n

x
n

 for all values of x (iii) loglim 0
n

n
n 



(iv)
1lim 1

n

n
e

n

   
 

(v) 1 /lim ( ) 1n
n

n
 



(vi) 1/lim [ !] n
n

n
 

  (vii)
1 /( !) 1lim

n

n

n
n e 

    

(viii) lim n
n

n x
 

 = 0 if x < 1 (ix)
 

 lim h

n
n

(x)
1lim 0hn n 



(xi) 1lim
x

x

a
x 

 
 
 

 = log a or 
1 / 1lim
1 /

n

n

a
n 

  = log a

(xii)
0

sinlim 1
x

x
x

 (xiii)
0

tan
lim 1

x

x
x



20.7 SERIES

A series is the sum of a sequence.
Let u1, u2, u3, .........., un, .......... be a given sequence. Then, the expression
u1 + u2 + u3 + .......... + un + ........... is called the series associated with the given sequence.
For example, 1 + 3 + 5 + 7 + ... is a series.
If the number of terms of a series is limited, the series is called finite. When the number of

terms of a series are unlimited, it is called an infinite series.
u1 + u2 + u3 + u4 + ... + un + ... 

is called an infinite series and it is denoted by 





1
n

n
u  or  un. The sum of the first n terms of

a series is denoted by Sn.

20.8 CONVERGENT, DIVERGENT AND OSCILLATORY SERIES

Consider the infinite series  un = u1 + u2 + u3 + ... + un + ... 
Sn = u1 + u2 + u3 + ... + un

Three cases arise:
(i) If Sn tends to a finite number as n , the series  un is said to be convergent.

(ii) If Sn tends to infinity as n , the series  un is said to be divergent.
(iii) If Sn does not tend to a unique limit, finite or infinite, the series  un is called oscillatory.
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20.9 PROPERTIES OF INFINITE SERIES

1. The nature of an infinite series does not change:
(i) by multiplication of all terms by a constant k.

(ii) by addition or deletion of a finite number of terms.
2. If two series  un and  vn are convergent, then  (un + vn) is also convergent.

Example 1. Examine the nature of the series 1 + 2 + 3 + 4 + ... + n + ... .

Solution. Let Sn = 1 + 2 + 3 + 4 + ... + n = 
( 1)

2
n n 

[Series in A.P.]

Since
 

lim n
n

S = ( 1)lim
2n

n n
 


 

Hence, this series is divergent. Ans.

Example 2. Test the convergence of the series     ...
1 1 1

1
2 4 8

Solution. Let Sn = 1 1 11 ...
2 4 8

     [Series in G.P.]

= 1 211
2


 1n

aS
r

   

 
lim n

n
S = 2

Hence, the series is convergent. Ans.
Example 3. Prove that the following series:

2 3 4 ...
3 ! 4 ! 5 !

    is convergent and find its sum. (M.U. 2008)

Solution. Here, un = 1 2 1 2 1
( 2) ! ( 2) ! ( 2) ! ( 2) !

n n n
n n n n

   
  

   

= 1 1
( 1) ! ( 2) !n n


 

Sn = 1 1 1 1 1 1 ...
2 ! 3! 3! 4 ! 4 ! 5 !

               
     

1 1 1 1
( 1)! ( 2)! 2! ( 2)!n n n

 
       

lim nn
S

 
= 1 1 1lim

2! ( 2) ! 2n n 

    

  un converges and its limit is 
1
2

. Ans.

Example 4. Discuss the nature of the series 2 – 2 + 2 – 2 + 2 – ... .
Solution. Let Sn = 2 – 2 + 2 – 2 + 2 – ... 

= 0 if n is even
= 2 if n is odd.

Hence, Sn does not tend to a unique limit, and, therefore, the given series is oscillatory.
Ans.
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EXERCISE 20.2
Discuss the nature of the following series:

1. 1 + 4 + 7 + 10 + ...  Ans. Divergent 2.     
5 6 7

1 ...
4 4 4

Ans. Divergent

3. 6 – 5 – 1 + 6 – 5 – 1 + 6 – 5 – 1 + ...  Ans. Oscillatory

4.    
2

3 3
3 ...

2 2
Ans. Convergent 5. 12 + 22 + 32 + 42 + ...  Ans. Divergent

6.     
1 1 1

1 ...
2 4 8 Ans. Convergent 7.    

1 1 1
...

1.3 3.5 5.7 Ans. Convergent

8.    
1 2 3

...
2 ! 3 ! 4 ! Ans. Convergent

9.    
4 5

log 3 log log ...
3 4 Ans. Divergent

10.
 log

1
n

n
Ans. Divergent 11.   ( 1 )n n Ans. Divergent

12.
1

( 2)n n  Ans. Convergent 13.
   1

( 1)( 2)( 3)n n n n
Ans. Convergent

14.
   ( 1)( 2)( 3)

n
n n n

Ans. Convergent 15.


 2 2

2 1

( 1)

n

n n
Ans. Convergent

20.10 PROPERTIES OF GEOMETRIC SERIES

The series 1 + r + r2 + r3 + ...  is
(i) convergent if |r| < 1 (ii) divergent if r  1 (iii) oscillatory if r –1.

Proof. Sn = 1 + r + r2 + ... + rn – 1 = 


1
1

nr
r

(i) When |r| < 1,
 

lim n

n
r = 0

 
lim n

n
S =

 

 
 

  
1 1 0 1

lim
1 1 1

n

n

r
r r r

Hence, the series is convergent.

(ii) (a) When r > 1,
 

lim n

n
r =  

   





1

lim lim
1

n

n
n n

r
S

r


Hence, the series is divergent.
(b) When r = 1, the series becomes 1 + 1 + 1 + 1 + ... 

Sn =  1 + 1 + 1 + 1 + ... = n

 
lim n

n
S =

 
 lim

n
n

Hence, the series is divergent.
(iii) (a) When r = –1, the series becomes 1 – 1 + 1 – 1 + 1 – ... 

Sn = 0 if n is even
= 1 if n is odd

Hence, the series is oscillatory.
(b) When r < –1, let r = –k where k > 1.
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rn = (–k)n = (–1)n kn

 
lim n

n
S =

   

  


  
1 1 ( 1)

lim lim
1 1 ( )

n n n

n n

r k
r k

= +  if n is odd
=  –  if n is even

Hence, the series is oscillatory. Proved.

EXERCISE 20.3
Test the nature of the following series :

1.     
2 3

1 1 1
1 ...

2 2 2
Ans. Convergent 2.     

3 9 27
1 ...

4 16 64
Ans. Convergent

3.     
1 1 1

1 ...
3 9 27

Ans. Convergent 4. 1 – 2 + 4 – 8 + ...  Ans. Oscillatory

5.     
9 27

2 3 ...
2 4

Ans. Divergent 6.
             

2 34 4 4
1 ...

3 3 3
Ans. Divergent

7. State, which one of the alternatives in the following is correct:
The series 1 – 1 + 1 – 1 + ... is
(i) Convergent with its sum equal to 0. (ii) Convergent with its sum equal to 1.

(iii) Divergent. (iv) Oscillatory. Ans. Oscillatory series

20.11 POSITIVE TERM SERIES

If all terms after few negative terms in an infinite series are positive, such a series is a positive
term series.

e.g., –10 – 6 – 1 + 5 + 12 + 20 + ... is a positive term series.
By omitting the negative terms, the nature of a positive term series remains unchanged.

20.12 NECESSARY CONDITIONS FOR CONVERGENT SERIES

For every convergent series  un.

 
lim n

n
u = 0

Solution. Let Sn = u1 + u2 + u3 + ... + un

 
lim n

n
S = k (a finite quantity)

Also 
 

1lim n
n

S = k (a finite quantity)

Sn = Sn – 1 + un
un = Sn – Sn – 1

 
lim n

n
u = 

 
 1lim [ ] 0n n

n
S S

 
lim n

n
u = 0

Corollary. Converse of the above theorem is not true.

e.g.,       
1 1 1 1

1 ... ...
2 3 4 n

 is divergent.

Sn =
1 1 1 1

1 ...
2 3 4 n

    

>
1 1 1 1 1

...
n n n n n
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>
n
n

 > n

 
lim n

n
S =

 
 lim

n
n

Thus, the series is divergent, although 
   

 
1

lim lim 0n
n n

u
n

So 
 

lim n
n

u  = 0 is a necessary condition but not a sufficient condition for convergence.

Note: 1. Test for divergence

If lim n
n

u
 

 0, the series  un must be divergent.

2. To determine the nature of a series we have to find Sn. Since it is not possible to find
Sn for every series, we have to device tests for convergence without involving Sn.

20.13 CAUCHY’S FUNDAMENTAL TEST FOR DIVERGENCE

If 
 

lim n
n

u  0, the series is divergent.

Example 5. Test for convergence of the series       


... ...
2 3 4 n

1
3 4 5 n 1

Solution. Here,
 

lim n
n

u =
   

  
 

1
lim lim 1 0

11 1n n

n
n

n
Hence, by Cauchy’s Fundamental Test for divergence, the series is divergent. Ans.

Example 6. Test for convergence the series 


      


... ...
n

n

2 13 8 15
1

5 10 17 2 1

Solution. Here,
 

lim n
n

u =
   


  

 

1
12 1 2lim lim 1 0

12 1 1
2

n n

nn n
n

Hence, by Cauchy’s Fundamental Test for divergence the series is divergent. Ans.
Example 7. Test the convergence of the following series:

         
1 2 3
4 6 8 2( 1)

n
n

    


  (M.D.U., 2000)

Solution. Here, we have

       
1 2 3
4 6 8 2( 1)

n
n

    


 

un = 
1

12( 1) 2 1

n
n

n


    

lim
n

un = 
1

lim
12 1

n

n

    

 = 
1

0
2


 nu does not converge.
The given series is a series of + ve terms,
Hence by Cauchy fundamental test for divergence, the series is divergent. Ans.
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EXERCISE 20.4
Examine for convergence:

1.
1 2 4 2

... ...
2 5 17 4 1

n

n
     


Ans. Divergent

2.





1
1

n

n
n

Ans. Divergent 3.





1
1

n

n
n Ans. Divergent

4.  1
cos

n
Ans. Divergent 5.       

1 1 1
1 2 3 4 ...

2 3 4
Ans. Divergent

6.  (6 – n2) Ans. Divergent 7.  (–2n) Ans. Divergent
8.  3n + 1 Ans. Divergent

20.14 p-SERIES

The series    ...p p p
1 1 1

1 2 3
is (i) convergent if p > 1 (ii) Divergent if p  1.

(MDU, Dec. 2010)
Solution. Case 1: (p > 1)
The given series can be grouped as
1 1 1 1 1 1 1

1 2 3 4 5 6 7p p p p p p p
            
   

1 1 1 1 1 1 1 1
...

8 9 10 11 12 13 14 15p p p p p p p p
        



Now
1

1p = 1 ...(1)


1 1

2 3p p <  
1 1 2

2 2 2p p p ...(2)

  
1 1 1 1

4 5 6 7p p p p <    
1 1 1 1 4

4 4 4 4 4p p p p p ...(3)

1 1 1
...

8 9 15p p p
   <    

1 1 1 8
...

8 8 8 8p p p p ...(4)

On adding (1), (2), (3) and (4), we get:

1 1 1 1 1 1 1 1 1 1
... ...

1 2 3 4 5 6 7 8 9 15p p p p p p p p p p
                    
     

<    
1 2 4 8

...
1 2 4 8p p p p

<
  

                  

1 2 2 3 31 1 1
1 ...

2 2 2

p p p

< 
    

1
1

1
1

2

p

        

11 1
G.P., ,

2 1

p

r S
r

< Finite number if p > 1
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Hence, the given series is convergent when p > 1.

Case 2: p = 1

When p = 1, the given series becomes

                          
1 1 1 1 1 1 1 1 1 1

1 ... ...
2 3 4 5 6 7 8 9 10 16


1

1
2

= 
1

1
2

...(1)


1 1
3 4

>  
1 1 1
4 4 2

...(2)

  
1 1 1 1
5 6 7 8

>     
1 1 1 1 4 1
8 8 8 8 8 2

...(3)

  
1 1 1

...
9 10 16

>     
1 1 1 8 1

...
16 16 16 16 2

...(4)

On adding (1), (2), (3) and (4), we get
                          

1 1 1 1 1 1 1 1 1 1
1 ... ...

2 3 4 5 6 7 8 9 10 16

>
1 1 1 1

1 ...
2 2 2 2

    

> 1
2
n

 (n )

> 
Hence, the given series is divergent when p = 1.
Case 3: p < 1

1

2p  > 
1

,
2

1 1
,

33p  1 1
44p

  and so on

Therefore,    
1 1 1 1

...
1 2 3 4p p p p >    

1 1 1
1 ...

2 3 4
> divergent series (p = 1) [From Case 2]

         

1 1 1
As the series on R.H.S. 1 ... is divergent

2 3 4

Hence, the given series is divergent when p < 1.

20.15 COMPARISON TEST

If two positive terms  un and  vn be such that

lim n

n n

u
k

v 
  (finite number), then both series converge or diverge together..

Proof. By definition of limit there exists a positive number , however small, such that

n

n

u
k

v
<  for n > m i.e.,       n

n

u
k

v

k –  < n

n

u
v

 < k +  for n > m

Ignoring the first m terms of both series, we have
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k –  < n

n

u
v

 < k +  for all n. ...(1)

Case 1.  vn is convergent, then

 
lim

n
(v1 + v2 + ... vn) = h (say) where h is a finite number.

From (1), un < (k + ) vn for all n.

 
lim

n
(u1 + u2 + ... + un) < (k + ) 

 
lim

n
 (v1 + v2 + ... + vn) = (k + )h

Hence,  un is also convergent.
Case 2.  vn is divergent, then

 
lim

n
(v1 + v2 + ... + vn)  ...(2)

Now from (1) k –  < n

n

u
v

un > (k – )vn for all n

 
lim

n
(u1 + u2 + ... + un) > (k – )

 
lim

n
(v1 + v2 + ... + vn)

From (2),
 

lim
n

(u1 + u2 + ... + un) 

Hence,  un is also divergent.
Note. For testing the convergence of a series, this Comparison Test is very useful. We
choose  vn (p-series) in such a way that

 
lim n

n n

u
v

= finite number.

Then the nature of both the series is the same. The nature of  vn (p-series) is already known,
so the nature of  un is also known.

Example 8. Test the series 





n 1

1
n 10

 for convergence or divergence.

Solution. Here, un =

1

10n

Let vn = 1
n

 
lim n

n n

u
v

=
   


 

1
lim lim

1010 1n n

n
n

n

 = 1 = finite number..

According to Comparison Test both series converge or diverge together, but  vn is divergent
as p = 1.
 un is also divergent. Ans.
Example 9. Test the convergence of the following series:

1 1 1
1 2 2 3 3 4

  
  

 (M.D.U., 2000)

Solution. Here, we have

1 1 1
1 2 2 3 3 4
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un = 
1 1

1 11 1
n n

n
n


  
  

 
 Let us compare nu with nv , where

vn = 
1
n

n

n

u
v

= 1 1
1 11 1 11 1

n

n
nn


 

   
 

lim n
n n

u
v

= 
1 1 1lim

1 1 211 1
n

n


 


 

Which is finite and non-zero.

 nu  and nv , converge or diverge together since nv , = 1
2

1

n
  is of the form 1

pn .

P = 
1 1
2


 nv  is divergent  nu  is also divergent. Ans.
Example 10. Examine the convergence of the series:

 33 1n n  (M.D.U. 2003)

Solution. Here, we have  33 1n n 

un =  
1

1
333

3
11 1n n n n
n

           

=

1
3

3
11 1n
n

 
       

 = 
2

3 3

1 1 11 1 13 31 . ... 1
3 2!

n
n n

              

= 3 3 2 3
1 1 1 1 1 1 1. ... . ...
3 9 3 9

n
n n n n

           

Let vn = 2
1
n

n

n

u
v

=
2

2 3 3
1 1 1 1 1 1 1. ... . . ...

3 9 1 3 9
n

n n n
           

 lim n
n n

u
v

= 3
1 1 1 1lim . ...
3 9 3n n

   
 

which is finite and non-zero.
 nu  and nv  converge or diverge together.

Since 2
1

nv
n

   is of the form 
1
pn  with p = 2 > 1
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 nv  is convergent  nu is convergent. Ans.
Example 11. Test the convergence of the following series

– 1 – 2 – 3
1 2 3

1 2 1 2 1 2
  

  
 (M.D.U., 2000)

Solution. Here, we have

– 1 – 2 – 3
1 2 3

1 2 1 2 1 2
  

  


Here un = – 11 2 1
2

n

n

n n


 

Let vn = n

 Let us compare nu  with nv ,
n

n

u
v = 

1 1.
1 11 1
2 2n n

n
n


 

lim n
n n

u
v

= 
1 1lim 1

1 1 01
2

n
n


 



Which is finite and non-zero.

 nu  and nv , converge or diverge together since nv  = 
1
n  is of the form 1

pn
with p = 1.

 nv  is divergent  nu  is also divergent. Ans.

Example 12. Examine the convergence of the series 3 3 3
2 –1 3 –1 4 –1

3 – 1 4 – 1 5 – 1
  

(M.D.U., 2000)
Solution. Here, we have

3 3 3
2 –1 3 –1 4 –1

3 – 1 4 – 1 5 – 1
  

Here un = 3 53 3
3 2

3 3

1 1 1 11 – 1 –1 1
( 2) 1 2 1 2 11 – 1 –

n
n nn n n

n
n n

n nn n

 
       

               
         

Let vn = 5
2

1

n
 Let us compare nu  with nv ,

n

n

u
v

= 

5
2

5 3 3
2

3 3

1 1 1 11 – 1 –

12 1 2 11 – 1 –

nn nn n

n
n nn n
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lim n
n n

u
v

= 33

3

1 11 – 1 0 – 0
lim 1

(1 – 0) – 02 11 –
n

n n

n n






 
    
   

Which is finite and non-zero.

 nu  and nv , converge or diverge together since nv  = 5
2

1

n
  is of the form

1 .pn where 
5 1.
2

p  

 nv  is convergent  nu  is convergent. Ans.
Example 13. Test the convergence and divergence of the following series.








2

5
n 1

2n 3n

5 n
(Gujarat, I Semester, Jan. 2009)

Solution. Here, un =




2

5

2 3

5

n n

n
 = 

   
   

2

5
5

3
2

5
1

n
n

n
n

 = 



3

5

3
21
5

1

n
n

n

Let vn =
3

1
n

By Comparison Test

 
lim n

n n

u
v

=
 

   
   

3

3
5

3
2

lim
5

1
n

n
n

n
n

 = 
 



5

3
2

lim
5

1n

n

n

 = 2 = Finite number..

According to comparison test both series converge or diverge together but  vn is convergent
as p = 2.

Hence, the given series is convergent. Ans.

Example 14. Test the following series for convergence     ...p p p p
2 3 4 5

1 2 3 4

Solution. Given series is    
2 3 4 5

...
1 2 3 4p p p p

Here un =



 1

1
11

p p

n n
n n

Let vn =
 1

1
pn







   

1

1

1
1 1

1
1

p
n

p
n

u nn
v nn

 
lim n

n n

u
v

= 1

Therefore, both the series are either convergent or divergent.
But vn is convergent if p – 1 > 1, i.e., if p > 2 (P series)
and is divergent if p – 1  1, i.e., if p  2
 The given series is convergent if p > 2 and divergent if p  2. Ans.
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EXERCISE 20.5
Examine the convergence or divergence of the following series:

1.     
2 3

3 1 4 1 5 1
2 . . . ...

2 4 3 44 4
Ans. Convergent

2.     
1.2 1.2.3 1.2.3.4

1 ...
1.3 1.3.5 1.3.5.7

Ans. Convergent

3.    
1 2 3

...
1.2 3.4 5.6

Ans. Divergent

4.    
1 1 1

.........
1.2.3 2.3.4 3.4.5 Ans. Convergent (M.D. University, Dec. 2004)

5.     
2 2 22 3 4

1 ...
2 ! 3 ! 4 !

Ans. Convergent

6.   
  2 3
1 2 3

...
1 2 1 2 1 2

Ans. Convergent (M.D. University, 2001)

7.    
2 3

1 2 ! 3 !
...

3 3 3
Ans. Convergent

8.


  
1

1

1n n n
Ans. Divergent 9.








3

5
1

2 5

4 1n

n

n
Ans. Convergent

10.
1

n

n a
n

a

x n



 
 Ans. If x > a, convergent; if x  a, Divergent

11.


  2
1 1n

n

n
Ans. Convergent 12.





  2

1

( 1)
n

n n Ans. Divergent

13. 4 4

1

( 1) ( 1)
n

n n




      Ans. Convergent

14.







1

2 1

3

n

n
n n

Ans. Convergent

15.





1
!

n

n

n
n

Ans. Convergent 16.





2

1
n

n

n

e
Ans. Convergent

20.16 D’ALEMBERT’S RATIO TEST

  Statement. If  un is a positive term series such that lim
n 1

n n

u

u


 
 = k then

  (i) the series is convergent if k < 1 (ii) the series is divergent if k > 1
Solution.

Case I. When 

 

1
lim

n

n n

u

u
 = k < 1

By definition of a limit, we can find a number r (< 1) such that

 1n

n

u

u
< r for all n  m

    
 

32 4

1 2 3
, , ...

uu u
r r r

u u u
Omitting the first m terms, let the series be

u1 + u2 + u3 + u4 + ... 

=       
32 4

1
1 1 1

1 ...
uu u

u
u u u

 =        
3 32 2 4 2

1
1 2 1 3 2 1

1 . . . ...
u uu u u u

u
u u u u u u

< u1 (1 + r + r2 + r3 + ... ) (r < 1)
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=

1

1
u

r
, which is a finite quantity..

Hence,  un is convergent.

Case 2. When 

 

1
lim

n

n n

u

u
 = k > 1

By definition of limit, we can find a number m such that  1n

n

u

u
 1 for all n  m

2

1

u
u

> 1, 3

2
1,

u
u

 4

3
1

u
u



Ignoring the first m terms, let the series be
u1 + u2 + u3 + u4 + ... 

=       
32 4

1
1 1 1

1 ...
uu u

u
u u u

 =        
3 32 2 4 2

1
1 2 1 3 2 1

1 . . . ...
u uu u u u

u
u u u u u u

 u1 (1 + 1 + 1 + 1 ... to n terms) = nu1
[

 
lim

n
 (u1 + u2 + ... + un) = nu1]

 
lim

n
Sn 

 
lim

n
nu1 = 

Hence,  un is divergent.

Note. When 
 1n

n

u

u
 = 1 (k = 1)

The ratio test fails.

For Example. Consider the series whose nth term = 
1
n



 

1
lim

n

n n

u

u
=

     


  

 

1
1 1

lim lim lim 1
1 11 1n n n

n n
n

n n

             ...(1)

Consider the second series whose nth term is 
2

1

n
.



 

1
lim

n

n n

u

u
=

   

     

22

2

1

( 1)
lim lim

1 1n n

n n
n

n

 = 1                         ...(2)

Thus, from (1) and (2) in both cases 


 

1
lim

n

n n

u

u
 = 1

But we know that the first series is divergent as p = 1.
The second series is convergent as p = 2.

Hence, when 


 

1
lim

n

n n

u

u
 = 1, the series may be convergent or divergent.

Thus, ratio test fails when k = 1.

Example 15. Test for convergence of the series whose nth term is 
2

n
n
2

.

Solution. Here, we have un = 
2

,
2n
n un + 1 = 

2

1

( 1)

2n

n




By D’Alembert’s Test


 

1
lim

n

n n

u

u
=

   

       

22

1 2

( 1) 2 1 1 1
lim . lim 1 1

2 22

n

nn n

n
nn

Hence, the series is convergent by D’Alembert’s Ratio Test.                            Ans.
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Example 16. Test for convergence the series whose nth term is 
n

3
2
n

.

Solution. Here, we have un = 
3

2n

n
, un + 1 = 





1

3

2
( 1)

n

n
By D’Alembert’s Ratio Test

1 3
1

3 3
2 2

.
( 1) 2 1

1

n
n

n
n

u n
u n

n


  

   
 




   
  

   

1
3

2
lim lim 2 1

1
1

n

n nn

u

u

n
Hence, the series is divergent. Ans.
Example 17. Discuss the convergence of the series:

2 1
nn x

n 
 . (x > 0) (M.D.University, Dec., 2001)

Solution. Here, we have

un = 2 1
nn x

n 

 un + 1 = 1
2
1 .

( 1) 1
nn x

n


 

1

n

n

u
u 

=
2 2

2

2

2 21
2 2 1 1 1. . . .1 11 1 1 1

n n n n n
n x xn

n n

      
     

 

1
lim n
n n

u
u 

=
2

2

2 21
1 1 1lim . .1 11 1n

n n
x x

n n


   
  
   
 

 By D’ Alembert’s Ratio Test, nu  converges if 
1 1
x
 , i.e. x < 1 and diverges if

1 1
x
 i.e., x > 1.

When x = 1, the Ratio Test fails.

When x = 1, un = 2
2

2 2

1 1.
11 11 1

n n
n nn

n n

 
    
 

vn =
1
n

,

n

n

u
v

=

2 2

1 1 1. .
11 11 1

n
n

n n


 

lim n
n n

u
v

=

2

1lim 1
11

n

n






Which is finite and non-zero.
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 By comparison test, nu  and nv  converge or diverge together.

Since 
1

nv
n

   is of the form 
1
pn  with 

1 1
2

p   .

diverges diverges.n nv u 
Hence, the given series nu  converges if x < 1 and diverges if x  1.       Ans.

EXERCISE 20.6
Test the convergence for series:

1.



2

1 3

n

n
n

n
Ans. Convergent 2.




1

!n

n
n

n

n
            Ans. Convergent

3.
2 22 1. 2 1. 2 . 31

...
3 3 . 5 3 . 5 . 7

            
     

      Ans. Convergent

4.
2 . 5 . 8 2 . 5 . 8 . 112

...
1 1. 5 . 9 1. 5 . 9 . 13
                 Ans. Convergent

5.



1

! .2n n

n
n

n

n
                      Ans. Convergent

6.
1

1 . 3

n

n
n

x

n

 


 Ans. Convergent if x > 3, Divergent if x < 3

7. Prove that, if un + 1 = 
1 n

k
u

, where k > 0, u1 > 0, then the series  un converges to the

positive root of the equation x2 + x = k.

20.17 RAABE’S TEST (HIGHER RATIO TEST)

  If  un is a positive term series such that lim n

n n 1

u
n 1

u  

  
 

 = k, then

  (i) the series is convergent if k > 1 (ii) the series is divergent if k < 1.

Proof. Case I. k > 1

Let p be such that k > p > 1 and compare the given series  un with  1
pn

 which is

convergent as p > 1.






1

( 1)p
n

p
n

nu
u n

or
2

1

( 1)1 1
1 1 ...

2 !

p
n

n

p p pu
u n n n

             
(Binomial Theorem)

1
1n

n

u
n

u 

  
 

>


 
( 1) 1

...
2 !

p p
p

n
.

If
1

lim 1n

n n

u
n

u  

  
 

> p

and k > p which is true as k > p > 1; un is convergent when k > 1.
Case II. k < 1   Same steps as in Case I.

Notes:
1. Raabe’s Test fails if k = 1
2. Raabe’s Test is applied only when D’Alembert’s Ratio Test fails.
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Example 18. Test the convergence for the series     ...
. . . .

2 3 4x x x x
1 2 3 4 5 6 7 8

(M.U. 2009)

Solution. Here, un =
(2 1) 2

nx
n n

 and un + 1 = 


 

1

(2 1) (2 2)

nx
n n

By D’Alembert’s Test

 1n

n

u

u
=


     

         
   

1
1

1
(2 1)2 2

1 2(2 1) (2 2) 1 1
2 2

n

n

x
n nx n

n n x
n n

1lim n

n n

u

u


 
= x

(i)  If x < 1,  un is convergent (ii) If x > 1,  un is divergent (iii) If x = 1, Test fails.
Let us apply Raabe’s Test when x = 1

  

  
 1

lim 1n

n n

u
n

u
=

(2 1)(2 2)
lim 1

2 (2 1)n

n n
n

n n 

  
  

=
 

    
  

(2 1)(2 2) 2 (2 1)
lim

2 (2 1)n

n n n n
n

n n

=
   

            
 

2
2

(8 2) 4lim lim 2
1(2 ) (2 1) 1 1

2
n n

n nn
n n

n
So the series is convergent.
Hence we can say that the given series is convergent if x  1 and divergent, if x > 1.     Ans.

Example 19. Test the following series for convergence 
  1

n 1 1
.

Solution. Here, un =  
   1

1 1
,

1 1 2 1nu
n n

1n

n

u

u
 =

1 1

2 1

n

n

 

 

1lim n

n n

u

u


 
=

 

 

 

1 11
lim

2 11
n

n n

n n

 = 1

D’Alembert’s test fails.
By Raabe’s test.

  

  
 1

lim 1n

n n

u
n

u
=

 

  
    

2 1
lim 1

1 1n

n
n

n

=
2 1 1 1 2 1

lim lim
1 1 1 1n n

n n n n
n n

n n   
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=
 

 
   

   
 

   2

2 1
1 1

lim 0 1
1 11

n

n nn

n n
Hence,  un is divergent. Ans.
Example 20. Discuss the convergence of the series:

          
3 5 71 1· 3 1· 3 · 5 . ... ( 0)

1 2 3 2 · 4 5 2 · 4 · 6 7
x x x x x      (M.D.U. Dec., 2001)

Solution. Here, we have
3 5 71 1· 3 1· 3 · 5 . ...

1 2 3 2 · 4 5 2 · 4 · 6 7
x x x x
    

Neglecting the first term, we have

un =
2 11 · 3 · 5... (2 1)

2 · 4 · 5... (2 ) 2 1

nn x
n n






and un+1 =
2 31 · 3 · 5... (2 1) (2 1) .

2 · 4 · 5... (2 ) (2 2) 2 3

nn n x
n n n

 
 

1

n

n

u
u 

=
2 1

2 3
(2 1) 2 (2 2) (2 3)

2 (2 1) (2 1) (2 1)

n

n
n x n n n
n n n n x





  


    = 2
(2 2) (2 3) 1
(2 1) (2 1)

n n
n n x
 
 

 = 2 2

1 32 1 .2 12 2 2 3 1 12. . .
1 12 1 2 1 2 1 .2 1
2 2

n nn n n n
n n x xn n

n n

            
         

   

 = 2 2

1 31 1 12 .
11

2

n n
x

n

       
   

  
 

1
lim n
n n

u
u 

= 2 2 2

1 31 1 1 12lim .
11

2

n

n n
x x

n



       
    

  
 

 Ratio Test, nu  is convergent if 2
1
x

 > 1.

i.e.; x2 < 1 and divergent if 2
1
x

 < 1. i.e., x2 > 1.

If x2 = 1, then Ratio Test fails.
Now Raabe’s test

When x2 = 1, we have
1

n

n

u
u 

=
2

2 2
(2 2)(2 3) 4 10 6

(2 1) 4 4 1
n n n n

n n n
   


  

1
lim 1n
n n

un
u 

  
 

=
2

2
4 10 6lim 1
4 4 1n

n nn
n n

  
    

=
2

2

2

566 5 6 3lim lim 1
4 1 4 24 4 1 4n n

n n n
n n

n n
 


   

   

 By Raabe’s Test, the series converges.
Hence, nu  is convergent if x2  1 and divergent if x2 > 1. Ans.
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Example 21. Test the following series for convergence

...2 3 4 51 9 25
x x x x x

2 8 32
     

Solution. Here, un =
122

1 1

( 1) ..
,

2 2

nn

nn n

n xn x
u



 




By D’Alembert’s Test

 1n

n

u

u
=





    
 

212

1 2

( 1) 12
.

22

n n

n n

n x n x
nn x



 

1lim n

n n

u

u
=

 

   
 

21
lim 1

2 2n

x x
n

(i) If 
2
x  < 1 or x < 2, then  un is convergent. (ii) If 

2
x  > 1 or x > 2, then  un is divergent.

(iii) If 
2
x  = 1 or x = 2, then the test fails.

Let us apply Raabe’s test



  
 1

1n

n

u
n

u
=

2 2 22

2 2 2

2 1 22
1

2( 1) ( 1) ( 1)

n n n n nn
n n

n n n

       
     

        

  

  
 1

lim 1n

n n

u
n

u
=

 

 
  

  
 

2

1
2

lim 2 1
1

1
n

n

n
Hence,  un is divergent if x  2, and convergent if x < 2. Ans.

Example 22. Show that the series   
  
! !

...
( ) ( )( )

1 2 3
x x x 1 x x 1 x 2

 converges if x > 2

and diverges if x < 2.

Solution. Here, un =
   

!
( 1) ( 2) ... ( 1)

n
x x x x n

un + 1 =


    
( 1) !

( 1) ( 2) ... ( 1) ( )
n

x x x x n x n
By D’Alembert’s test

 1n

n

u

u
= 1

1
11

, lim 1
( ) 1

n

n n

un n
xx n u
n



 


 

 

Test fails. Let us apply Raabe’s Test.

  

  
 

n

n n

u
n

u 1
lim 1 =

     

     
       

     

1 1
lim 1 lim lim 1

11 1 1n n n

x n x x
n n x

n n
n

If x – 1 > 1 or x > 2, then  un is convergent.
If x – 1 < 1 or x < 2, then  un is divergent. Ans.

Example 23. Discuss the convergence of the series    ...
log log log

2 3 4x x x
2 2 3 3 4 4
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Solution. Here, we have   
2 3 4

...
2 log 2 3 log 3 4 log 4

x x x

un =
1 2

1,
( 1) log ( 1) ( 2) log ( 2)

n n

n
x x

u
n n n n

 

 
   

By D’Alembert’s Test

1lim n

n n

u

u


 
=



 

 


 

2

1

( 1) log ( 1)
lim

( 2) log ( 2)

n

nn

n nx
n n x

=
1 log ( 1)

lim
2 log ( 2)n

n n
x

n n 

  
   

=

11 log log 11
lim

2 21 log log 1
n

n
nnx

n
n n

 

         
 

          

=
2

2

1 1 11 log ...1
2lim

2 2 1 4
1 log . ...

2
n

n
nn nx

n
n n n

 

        
  
           

=

11 1 ...1 log
lim

2 21 1 ...
log

n

n nnx

n n n
 

       
  
          

 = x

(i) When x < 1, the series is convergent         (ii) When x > 1, the series is divergent.
(iii) When x = 1, the test fails.
Let us apply Raabe’s Test

 1

n

n

u
u

=

                       
 

2
log log 1

2 log ( 2) 2
11 log ( 1) 1 log log 1

n
n n n n
n n n n

n

=
2

2

22 1 4 1 ...log . ...2 2 log2
1 1 1 11 1log . ... 1 ...

2 log

nn n n nn n
n nn

n n nn

       
   

        

=


   

        

n
n n n n n

1
2 2 1

1 1
1 log log = 

   
        

2 2 1
1 1

1 log log
n
n n n n n

= 
 

     

2 2 1
1 ...

1 log log
n
n n n n n = 

   
      

n
n n n

2 1
1

1 log

      

    
       

  
 

1

2
1 1 1

lim lim 1 1
1 log log1

n
n nn

u n
u n n n n

n



  
 1

1n

n

u
n

u
=

 
     

 

1 1
1 1 0 1

log log
n

n n n
Thus the series is divergent when x = 1.

By D’Alembert’s Test

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Infinite Series 1139

Hence, the series converges if x < 1 and diverges if x  1. Ans.
Example 24. Test the series for convergence

                 
   

        
. ( ) . ( ) ( ) ( ) . ( ) ( )

...
. . . ( ) . . . ( ) ( )

2 31 1 1 2 1 2
1 x x x

1 1 2 1 1 2 3 1 2

Solution. un =
             

     
( 1) ( 2) ... [ ( 1)] . ( 1) ... [ ( 1)]

! ( 1) ... [ ( 1)]
nn n

x
n n

un + 1 = 1( 1)( 2) ... [ ( 1)]( ) . ( 1) ... [ ( 1)] ( )
( 1) ! ( 1) ... [ ( 1)] ( )

nn n n n
x

n n n
                 

        
By D’Alembert’s Test

1lim n

n n

u

u



=

1 1
( ) ( )

lim lim .
1( 1) ( ) 1 1

n n

n n n nx x
n n

n n
 

               
          

   


 

1lim n

n n

u

u
= x

(i) If x < 1, the series is convergent.        (ii) If x > 1, the series is divergent.
(iii) If x = 1, the test fails.
Let us apply Raabe’s Test



  
 1

1n

n

u
n

u
=

                 
               

2 2( 1)( )
1

( ) ( ) ( ) ( )
n n n n n n n n

n n
n n n n

  

  
 1

lim 1n

n n

u
n

u
=

 

 
       

      
        

   

1
lim 1

1 1
n

n n

n n
(i) If  + 1 –  –  > 1 or  >  + , then  un is convergent.

(ii) If  + 1 –  –  < 1 or  <  + , then  un is divergent. Ans.

EXERCISE 20.7
Determine the nature of the following series:

1.     
2 2 2

2 ! 3 ! 4 !
1 ...

2 3 4
     Ans. Divergent

2.
1. 3 1 . 3 . 5 1. 3 . 5 . 71

...
1 1 . 4 1 . 4 . 7 1. 4 . 7 . 10
     Ans. Convergent

3.
     

   
     

1 (1 ) (2 )
1 ...

1 (1 ) (2 )
Ans. If  –  > 1, convergent. If  –   1, Divergent.

4.





3

1
n

n

n

e
Ans. Convergent 5.     

2 3 42 3 4
...

2 ! 3 ! 4 !
x x x

x Ans. Convergent

6.    
2 3

1 ...
2 3 4
x x x

Ans. Divergent

7. 2 31 1 1
1 ...

2 5 10
x x x    Ans.Convergent if –1  x < 1 and divergent if |x| > 1

8.      
2 2 2

2 4 6(1!) (2 !) (3 !)
1 ... ( 0)

2 ! 4 ! 6 !
x x x x

Ans. If x2 < 4, convergent; and divergent if x2  4
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Find the values of x for which the following series converges:
9. x2 (log 2)q + x3 (log 3)q + x4 (log 4)q + ...

Ans. If x < 1, convergent; and divergent if x  1

10.





0

( 1) !

10

n n

n
n

n x
       12.

 2 (2 1)

nx
n n

     Ans. If x  1, convergent; and if x > 1, divergent

11.
 1.2 ...

4.7 ... (3 1)
nn

x
n

Ans. If 0 < x < 3, convergent and divergent if x  3.

12.    
2 2 2

2 3(1!) (2 !) (3 !)
1 ......

2 ! 4 ! 6 !
x x x (M.D.U., Dec. 2010)

Ans. convergent if x < 4; divergent if x   4.

20.18. GAUSS’S TEST

 Statement. If  un is a positive term series such that
n

n 1

u
u 

=
 

 2n n
      where  > 0

   (i) if  > 1, convergent if  < 1, divergent, whatever  may be

(ii) if  = 1 and  
 

1 convergent

1 divergent

,

,

Example 25. Test for convergence the series   
. . . . . .

...
. . . . . .

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2
2 4 2 4 6 2 4 6 8
3 5 3 5 7 3 5 7 9

Solution. The given series is   
2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2
2 .4 2 .4 .6 2 .4 .6 .8

...
3 .5 3 .5 .7 3 .5 .7 .9


  



2 2 2 2 2

2 2 2 2 2

2 .4 .6 .8 ... (2 2)
...

3 .5 .7 .9 ... (2 3)

n

n

un + 1 =  

 

2 2 2 2 2 2

2 2 2 2 2 2

2 .4 .6 .8 ... (2 2) (2 4)

3 .5 .7 .9 ... (2 3) (2 5)

n n

n n
By D’Alembert’s Test

 1n

n

u

u
=

   
 

    

2 2 2

2 2

2

16 16
4(2 4) 4 16 16

20 25(2 5) 4 20 25 4

n n n n n
n n n

n n



 

1lim n

n n

u

u
=

 

 


 

2

2

16 16
4

lim 1
20 25

4n

n n

n n
D’Alembert’s Test fails. Let us apply Raabe’s Test.

  

 
   
 1

lim 1n

n n

u
n

u
=

 

  
    

2

2

4 20 25
lim 1

4 16 16n

n n
n

n n

=
2

2

2

9
44 9

lim lim 1,
16 164 16 16 4n n

n n n
n n

n n
   

    
           

  

 Raabe’s Test fails

Let us apply Gauss’s Test
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 1

n

n

u
u

=


                  
 

2

22

2 2 2

5
1

(2 5) 5 25 22 1 1
(2 4) 42

1

n n
n nn n

n

=
                              n n n nn n n n2 2 2 2

( 2) ( 3)5 25 4 4 5 25 4 12
1 1 ... 1 1 ...

2!4 4

= 2 2 2 2
4 12 5 20 25 1 7

1 ... 1
4n n nn n n n

         2
1

n

n

u
u n n

      
 

Hence,  = 1,   = 1. Thus, the series is divergent. Ans.
20.19 CAUCHY’S INTEGRAL TEST

Statement. A positive term series f (1) + f (2) + f (3) + ... + f (n) + ...
where f (n) decreases as n increases, converges or diverges according to the integral




1

( )f x dx

is finite or infinite.
Proof. In the figure, the area under the curve from x = 1 to x = n + 1 lies between the sum

of the areas of small rectangles (small height) and sum of the areas of large rectangles (large
height).

[ f (1), f (2) ... represent the height of the rectangles]

 f (1) + f (2) + ... + f (n) 



1

1

( )
n

f x dx  f (2) + f (3) + ... + f (n + 1)

Sn 



1

1

( )
n

f x dx  Sn + 1 – f (1)

As n , from the second inequality that if the integral
has a finite value then 

 
1lim n

n
S  is also finite, so  f (n) is

convergent.
Similarly, if the integral is infinite, then from the first

inequality that 
 

lim n
n

S , so the series is divergent.

Example 26. Apply the integral test to determine the
convergence of the p-series

     ... ...p p p p
1 1 1 1

1 2 3 n

Solution. (i) When p > 1, f (x) =
1
px




1

( )f x dx =




     

 
   

  
1

1

11

1 1
lim lim lim ( 1)

1 1

mm p
p

pm m m

x
dx m

p px

= 1

1 1 1
lim 1 ,

1 1pm p pm  

     
 which is finite.

By Cauchy’s Integral Test, the series is convergent for p > 1.
(ii) When p < 1,

0 1 2 3 4 n n + 1 

y 

x

y = f (x)
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1

( )f x dx = 

 
   
   

11
lim ( 1)

1
p

m
m

p
Thus, the series is divergent, if p < 1.
(iii) When p = 1,

 


  dx x
x 1

1

1
log

Thus, the series is divergent.
Hence, 

1
pn

 is convergent if p > 1 and divergent if p  1. Ans.

Example 27. Examine the convergence of 



 logn 2

1
n n

.

Solution. Here f (x) = 
1

logx x



2

1
log

dx
x x

=
2

lim log log lim [log log log log 2]
m

m m
x m

   
      

By Cauchy’s Integral Test the series is divergent. Ans.

Example 28. Examine the convergence of 







2x

x 1

x e

Solution. Here f (x) =
2xx e

Now, 
2 2

2
1 1

11

1
lim lim ,

2 2 2 2 2

m
x m

x

m m

e e e e
x e dx

e

    


   

   
       

       which is finite.

Hence, the given series is convergent. Ans.

EXERCISE 20.8
Examine the convergence:

1.     
2 2

2 3
1 ...

2 3 4

x x x
 (x > 0) Ans. Convergent

2.



    

2 3
2 3

2 3 4 1

( 1)2 3 4
... ...

1 2 3

n
n

n

n
x x x x

n
               Ans. x < 1, convergent; x  1, divergent

3.
2 2 2 2 22

2 2 2 2 2 2

2 . 4 2 . 4 .62
1 ...

3 3 . 5 3 . 5 .7
     Ans. Divergent

4.





1

1

n n
Ans. Divergent 5.



 
 2

1

1

1n n Ans. Convergent

6.





1

1
n

n n
Ans. Convergent 7.







32

1

n

n

n e Ans. Convergent

8. 2
1

1

(log )n n n




 Ans. Convergent

20.20 CAUCHY’S ROOT TEST

Statement. If  un is positive term series such that 
 

/lim ( ) ,1 n
n

n
u k  then

(i) if k < 1, the series converges. (ii) if k > 1, the series diverges.
Proof. By definition of limit

|(un)1/n – k| <  for n > m
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k –  < (un)1/n < k +  for n > m
(i) k < 1

k +  < r < 1
(un)1/n < k            un  <  kn

u1 + u2 + ...  < k + k2 + ... + kn + ... 

<

1

1 k
 (a finite quantity)

 The series is convergent.
(ii) k > 1

k –  > 1
(un)1/n > k –  > 1

un > 1
Sn = u1 + u2 + ... un > n

 
lim n

n
S  

 The series is divergent.
(iii) k = 1

If 
 

1/lim ( ) n
nn

u = 1, the test fails.

For example,  un =  1
pn

 

1/lim ( ) n
nn

u =


   

      
  

1/

1/
1 1

lim lim 1
n p

p nn n nn
 for all p, k = 1

But  1
pn

 is convergent for p > 1 and divergent for p  1.

Thus, we cannot say whether  un is convergent or divergent for k = 1.

Example 29. Examine the convergence of the series 
  
 

 2n

1

1
1

n

   (MDU, Dec. 2010)

Solution. Here, un =
  
 

n

n

2

1

1
1


2

1

1/ 1 1
( )

11 11

nn
n nn

u

nn

   
            

 

1/lim ( ) n
nn

u =
 

 
  
 

1 1
lim 1

1
1

nn e

n
Hence, the given series is convergent. Ans.
Example 30. Test the following series for convergence

1
1

( 1)n n

n
n

n x
n






 (M.D.U. Dec., 2001)

Solution. Here, we have

1
1

( 1)n n

n
n

n x
n








Here, un = 1
( 1) ( 1) 1.

nn n

n
n x n x

n nn 
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1
nnu = 1 1

( 1) 1 1 1. 1 .
n n

n x x
n n

n n

    
 

  
1

lim nnn
u


= 1

1 1lim 1 lim
n n

n

x
n

n
 

             

=
1(1 0) .
1

x x 
1

lim 1n
n

n


 
 
 


 By Cauchy’s root test, nu  is convergent if x < 1 and divergent if x > 1. The test
fails when x = 1.

When x = 1, un = 1
( 1) 1 ( 1) 1 1. 1

nn n

n n
n n

n n nn n

      
 

Let vn =
1 ,
n

n

n

u
v =

11
n

n
  
 

lim n
n n

u
v

 = 1lim 1
n

n
e

n

   
 

, which is finite and non-zero.

 By camparison test, nu  and nv converge or diverge together.

Since 
1

nv
n

   is of the form 
1
pn  with p = 1,

divergnt also divergentn nv u 
Hence, nu  is convergent is x < 1 and divergent if x  1. Ans.
Example 31. Discuss the convergence of the following series:

  
     

                
     

...
1 2 32 3 4

2 3 4
2 2 3 3 4 4

1 2 31 2 3

Solution. Here, un =
1

1

( 1) ( 1)
nn

n

n n
nn





  
 

 

[un]1/n =

1
11 1

1 1

( 1) 1 ( 1) 1
n nn n

n n

n n n n
n nn n

  

 

             
     

 

1/lim ( ) n
nn

u =




 

                    

11
11 1 1

lim 1 1 ( 1) 1
1

n

n
e

n n e
Hence, the given series is convergent. Ans.

EXERCISE 20.9
Discuss the convergence of the following series:

1.






1

1
n

n n                Ans. Convergent 2.





  
 

2

1

1
1

n

n
n Ans. Divergent
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3.





 
 

 


3/2

1

1
1

n

n n   Ans. Convergent 4.






1

1

(log )n
n n Ans. Convergent

5.  n–k                   Ans. If k > 1, convergent

6.






2

1

(log )k
n n n Ans. If k > 1, convergent; and divergent if  k  1.

7.  (n log n)–1 (log log n)–k         Ans. If k > 1, convergent; and divergent if k  1.

8.
  
 

2

1
1

n

n
Ans. Convergent 9. 

n

n
x

n
Ans. Convergent

  10.  (a + b) + (a2 + b2) + (a3 + b3) + ... Ans. Convergent if a < 1, b < 1; divergent if a  1, b  1

20.21 LOGARITHMIC TEST

If  un is a positive term series such that 
  

   
 

n

n n

u
n k

u 1

lim log

(i) If k > 1, then the series is convergent. (ii) If k < 1, then the series is divergent.

Proof. (i) If k > 1

Compare  un with  1
pn

, if k > p > 1, then  un converges.

 1

n

n

u
u

=
    

 

( 1) 1
1

pp

p

n
nn

...(1)

Taking logarithm of both sides of (1), we have:

 1
log n

n

u
u

>   
 

1
log 1p

n

2 3 4

log (1 ) ...
2 3 4

x x x
x x

 
      

 

if
 1

log n

n

u
u

>      
 2 3 4

1 1 1 1
...

2 3 4
p

n n n n

if
 1

log n

n

u
n

u
>      

 2 3
1 1 1

1 ...
2 3 4

p
n n n

   1
lim log n

n n

u
n

u
> p

i.e., k > p which is true as k > p > 1.
  

  
 1

lim log n

n n

u
n k

u

Hence,  un is convergent.
When p < 1
Similarly, when p < 1,  un is divergent.
When p = 1, the test fails.

Example 32. Test the convergence of the series     
. . .

...
! ! !

2 2 3 3 4 42 x 3 x 4 x
x

2 3 4
(MDU, Dec. 2010)

Solution. Here the series is       
2 2 3 3 4 42 . 3 . 4 . .

... ...
2 ! 3 ! 4 ! !

n nx x x n x
x

n

un =
1 1

1
( 1) ..

and
! ( 1) !

n nn n

n
n xn x

u
n n
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 1

n

n

u
u

=  


 

   
 

1 1

( 1) !. 1 1 1
! ( 1)( 1) . 1

1

n n n

n n n n

nn x n
n x xnn x

n

   1
lim n

n n

u
u

=
 


  
 

1 1 1 1
lim .

1
1

nn x e x

n

If 1
e x

 > 1 or x < 
1
e

, the series is convergent.

If 
1

e x
 < 1 or 

1
e

 < x, the series is divergent. If 1
e x

 = 1 or x = 
1
e

, the test fails.

 1
log n

n

u
u

=     
   

 

1 1
log . log log 1

1
1

n

n
e e

n

n

=               2 3
1 1 1 1

1 log 1 1 ...
2 3

n n
n n n n

=      
2 2

1 1 1 1
1 1 ...

2 23 3n nn n

   1
lim log n

n n

u
n

u
=

 

     
1 1 1

lim 1.
2 3 2n n

Thus, the series is divergent. Ans.
Example 33. Discuss the convergence of the series:

    2 3 4
2 3 4

2! 3! 4!1 ......... ( 0)
2 3 4 5
x x x x x       (M.D.University, I Semester, 2009)

Solution. Here, we have
2 3 4

2 3 4
2! 3! 4!1 .........

2 3 4 5
x x x x     

Neglecting the first term, we get

un =
!

( 1)
n

n
n x

n 
   and   un + 1 = 

1
1

( 1)!
( 2)

n
n

n x
n







1

n

n

u
u 

=
1 1

1
! ( 2) ( 2) 1. . .

( 1) ( 1)!. ( 1) . ( 1)

n n
n

n n n
n n nx

xn n x n n

 



 


   

1
lim n
n n

u
u 

=
1( 2) 1lim .

( 1) . ( 1)

n

nn

n
xn n







 

          =

1
1 21

1lim .
1 11 . 1

n
n

nn
n

n
n

x
n n

n n






  
 

       
   

 = 

2 21 1
1lim .

1 11 1

n

nn

n n
x

n n



       
   

       
   

...(1)

          =  
2 1. .e e
e x x

 lim 1 lim 1

nn
a

n n

a a e
n n 

  
                   



2

2 22 2lim 1 lim 1

nn

n n
e

n n 
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  By D’ Alembert’s ratio test, the series converges if 1 < 
e
x  or if x < e and diverges

if 1e
x
  or if e < x.

If x = e, the ratio test fails, 
1

lim 1n
n n

u
u 



Now when x = e
Putting the value of x in (1), we get

1

n

n

u
u 

=

1

1

21
1.

11

n

n
n

e
n





  
 

  
 

Since the expression 
1

n

n

u
u 

 involves the number e, so we do not apply Raabe’s test but

apply logarithmic test.

 log 
1

n

n

u
u 

=
2 1( 1) log 1 ( 1) log 1 logn n e
n n

           
   

=
2 1( 1) log 1 log 1 1n
n n

                

= 2 3 2 3
2 1 4 1 8 1 1 1( 1) . . .... .... 1

2 3 2 3
n

n nn n n n
                   

= 2 3
1 3 7( 1) ...... 1

2 3
n

n n n
       

= 2 2 2
3 1 3 1 3 31 ..... 1

2 2n n nn n n
             
   

= 2 2
1 3 1 31 ....... 1

2 22 2n nn n
      


1

lim log n
n n

un
u 

= 2
1 3lim ......
2 2n

n
n n

     
 = 

1 3 1lim ...... 1
2 2 2n n

       
 

  By log test, the series diverges.
Hence, the given series nu converges if x < e and diverges if x  e. Ans.

EXERCISE 20.10
Examine the convergence for the following series :

1.
2 2 2 2

2 2 2 2
1 5 9 13

...
4 8 12 16

     Ans. Convergent

2. 2 3
2 3

1! 2 ! 3 !
1 ...

2 3 4
x x x     Ans. If x < e, convergent and divergent if x > e

3.
2 2 2 2 22

2
2 2 2 2 22

1 . 3 1 . 3 . 51
...

2 2 . 4 .62 . 4
x x    Ans. Convergent if x < 1, and divergent if x > 1

4.    2 32 3
...

1! 2 ! 3 !

a x a xa x  
   Ans. Convergent if 1

,x
e

 divergent if 1
x

e
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20.22 DE MORGAN’S AND BERTRAND’S TEST

  If un is a positive term series such that

1
lim 1 1 logn

n n

u
n n k

u  

         
     

 then the series is convergent if k > 1 and divergent if k < 1.

Example 34. Test for convergence the series ...
p pp

P 1 3 1 3 51
1

2 2 4 2 4 6
                     

Solution. The given series is :

1 1 3 1 3 5
1 ...

2 2 4 2 4 6

p p p
P                       

Here un =
 
 

1 3 5 ... 2 3

2 4 6 ... 2 2

p
n

n

     
 

     

 un + 1 =
   
   

1 3 5 ... 2 3 2 1

2 4 6 ... 2 2 2

p
n n

n n

     
 

     


1n

n

u

u


=
2 1 1

1
2 2

p pn
n n
         

1lim n

n n

u

u



= 1

 D’Alembert’s Test fails.
Now let us apply Raabe’s Test.

Here 
1

1
1 1 1

2

p
n

n

u
n n

u n





           
     

 = 
   

2

1 1
1 ... 1 ...

2 2 88

p p p pp p
n

n nn

  
       

 


1

lim 1
2

n

n n

pu
n

u 

   
 

If 1, . ., 2,
2
p

i e p  the series is convergent and divergent if 1, . ., 2.
2
p

i e p 

This test fails if 1, . ., 2.
2
p

i e p 

Now let us apply De Morgan’s Test. When p = 2

1
1n

n

u
n

u 

 
 

  
=

3
1 ...

4n
 

Now,
1

lim 1 1 logn

n n

u
n n

u 

  
    

    
=

3
lim 1 ... 1 log

4n
n

n

     

=
log3

lim ... 0 1
4n

n
n

     

log
lim 0
x

n
n

   
 un is divergent when p = 2. Ans.
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20.23 CAUCHY’S CONDENSATION TEST

If  (n) is positive for all positive integral values of n and continually diminishes as n
increases and if a be a positive integer greater than 1, then the two series   (n) and
 an  (an) are either both convergent or both divergent.

Example 35. Show that the series

     
... ...

log log logp p p

1 1 1
1

2 2 3 3 n n
    

is convergent if p > 1 and divergent if p = 1 or p < 1.
Solution. We apply Cauchy’s Condensation Test.

Here  (n) =
 

1

log pn n

 nth term of the second series  an  (an) is :

       
1 1 1 1 1

. ., . ., . .,
log loglog log

n
p p p p pn n n

a i e i e i e
nn a aa a a

   
  

 The given series will be convergent or divergent if 
 

1 1

log p pna

  
  

  is convergent or

divergent, i.e., if 1
pn  is convergent or divergent.

But we know that 1
pn is convergent when p > 1 and divergent if p = 1 or < 1.

Hence, the given series is convergent if p > 1 and divergent if p = 1 or < 1. Proved.
20.24 ALTERNATING SERIES

A series in which the terms are alternately negative is called the alternating series.
e.g., u1 – u2 + u3 – u4 + ...

20.25  LEIBNITZ’S RULE FOR CONVERGENCE OF AN ALTERNATING SERIES

(i) Each term is numerically less than its preceeding term.

(ii) lim 0n
n

u




Exmaple 36. Discuss the convergence of the series  





 n

2
n 1

n
1

n 1
.

Solution. The terms of the given series are alternately positive and negative;

(i) |un| = 2 1
n

n 
and |un + 1| = 



 2

( 1)

( 1) 1

n

n

|un| – |un + 1| =
    

 
     

2 2

2 2 2 2

( 1) ( 1) ( 1)( 1)
1 ( 1) 1 ( 1) [( 1) 1]

n n n n nn n
n n n n

=
2

2 2

1

( 1) [( 1) 1]

n n

n n

 

  
 = +ve

and each term is numerically less than its preceeding term.
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(ii) lim | |n
n

u
 

= 2
lim

1n

n
n 

 = 
1

lim 0
1n n
n






Both conditions are satisfied.
Hence, by Leibnitz’s rule, the given series is convergent. Ans.

Example 37. Test the convergence of the series      ...
1 2 3 4 5
6 11 16 21 26

Solution. The terms of the given series are alternately positive and negative.

un =   11
5 1

n n
n




|un| = 



  1

1
and | |

5 1 5 ( 1) 1n
n n

u
n n

(i) |un| – |un + 1| =    
2 21 5 6 5 5 1

5 1 5( 1) 1 5 1 5 6
nn n n n n n

n n n n
     

 
    

=
   

1
5 1 5 6n n


 

 |un| > |un + 1|
Thus each term is not numerically less than its preceeding terms.

(ii)   lim n
n

u


 = 
1 1

lim lim 0
15 1 55n n

n
n

n
 

  
 

        
lim 0n

n
u

Both conditions for convergence are not satisfied.
Hence, the series is not convergent. It is oscillatory. Ans.
Example 38. Test the following series for convergence and absolute convergence:

1 1 11 ...
2 2 3 3 4 4

    (M.D.U. Dec., 2002)
Solution. The given series is

1
n

n
u




 =

1 1 1
3

1 1 12

1 1( 1) . ( 1) ( 1)n n n
n

n n n
a

n n
n

  
  

  

      

It is an alternating series.

Here, an = 3
2

1

n

an+1 = 3
2

1

( 1)n 

Since, 3
2

1

n
> 3

2

1

( 1)

n

n





 1n na a n  

Also, lim nn
a

 = 3
2

1lim 0
n

n




 By Leibnitz’s test, the series nu  is convergent.
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| |nu = 3
2

1

n

Now  | |nu  = 3
2

1

n
  is convergent

3 1
2

p   
 


Hence, the series nu  is absolutely convergent. Ans.
Example 20. Test the convergence of the series:

              2
1

( 1) ( 1)
2

n n

n
n

x
n





  (M.D. University, I Semester, 2009)

Solution. Here, we have

2
1

( 1) ( 1)
2

n n

n
n

x
n





  ...(1)

Here, un = 2
( 1) ( 1)

2 .

n n

n
x
n

 
 and un + 1 = 

1 1

1 2
( 1) ( 1)

2 . ( 1)

n n

n
x
n

 



 


1

| |
| |

n

n

u
u 

=
1 2

2 1
| 1| 2 . ( 1).
2 . | 1|

n n

n n
x n

n x





 


=
2 21 1 1 12 . 2 1 .

| 1| | 1|
n

n x n x
           


1

| |lim
| |

n
n n

u
u 

=

21 1 2lim 2 1 .
| 1 | | 1|n n x x

      
 By ratio test, the series | |nu  is convergent if

i.e.,  1 < 2
| 1|x 

i.e.,  if |x + 1| < 2

i.e., if – 2 < x + 1 < 2 i.e., if – 3 < x < 1

Also | |nu  is divergent if 
2 1

| 1|x



i.e.,  if |x + 1| > 2 i.e.,  if x + 1 > 2 or x + 1 < –2 i.e., if  x > 1 or x < –3.
Ratio test fails when x = 1 or – 3.

When x = 1, nu  = 2 2
( 1) . 2 ( 1) ( 1) .

2 .

n n n
n

nn n n
 

      From (1)

It is an alternating series.

Here, vn = 12 2
1 1,

( 1)nv
n n 


Clearly 1n nv v  n

Also lim nn
v

 = 2
1lim 0

n n


 By Leibnitz’s test, nu is convergent.

When x = – 3, 
2

2 2 2
( 1) . ( 2) ( 1) 2 1

2 . 2 .

n n n n

n n nu
n n n

  
     

Which is convergent.
Hence, the given series is convergent if –3  x  1 and divergent if x > 1 or x < – 3
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EXERCISE 20.11
Discuss the convergence of the following series :

1. 1 1 1
1 ...

2 3 4
    Ans. Convergent

2. 1 – 2x + 3x2 – 4x3 + ...  (x < 1) Ans. Convergent

3.  
2 3 4

2 3 4
... 0 1

1 1 1 1

x x x x
x

x x x x
      

   
Ans. Convergent

4. 1 1 1 1
...

1 2 3 4p p p p
    Ans. If p > 0, convergent; oscillatory if p < 0.

5.   1

1

1
2 1

n

n

n
n







 Ans. Oscillatory

6. Show that the series 
1 1 1 1

...
1 2 3 4x x x x
   

   
is convergent for all real values of x other than negative integers.

7. Prove that the series x – 
2 3

...
2 3

x x
   converges if – 1 < x < 1.

20.26 ALTERNATING CONVERGENT SERIES
There are two types of alternating convergent series :
(1) Absolutely convergent series. (2) Conditionally convergent series.
Absolutely convergent series. If u1 + u2 + u3 + ... be such that
|u1| + |u2| + |u3| + ... be convergent then u1 + u2 + u3 + ...is called absolutely convergent.

Example 40. Show that the series ...
1 1 1 1 1

1
2 3 4 5 6

       is convergent but not

absolutely convergent.

Solution. 1 1 1
1 ...

2 3 4
   

The terms of the series are alternately positive and negative.

(i) 1
1 1

| | | |as
1n nu u

n n  


              (ii) 1
lim lim 0n

n n
u

n 
 

Both conditions are satisfied.  Hence, the given series is convergent.

But 
1 1 1

1 ...
2 3 4

     is divergent since in p-series, p = 1.

Hence, the given series is conditionally convergent. Ans.

Example 41. What can you say about the series ... ?
2 2 2

1 1 1
1

2 3 4
    

Solution. 
2 2 2

1 1 1
1 ...

2 3 4
   

|un| = 2
1

,
n

and |un + 1| = 
 2

1

1n 

(i) |un +1 | < |un| (ii) 2

1
lim lim 0n
n n

u
n 

 

Thus, the given series is convergent by Leibnitz’s rule.

And 2 2 2
1 1 1

1 ....
2 3 4

     is also convergent since in p-series, p = 2 > 1.
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Both the conditions are satisfied.
Hence, the given series is absolutely convergent. Ans.

Example 42. Discuss the series for convergence 
2 33 2 5 3 7

1 1 1 1 1 1 1
1 + + + + ...

3 2 3 2 3
   

Solution. The given series is rewitten as

2 3 3 5 7
1 1 1 1 1 1 1

1 + + + +... + + + +...
2 32 2 3 3 3

   
 

lim n
n

S


=
2

1
1 3 53 2 1

1 1 8 81 1
2 3

   
 

The given series is convergent.

Again 2 3 3 5
1 1 1 1 1 1

1 ... ...
2 32 2 3 3

       


lim n

n
S =

1
1 3

1 1
1 1

2 3


 



   
lim

1n
n

a
S

r

lim n
n

S


= 3 19
2

8 8
 

Both the conditions are satisfied.
This series is also convergent.
Hence, the given series is absolutely convergent. Ans.
Example 43. Test the convergence and divergence of the series

    .........
10 20 40

5
3 9 27

(Gujarat, I Semester, Jan. 2009)

Solution. The terms of the given series are alternately positive and negative and the given
series is geometric infinite series.

(i) S =
10 20 40 80

5 .........
3 9 27 81

    

Here a = 5 and r = – 
2
3

,    S = 
1

a
r

S =
5 5 5

3
2 52 11
3 33

  
    
 

Sum of the series is finite.
Hence, the given series is convergent.

(ii)  Again 
10 20 40 80

5 ...
3 9 27 81

    

This is also G.P.

Here, a = 5 and r = 2
3

S =
1

a
r

,           S = 5 5
15

2 1
1

3 3
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Again sum of the positive terms is finite.
Thus the series is also convergent.
Both of the conditions are satisfied.
Hence, the given series is absolutely convergent. Ans.
Example 44. Test the following series for convergence and divergence.






 
 

   tan 1
2

n 1

1
n n 1

(Gujarat, I Semester, Jan. 2009)

Solution.  Let un = 1 1
tan

1 ( 1)n n


 

un =
 

 
1 1

tan
1 1

n n
n n

  
 

un = tan–1 (n + 1) – tan–1 (n)
un + 1 = tan–1 (n  + 2) – tan–1 (n + 1)

By D’ Alembert’s test

1lim n

n n

u

u


 
=

   
 

1 1

1 1

tan 2 tan 1
lim

tan 1 tann

n n

n n

 

  

  

 
 =

   

 

2 2

2 2

1 1

1 2 1 1
lim

1 1
11 1

n

n n

nn
 


   


 

[L’Hopital Rule]

=

   
   

 
 

2 2

2 2

22

2 2

1 1 1 2

[1 2 ] [1 1 ]
lim

1 1 1

[1 1 ] [1 ]

n

n n

n n

n n

n n

 

    

   

   

  

 = 
   
      

  


   

2

2

2 3 1 1
lim

2 1 1 1 2n

n n
n n

   
  

 


  

2

2

2 3 1
lim

2 1 [ 4 5]n

n n

n n n
 = 

2

2

3 12 1
2

lim 1
1 4 5 22 1

n

n n

n n n
 

           
       

   
Test fails.
Let us apply Raabe’s Test.

1
lim 1n

n n

u
n

u  

 
   
 

=
   
   

2

2

2 1 4 5
lim 1

2 3 1n

n n n
n

n n 

   
 
   

=
       

   
2 2

2

2 1 4 5 2 3 1
lim

2 3 1n

n n n n n
n

n n 

      
 
   

=
3 2 2 3 2

2

2 8 10 4 5 2 2 3 3
lim

(2 3) ( 1)n

n n n n n n n n
n

n n 

         
 

   

= 
 

  
 

   

2

2

6 12 2
lim

(2 3) ( 1)n

n n
n

n n
 = 

2

2

12 2
6

6
lim 3 1

3 1 22 1
n

n n

n n
 

 
  

      
   

Hence, the given series is convergent. Ans.
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EXERCISE 20.12

Discuss the convergence of the following series :

1. 1 1 1
1 ...

2 4 8
     Ans. Absolutely convergent

2.
1

2
2 3 4 ( 1)

1 ... ...
5 10 17 1

n n

n


      


Ans. Conditionally convergent

3. 2 3
2 3 4

1 ...
3 3 3

    Ans. Absolutely convergent

4.
2 2 2 2 2 2 2

1 1 1 1 1 1 1
1 ...

2 3 4 5 6 7 8
        Ans. Absolutely convergent

5. 1 1 1
1 ...

2 3 4
     Ans. Conditionally convergent

6. 3 3 3
sin sin 2 sin 3

...
1 2 3

x x x
   Ans. Absolutely convergent

20.27 POWER SERIES IN x
a0 + a1x + a2x2 + ... + anxn + ...

is power series in x, here a’s are independent of x.
Proof. un = anxn and un + 1 = an + 1 xn + 1

D’Alembert’s Ratio Test

1lim n

n n

u

u


 
=

1
1 1lim lim

n
n n

nn n nn

a x a
x

aa x


 

  


If 
1 ,n

n

a
k

a
 

If |kx| < 1 |x|
1

,
k

  then the series is convergent.

Thus, the power series is convergent if 
1 1

.x
k k

  

Thus, the interval of the power series is 
1 1

to
k k

  for convergence. Outside this interval the
series is divergent. Ans.

Example 45. Find the values of x for which the series 
2 3 4

2 2 2
x x x

x + + ...
2 3 4

    converges.

Solution. Here un  =    1
2

1 ,
n

n x
n

 and un + 1 =   
 

1

2
1

1

n
n x

n






1n

n

u

u


=
 

2
1

2 2
1

lim lim
11

1

n

n nn

un
x x x

un
n



 
     

   
 

By D’Alembert’s Test the given series is convergent for |x|< 1 and divergent if
|x|> 1.

At x = 1. The series becomes 
2 2 2

1 1 1
1 ...

2 3 4
   

This is an alternately convergent series.

At x = – 1. The series becomes 2 2 2
1 1 1

1 ...
2 3 4
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This is also convergent series, p = 2
Hence, the interval of convergence is – 1  x  1. Ans.

20.28 EXPONENTIAL SERIES

  ex  = 
2 3

1 ... ...
2 ! 3 ! !

nx x x
x

n
     

  is convergent for all values of x.

Proof. Here, we have un =
 

1

,
1 !

nx
n




and un + 1 = 

!

nx
n

1lim n

n n

u

u



=

 
1

1 !
lim lim 0 1

!

n

nn n

nx x
n nx  


  

Hence, by D’Alembert’s Test the exponential series is convergent for all values of x.

20.29 LOGARITHMIC SERIES

log (1 + x) = x –        
2 3 4

1... 1 ...
2 3 4

n
nx x x x

n
is convergent for – 1 < x  1.

Proof. Here, un =   11 ,
n

n x
n

 and un + 1 =  
1

1
1

n
n x

n






1lim n

n n

u

u



=

1

1

( 1) 1
lim . lim lim

11 1( 1) 1

nn

n nn n n

x n n
x x x

n nx
n



  

                
 

Thus, the series is convergent for |x|< 1 and divergent for |x|> 1.
At x = 1. The series becomes

1 1 1
1 ...

2 3 4
      which is convergent.

At x = – 1. The series becomes
1 1 1

1 ...
2 3 4

       which is divergent.

20.30 BINOMIAL SERIES

(1 + x)n = 2 3( 1) ( 2)( 1)
1 ...

2 ! 3 !
n n nn n

nx x x
 

   

is convergent for |x|< 1.

Proof. ur = 1( 1) ... ( 2)
( 1) !

rn n n r
x

r
  



ur + 1 =
( 1) ... ( 1)

!
rn n n r

x
r

  

1lim r

r r

u

u



=

11
lim lim 1  for  >  + 1
r r

nn r
x x x r n

r r 

       
 

If |x|< 1, the series is convergent by D’Alembert’s Test.
EXERCISE 20.13

Test the convergence of the following series
1. 1 + x + 2x2 + 3x3 + ... + nxn + ... Ans. Convergent if – 1 < x > 1

2.
2 31

.... ...
2 3 4 5 2

nx x x x
n

      


Ans. Convergent for – 1 < x < 1

3. 1 1 1
1 ...

1! 2 ! 3 !
          Ans. Convergent     4.

2 34 4 4
1 ...

1! 2 ! 3 !
          Ans. Convergent
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5.
2 3 43 3 3

3 ...
2 3 4

         Ans. Convergent     6.

3
222 2 2

2 ...
2 3 4

       Ans. Convergent

7.
   2 3

1 1 1
...

1 2 1 3 1x x x
   

  
Ans. Convergent, if x  1

20.31 UNIFORM CONVERGENCE
If for a given  > 0, a number N can be found independent of x, such that for every
x in the interval (a, b), the series is said to be uniformly convergent in the interval
(a, b).

Example 46. Discuss the uniform convergence of the series
1 + x + x2 + ...

Solution. Sn = 1 + x + x2 + ...+ xn = 
1
1

nx
x




S(x) =
1 1

lim
1 1

n

n

x
x x




 
for |x| < 1

|S(x) – Sn (x)|= 1 1 | |
1 1 1 1

n n nx x x
x x x x


    

   
if |x|n <  (1 – x)

Let |x|N =  (1 – x)  N = 
 log 1

log| |
x

x
 

In the interval 
1 1

, ,
2 2

  
 

N has maximum value. N = 
log

2
1

log
2



Hence, the given series is uniformly convergent in the interval 
1 1

, .
2 2

  
 

Note. The series is convergent in (– 1, 1) but not uniformly convergent.

20.32 ABEL’S TEST

If vn (x) be either monotonic decreasing in n for each fixed x in (a, b) or monotonic increasing
in n for each fixed x in (a, b),  an (x) vn (x) is uniformly convergent in (a, b) if

(i)  an (x) is uniformly convergent in (a, b).
(ii) There exists k such that |vn (x)| < k for all n when a  x < b.

Example 47. Prove that 3

nx
n

 is uniformly convergent in (– 1, 1).

Solution. (i) 3

1

n  is uniformly convergent.   (ii) |xn|< k for all n when – 1 < k < 1

Hence, 3

nx
n  is uniformly convergent by Abel’s Test. Ans.

EXERCISE 20.14
Prove that the following series are uniformly convergent in (– 1, 1).

1.  2

nx

n
2.

  1

nx
n n

        3.  



2

2 2

n

n
x

x n

4. Prove that the series
2 4 6

2 2 2
1 ...

2 1 4 1 6 1

x x xe e e  
    

  
 is uniformly convergent with regard to x if

x  0.
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22
Chebyshev Polynomials

22.1 INTRODUCTION
In numerical analysis, main problem is approximating a function. For better approximation

of a function the error should be minimum. To make the error minimum we use the least squares
method. On the other hand, we may choose the approximation such that maximum component of
error is minimised. This introduces Chebyshev polynomial. We apply Chebyshev polynomial in the
economization of power series.
22.2 CHEBYSHEV POLYNOMIALS (Tchebcheff  or Tschebyscheff  polynomials)

The Chebyshev polynomials of first kind

T x n xn ( ) cos( cos ) 1

and the second kind

          U x n xn( ) sin ( cos ) 1

where n is non-negative integer
22.2.1. CHEBYSHEV EQUATION

( )1 02
2

2
2   x d y

dx
x dy

dx
n y ... (1)

Prove that tn
(x) and Un(x) are the independent solution of the Chebyshev equation

Proof.
Let    y = Tn(x) = cos(n cos–1 x) = cosn

sin
sin

dy dy d n n
dx d dx

 
  

  

cos sin
sin

 
 


     RST

UVWx d
dx

d
dx

1 1or

or
dy
dx

n n


sin
sin




d y
dx

n n n n d
dx

2

2

2

2


 sin ( cos ) sin cos
sin

   




       = n n n n2

2
1sin cos sin cos

sin sin
   

 
 


F
HG

I
KJ
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        = 
  FHG

I
KJn n n n2

2

cos sin
sin

(cos )

sin









 d y
dx

n y x dy
dx

x

2

2

2

21

 



 ( )1 02
2

2
2   x d y

dx
x dy

dx
n y

Which is satisfied by Tn(x).

Similarly we can prove that U n xn 
sin ( cos )1  is a solution of Chebyshev equation.

Hence Tn(x) and Un(x) both are the solutions of (1). But Un(x) can not be expressed as a
constant multiple of Tn(x) as shown below :

           T n nn ( ) cos( cos ) cos ( ) cos1 1 0 0 11   

          U n nn( ) sin ( cos ) sin1 1 0 01  

Thus Tn(x) and Un(x) are independent solutions of Chebyhev’s equation.
22.3 ORTHOGONAL PROPERTIES OF CHEBYSHEV POLYNOMIALS.

     
1

1 2

0, 0
( ) ( )

0
21

0

m n

m n
T x T x

dx m n
x

m n


 
   

 
  



Proof. We know that

          Tm (x) = cos (m cos–1 x) = cos m

1cos
cos
sin

x
x

dx d

  


 
    

         Tn (x) = cos (n cos–1 x) = cos n

 (a)  If 0m n  T x T x

x
dxm n( ). ( )

1 21

1

z  = 
0 cos cos ( sin )

sin
m n d



 
  



       = cos cosm n d  


0z
       = 

1
2 0

[(cos( ) cos( ) )]m n m n d  z   


  = 
1
2 0

sin ( ) sin ( )m n
m n

m n
m n








L
NM

O
QP

 

       = 0 m n
(b) If m n  0

  
T x T x dx

x

n n dn n( ). ( ) cos .cos
sin

( sin )
1 21

1 0


 



z z  
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     = cos (cos )2

0 0

1
2

2 1n d d   
 z z 

     = 
1
2

2
2 20

sin 





L
NM

O
QP 

(c) If m = n = 0

   T x T x

x
dx0 0

21

1

1

( ) ( )



z  = 
( )( )
sin

( sin ) ( )1 10

0
0

    



z z   d d

Note: (1) Similarly we can prove that U x U x

x
dx

m n

m n

m n

m n( ) ( )
,

,

,1

0

2
0

0
21

1






 

 

R
S|

T|


z 



(2) The polynomials Tn (x) are orthogonal with the function 
1

1 2 x
.

Example 1. Prove that (a) T x T xn n ( ) ( )

    (b)  T x0 ( ) = 1 (c) T x1( )  = x
Solution. The Chebyshev polynomial of degree n over the integral [–1, 1] is defined as

         Tn(x) = cos (n cos–1 x) ... (1)
(a) On putting – n for n in (1) we get

T–n = cos (– n cos–1 x)
     = cos (n cos–1 x)
     = Tn

  Tn = T– n
(b) Let        cos–1 x =   so that x = cos 

  On putting  cos–1 x =   in (1), it becomes
       Tn (x) = cos n  ... (2)
       T0 (x) = cos 0 = 1

(c) If n = 1          On putting  n = 1 in (1) we get, T1 (x) = cos   = x
22.4 RECURRENCE  RELATION  OF CHEBYSHEV POLYNOMIALS

(I) Formula I      Tn+1
 (x) = 2x Tn (x) – Tn–1 

(x)
      cos ( ) cos( ) cos . cosn n n   1 1 2    ... (1) (Trigonometric identity)

On putting the values of cos( ) , cos( ) ,cos , cosn n n 1 1     in (1) we get

     T x T x x T xn n n  1 1 2( ) ( ) ( )

       T x x T x T xn n n  1 12( ) ( ) ( ) ... (2)
This is the required recurrence relation of Chebyshev polynomials
Similarly we can prove that U x xU x U xn n n  1 12( ) ( ) ( )
On substituting n = 1, in (2) we have

       T2 (x) = 2x T1 (x) – T0 (x)
     = 2x (x) – 1 = 2x2 – 1
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1192 Chebyshev Polynomials

If n = 2,   T3 (x) = 2x T2 (x) – T1 (x) = 2x (2x2 – 1) – x
= 4x3 – 3x

If n = 3,   T4 (x) = 2x T3 (x) – T2 (x)
= 2x (4x3 – 3x) – (2x2 – 1)
= 8x4 – 8x2 + 1

In this way   T0 (x) = 1
  T1 (x) = x
  T2 (x) = 2x2 – 1
  T3 (x) = 4x3 – 3x
  T4 (x) = 8x4 – 8x2 + 1
  T5 (x) = 16x5 – 20x3 + 5x
  T6 (x) = 32 x6 – 48 x4 + 18 x2 – 1

Here the coefficient of xn in Tn (x) is always 2n–1.
Graph of Chebyshev polynomials.

0
X X

1

–1

+1 +1–1

–1

–1 +1
+1–10

0

T (x)4

T
(x

)=
8x

–
8x

+1

4

4
2

T  (x)n T  (x)n

T
(x

)
3

1
1

1 1

–1

T  (x)n T  (x)n
T  (x) = 10

0

T  (x)n

T (x) = 2x – 1

2

2

–1

–1

0
+1

T
(x

) =
4x

–
3x

3

3

T ( )2 x T ( )3 x
T ( )n x

T ( )4 x
T ( )1 x1

–1
–1

–1

10–1
X

X X

X

22.5 POWERS OF X IN TERMS OF T2 (x)
        1 = T0(x)
        x  = T1 (x)

       x2 = 
1
2 0 2[ ( ) ( )]T x T x

       x3 = 
1
4

3 1 3[ ( ) ( )]T x T x

       x4 = 
1
8

3 40 2 4[ ( ) ( ) ( )]T x T x T x 
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       x5 = 
1

16
10 51 3 5[ ( ) ( ) ( )]T x T x T x 

       x6 = 
1

32
10 15 60 2 4 6[ ( ) ( ) ( ) ( )]T x T x T x T x  

and so on.
Recurrence Formula II

   ( ) ( ) ( ) ( )'1 2
1    x T x nxT x nT xn n n

Solution. We know that

T x n x nn( ) cos( cos ) cos 1       cos 1 x = x  cos

     T xn
1( )  = – sin n n

d
dx


F

HG
I
KJ  =  FHG

I
KJ 

sin
sin

sin
sin

n n n n



1

1  sin d
dx

d
dx



 

1
sin    

Multiplying both sides by (1 – x2) we get

( ) ( ) ( ) sin
sin

( cos ) sin
sin

(sin )( sin )
sin

sin sin1 12 2
2 2

    


 x T x x n n l n n n n n nn



 


 


 

... (1)
     nxT x nT x n n n nn n( ) ( ) cos cos cos( )1 1  

= n n n[ cos cos cos( )]     

= n n n n[ cos cos cos cos sin sin ]       
= n nsin .sin  ... (2)

From (1) and (2)

      ( ) ( ) ( ) ( )1 2
1     x T x nxT x nT xn n n Proved.

Example 2. Prove that

[T (x)] T (x)T (x) 1 xn
2

n 1 n 1
2   

Solution.        Let cos  1 x  x  cos

[ ( )] ( ) ( ) [cos( cos )] [cos{( )cos }][cos{( )cos }]T x T x T x n x n x n xn n n
2

1 1
1 2 1 11 1     
  

           = cos cos( ) cos( )2 1 1n n n    

           = cos [cos cos ]2 1
2

2 2n n   

           = cos [ cos cos ]2 2 21
2

2 1 2 1n n    

           = cos cos cos2 2 21
2

1
2

n n     

           = 1 12 2  cos  x Proved
Example 3. Prove that

   T x 1
2

x i (1 x ) x i (1 x )n
2

n
2

n
( )      

L
NM

O
QP{ } { }
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Solution. We know that
  Tn (x) = cos( cos ) cosn x n 1  ... (1)

   cos cos1 x x

R.H.S. = 
1
2

1 12 2[{ ( )} { ( )} ]x i x x i xn n    

           = 
1
2

1 12 2[{cos ( cos )} {cos ( cos )} ]       i in n

           = 
1
2

[{cos sin } {cos sin } ]     i in n

           = 
1
2

[cos sin cos sin ]n i n n i n       (De Moivre's theorem)

           = cos n ... (2)
From (1) and (2) we have

T x x i x x i xn
n n( ) [{ ( )} { ( )} ]     

1
2

1 12 2 Proved

Example 4. Prove that

   U (x) 1
2

i x i (1 x ) x i (1 x )n
2

n
2

n
   RST

UVW   RST
UVW

L
NM

O
QP

Solution. We know that
  U x n x nn( ) sin ( cos ) sin 1  ... (1)  1cos cosx x     

  R.H.S. =      
1
2

1 12 2i x i x x i xn n[{ ( )} { ( )} ]

= 


    
i i in n

2
1 12 2[{cos ( cos )} {cos ( cos )} ]   

=      
i i in n

2
[{cos sin } {cos( ) sin ( )} ]   

=      
i n i n n i n
2

[{cos sin } {cos( ) sin ( )}]     (De Moivre’s Theorem)

= 


  
i n i n n i n

2
[cos sin cos sin ]   

= 



i i n n

2
2( sin ) sin  ... (2)

From (1) and (2) we have

  U x i x i x x i xn
n n( ) [{ ( )} { ( )} ]      

1
2

1 12 2 Proved.

22.6 RECURRENCE FORMULAE FOR un (x)
(I) un + 1 (x) – 2x un (x) + un – 1(x) = 0
Proof un (x) = sin (n cos–1 x) = sin n  (x = cos )
Now un + 1 (x) – 2x un (x) + un – 1(x) = sin (n + 1)  –2 cos  sin n + sin (n – 1)

= sin (n + 1)  – [sin (n + 1)  + sin (n – 1) ] + sin (n – 1) 
 = 0 proved
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(ii)  ( ) ( ) ( ) ( )1 2
1     x U x n xU x nU xn n n (U.P., III semestor 2002)

Proof. We know that
       Un (x) = sin  (n cos–1 x) = sinn

        F
HG

I
KJ 

F
HG

I
KJ  U x n n d

dx
n n n n

n ( ) cos cos
sin

cos
sin










Multiplying both sides by ( )1 2 x  we get

  ( ) ( ) ( ) cos
sin

( cos ) cos
sin

1 1 12 2 2       x U x n x n n n
n








= 
n n n nsin cos

sin
cos sin

2  


   ... (1)

  R.H.S. =   nxU x nU xn n( ) ( )1

=   n n n ncos sin sin( )  1
=   n n n[cos sin sin ( )]   
=   n n n n[cos sin sin cos cos sin ]     
=   n n n n(cos sin ) cos sin    ... (2)

From (1) and (2) we get

    ( ) ( ) ( ) ( )1 2
1     x U x nxU x nU xn n n Proved.

Example 5. Show that 1

(1 x )
U (x)

2 n


 satisfies the differential equation

(1 x ) d y
dx

3x dy
dx

(n 1) y 02
2

2
2    

Solution. Let y
x

U xn


1

1 2( )
( )

      = sin ( cos ) sinn x

x

n

x








1

2 21 1


cos 






L

N

MMM

O

Q

PPP

1

2

1

1

x

x

d
dx




Differentiating both sides we get

dy
dx

x n n d
dx

x x n

x


 F
HG

I
KJ   





1 1
2

1 2

1

2 2
1

2

2

.cos ( ) ( ) .sin

( )






            
dy
dx = 

n x n
x

x

x
n

x

1 1

1 1

1

2
2 2

2






F
H
GG

I
K
JJ  



cos .
( )

sin

( )

 

   ( ) cos
sin

1
1

2
2

   


x dy
dx

n n x n

x




   ( ) cos1 2   x dy
dx

n n xy

 = cos1 x
x  cos

1   sin d
dx

d
dx





1
sin
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Again differentiating we get

( ) sin .1 2 12
2

2
2    x d y

dx
x dy

dx
n n d

dx
x dy

dx
y



 ( ) sin1 3
1

2
2

2
2

2
   


x d y

dx
x dy

dx
n n

x
y

               ( )1 32
2

2 x d y
dx

x dy
dx

=  n y y2

 ( ) ( )1 3 1 02
2

2
2     x d y

dx
dy
dx

n y Proved.

Example 6. Show that

     ( ) ( ) ( ) ( )1 2
1  x T x U x xU xn n n

Solution. Let cos cos   1 x x 

        L.H.S. = ( ) ( ) ( cos ) cos( cos ) sin cos1 12 2 1   x T x n x nn   

       R.H.S. = U x xU xn n 1( ) ( )
   = sin( ) cos sinn n 1   

    = sin ( ) cos sinn n    

    = sin cos cos sin cos sinn n n      

    = cos .sinn 
      = L.H.S. Proved.

Example 7. Show that

  T (x) 1
2

1 1

(1 x )
U (x)2r

r 0

n

2 2n 1


  


R
S|
T|

U
V|
W|

Solution. Let   cos cos   1 x x 

           T x r x rr
r

n

r

n

r

n

2
0

1

0 0

2 2




 
   ( ) cos( cos ) cos ( )

                = Real part of [(cos( ) sin ( )]2 2
0

r i r
r

n

 



    = Real part of ei r

r

n
2

0






    = Real part of [ .... ]1 2 4 6 2    e e e ei i i i n   

(This is G.P. of (n + 1) terms with common ratio e i2  )

    = Real part of 
1

1

2 1

2




e
e

i n

i

( ) ( )


sum = 1

1

1


F
HG

I
KJ

r
r

n

    = Real part of 
[ ][ ]

( ) ( )

( )1 1
1 1

2 2 2

2 2
 
 

 



e e
e e

i n i

i i
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= Real part of 
1

1 1

2 2 2 2

2 2
  

  

 



e e e
e e

i n i i n

i i

( )  

 

= Real part of 
1 2 2 2 2 2 2 2 2

2 2 2
       


{cos( ) sin ( ) } {cos sin } {cos sin }

cos
n i n i n i n     



= 1 2 2 2 2
2 1 2

   


cos( ) cos cos
( cos )

n n  


    = 
1 1 cos 2 cos(2 2) cos 2
2 1 cos 1 cos 2

n n
   

       

= 1
2

1 2 2 2
1 2


 


L
NM

O
QP

cos( ) cos
cos

n n 


= 
1
2

1 2 2 1
2 2

L
NM

O
QP

sin ( ) sin
sin
n  



= 
1
2

1 2 1


L
NM

O
QP

sin ( )
sin

n 


= 1
2

1
1

2 1

2




L
N
MM

O
Q
PP

U x

x
n( ) ( )

Proved

Example 8. Prove that

    
!

2 ! ( )!

N
r 2 n 2r

n
r 0

nT (x) ( 1) (1 x ) x
r n 2r




  

 N n
2

  if n is even

 N = 
n 1

2


 if n is odd

Solution. We know that ( )nT x = x C x x C x xn n n n n     
2

2 2
4

4 2 21 1( ) ( ) ....

   T x x i x x i xn

n n
( ) ( ) ( )     

L
NM

O
QP

1
2

1 12 2{ } { } ... (1)

On applying Binomial theorem on (1) we get

          1 2 2
1

1 ( 1 ) ... ( 1 ) ....
2

n n n n n r r
n rT x C x i x C x i x        

+ { ( ) ... ( ) ....}x C x i x C x i xn n n n
r

n r r        O
QP

 
1

1 2 21 1

            = 
1
2

1 12

0

2

0

n
r

n r r

r

n
n

r
n r r

r

n

C x i x C x i x








R
S|
T|

U
V|
W|
  
R
S|
T|

U
V|
W|

L
N
MM

O
Q
PP ( ) ( )

            = 1
2

1 1 1
0

2 2n
r

r

n
n r

r
r rC x x i



   ( ) ( ) { ( ) } ... (2)

(a) If r is odd or r = 2 s + 1 r n

      T C x in
n

s
s

n

n s s s  




    2 1
0

1
2

2 1 2 1 2 11 1( ) [ ( ) ]

       T C x in
n

s
s

n

n s s  




   2 1
0

1
2

2 1 2 1 1 1 0( ) ( )

2 1s n 

s n


1
2
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(b) If r is even or r = 2s

       
T C x x in

n
s

s

n

n s s s s   


1
2

1 1 12
0

2
2 2 2 2( ) ( ) { ( ) }

r n
s n

s n

n






L

N

MMMMM

2

2
if is even

= 
1
2

1 1 1 12
0

2
2 2n

s
s

n

n s s sC x x


   ( ) ( ) { }

= 
s

n

s n
s

n s sC x x


  
0

2

2
2 21 1( ) ( )

= 
2

2 2

0

!( 1) (1 )
( 2 )! 2 !

n

s s n s

s

n x x
n s s




 



(ii) If n is odd or n  2s + 1 s = 
n 1

2

       

1
2

2 2

0

!( 1) (1 )
( 2 )! 2 !

n

s s n s
n

s

nT x x
n s s






  



Hence  T x C x x C x xn
n n n n n      

2
2 2

4
4 2 21 1( ) ( ) ... Proved.

Example 9. Find the value of the following:
(i) U x0 ( ) (ii) U x1( )     (iii) U x2 ( )        (iv) U x3 ( )
Solution. We know that

           U x n xn ( ) sin ( cos ) 1

If n = 0,         U x0 0( ) sin ( )  = 0

If n = 1,         U1 (x) = 1 1 2 2sin (cos ) sin sin (1 ) (1 )x x x    

If n = 2, U2(x) = sin ( cos ) sin sin cos2 2 2 2 11 2    x x x  







L
NMM

cos
cos

1 x
x

If n = 3, U3(x) = sin ( cos ) sin sin sin3 3 3 41 3   x   

  = 3 1 4 1 1 3 4 1 1 4 12 2 3 2 2 2 2         x x x x x x( ) [ ( )] [ ]

Here we see that U xn ( )  is not polynomial.
But if we define

         U x
n x

x
U

x
n

n( )
sin{( ) cos }

sin (cos )










1

1

1

1
1

2

Then U xn ( )  is a polynomial in x of degree n.
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22.7 GENERATING FUNCTION FOR Tn (x)

1
1 2

2
2

2 0
1


 

 




t
t x t

T x T x tn
n

n( ) ( ).

Proof  L.H.S. = 
1

1 2

2

2


 
t

t x t Put     x = cos 
 


 e ei i

2

= 
1

1

2

2


  

t
t e e ti i( ) 

= 
1

1

2

2


  

t
te t e ti i( )   = 

1
1 1

2

  

t
t e te t ei i i( ) ( )  

= 
1

1 1

2

  

t
t e t ei i( )( )   = ( )( ) ( )1 1 12 1 1    t t e t ei i 

= ( )( ... ...)[ ... ...]1 1 12 2 2 2 2            t t e t e t e te t e t ei i r ri i i s si     

= ( ) ( ) ( )1 12

0 0

2

0
0

  








 






  t t e t e t t er ri

r

s si

s

r s r s i

r
s

  

= i t i ti r s

r
s

r s i r s

r
s

r s( ) ( )





 





   

0
0

0
0

2 ... (1)

On putting r = s = 0 in the first summation of (1) we get coefficient of
t0 = e e T xi( ) ( )0 0 0 0

01    .
On putting r + s = n or s = n – r in the first summation and r + s + 2 = n or s = n – r – 2 in

the second summation, we get

Coefficient of  t e en i r n r

r

n
i r n r

r

n

  



  





 [ ( )] [ ( )] 

0

2

0

2

= e ei n r

r

n
i n r

r

n
( ) [ ] 



  





 2

0

2 2

0

2
 

= e e e ein i r

r

n
i n

r

n i r



 





     ( ) ( ) ( )2

0

2

0

2 2

= e e e n e e e nin i i i n i i               [ ... ( ) ] [ ... ( ) ]( )1 1 1 12 4 2 2 4to terms to terms

= e e
e

e e
e

in
i n

i
i n

i n

i



 




















1
1

1
1

2 1

2
2

2 1

2
( ) ( )( ) [Sum of G.P.]

= 
e e

e
e e

e

in i n

i

i n in

i

   








 



 



( ) ( )2

2

2

21 1

= 
e e e e

e
e e e e

e

in i n i n in

i

in i in i

i

      




  



   



   



( ) ( ) ( ) ( )2 2

2

2 2

21
1 1

1
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= 
( )( ) ( ) cos ( )1

1
2 2

2

2
 


   


e e e

e
e e n T x

i in in

i
in in

n

  


  

or    
1

1 2

2

2


 

t
tx t

 = TT0 (x) + 2 T x tn
n

n

( )





0

Proved.

Example 10. Show that
(i) T ( 1) ( 1)n

n   (ii) T (0) ( 1)2n
n  (iii) T (0) 02n 1 

Solution. We know that
  Tn (x) = cos (n cos–1 x) ... (1)

  (i) Replacing x by – 1 in (1) we get

T n nn
n( ) cos[ cos ( )] cos[ ] ( )     1 1 11 

(ii) Replacing x by 0 and n by 2n in (1) we get

T n n nn
n

2
10 2 0 2

2
1( ) cos[ cos ( )] cos cos ( )  F

HG
I
KJ    



(iii) Replacing x by 0 and n by 2n + 1, we get

          T n nn2 1
10 2 1 0 2 1

2
0

    ( ) cos[( )cos ( )] cos[( ) ] Proved.

Example 11. Show that
(i) Un (1) = 0 (ii) Un (– 1) = 0,      (iii) U2n (0) = 0, (iv) U2n+1 (0) = (– 1)n

Solution. We know that

U x n xn( ) sin ( cos ) 1 ... (1)
   (i) Replacing x by 1 in (1), we get

U n nn( ) sin ( cos ) sin ( )1 1 0 01   

(ii) Replacing x by (– 1) in (1) we get
1( 1) sin[ cos ( 1)] sin ( ) 0nU n n    

(iii) Replacing x by 0 and n by 2n in (1) we get

U n n nn2
10 2 0 2

2
0( ) sin ( cos ) sin sin ( )  F

HG
I
KJ   



(iv) Replacing x by 0 and n by 2n + 1, in (1) we get

U n n nn
n

2 1
10 2 1 0 2 1

2 2
1

     F
HG

I
KJ  ( ) sin[( ) cos ] sin ( ) sin ( )




Proved.

Example 12. Show that
      2{T (x)} 1 T (x)n

2
2n 

Solution.         2 22 1 2[ ( )] [cos( cos )]T x n xn  
cos

cos

 
 

L
NMM

O
QPP

1 0x
x 

        = 2 2[cos ]n
       = cos 2 1n 
        = cos[ cos ]2 11n x 

        = 2 ( ) 1nT x  Proved.
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Example 13. Show that
             T x T x T x T xm n m n m n  ( ) ( ) ( ) ( )2

Solution.    T x T xm n m n ( ) ( )  = cos[( )cos ] cos[( )cos ]m n x m n x   1 1

             = cos [ ] cos( )m n m n    ( cos 1 x  )
  = 2cos cosm n 

= 2 1 1cos[ cos ]cos[ cos ]m x n x 

  = 2 ( ). ( )m nT x T x Proved.

Example 14. Show that  


T x n

x
u xn n( ) ( )

1 2

Solution. T x n x nn( ) cos( cos ) cos 1  cos 1 x 

      T x n n d
dxn

' ( ) sin .  
 




1

1 2x

d
dx


=  


F
HG

I
KJ

sin n n

x


1 2

= 
n n

x

n n x

x

sin sin[ cos ]

1 12

1

2






= 2

( )

1
nnu x

x
Ans.

EXERCISE  22.1

1. Express the following Chebyshev functions :
(a) T4 (x) (b) T3 (x) (c) T2 (x) + 2T1 (x) + 2 T0 (x)
into ordinary polynomials.

Ans. (a) 8x4 – 8x2 + 1  (b) 4x3 – 3x   (c) 2x2 + 2x + 1
2. Express the polynomial

       12x3 + 6x2 + 4x + 1
in Chebyshev polynomical (a) first kind Tn(x).

(b) second kind U x n x
x

n( ) sin{( ) cos }
sin (cos )


 


1 1

1

Ans. (a) 3 T3(x) + 3 T2(x) + 13 T1(x) + 4T0(x)    (b) 
3
2

3
2

5 5
23 2 1 0U x U x U x U x( ) ( ) ( ) ( )  

3. Express the polynomial

16 4 2 4 54 3 2x x x x     into the Chebyshev polynomial of first kind.

Ans. 2 9 7 124 3 2 1 0T x T x T x T x T x( ) ( ) ( ) ( ) ( )   

4. If U x n x
x

n( ) sin{( ) cos }
sin (cos )


 


1 1

1
, show that

(a) U x U xn
n

n( ) ( ) ( )  1 (b) U nn( )1 1 

(c) U nn
n( ) ( ) ( )   1 1 1
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5. Prove that
U x x U x U xn n n   1 12 0( ) ( ) ( )

6. Prove that

(a) 1 02

1

1
  



z x U x U x dx m nm n( ) ( ) ,             (b) 1
2

2

1

1
2 



z x U x dxn( ( ))


8. Prove that

              

1( 1) 12
2 2 12

0

!( ) ( 1) (1 )
(2 1)! ( 2 1)!

n
rr n r

n
r

nU x x x
r n r


  



  
  

                      = n n n n n nC x C x x C x x       1
1

1
3

2 2 1
5

4 2 21 1( ) ( ) .....

7. Prove that T x U x xU xn n n( ) ( ) ( )  1
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23
Fuzzy Set

23.1. INTRODUCTION
If a doctor asks a patient “How are you” patient replies almost O.K.”
The word “almost” is a vague term and not mathematical i.e. It means neither “yes” nor

“No” but between them.
But the word “almost” gives lots of information to the doctor & the doctor decides the

further future treatment of the patient.
For this reason a mathematical modelling of vague knowledge is necessary. To convey such

an information “Fuzzy set” is introduced. L.A. Zadeh in 1965 introduced this concept on the
basis of membership function defined as:

: { , }X  0 1
Here

( )x  = 1, means full membership

( )x  = 0, means non-membership and

0 1 ( )x , means intermediate membership.
Due to Zadeh's work, a theory of vagueness (fuzziness) is now fully developed. The concept

of ‘Fuzzy set” & membership degree were introduced to form a mathematical model of vagueness.
A set is collection of well-defined distinct objects. A set of intelligent students is not a set.

Because the criteria to be intelligent is not well-defined. We cannot say whether a particular
student belongs to or not. The belonginess is not clear but vague. In fuzzy set theory, we assume
that all students are members, all belong to the set upto certain extent.

Let Among Anil, Rajiv and Suresh, Anil got 10 marks, Rajiv got 40 marks and Suresh get 90
marks out of 100. Hence in comparison to Anil Rajiv is intelligent but if compared to Suresh he
is not intelligent. All the three can be said to be intelligent to some extent and hence all the three
are the members of this set of intelligent students.

For example: We write
A = {0.5 Rita, 0.9 Kusum, 0.4 Suresh, 0.6 John, 0.2 Latif} for the set of rich people.
It indicates that Rita has 0.5 degree of membership in A, Kusum has 0.9 degree of member-

ship in A. Suresh has a 0.4 degree of membership in A, John has a 0.6 degree of membership in A
and Latif has a 0.2 degree of membership in A. Thus, Kusum is the richest and Latif is the poorest
of these people.
23.2 FUZZY SET

Definition. Let X be a non-zero set. A fuzzy set A of this set X is defined by the following set
of pairs.

A = {(x, µA (x))}: x  X
Where,  A X: [ , ] 0 1

is a function called as the membership function of A &  A  (x) is the grade of membership

or degree of belonginess or degree of membership of x X  in A.
Thus a fuzzy set is a set of pairs consisting of a particular element of the universe and its

1203
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degree of membership.
A can also be written as

A = 1 1 2 2{( , ( )), ( , ( )),....( , ( ))}A A n A nx x x x x x  
Symbolically we write

A x
x

x
x

x
xA A

n

A n

RST

UVW
1

1

2

2  ( )
.

( )
....

( )

23.3. EQUALITY OF TWO FUZZY SETS:
Example 1. Let X = {2, 3, 4}
Consider the three fuzzy sets A, B, C of X as given below

A = 
2
5

3
6

4
1

, ,RST
UVW

B = 
2
7

4
8

3
9

, ,RST
UVW

C = 4
1

2
5

3
6

, ,RST
UVW

Here in set ‘A’ and set “C” members and their degrees are same.
 A = C, But in set “A” & set “B” members are the same but their degrees of membership

are not the same.
Hence A B .

23.4. COMPLEMENT OF A  ‘FUZZY SET’
The component of a fuzzy set A is the set A  with degree of the membership of an element

in A  is equal to one minus the degree of the membership of this element in A.
Example. The set “A” is written as

A = [0.9 Rama, 0.4 Manju, 0.8 Neera, 0.1 Jyoti] for the set of beautiful girls.
Thus A  = {0.1 Rama, 0.6 Manju, 0.2 Neera, 0.9 Jyoti} for the set of girls who are not

beautiful.
23.5. UNION OF TWO FUZZY SETS

The union of two fuzzy sets A and B is the fuzzy set A B , where the degree of membership
of an element in A B  is the maximum of the degrees of membership of this element in A and in
B.

Example. We write
A = {0.3 Radha, 0.9 Pawan, 0.6 Mahesh, 0.4 Kunal} for the set of rich people.
B = {0.4 Radha, 0.8 Pawan, 0.2 Mahesh, 0.7 Kunal} for the set of famous people.

Here the degree in A B of each element is the maximum of degrees of membership of this
element in A & in B.

A B  = {0.4 Radha, 0.9 Pawan, 0.6 Mahesh, 0.7 Kunal}
23.6. INTERSECTION OF TWO FUZZY SETS

The intersection of two fuzzy sets A and B is the fuzzy set A B , where the degree of
membership of an element in A B  is the minimum of the degrees of membership of this element
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in A and in B.
Example: Let A = [0.5 Pushpa, 0.1 Suman, 0.8 Rani, 0.4 Kailash] for the set of fat people.
B = [0.3 Pushpa, 0.6 Suman, 0.2 Rani, 0.7 Kailash } for the set of tall people.
Here the degree of membership in A B  of each element is the minimum of degree of

membership of this element in A and in B.
A B  = {0.3 Pushpa, 0.1 Suman, 0.2 Rani, 0.4 Kailash}

23.7. TRUTH VALUE (R.G.P.V. Bhopal I/II Sem. Summer 2004)
(i) Truth value of the negation of a proposition
The truth value of the negation of a proposition in fuzzy logic is 1 minus the truth value of

the proposition.
Example. If the truth value “Vimla is happy” is 0.9.
Then the truth value of the statement “Vimla is not happy” is 1–0.9 = 0.1
Example. If the truth value of the statement “Devendra is smart” is 0.8.
Then the truth value of the statement that Devendra is not smart” is 1–0.8 = 0.2
(ii) Truth value of the conjuction of two prepositions.
The truth value of the conjunction of two prepositions in the fuzzy logic is the minimum of

the truth values of the two prepositions.
Example. If the truth value of the statement “Khan is brave” is 0.7 And the truth value of

the statement “Kamal is brave”. is 0.8.
Then the truth value of the statement “Khan and Kamal are brave is 0.7 (minimum of the

two).
And the truth value of “neither Khan nor Kamal is brave” is 0.2 (As truth value of the

negation of 1st statement is 1–0.7 = 0.3 and that of second statement is 1–0.8 = 0.2 & minimum
of 0.3 and 0.2 is 0.2)

(iii) The truth value of the disjunction of two prepositions.
The truth value of the disjunction of two prepositions in fuzzy logic is the maximum of the

truth values of the two prepositions.
Example. If the truth value of the statement “Neera is intelligent” is 0.9 and the truth value

of the statement “Rekha is intelligent” is 0.6
Then the truth values of the statements
“Neera is intelligent, or “Rekha is intelligent” is 0.9 (Maximum of the two).
The truth values of the statements “Neera is not intelligent” or “Rekha is not intelligent” is

0.4 (Maximum of 1 – 0.9 = 0.1 and 1 –0.6 = 0.4).

EXERCISE 23.1

1. Interpret the following:
(i) The set A = {0.7 Anu, 0.9 Rasika, 0.2 Sarita, 0.5 Kartik} for the set of honest people.
(ii) The set of B = [0.2 John, 0.4 Charu, 0.9 Medha, 0.8 Gagan] for the set of brave people.

2. What are the constituents of the pair in a fuzzy set.
3. Which of the two fuzzy sets are equal of the following:

A = [0.3 Sonu, 0.8 Renu, 0.9 Paul, 0.5 Kunal]
B = [0.6 Kunal, 0.9 Paul, 0.7 Renu, 0.3 Sonu]
C = [0.8 Renu, 0.9 Paul, 0.3 Sonu, 0.5 Kunal]

4. Write down complement set of A, if
A = [0.3 Krishna, 0.8 Kamal, 0.7 Rajnish, 0.6 Surendra]

5. Write down A B in fuzzy sets.

If fuzzy set = A [0.5 x1,   0.3 x2,   0.7 x3,     0.8 x4]
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Fuzzy set B = [0.6 x1,     0.4 x2,    0.9 x3,    0.1 x4]
6. Write down A B  in fuzzy sets.

If fuzzy set A = [0.4 P,    0.7 Q,    0.2 R,    0.5 S]
fuzzy set    B = [0.8 P,    0.6 Q,    0.1 R,   0.4 S]

7. Find the truth value of the negation of the following prepositions.
(i) The truth value of “A is happy” is 0.8.
(ii) The truth value of “B is rich” is 0.7.

(iii) The truth value of “Kamla is beautiful” is 0.9.
8. Find the truth value of the conjunction of the two prepositions. If the truth value of the statements

“Ranjeet is a good driver” is 0.7.
Latif is a good driver is 0.6.

9. Give the truth value of the disjunction of the two prepositions
If the truth value “Sarla has a good health” is 0.6.
And the truth value “Vijay possesses a good health” is 0.8.

10. Write short notes on “Fuzzy sets”.

ANSWERS
1.  (i) Rasika  is the most honest and Sarita is the least honest.

(ii) Medha is the bravest girl and John is the least.
2. Members and its degree of membership.
3. A = C

4. A  = [0.7 Krishna, 0.2 Kamal, 0.3 Rajnish, 0.4 Surendra]
5. A B  =  [0.6 x1,    0.4 x2,    0.9 x3,    0.8 x4]

6. A B  = [0.4 P,    0.6 Q,    0.1 R,    0.4 S]
7.   (i) The truth value of “A is not happy” is = 1– 0.8 = 0.2.

(ii) The truth value of “B is not rich” is 1 – 0.7 = 0.3.
(iii) The truth value of “Kamla is not beautiful” is 1 – 0.9 = 0.1

8. The truth value of the conjunction, Ranjeet & Latif are good drivers is 0.6 (minimum of the two).
9. The truth value “Sarla has a good health” or “Vijay possesses a good health” is 0.8 (Maximum of the

two).

23.8 APPLICATIONS
All engineering disciplines have already been affected to various degrees by new

methodological possibilities opened by fuzzy sets, fuzzy measures.
(i) Electrical Engineering

By developing fuzzy controllers, electrical engineering was first engineering
discipline within which the utility of fuzzy sets and fuzzy logic was recongised. Fuzzy
image processing, electronic circuits for fuzzy logic or robbotics is also developed in
electrical engineering.

(ii) Civil Engineering
In civil engineering, some initial ideas regarding the application of fuzzy sets emerged
in 1970. There is the uncertainity in applying theoretical solution to civil engineering
projects, designing at large. Designer deals with the uncertainity, in safety which is
required in the construction of bridges; buildings, dams etc. Fuzzy set theory has
already proven useful, consists of problems of assessing or evaluating existing
constructions.
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(iii) Mechanical Engineering
It was realised around mid-1980s that fuzzy set theory is eminently suited for mechani-
cal engineering design.
A wide range of material might be used in mechanical engineering and the member-
ship function is expressed in terms of corrosion, thermal expansion or some other
measurable material property. A combination of several properties including the cost
of different materials, may also be used.

(iv) Industrial Engineering
Two well-developed areas of fuzzy set theory that are directly relevant to industrial
engineering are fuzzy control and fuzzy decision making.
Numerous their applications of fuzzy set theory in industrial engineering have also
been explored to various degrees, Fuzzy set are convenient for estimating the service
life of a given piece of equipment for various conditions under which it operates.
In industrial environment, fuzzy sets are also applied in designing built-in tests for
industrial systems.

(v) Computer Engineering
In mid 1980s, when the utility of fuzzy controllers became increasingly visible, the
need for computer hardware to implement the various operations involved in fuzzy
logic and approximate reasoning has been recognised. All inference rules of a complex
fuzzy inferences engine are processed in parallel. This increases efficiency
tremendously and extends the scope of applicability of fuzzy controllers, and
potentially, other fuzzy expert systems. In digital mode, fuzzy sets are represented as
vectors of numbers (0, 1). Analog fuzzy hardware is characterised by high speed and
good compatibility with sensors, it is thus suitable for complex on-line fuzzy
controllers.

(vi) Reliability theory
The classical theory of reliability is developed in world war II on the following as-
sumptions.
(a) Assumption of dichotomous states. At any given time, the engineering products

is either in functioning state or in failed state.
(b) Probability assumption. The behaviour of the engineering product with respect

to the two critical states (functioning and failed) can adquately be characterised
in terms of probability theory.
An alternative reliability theory, rooted in fuzzy sets and probability.

(c) Assumption of fuzzy sets. At any time the engineering products may be in
functioning states to some degree and in failed state to another degree.

(d) Possibility assumption. The behaviour of the engineering product with respect to
the two critical fuzzy states (fuzzy functioning state and fuzzy failed state) can
adequately be characterised in terms of possibility theory, while second theory
based on fuzzy sets is more meaningful.

(vii) Robotics
The fuzzy set theory that is relevant to robotics include approximate reasoning, fuzzy
controllers and other kind of fuzzy systems, fuzzy pattern recognition and image
processing, fuzzy data bases.

EXERCISE 23.2
1. Write short note on the following:

Fuzzy logic affects many disciplines. (Rajiv Gandhi University, M.P. Summer 2001)
2. Define with example

Fuzzy graph, fuzzy relations. (Ravi Shanker Uni. I semester  2003)
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24
Hankel Transform

24.1 HANKEL TRANSFORM
If Jn (sx) be the Bessel function of the first kind of order n, then the Hankel transform of a

function f (x), ( )0   x  denoted by F (s) is defined as H (s) = f x xJ sx dxn( ). ( )
0

z
Here x J sxn ( )  is the Kernel of the transformation,

24.2 THE FORMULAE USED IN FINDING THE HANKEL TRANSFORMS.
Recurrence relations for Bessel’s functions
1. x J nJ x Jn n n   1 2. x J x J nJn n n  1

3. 2 1 1   J J Jn n n 4. 2 1 1n J x J Jn n n  [ ]

5. 
d
dx

x J x Jn
n

n
n( ) 
  1 6. 

d
dx

x J x Jn
n

n
n( )  1   or x J x J dxn

n
n

n z 1

    From (6) Recurrence relation we can find the definite Integrals

7. x J x dx x J xn
n

n
n

0
1 0




z ( ) [ ( )]  ... (7)

    In (7) we put n = 1 and substitute J (x) by J (sx), we get (8),

8. x J xs dx x
s

J xs0
0

1
0

 z 
L
NM

O
QP( ) ( ) ... (8)

Example 1. Evaluate x J sx dx
a 2

0
1z ( ) .

Solution.    x J sx dx
a 2

0
1z ( )

= 
x
s

J sx a
s

J asa
2

2 0

2

2( ) ( )
L
NMM

O
QPP
 Ans.

Example 2. Evaluate x J sx dx3
0. ( )z

Solution. x J sx dx x x J sx dx
a a3

0
0

2
0

0z z( ) .{ ( )}

1208
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Integrating by parts we get

= x x
s

J ax x x
s

J sx dx
a a2

1
0

1
0

2. ( ) ( ) ( )F
HG

I
KJ

L
NM

O
QP  RST

UVWz        x J x dx x J xn
n

n
n L

NM
O
QPz 1( ) ( )


L
NMM

O
QPP

 RST
UVW

L
NM

O
QP

x
s

J sx x x
s

J sx
a a2

1
0

2 2
0

2( ) . ( )

= a
s

J as
s

x J sx dx
a3

1
2

1
0

2( ) ( ) z
= 

a
s

J as
s

x J sx
a3

1 2
2

2 0

2( ) ( )

= 
a
s

J as a
s

J as
3

1

2

2 2
2( ) ( ) Ans.

Example 3. Evaluate x a x J sx dx
a

( ) ( )2 2
0

0
z

Solution. x a x J sx dx a x x J sx dx
a a

( ) ( ) ( ).{ ( )}2 2
0

0

2 2
0

0
  z z

Integrating by parts we get

= ( ). ( ) ( ) ( )a x x
s

J sx x x
s

J sx dx
a a2 2

1
0

1
0

2L
NM

O
QP  z         x J x dx x J xn

n
n

n L
NM

O
QPz 1( ) ( )

= 0 2 1
0

 z x x
s

J sx dx
a

. ( )

= 
2 2

1
0s

x J sx dx
a

( )z
= 

2 2

2
0

s
x
s

J sx
a

( )
L
NMM

O
QPP

= 
2 22

2 2
0

2

2 2
x
s

J sx a
s

J as
a

( ) ( )
L
NMM

O
QPP



= 2 2 4 22

2 1 0 3 1

2

2 0
a
s as

J as J as a
s

J as a
s

J as( ) ( ) ( ) ( )
L
NM

O
QP   Ans.

24.3 SOME MORE INTEGRALS INVOLVING EXPONENTIAL FUNCTIONS AND
BESSEL’S FUNCTION

1. e J sx dx a sax
 z  
0

0
2 2

1
2( ) ( ) 2. e J sx dx

s
a

s a s
ax

z  
0

1 2 2

1( )

3. xe J sx dx a a sax


z  
0

0
2 2 3 2( ) ( ) / 4. x e J sx dx s a sax


z  

0
1

2 2 3 2( ) ( ) /
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5. e
x

J sx dx a s a
s

axz 
 

0
1

2 2
1
2

( ) ( )

6. J x x
n

x
n

x
n nn

n

n( )
( ) . ( ) . . ( ) ( )

...


 N 
 N  

L
NMM

O
QPP2 1

1
12 1 2 2 4 1 2

2

2

4

2 2

7. J x
x

x1
2

2( ) sin
 8. J x

x
x 1

2

2( ) cos .


LINEARITY PROPERTY

Theorem 1. H {f (x) + g (x)} = H {f (x)} + H {g(x)}

Proof.       H {f (x) + g (x)} = x f x g x J sx dxn{ ( ) ( )} ( )
z0

= x f x J sx dx xg x J sx dxn n( ). ( ) ( ) ( )
0 0

 z z
= H {f (x)} + H {g (x)} Proved.

Theorem 2.         H {f (ax)} = a–2 H 
s
a

F
HG

I
KJ (Similarity Theorem)

Proof. We know that

        H {f (ax)} = x f ax J sx dxn( ) ( )
0

z
= ( ) ( ) ( ).ax f ax J s

a
ax d ax

an
0 2

1z F
HG

I
KJ

= 
1
2 0a

t f t J s
a

t dtn( )
z F

HG
I
KJ (Putting t = ax)

= a H s
a

 F
HG

I
KJ

2 Proved.

Example 4. Find the Hankel transform of the function

    f (x) = 
1 0 0
0 0

  
 

RST
x a n
x a n

,
,

Solution. Let H (s) be the Hankel Transform of f (x).

Solution.     H (s) = f x x J sx dx( ) ( )
0

0

z
= 1 0 0

0
. ( ) ( )x J sx dx a x J sx dx

a

a


zz
= x J sx dx

a
0

0
( )z + 0

= x J sx dx
a

0
0z ( )  = 

x
s

J sx a
s

J as
a

1
0

1( ) ( )L
NM

O
QP  Ans.
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Example 5. Find the Hankel Transform of the function

    f(x) = x x a n
x a n

n , ,
, ,

0 1
0 1

   
  

RS|T|
Solution. Let H (s) be the Hankel Transform of f (x).

   H (s) = f x x J sx dxn( ). ( )
0

z
= x x J sx dx x J sx dxn

n
a

a
n. ( ) . ( )

0
0z z 

= x J sx dxna
n

z 1

0
( )

= x
s

J sx
n

n

a


L
NMM

O
QPP

1

1
0

( )

= 
a

s
J as

n

n





1

1( ) Ans.

Example 6. Find the Hankel Transform

    f (x) = a x , 0 x a n 0
0, x a n 0

2 2   
 

RS|T|
Solution. Let H (s) be the Hankel transform of f (x).

  H (s) = f x x J sx dxn( ). ( )
0

z
= ( ). ( ) . ( )a x x J sx dx x J sx dx

a

a

2 2

0
0 00 z z

= ( ) ( )a x x J sx dx
a 2 2

0
0z

= a x J sx dx x J dx dx
a a2

0
0

3

0
0( ) ( )z z ... (1)

Let us find out the above two integrals

a x J sx dx a x
s

J sx a a
s

J as a
s

J as
a a

2
0

2
1

0 0

2
1

3

1( ) ( ) ( ) ( )
L
NM

O
QP  z ... (2)

    
3 2

3
0 1 220

2( ) ( ) ( )
a a ax J sx dx J as J as

s s
  ... (3)

(See Example 2 on page 1208)
On putting these values from (2) and (3) in (1) we get

    H (s) = 
3 3 2 2

1 1 2 22 2
2 2( ) ( ) ( ) ( )a a a aJ as J as J as J as

s s s s
  

= 
2 2 4 22

2 1 0

2

3 1

2

2 0
a
s as

J as J as a
s

J as a
s

J as( ) ( ) ( ) ( )L
NM

O
QP  

Example 7. Find the Hankel transform of
e
x

ax

2 , n = 1.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



1212 Hankel Transform

Solution. Let H (s) be the Hankel Transform of f (x)

i.e.,     H(s) = 
0

( ). . ( )


 nf x x J sx dx

= 120
. . ( )




axe x J sx dx

x

= 10
. ( )




axe J sx dx

x

= 

1
2 2 2( ) a s a

s
Ans.

Example 8. Find the Hankel Transform of the function

          ,



axe n 0

x
Solution. Let H(s) be the Hankel Transform of this function f (x).

i.e.     H(s) = 
0

( ). ( )


 nf x xJ sx dx

= 
e

x
x J sx dx

axz . ( )0
0

= e J sx dxax
z0 0. ( )

= ( )a s2 2
1

2


Ans.
Example 9. Show that if n = 0, the Hankel transform

        H
sin ax

x

0 if s a
1

a s
if s a

RST
UVW 




 

R
S|
T| 2 2

0

(U.P. III Semester, Summer 2002)

Solution.    
0

( ) ( ). ( )nH s f x dJ sx dx



        H ax

x
ax

x
x J sx dxsin sin . ( )RST

UVW 
z0 0  = sin ( )ax J sx dx0

0

z
= Imaginary part of  z e J sx dxiaxa

0
0 ( )

= Imaginary part of  
R
S|
T|

U
V|
W|



( )i a s2 2 2
1

2

       H
ax

x
sinF

HG
I
KJ = Imaginary part of 



1
2 2s a

Case 1. s > a,    H
ax

x
sinF

HG
I
KJ  = 0

0
( ) ( ). ( )nH s f x dJ sx dx
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Case 2  0 < s < a

    H ax
x

sinF
HG

I
KJ = Imaginary part of 





1
2 2i a s

0  s a

         = Imaginary part of 
i

a s a s2 2 2 2

1





Proved.

Example 10. Find the Hankel transform of the function 
e

x

ax

, n = 1.

Solution. Let H (s) be the Hankel Transform of the function f (x).

i.e.        H (s) = f x x J sx dxn( ). ( )
0

z
    = 

e
x

x J sx dx
axz0 1. ( )( )

    = e J sx dxax
z0 1. ( )

    = 
1

2 2 1 2s
a

s s a


e j / Ans.

Example 11. Find the Hankel Transform of e ax . n = 0.
Solution. Let H (s) be the Hankel transform of f (x),

     H (s) = f x x J x dxn( ) ( )
0

z .

    H (s) = e x J sx dxax
z0 0 ( )

= a

a s( )2 2
3
2

Ans.

Example 12. Find the Hankel transform of e nax , 1 .
Solution. Let H (s) be the Hankel Transform of f (x).

    H s f x x J x dxn( ) ( ). ( )
z0

i.e.    H (s) = 10
. . ( )

  axe x J sx dx

= s a s( )2 2
3

2


Ans.

24.4 INVERSION FORMULA FOR HANKEL TRANSFORM
If H(s) be the Hankel transform of the function f (x) for    x

i.e.    H (s) = f x x J sx dxn( ) ( )


z
Then      f (x) = H s s J sx dsn( ) ( )



z
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is said to be the inversion formula for the Hankel transform H(s) and we may write
     f (x) = H–1 [H (s)]

We know that in Fourier transform

  F (s.t) = f s y e dx dyi sx ty( , ) ( )








zz ...(1)

then f (x, y) = 1
4 2

F s t e ds dti sx ty( , ) ( )








zz

On putting           x = r cos  , y = r sin  , ( cos )s p  , t = p sin  in (1), we get

F (p,  ) = 1
4 2 0 0

2


 


 r dr f r e dir p
z z ( , ) cos( ) ... (2)

and f r( , )



1

4 2 pdp F e dirp( , ) cos( )  


 

0

2

0 zz   ... (3)

On putting f r e in( )    for f r( , )  in (2), we get

          F p( , )  = f r r dr ei n pr( ) { cos( )}

0 0

2
  z z   


d ... (4)

In (4), we put            


  
2

, we get

F p f r r dr e d
i n pr

( , ) ( )
{ ( ) cos( )}

 



 




    z z0
2 2

0

2

= f r r dr e e d
in i n pr( ) .

( ) ( sin )


  


2
0 0

2
z z

= f r r dr e J pr dr
in

n( ) . ( )
( )

0
22

 z 




   J pr e dn
i n pr( ) ( sin ) z1

2 0

2


 



= 2 2
0





e f r r J pr dr

in
n

( )
( ). ( )

 z
= 2 2




e F p
in( )

( )


... (5)

Putting   f r f r e in( , ) ( )    and using (3) and (5), we have

          f r e p dp e F p e din in ipr( ) . ( )
( ) cos( )

    z z



 


 

1
4

22 0
2

0

2

= 1
2 0

2
0

2





  

pF p dp e d
i n pr

( )
{ ( ) cos( )}   z z

Substituting          =  


 
2

,

         f r e pF p dp e din
i n pr

( ) ( )
{ ( cos


  

F
HG

I
KJ

 zz






1

2
2

0

2

0
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= 
1

2 0 0

2





p F p dpe e din i n pr( ) ( sin )

 z z  

      f (r) = 
1

2
2

0
p F p dp J pr dpn( ) . ( )

z
      f (r) = F s s J sr dsn( ) ( )

0

z
or     f (x) = F s s J sx dsn( ). ( )

0

z
This is the required inversion formula.
Example 13. Find H–1 [e–as], when n = 0.

Solution.     f (x) = s H s J sx dsn( ) ( )
0

z
= s e J sx dsas

z0 0 ( )

= a
a x( ) /2 2 3 2

Ans.

Example 14. Find H–1 [s–2 e–as] when n = 1.

Solution.      1 2 2
10 0

[ ] ( ) ( ) ( )as as
nH s e sH s J sx ds s e s J sx ds

      

= 
1

0
1s

e J sxas
z ( ) ds

= ( )a x a
x

2 2
1
2  Ans.

24.5 PARSIVAL’S  THEOREM  FOR  HANKEL  TRANSFORM
Let F (s) and G (s) be the Hankel Transforms of the functions f (x) and g (x). Then

           x f x g x dx s F s G s ds. ( ). ( ) ( ). ( )
0 0

 z z
Proof: On putting the value of G (s) in s F s G s ds

0

z ( ). .( )  we get

s F s G s ds s F s ds g x x J sx dxn. ( ). ( ) . ( ) ( ). ( )
0 0 0

  z z z

= x g x dx s F s J sx dsn( ) ( ). ( )
00

 zz   (On changing the order of integration)

= x g x dx f x( ) . ( )
0

z . Proved

24.6 HANKEL  TRANSFORMATION  OF  THE  DERIVATIVE  OF  A  FUNCTION.

H df
dx

s n
n

H f x n
n

H f x
n

n n
RST

UVW  



L

NM
O
QP 

1
2

1
21 1{ ( )} { ( )}

Proof. If H (s) be the Hankel transformation of order n of f (x)

i.e.       H (s) = x f x J sx dxn( ) ( )
0

z , then the Hankel transformation of 
df
dx

 is
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H df
dx

x df
dx

J sx dx
n

n
RST

UVW 
z0 ( )

On integrating by parts, we get

= [ ( ). ( )] ( ) [ ( )]x f x J sx f x d
dx

x J sx dxn n0 0

 
 z

= 0 1
0

  
z f x J sx xsJ sxn( )[ . ( ) ( )] dx  ..(1)

Assuming that x f x x x( ) ,  0 0and

Putting sx J sx sx J sx nJ sxn n n  ( ) ( ) ( )1  in (1), we get

=   
 

z zf x J sx dx f x xs J sx nJ sx dxn n n( ) ( ) ( ){ ( ) ( )}
0 0

1

= ( ) ( ) ( ) ( ) ( )n f x J sx dx s x f x J sx dxn n 
 

z z1
0 0

1

= ( ) ( ) ( ) ( )n f x J sx dx s H sn n 


z1
0

1

The recurrence relation (4) is
2 1 1n J x x J x x J xn n n( ) ( ) ( )  

On replacing x by sx we get
2 1 1n J x sx J x sx J xn n n( ) ( ) ( )  

2
0 0

1 1
0

n f x J sx dx s x f x J sx dx sx f x J sx dxn n n( ) ( ) ( ) ( ) ( ) ( )
 

 

z z z L
NM

O
QP

= s H s s H sn n 1 1( ) ( )

or f x J sx dx s
n

H s s
n

H sn n n( ) ( ) ( ) ( ) 



z 2 21
0

1 ... (2)

On putting the value of f x J sx dxn( ) ( )
0

z  from (2) in (1) we get

H
df
dx

s
n

n
H s

n
n

H s sH sn n n n
RST

UVW 
L

NM 
 O

QP   
1

2
1

21 1 1( ) ( ) ( )

H
df
dx

s
n

n
H s

n
n

H sn n n
F
HG

I
KJ  




L
NM

O
QP 

1
2

1
21 1( ) ( ) ... (3)

This is the required formula for the Hankel transform of 
df
dx

. Proved

On replacing n by n – 1 in (3), we get

          H df
dx

s n
n

H s n
n

H sn n n 
F
HG

I
KJ  


L
NM 




O
QP1 22 1

2
2 1( )

( )
( )

( ) ...(4)

Putting (n + 1) for n in (3) we get

          H df
dx

s n
n

H s n
n

H sn n n 
F
HG

I
KJ  







L
NM

O
QP1 2

2
2 1 2 1( )

( )
( )

( ) ... (5)
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Hankel Transform 1217

From (3), (4), (5), and replacing 
df
dx

 by 
d f
dx

2

2  we have

          H d f
dx

s n
n

H df
dx

n
n

H df
dxn n n

2

2 1 2
1

2
1

2
F
HG

I
KJ  

 F
HG

I
KJ 

 F
HG

I
KJ

L
NM

O
QP  ... (6)

= 
s n

n
H s n

n
H s n

n
H sn n n

2

2

2

2 24
1
1

2 3
1

1
1












L
NMM

O
QPP ( ) ( ) ( ) ... (7)

Corollary. Putting n = 1, 2, 3, in (3) we get

H df
dx

s H s1 0
F
HG

I
KJ   ( )

H df
dx

s H s H s2 1 3
3
4

1
4

F
HG

I
KJ   F

HG
I
KJ( ) ( )

H df
dx

s H s H s3 2 4
2
3

1
3

F
HG

I
KJ   L

NM
O
QP( ) ( )

Example 15. Find Hankel Transforms of the following

(a) 
d f
dx

2

2 (b) 
d f
dx

1
x

df
dx

2

2  (c) 
d f
dx

1
x

df
dx

n
x

f
2

2

2

2 

Solution.

(a) H d f
dx

d f
dx

x J sx dxn

2

2

2

20

RS|T|
UV|W|


z . ( )  Integrating by parts we get

= 
df
dx

x J sx df
dx

d
dx

x J sx dxn n. ( ) . [ ( )]L
NM

O
QP 
 z
0 0

Putting x f x x x( )   0 0where or

            H d f
dx

df
dx

J sx sx J sx dxn

2

2 0
0

RS|T|
UV|W|
   

z [ ( ) ( )]

             x d f
dx

J sx dx x d f
dx

J sx dxn n

2

20

2

20

 z z. ( ) . ( )

(b) x d f
dx x

df
dx

J sx dx s df
dx

x J sx dxn n

2

20 0

1


L
NMM

O
QPP

  
 z z( ) . ( )

      =     zs f x xJ sx f x d
dx

xJ sx dxn n( ). ( ) ( ) { ( )}0 0

      = s f x d
dx

x J sx dxn( ) { ( )}
0

z 

 x f x x x( )   0 0as or
But Jn (sx) is the solution of Bessel’s differential equation, so it satisfies Bessel’s equation

d
dx

x dy
dx

n
x

xyF
HG

I
KJ  

F
HG

I
KJ 1 0

2

2
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1218 Hankel Transform

d
dx

x dy
dx

J x n
x

x J xn n( ) . ( )L
NM

O
QP  

F
HG

I
KJ 1 0

2

2

On replacing x by sx we get

       
1 2

2

2 2s
d
dx

sx J sx s n
x

x
sn[ ( )]   

F
HG

I
KJ

          
d
dx

x J sx s n
x

x
s

J sxn n[ ( )] ( )   
F
HG

I
KJ

2
2

2

On putting the value of 
d
dx

x J sxn[ ( )]  in (1) we get

d f
dx x

df
dx

x J sx dx s f x s n
x

x
s

J sx dxn n

2

20

2
2

20

1


L
NMM

O
QPP

  
F
HG

I
KJ

 z z. ( ) ( ) ( )

(c) 
d f
dx x

df
dx

n
x

f x J sx dx s f x x J sx dxn n

2

2

2

20

2

0

1
 

L
NMM

O
QPP

 
 z z. ( ) ( ). ( )

     = s H s2 ( ) ... (2)
Deduction I. On putting n = 0 in (2), we get

x d f
dx x

df
dx

J sx dx s H s
2

20
0

2
0

1


F
HG

I
KJ  

z ( ) ( )

Deduction II. On putting n = 1 in (2), we get

x d f
dx x

df
dx

f
x

J sx dx s H s
2

2 20
1

2
1

1
 

F
HG

I
KJ  

z ( ) ( )

or x df
dx

J sx s H s1
0

0( ) ( )
z    where H s x f x J sx dx0

0
0( ) ( ) ( )

z
Example 16. Find H

x
e

x

ax


F
HG

I
KJ

R
S|
T|

U
V|
W|



 when n = 1

Solution. H f
x

x df
dx

J sx dx sH s


RST
UVW   

z 1 0
0

( ) ( )

= 
zs x f x J sx dx( ) ( )

0
0

= 
F
HG

I
KJ

zs x e
x

J sx dx
ax

0
0 ( )

=  
zs e J sx dxax

0
0 ( )

= 




s

a s( )2 2
1
2

Ans.
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Example 17. Evaluate H
t

f x t


RS|T|
UV|W|

2

2 ( , ) .

Solution.   1
2

2



RS|T|
UV|W|t

f x t( , )  = x f
t

J sx dxn



z 2

20
( )

= 


z2

2 0t
x f x t J sx dxn( , ) ( )

= 



2

2t
H f p t{ ( , )} Ans.

Example 18. Find H d e
dx

1
x

d e
dx

2 ax ax( ) ( ) 


RS|T|

UV|W|2 , when n = 0.

Solution. H d e
dx x

d
dx

e
ax

ax
2

2
1( ) ( )




RS|T|
UV|W|

 = 
d e

dx x
d e

dx
x J sx dx

ax ax2

20
0

1( ) ( ) . ( )
 


RS|T|

UV|W|z
= s H s2

0( )

=  





zs e J sx dx s

a s

ax2

0
0

2

2 2
1
2

. ( )

( )

Ans.

Application if Hankel Transform to Boundary problems
Example 19. The magnetic potential V for a circular disc of radius a and strength w,

magnetised parallel to its axis, satisfying Laplace’s equation is equal to 2w  on the disc itself and
vanishes at its exterior points in the plane of the disc. Show that at the points (r, z), Z > 0.

V w e J sr J sa dssz


z2
0

0 1 ( ) ( ) .

Solution. The magnetic potential V satisfies the Laplace’s equation.
2 2

2 2

1V V V
r rr z

  
 

 
 = 0, ..... (1) 0 < r < 

Boundary conditions are
V w r a z   2 0 0 , ,  and V r a z  0 0, , .

Taking Hankel transform of (1), we have








F
HG

I
KJ 




 z z2

20
0

2

20
0

1V
r r

V
r

r J sr dr V
z

r J sr dr( ) . ( )  = 0

 s H V d
dz

H V2
0

2

2 0( ) ( )  = 0 where H0 (V) = V r J sr dr. ( )0
0

z
2 2

0 0( ) ( ) 0D H V s H V   ( ) ( )D s H V2 2
0 0 

Its solution 0 ( ) sz szH V Ae Be  ... (2)

And H V V r J sr dr V r J sr drz z
a

z
a

0 0 0
0

0 0 0( ) ( ) . ( ) ( ) ( )  


 z z
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1220 Hankel Transform

= 2 0 2 1
0

0 0
1 wr J sr dr w

s
d
dr

r J sr dr
a a

( ) ( )z z  b g

= 
2

1
wa
s

J sa( ) ... (3)

Putting the values of H V0 ( )  = 0 and z =   in (2), we get

        0 0  Ae As

so (2) reduces to 0( ) szH V Be ... (4)

On putting the value of H V z( )  from (4) and z = 0 in (3), we get

1
2

( )
wa

J sa
f


 = B

On substituting the value of B in (4), we have

         H V wa
s

J sa e sz
0 1

2( ) ( ) 

By inversion formula, we get

      V r z wa e J sr J as dssz( , ) ( ) ( ) 
z2 0

0
1 Ans.

Example 20. Find the potential V (r, z) of a field due to a flat circular disc of unit radius
with centre at origin and axis along z-axis, satisfying the differential equation













2

2 2
1 0V

r r
V
r

V
z

,

0 0   r z,  and

(i) V V 0  when z  0, 0 1 r

(ii) 



V
z

0  when z  0, r  1 .

Solution. 












2

2

2

2
1 0V

r r
V
r

V
z

... (1)

Taking Hankel Transform of (1), we get









F
HG

I
KJ 





 z z2

20
0

2

2 0
0

1V
r r

V
r

r J sr dr V
z

r J sr dr( ) ( )  = 0

or  




zs H V

z
Vr J sr dr2

0

2

2 0
0

0( ) ( )

or  



s H V
z

H V2
0

2

2 0( ) ( )  = 0

or     
d H V

dz
s H V

2
0
2

2
0 0( ) ( )      or   ( ) ( )D s H v2 2

0  = 0

A.E. 2 2m s  = 0      or      m s 

H V Ae Besz sz
0 ( )    ... (2)
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Hankel Transform 1221

On putting z H v  , ( )0 0 (as V = 0) in (2), we get

0 = Ae As   0 0
On putting A = 0 in (2), we have

H v Be sz
0( )   ... (3)

Applying inversion formula to get V

V r z B s e s J sr dssz( , ) ( ) ( )


z0 0 ... (4)

On putting z = 0 in (4), we have

    V r s B s J sr ds V( , ) ( ) ( )0
0

0 0 
z 0 1 r

On differentiating (4), w.r.t. ‘z’, we obtain

00
( ) ( ) ( )szV B s se s J sr ds

z
                        ... (5)

On putting z = 0 in (5), we get

       
2

00
0

( ) ( ) 0, 1
z

V s B s J sr ds r
z





         ... (6)

On comparing (4) and (5), we get

J sr s
s

ds0
0 2

( ) sin ,
z 


0 1 r  and

J sr s ds0
0

( )sin
z  = 0 r  0

     B s V s
s

( ) sin


2
0

Hence, the required solution is

V r z V e s
s

J sr dssz( , ) sin ( ) 
z2 0

0
0

24.7 FINITE  HANKEL  TRANSMISSION FORMATION

If f (x) be a function satisfying Dirichlet conditions in the interval (0, a) then the

f x
a

H si
J s x
J sia

n i

ni

( ) ( )
( )

[ ( ) ]






2
2 2

0
, where H(si) = x f x J s x dx

a
n i( ) ( )

0z
Where si is a root of the equation J asin ( )  0
The upper limit a is generally converted to 1 by suitable transformation. All the roots of

J sin ( )  are real and distinct.
Particular case
If      n = 0 and a = 1, then   J x J x0 1( ) ( )
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1222 Hankel Transform

The inversion formula reduces to

f x H si
J s x
J s

i

i
( ) ( )

( )
{ ( )}

 2 0

1
2

Where si are the roots of J si0 ( )  = 0
General Form

f x C J s xi n
i

i( ) ( ),





0

0  x a

where    C
a J s a

x f x J s x dxi
n i

a
n i


z2

2
1

2 0( )
( ) ( )

      = 2 2
2

1
2 2 2

H si
a J sia

H si
a J sian n

( )
[ ( )]

( )
[ ( )]




so f x
a

H si
J six
J siai

n

n
( ) ( )

( )
[ ( )]






2
2

0
2

If      a = 1, then

f x H si
J sir
J sii

n

n
( ) ( )

( )
( )






2
0

2

and         J sin ( )  0
24.8 ANOTHER  FORM  OF  HANKEL  TRANSFORM

If origin is not inluded in the interval and f(x) satisfies the Dirichlets condition 0   b x a ,

then          [ ( ) ( ) ( )]H x J x iY xn n n 

           ( ) ( )[ (six) (sia) (sia) (sia)]
b

n n n na
H si x f x J Y Y J dx 

Where Yn  is the Bessel function of order n of second kind and si is the root of the equation

(sia) (si ) (si ) (si ) 0n n n nJ Y b J b Y a 

Inversion formula

2 2

2 2

2si (sia) (si)( ) [ (six) (si ) ( ) ( )]
(si ) (sia)

n
n n n n

n n

J Hf x J Y b J sib Y sia
J b J

 


Example 21. Find f (x) if H {f (x)} = 
c
s

J sa1( ) , s being the root of J s0 ( ) .

Solution. We know the inversion formula.

f x
a

H s
J sx

J san
i

n

n
( ) ( )

( )
[ ( )]






2
2

0
2

      = 2
1

0

0
2a

c
s

J sa J sx
J sa 

( ) ( )
[ ( )]
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Hankel Transform 1223

      = 
2 1 0

1
2a

c
s

J sa J sx
J sa ( ) ( )

[ ( )] [ ( ) ( )]  J x J x0 1

       = 2
2

1a
c
s

J sx
J sa

n ( )
( )

Ans.

Example 22. Show that x J sx dx J as
a
s

a
0

0
1( ) ( ).z  F

HG
I
KJ

Solution. We know that
d
dx

x J x x J xn
n

n
n[ ( )] ( ) 1 ....(1)  Recurrence Relation

Replacing x by sx and putting n = 1 in (1), we get

         
1

1 0s
d
dx

sx J sx x J sx[ ( )] ( )

           
1

1 0s
d
dx

x J sx x J sx[ ( )] ( )

or
1

1 0 0
0s

x J sx x J sx dxa a
[ ( )] ( ) z

        
a
s

J sa x J sx dx
a

1 0
0

( ) ( ) z Proved.

Example 23. Find H x n 0n( ), 1  and x J sxn1( )  is the kernel of the transform.

Solution.        H x x x J s x dxn na
n i( ) . ( ) 
 z1 1

0
1

       = x J s x dxn
n i

a
z 1

0
( )

       = 0

1 [ ( )]
a n

n i
i

d x J s x dx
s dx

      = 0
i

1 [ ( )]an
n ix J s x

s

       = 
1 ( )n

n i
i

a J s a
s Ans.

Example 24. Find H xn[ ] , n > – 1 and x J si xn ( )  is the kernel of the transform.

Solution.        
0

( ) . ( )
an n

n iH x x xJ s x dx 
       = 1

0
( )

a n
n ix J s x dx

       = 
1

10

1 ( )
si

a n
n i

d x J s x dx
dx




 
  

     = 
1

1
0

1 ( )
a

n
n i

i
x J s x

s
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1224 Hankel Transform

     = 
1

1( )
si

n

n
a J si a



 Ans.

Example 25. Show that

  x J sx dx a
s

J sa as
as

J as
a 3

0
0

2

2 0 12 4( ) [ ( ) ( )z   F
HG

I
KJ

Solution. We know that

     
d
dx

x J x x J xn
n

n
n[ ( )] ( ) 1                       .... (1) (Recurrence

Relation)
Replacing x, by sx and putting n = 1 in (1), we get

   
1

1 0s
d
dx

x J sx x J sx[ ( )] ( )

Now x J sx dx x x J sx dx
a a3

0
0

2
0

0
( ) . ( )z z

= x
s

d
dx

x J sx dx
a 2

0
1

1z L
NM

O
QP[ ( )]

Integrating by parts, we get

= x
s

x J sx x
s

x J sx dx
a a2

1
0 0

1
1 2. ( ) . ( )L

NM
O
QP  z

= 
a
s

J sa
s

x J sx dx
a3

1
2

1
0

2( ) ( ) z
= 

a
s

J sa
s s

d
dx

x J sx dx
a3

1
0

2
2

2 1( ) ( ( ) L
NM

O
QPz

= a
s

J sa
s

x J sx
a3

1 2
2

2 0

2( ) ( )

= 
a
s

J sa a
s

J as
3

1

2

2 2
2( ) ( ) .. (2)

We also know that 
2

1 1
n
x

J x J x J xn n n( ) ( ) ( )   (Recurrence Relation) ... (3)

Replacing x by sa and putting n = 1 in (3) we get

            
2

1 0 2sa
J sa J sa J sa( ) ( ) ( ) 

or    J sa
sa

J sa J sa2 1 0
2( ) ( ) ( ) 

Substituting the value of J sa2 ( )  in (2), we get

  x J sx dx a
s

J sa a
s sa

J sa J sa
a

3

0
0

3

1

2

2 1 0
2 2z   L

NM
O
QP( ) ( ) ( ) ( )
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= 
a
s

J sa a
s

J sa a
s

J sa
3

1 3 1

2

2 0
4 2( ) ( ) ( ) 

= a
s

a
s

J sa a
s

J sa
3

3 1

2

2 0
4 2


L
NMM

O
QPP

( ) ( )

= a
s

J as as
as

J as
2

2 0 12 4( ) ( ) F
HG

I
KJ

L
NM

O
QP Proved.

Example 26. Find H 1 x x J sx[ ], ( ) 2
0  being the kernel

Solution.          H x x x J sx dx
a

0
2 2

0
01 1( ) ( ). ( )  z

= x J sx dx x J sx dx
aa

0
3

00
0( ) ( ) zz

= 
x
s

J sx a
s

J sa as
as

J a
a

1
0

2

2 0 12 4( ) [ ( ) ( )]L
NM

O
QP   F

HG
I
KJ

= a
s

J as a
s

J sa as
as

J a1

2

2 0 12 4( ) [ ( ) ( ) ( )]   Ans.

Example 27. Prove that the finite Hankel transform of 
2
m n

x 1 x
1 n m

n 2 m n 1
 

 


( )  is

s J sn m
m

 . ( ) , for 0 x 1  .

Solution. We know that H f x f x x J sx dx
a

n[ ( )] ( ). ( ) z0 .

H
m n

x x
n m

n m n2 1
1

2 1
 

 




L
NMM

O
QPP

( )  = 
2 1

1

0

1 2 1
 

 


z n m

n m n
nm n

x x x J sx dx( ) . ( )

= 
2 1 1

1 2

1

0

1 2 1

0

2 
 



 





N  

F
HG

I
KJz 

n m
n m n

r

r

n r

m n
x x x

r n r
sx dx( ) . ( )

( )

= 
2 1 2( ) 2 1

1 2 0
0

1 ( 1)
.(1 ) .

12


  

  





   
 

r n r
n r m n

m r
r

s x x x dx
m n r n r

[Put x t x dx dt2 2 , ]

= 
1 1

1 2
1

2

2
0

1 1

0

1 1

m n
s

r n r
t t dt

s n r

m r
r

n r m n




N  








     z( ) ( )( ) ( )

= 
1 1

1 2
1

1

2

2
0m n

s
r n r

n r m n
n r m n

r n r

m r
r



N  

  
   








 ( ) t t dt m n
m n

m na
  

z 1 1

0
1( )
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1226 Hankel Transform

= 
2

0

( 1) ( ) ( )
21


 



      


m rr
n m n m

m
r

ss s J s
m r

Proved

Example 28. Find H
J x
Jn
n

n

( )
( )



L
NM

O
QP

.

Solution. We know that J xn ( )  and J sn ( )  are the solutions of Bessel’s equation.

 x d
dx

J x x d
dx

J x x n J xn n n
2

2

2
2 2 2( ) ( ) ( ) ( )       = 0 ... (1)

x d
dx

J sx x d
dx

J sx s x n J sxn n n
2

2

2
2 2 2( ) ( ) ( ) ( )    = 0 ... (2)

Multiplying (1) by J sxn ( ),  (2) by J xn ( )  and subtracting, we get

( ) ( ) ( ) ( ) ( ) ( ) ( )   2 2  RST
UVW

L
NM

O
QPs x J x J sx d

dx
x J x d

dx
J sx J sx d

dx
J xn n n n n n

Integrating with respect to x from 0 to 1 and using J sn ( )  = 0, we get

( ) ( ) ( ) ( ) ( ) ( ) ( )   2 2

0

1

0

1
    zs x J x J sx dx s x J x J sx J sx J xn n n n n nl q

       = s J J s J s Jn n n n[ ( ) ( ) ( ) ( )]   

       = s J J sn n( ) ( )  Jn (s) = 0

or            
J x
J

x J sx dx s
s

J sn

n
n n

( )
( )

. ( ) ( )

 0

1

2 2z 




           H J x
J

s
s

J sn
n

n
n

( )
( )

( )
 

RST
UVW



2 2 Proved.

If n = 0, H J x
J

s
s

J sn
n

n

( )
( )

( )
 

RST
UVW



2 2 0 [ ( ) ( )]  J s J s0 1

       = 




s
s

J s
2 2 1( ) . Ans.

EXERCISE  24.1

1. Prove that 0 2 2 3/2( )
 

  
asaH e

a x
.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Hankel Transform 1227

2. Find the Hankel transform of 1 – x2, taking x J0 (sx) as the kernel, where 0 1 x . Ans. 4
3 1

s
J s( )

3. Find the Hankel transform of 
cosax

x
 taking x J sx0 ( )  as the kernel

Ans. (i) ( )s a2 2
1
2

  if s a . (ii) 0 if s < a.

4. Prove that H ax
a

a
s s an

sin
( )

,/
RST

UVW 
1

2 2 1 2 s a

5. Prove that  H df
dx

s
n

n H f n H fn n n
F
HG

I
KJ     2

1 11 1[( ) ( ) ( ) ( )]

and if n = 1, then H df
dx

s H f x1 0
F
HG

I
KJ   ( ( ))

6. Prove that  H d f
dx x

df
dx

s H df
dx

H df
dxn n n

2

2 1 1
1

2


R
S|
T|

U
V|
W|
 

F
HG

I
KJ 

F
HG

I
KJ

L
NM

O
QP 

When s is a root of J sn( )  = 0

7. Prove that H d f
dx x

df
dx

s H f x0

2

2
2

0
1


R
S|
T|

U
V|
W|
  { ( )}

When s is a root of s J s h J sn n  ( ) ( ) 0

8. Prove that

H d f
dx x

df
dx

n
x

f xn

2

2

2

2
1


F
HG

I
KJ

R
S|
T|

U
V|
W|

( )  =   s f J s s H f xn n( ) ( ) { ( )}1 2 .

9. Find the Hankel Transform of 
d f
dx x

df
dx

2

2
1

  if s is the root of the equation

         J sa Y sb J sb Y san n n n( ) ( ) ( ) ( )  0 .

If f (a) = 0 = f (b), then deduce that H d f
dx x

df
dx0

2

2
1


L
N
MM

O
Q
PP  = s H f x2

0 { ( )}

10. Viscous fluid is contained between two infinitely long concentric circular cylinders of radii a and b.
The inner cylinder is kept at rest and outer cylinder suddenly starts rotating with uniform angular
velocity  . Find the velocity v of the fluid if the equation of motion is

            







 



2

2 2
1 1v

r r
v
r

v
r v

v
t

, a r b t  , 0

v being Kinematic viscosity.

Hint: Take f s f r r B sr dr
a

b
2

1( ) ( ). ( ) , z b a
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1228 Hankel Transform

where B sr J sr Y sa Y sr J sa Y sr1 1 1 1 1 1( ) ( ) ( ) ( ) ( ), ( )   being Bessel’s function of second kind of order one,
and s is a positive root of

J sb Y sa Y sb J sa1 1 1 1( ) ( ) ( ) ( ) .
Multiplying the given equation by B1 (sr) and integrating w.r.t. ‘r’ from a to b with boundary condi-
tions v = b  when r = b
      v = 0 when r = a,      v = 0 when t = 0.

Ans. v b e
J sa J sb

J sa J sb B sr
vp t

p








 
1

2

1
2

1
2 1 1 1

( ) ( )
( ) ( ) ( )
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HANKEL TRANSFORM

No.          Function f(x) n Hankel Transform F (s)

1. f x x x a
x a

n
( ) ,

,


 


RS|T|
0

0 n  1 a
s

J sx
n

n





1

1( )

2. f x
x a

x a
( )

,
,


 


RST
1 0
0 n = 0

a
s

J sx1( )

3. f x a x x a
x a

( ) ,
,


  



RS|T|
2 2 0

0 n = 0
4 2

3 1

2

2 0
a

s
J sx a

s
J sx( ) ( )

4. f x xm( )  1 n > – 1

2 1
2

1
2 2

1
2 2 2

1

m m n

s m nm

 F
HG

I
KJ

 F
HG

I
KJ



5. x e ax2  n = 1 s a a
s

2 2 

6. e ax n = 0 a s a( ) /2 2 3 2 

7. e ax n = 1 s s a( ) /2 2 3 2 

8. x en qx 2 n > – 1
s

q
en

s
q

( )2 1
4

2





9.
e

x

ax

n = 0 ( )s a2 2
1

2


10.         
e

x

ax

n = 1
1

2 2
1
2

s
a

s s a



( )

11.         
sin ax

a
n = 0

0

02 2
1
2

,

( ) ,

s a

a s s a



  

R
S|
T|



12.         
sin ax

a
n = 1

a
s a

s a

s a
( )

,

,
/2 2 1 2

0






R
S|
T|

13.         
sin x

x

2

2 n = 0

sin ,

,

 



R
S|

T|

1 1
1

2
1

s
s

s

14.         
a

a x( ) /2 2 3 2 n = 0 e as

15.         x em ax 2 2 n  1      
s n m

s n

F n m n s
a

n

n
n m
2 2

2 1
2 2

1
41 2 2

2



   
RS|T|

UV|W| 
, ,
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1230 Introduction to Engineering Mathematics – II

25
Hilbert Transform

25.1 INTRODUCTION
Method of separating signals is based on Phase  selecting which use phase shifts between

the pertinent signals to achieve the desired separation.
On shifting the phase angle of all components of a given signal through ± 90° degrees, the

resultling function of time is called as the Hilbert transform of the signal.
The Hilbert transform of f (t) is denoted by Hi {f (t)} and is defined as

Hi {f (t)} 


z1


f s ds
t s
( )

LINEARITY PROPERTY
The Hilbert transform of f (t) is a linear operation.

Inverse of Hilbert Transform
It is defined as

      f t H f t
t s

dsi( ) { ( )}
 



z1
 –

f (t) and Hi {f (t)} make a Hilbert-transform pair.
25.2. ELEMENTARY FUNCTIONS AND THEIR HILBERT TRANSFORM

S.No. Functions Hilbert Transforms

1. cos t H t s
s t

ds ti {cos } sin sin


 


z1


2. sin t H t s
s t

ds ti {sin } sin cos1
 

z 


3.
sin t

t H t
t

s
s

s t
ds t

ti
sin

sin
cosRST

UVW  





z1 1


4.
1

1 2 t H
t

t
s t

ds t
ti

1
1

1
1

1
12

2

2
RST

UVW 








z
5.  (t)

1 1{ ( )}iH t ds
s t t






   

  

6.
1
t H

t
s

s t
dsi

1 1
1

RST
UVW  




z ( )t

1230
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Hilbert Transform 1231

25.3 PROPERTIES
This Hilbert transform differs from the Fourier transform in a way that it operates

exclusively in the time domain. Some important properties are listed below :
1. The amplitude spectrum of a signal f (t) and its Hilbert transform Hi {f (t)} is the same.

1 1 ( ){ ( )} * ( )i
f sH f t f t ds

t s t 



 


2. Inverse Transform :

If Hi {f (t)} is the Hilbert transform of f (t), then the inverse Hilbert transform is given
below.

If Hi {f (t)} = 
1 ( )f s ds

s t


 

f (t) 
{ ( )}1 iH f s ds
s t







3. Orthogonality. A signal f (t) and its Hilbert transform Hi {f (t)} are orthogonal.



z  f t H f t dti( ) { ( )} 0

25.4 APPLICATIONS
1. Phase selectively : Hilbert transform is used to realise phase selectivity in the

generation of a special kind of modulation (single side band modulation)
2. It gives a mathematical basis to represent band-past signals.
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Linear Programming

27.1 INTRODUCTION
It will be of interest to know that linear programming had its origin during the second world
war (1939-45). To fight the war man and material (resources) have to be maintained. There
has to be efficient and safe land, sea and airtransport etc.
The government in England studied the problems during war particularly problems of armed
forces, civil defence and navel strategy etc. The study for the solutions of the above prob-
lems resulted the linear programming.
Linear programming is the most popular mathematical technique which involve the limited
resources in an optimal manner.
The term programming means planning to maximize profit or minimize cost or minimize loss
or minimum use of resources or minimizing the time etc.  Such problems are called optimization
Problem. The term linear means that all equations or inequations involved are linear.
During the world war II Marshall K. Wood worked on the allocation of the resources for the
United States. Methods were developed to allocate resources in such a way as to minimize or
maximize the desired object of the problems. George B. Dantzig was a member of the air force
group who devised the Simplex method in 1947.
Consider the following example:-

TYPE I. MAXIMIZATION PROBLEM
Example 1. A manufacturer produces two types of toys i.e., A and B. Each toy of  type A
requires 4 hours of moulding and two hours of polishing whereas each toy of type B requires
3 hours of moulding 5 hours of polishing. Moulder works for 80 hours in a week and
polisher works for 180 hours in a week. Profit on a toy of type A is Rs. 3 and on a toy of
type B is Rs. 4. In what way the manufacturer allocates his production capacity for the two
types of toys so that he may make the maximum profit per week.
Solution.

Table. The above information can be written in tabular form as follows:
    operation Moulding Polishing Profit

Toy (in hours) (in hours) (in Rs.)
A 4 2 3
B 3 5 4

Time available 80 180
(in hours)

Let x be the number of toys of type A and y be the number of toys of type B produced per week.
Profit on one toy of type A = Rs. 3
Profit on x toys of type A = Rs. 3x

1243
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1244 Linear Programming

Profit on one toy of type B = Rs. 4
Profit on y toys of type B = Rs. 4y

Let Z be the weekly profit.
Then the weekly profit in Rs. is

Z = 3x + 4y
Here, Z is known as objective function which has to maximize/minimize.
One toy of type A on moulding requires = 4 hours.
x toys of type A on moulding requires = 4x hours

One toy of type B on moulding requires = 3 hours
y toys of type B on moulding requires = 3y hours

On moulding total time required = 4x + 3y hours
But moulder works for only 80 hours in a week.
So, 4x + 3y hours cannot exceed 80 hours.
 4 3 80 x y
This is known as first constraint:
One toy of type A on polishing requires = 2 hours
x toys of type A on polishing requires = 2x hours

One toy of type B on polishing requires = 5 hours
y toys of type B on polishing requires = 5y hours

On polishing total time required = 2x + 5y hours
But polisher works for only 180 hours in a week.
So, 2x + 5y hours cannot exceed 180 hours.
 2 5 180 x y
This is known as second constraint.
Since, the number of toys produced is non-negative.
 0x  and 0y
This is known as third constraint.
Under these three constraints (conditions) we have to plan the system to get the maximum profit.
Now, we summarize the above informations in mathematical form as follows :
To maximize Z = 3x + 4y ... (1)
Subject to the constraints :

4 3 80 x y ... (2)

2 5 180 x y ... (3)

0, 0x y  ... (4)
The above mathematical expression is known as mathematical formulation.
From the above inequations we find out the values of x and y.
The values of x and y are substituted in the objective function Z = 3x + 4y.
The maximum/minimum value of the objective function is known as optimal value.

27.2. SOME DEFINITIONS
1. Linear Programming Problem

Here, we have to optimize the linear function Z subject to certain conditions. Such problems
are called linear programming problems. As example 1 on page 1243.

2. Objective functions
Objective function is a linear function of several variables, subject to the conditions that
Z = 3x + 4y in the previous example.
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3. Optimal Value
Optimal value is a maximum or minimum value of a objective function to be calculated in
a linear programming problem.

Example 2. A manufacturer of leather belts  makes three types of belts A, B and C which
are processed on three machines M1 , M2 and M3. Belt A requires 2 hours on machine M1
and 3 hours on machine M3. Belt B requires 3 hours on machine M1, 2 hours on machine
M2 and 2 hours on machine M3 and belt C requires 5 hours on machine M2 and 4 hours
on machine M3. There are 8 hours of time per day available on machine M1, 10 hours of
time per day available on machine M2 and 15 hours of time per day available on machine
M3. The profit gained from belt A is Rs. 3.00 per unit, from belt B is Rs. 5.00 per unit and
from belt C is Rs. 4.00 per unit. Formulate the L.P.P. to maximize the profit.
Solution. The above information is given in the following Table:

1. Table:
     Machines M1 M2 M3 Profit

          Belts (in hours) (in hours) (in hours) (in Rs.)
A 2 0 3 3
B 3 2 2 5
C 0 5 4 4

    Available time 8 10 15
    (in hours)

2. Decision Variables. The decision variables are the number of belt A, belt B and belt C.
Let the number of belt A be x1, the number of belt B be x2, and the number of belt C be x3.

3. Objective Function. To maximise the profit.
Profit on 1 belt A = Rs. 3 Profit on 1 belt B = Rs. 5
Profit on x1 belts = Rs. 3 x1 Profit on x2 belts B = Rs. 5x2
Profit on 1 belt C = Rs. 4
Profit on x3 belts C = Rs. 4x3
Total profit = 3x1 + 5x2 + 4x3

           Z = 3x1 + 5x2 + 4x3
4. Constraint (i) The time available on machine M1 = 8 hours per day.

Time required for 1 belt A on machine M1 = 2 hours per day
Time required for x1 belts A on machine M1 = 2x1 hours per day
Time required for 1 belt B on machine M1 = 3 hours per day
Time required for x2 belts B on machine M1 = 3x2 hours per day

1 22 3 8x x 
Constraint (ii) The time available on machine M2 = 10 hours per day.

Time required for 1 belt B on machine M2 = 2 hours per day
Time required for x2 belts B on machine M2 = 2x2 hours day
Time required for 1 belt C on machine M2 = 5 hours per day
Time required for x3 belts C on machine M2 = 5x3 hours per day

2 32 5 10x x 
Constraint (iii) The time available on machine M3 = 15 hour per day.

Time required for 1 belt A on machine M3 = 3 hours per day
Time required for x1 belts A on machine M3 = 3x1 hours per day
Time required for 1 belt B on machine M3 = 2 hours per day
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Time required for x2 belts B on machine M3 = 2x2 hours per day
Time required for 1 belt C on machine M3 = 4 hours per day
Time required for x3 belts C on machine M3 = 4x3 hours per day

1 2 33 2 4 15x x x  
Constraint (iv). The number of belt A, belt B and belt C are non-negative.

1 0,x  2 0x  and 3 0x  .
5. Mathematical Formulation.

The linear programming problem of the given problem is as follows
To maximise 1 2 33 5 4Z x x x   ...(1)

Subject to the constraints        1 22 3 8x x  ...(2)

      2 32 5 10x x  ...(3)

1 2 33 2 4 15x x x   ...(4)

              1 0x  ,  2 0x  ,  3 0x  ...(5)
Ans.

TYPE II. DIET PROBLEMS
Example 3. A dietician mixes together two kinds of food, say, X and Y in such a way that

the mixture contains at least 6 units of vitamin A, 7 units of vitamin B, 12 units
of vitamin C and 9 units of vitamin D. The vitamin contents of 1 kg of food X
and 1 kg of food Y are given below:

Cost Vitamin Vitamin Vitamin Vitamin
A B C D

Food X 1 1 1 2
Food Y 2 1 3 1
One kg of food X costs Rs. 5, whereas one kg of food Y costs Rs. 8. Formulate
the linear programming problem.

Solution.
1. Decision Variables. Decision Variables are units of food X and food Y. Let food X in the

mixture be x kg. and food Y in the mixture be y kg.
2. Objective Function. To minimise the cost

1 kg of food X costs Rs. 5
x kg of food X costs Rs. 5x

1 kg of food Y costs Rs. 8
y kg of food Y costs Rs. 8y

Total cost of food X and Y = 5x + 8y
   5 8Z x y 

3. Constraint (i) The mixture contains atleast 6 units of vitamin A.
1 kg of food X contains 1 unit of vitamin A.
x kg of food X contains x units of vitamin A.

1 kg of food Y contains 1 unit of vitamin A.
y kg of food Y contains 2y units of vitamin A.

 2 6x y 
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Constraint (ii) The mixture contains atleast 7 units of vitamin B.
1 kg of food X contains 1 unit of vitamin B.
x kg of food X contains x units of vitamin B.

1 kg of food Y contains 1 unit of vitamin B.
y kg of food Y contains y units of vitamin B.

 7x y 
Constraint (iii) The mixture contains at least 12 units of vitamin C.

1 kg of food X contains 1 unit of vitamin C.
x kg of food X contains x units of vitamin C.

1 kg of food Y contains 3 units of vitamin C.
y kg of food Y contains 3y units of vitamin C.

 3 12x y 
Constraint (iv) The mixture contains atleast 9 units of vitamin D.

1 kg of food X contains 2 units of vitamin D.
x kg of food X contains 2x units of vitamin D.

1 kg of food Y contains 1 unit of vitamin D.
y kg of food Y contains y units of vitamin D.

 2 9x y 
Constraint (v). The number of kg of food x and y is non-negative.

      0x 
      0y 

4. Mathematical Formulation. The linear programming problem of the given problem is as
follows

To minimise Z = 5x + 8y ...(1)
Subject to the constraints 2 6x y  ...(2)

7x y  ...(3)
3 12x y  ...(4)

2 9x y  ...(5)
     0x  ,   0y  ...(6)

Ans.

TYPE III. TRANSPORTATION PROBLEM
Example 4. There is a factory located at each of the two places P and Q. From these
locations, a certain commodity is delivered to each of the three depots
situated at A, B, and C. The weekly requirements of the depots are respectively 5, 5 and 4
units of the commodity while the production capacity of the factories at P and Q are 8 and
6 units respectively just sufficient for the requirement of depots. The cost of transportation
per unit is given below:

To Cost (in Rs.)
From A B C

P 16 10 15
Q 10 12 10

How many units should be transported from each factory to each depot in order that the
transportation cost is minimum. Formulate the above as a linear programming problem.
Solution. The given information is shown in the following figure
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1. Decision Variables. Decision vari-
ables are units of commodity to be
transported from the factories to the
depots.
Let the factory at P transport x units
of commodity to depot at A and y units
to depot at B so the remaining units
at P, 8 – (x + y) will be transported to
depot at C.

2. Constraint (i). From Factory at P,
(8 – x – y) units will be transported to
the depot at C.

8 – – 0x y 

    8x y  ... (1)
Constraint (ii). x and y units are
non-negative units.

0x 
... (2)

0y  ... (3)
Constraint (iii).
The remaining requirements (5 – x) units are to be transported from the factory at Q to the
depot at A.
Constraint (iv). 5 0 x  5x ... (4)
The remaining requirements (5 – y) units are to be transported from factory Q to the depot
at B.

5 0 y  5y ... (5)
Constraint (v).
The remaining requirements 4 – (5 – x + 5 – y) units of  commodity will be transported
from the factory at Q to the depot at C.

4 – (5 – 5 – ) 0x y 

 – 4 0x y   4x y  ... (6)
3. Objective function. The transportation cost from the factory at P to the depots at A, B and

C are respectively Rs. 16 x, 10 y and 15 (8 – x – y)
Total cost of transportation from factory at P = 16x + 10y + 15 (8 – x – y).
Similarly, the transportation cost from the factory at Q to the depots at A, B and C are
Rs. 10 (5 – ), 12 (5 – ), 10 ( – 4)x y x y  respectively..

Total transportation cost from factory Q 10 (5 – ) 12 (5 – ) 10 ( – 4)   x y x y
Grand total cost of transportation from both the factories at P and Q to all the depots

16 10 15 (8 – – ) 10 (5 – ) 12 (5 ) 10 ( 4)        Z x y x y x y x y
 – 7 190Z x y 

4. Mathematical Formulation.
To minimize Z = x – 7y + 190
Subject to constraints 8x y 

8
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4x y 
    5x 
   5y 
    0x  ,      0y  . Ans.

EXERCISE 27.1
1. A furniture dealer deals in only two items viz., tables and chairs. He has Rs. 11,000 to invest

and a space to store at most 40 pieces. A table costs him Rs. 500 and a chair Rs. 200. He
can sell a table at a profit of Rs. 50 and a chair at a profit of Rs. 15. Assume that he can
sell all the items that he buys. Formulate this problem as an L.P.P, so that he can maximize
the profit.

Ans. Maximize, Z = 50x + 15y
Subject to the constraints : 40x y  , 500x + 200y   11000, 0x  , 0y 

2. A manufacturer produces nuts and bolts for industrial machinery. It takes 1 hour of work
on machine A and 3 hours on machine B to produce a package of nuts; while it takes 3 hours
on machine A and 1 hour on machine B to produce a package of bolts. He earns a profit
of Rs. 2.50 per package on nuts and Re. 1 per package on bolts. Form a linear programming
problem to maximize his profit, if he operates each machine for at the most 12 hours a day.

Ans. Maximize, Z = 2.5x + y
Subject to the constraints : 3 12x y  , 3 12x y  , 0x  , 0y 

3. A factory produces two products A and B. To manufacture one unit of product A, a machine

has to work for 
1

2
1  hours and a craftsman has to work for 2 hours. To manufacture one unit

of product B, the machine has to work for 3 hours and the craftsman for one hour. In a week,
the factory can avail of 80 hours of machine time and 70 hours of craftsman’s time. The
profits on each unit of A and B are Rs. 10 and Rs. 8 respectively. If the manufacturer can
sell all the items produced, how many of each should be produced to get maximum profit
per week? Formulate the above as a linear programming problem.

Ans. Maximize Z = 10x + 8y
Subject to the constraints : 1.5x + 3y 80 , 2x + y 70 , 0,x  0y 

4. A manufacturer has 3 machines I, II and III. Machines I and II are capable of being operated
for at the most 12 hours whereas machine III must be operated atleast for 5 hours a day.
He produces two items each requiring the use of the three machines.
The number of hours required for producing I unit of each of the items A and B on the three
machines are given below:

Items Number of hours required on the machines
I II III

A 1 2 1
B 2 1 5/4

He makes a profit of Rs. 60 on item A and Rs. 40 on item B. Assuming that he can sell all
that he produces, how many of each item should be produced so as to maximize the profit.
Formulate the above as L.P.P.

Ans. Maximize Z = 60x + 40y

Subject to the constraints : 2 12x y  , 2 12x y  , 
5 5
4

x y  , 0,x  0y 
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5. A factory manufactures two varieties of machines A and B. Each type is made of certain
alloy metal. The factory has only 500 kg of this metal available in a day. To manufacture
machine A, 20 kg of metal is required and 50 kg is required for machine B. Each machine
requires 20 minutes assembly time and the assembly department has only 280 minutes.
Further the machines A and B require 10 minutes and 5 minutes respectively to be painted.
The painting department is restricted not to use more than 200 minutes in a day. The factory
earns profit of Rs. 1000 and Rs. 2000 on machines A and B respectively. Formulate the
above as a linear programming problem to maximize the profit.

Ans. Maximize Z = 1000x + 2000 y
Subject to the constraints : 2 5 50x y  , 14x y  ,  2 40x y  , 0,x    0y 

6. A manufacturer produces two products A and B during a given period of time. Each of these
products require four different operations, viz. Grinding, Turning, Assembly and Testing.
The requirement in hours per unit of manufacturing of the product are given below:

Operation A B
Grinding 1 2
Turning 3 1

Assembly 4 3
Testing 5 4

The available capacities of these operations in hours for the given time period are:
Grinding 30 Turning 60
Assembly 200 Testing 200

Profit on each unit of A is Rs. 3 and Rs. 2 for each unit of B.
Formulate the problem as a linear programming model to maximize the profit assuming that
the firm can sell all the items that it produces at the prevailing market price.

Ans. Maximize, Z = 3x + 2y
Subject to the constraints : 2 30,x y  3 60x y  , 4 3 200x y  ,

5 4 200x y  , 0, 0x y 
7. A toy company manufactures two types of dolls, A and B. Each doll of type B takes twice

as long as to produce as one of type A. If the company produces only type A, it can make
a maximum of 2000 dolls per day. The supply of plastic is sufficient to produce 1,500 dolls
per day. Type B requires a fancy dress which cannot be available for more than 600 per day.
If the company makes profits of Rs. 3 and Rs. 5 per doll, respectively on dolls A and B,
how many of each should be produced per day in order to maximize the profit ?

Ans. Maximize, Z = 3x + 5y
Subject to the constraints : 2000x  , 600y  , 15000x y 

8. A person consumes two types of food, A and B, everyday to obtain 8 units of protein, 12 units
of carbohydrates and 9 units of fat which is his daily minimum requirements. 1 kg of food A
contains 2, 6, 1 units of protein, carbohydrates and fat, respectively. 1 kg of food B contains 1,
1 and 3 units of protein, carbohydrates and fat, respectively. Food A costs Rs. 8 per kg while
food B costs Rs. 5 per kg. Form an LPP to find how many kg of each food should he buy daily
to minimize his cost of food and still meet minimal nutritional requirements.

Ans. Minimize Z = 5x + 8y
Subject to the constraints : 2 8x y  , 6 12x y  , 3 9x y  , 0x  , 0y 
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9. A dietician wishes to mix two types of foods F1 and F2 in such a way that the vitamin
contents of the mixture contains atleast 6 units of vitamin A and 8 units of vitamin B. Food
F1 contains 2 units/kg of vitamin A and 3 units/kg of vitamin B while food F2 contains 3
units/kg of vitamin A and 4 units/kg of vitamin B. Food F1 costs Rs. 50/kg and food F2 costs
Rs. 75/kg. Formulate the problem as a L.P.P. to minimize the cost of mixture.

Ans. Minimize 50 75z x y 

Subject to the constraints : 2 3 6x y  , 3 4 8x y  , 0,x  0y 
10. A producer has 50 and 85 units of labour and capital respectively which he can use to

produce two types of goods X and Y. To produce one unit of X, 1 unit of  labour and 2 units
of capital are required. Similarly, 3 units of labour and 2 units of capital are required to
produce one unit of Y. If X and Y are priced at Rs. 100 and Rs. 150 per unit respectively,
how should the producer use his resources to maximise the total revenue? Formulate L.P.P.

Ans. Maximize Z = 100 x + 150 y
Subject to the constriants : 3 50x y  , 2 2 85x y  , 0,x  0y 

27.3. GRAPHICAL METHOD OF SOLVING LINEAR PROGRAMMING
 PROBLEMS
If a problem contains only two variables then we can solve the given problem by graphical

method. There are two graphical method to solve a linear programming problem.
1. Corner point method
2. Iso-profit or iso-cost method

27.4. CORNER POINT METHOD
This method is based on the fundamental extreme point theorem.
In previous class we have learnt how to formulate a system of linear inequalities involving

two variables x and y mathematically.
Working Rule

Step 1. Formulate the given L.P.P. in mathematical form.
Step 2. The inequations are converted into equations.

In the equation on putting y = 0 we get x-coordinate on x-axis. Similarly, putting x = 0
we get y-coordinate on y-axis. Join these two points to get the graph of the equation.

Step 3. The inequation of a line divides the plane into two half planes, to choose the plane of
the inequation we put x = 0 and y = 0 in the inequation. If origin satisfies the inequation
then the region containing the origin is the region represented by the given inequation.
Otherwise the half plane not containing the origin is the region represented by the given
inequation.

Step 4. The region satisfying all the inequations is the feasible region.
Step 5. The vertices (corner points) of the required region are known as extreme points of the

set of all feasible solutions of the L.P.P.
Step 6. By putting the values of x and y of each corner point in the objective function we get the

values of the objective function at each of the vertices of the feasible region. Out of all
the values of the objective function, we get a point at which the objective function is
optimum (maximum or minimum).
Consider the following example:-
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Example 1. Solve the following L.P.P. graphically :
Maximize, Z = 3x + 2y
Subject to the constraints

2 10x y  ,       3 15x y  ,            0x  ,      0y 
Solution. On changing the given inequations into equations, we have

2 10x y  and 3 15;x y  x = 0 and y = 0

Region Represented by + 2 10x y  .

The line 2 10x y   meets the x-axis at the point A(10, 0) and meets y-axis at the point B
(0, 5). Join AB to obtain the graph of 2 10x y  .
Here, origin (x = 0, y = 0) satisfies the inequation 2 10.x y   So, the half plane containing
the origin represents the solution set of the inequation 2 10.x y 

Region Represented by 3 + 15.x y 

The line 3 15x y   meets the x-axis at the point C (5, 0) and meets the y-axis at the point

D (0, 15). Join CD to obtain the graph of the line 3 15.x y   Here, origin ( 0, 0)x y   satisfies

the inequation 3 15.x y   So, the half plane containing the origin represents the solution set of

the inequation 3 15.x y 

Region represented by 0x   and 0y  .
All the points in the first quadrant satisfies 0x 
and 0y  . So, the first quadrant is the region

represented by 0x   and 0.y 
The shaded region O C E B O represents the
region satisfying all the inequations.
Each point of this region represents a feasible
choice.
Every point of this region is called the feasible
solution of the problem.
Feasible region. The shaded portion determined

by all the constraints including non-negative
constants of a linear programming problem is called
the feasible region. In this example O BEC (shaded)
is the feasible region for the problem.

Feasible Solution. Points within and on the boundary of the feasible region represent fea-
sible solutions of the constraints.

Here, (5, 0), (4, 3) and (0, 5) are the feasible solutions. Any point outside the feasible region
is called an infeasible solution. For example, (0, 15) and (10, 0) are infeasible solutions.

Optimal Solution. Any point in the feasible region that gives the optimal value (maximum
or minimum) is called an optimal solution.

In the feasible region there are infinitely many points which satisfy all the constraints. It is
not possible to check all the points for the maximum value of the objective function.

Z = 3x + 2y

y

D

B (0, 5)

E (4, 3)

3x
+

y
=

15

A (10, 0)
C (5, 0)

x +2y =10

(0, 15)

xO
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For finding out the optimal solution we have to use the following theorems
Theorem 1. The optimal value of objective function must occur at a corner point (vertex)

of the feasible region.
Theorem 2. If the feasible region is bounded then the objective function Z has both maxi-

mum and minimum values on corner points of the bounded region.
In the above example we have following table showing the value of the objective function

at the corner points of the feasible region.

Vertex of the Corresponding
feasible region value of Z = 3x + 2y

(in Rs.)
O (0, 0) 0
C (5, 0) 15
E (4, 3) 18 Maximum
B (0, 5) 10

We observe that the maximum value of the objective function is 18.
This method of solving linear programming problem is called corner point method.
Procedure: The solution of the given L.P.P. should be divided under the following heads:

1. Conversion of inequalities into equations.
2. Draw the graph of the lines and find regions represented by the inequations.
3. Apply Corner point method.

Example 2. Solve the following linear programming problem graphically:
Minimize and maximize Z = x + 2y
subject to 2 100,x y  2 – 0,x y  2 200,x y  0, 0.x y 

Solution. We have,
Minimize and maximize Z = x + 2y ...(1)
Subject to the constraints

2 100x y  ...(2)
2 – 0x y  ...(3)
2 200x y  ...(4)

0, 0x y  ...(5)
1. Conversion.
On converting the above inequations, we have the following equations :

2 100x y 
2 – 0x y 
2 200x y 

0,x  0y 
2. Drawing of graphs.
The region represented by the inequation 2 100x y  .

x + 2y = 100
x 100 0
y 0 50

Points A B
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The line x + 2y = 100 meets the x-axis at
A (100, 0) and meets y-axis at B (0, 50). On joining A,
B we get the graph of the line x + 2y = 100. Since
(0, 0) does not satisfy the inequation 2 100,x y   so
the half plane not containing origin represents the region
of the solution set of the inequation 2 100.x y 

The region represented by 2 – 0.x y 
The line 2x – y = 0 passes through origin.

Point B (0, 50) satisfies the inequation 2 – 0.x y   So
the half plane containing B(0, 50) represents the region
of the solution set of the inequation 2 – 0.x y 

The region represented by 2 200.x y 
2x + y = 200

x 100 0
y 0 200

Point A C
The line 2x + y = 200 meets the x-axis at A (100, 0) and meets y-axis at the point C (0, 200).
On joining the points A and C, we get the graph of the line 2x + y = 200.
Since, (0, 0) satisfies the inequation 2 200,x y   so the half plane containing the origin
represents the region of the solution set of the inequation 2 200.x y 
The region represented by 0x   and 0.y 

0x  and 0y  represent the first quadrant.
The shaded region BCDEB bounded by the inequations (2) to (5) is the feasible region.
3. Corner Point Method. The coordinates of the corner points are B (0, 50), C (0, 200),
D (50, 100), E (20, 40).

Now we evaluate Z = x + 2y at the corner points.

 Corner points of the       Corresponding value of
feasible regions BCDEB Z = x + 2y

B (0, 50) 100
C (0, 200) 400
D (50, 100) 250
E (20, 40) 100

The maximum value of the objective function at C (0, 200) is 400.
The minimum value of the objective function at E (20, 40) is 100.
Example 3. Solve graphically the following linear programming problem to minimise the

cost Z = 3x + 2y subject to the following constraints:
5 10 ;x y  6 ;x y  4 12 ;x y  0, 0.x y 

Solution. We have,
Minimise Z = 3x + 2y ... (1)
Subject to the constraints

5 10x y  ... (2)

Y

B

O

(0, 50)
E (20, 40)

(100, 0)

D (50, 100)

2
+

=
200

x
y

2
–

=
0

x
y x

y+ 2 = 100

C (0, 200)

A
X
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6x y  ... (3)

4 12x y  ... (4)

0, 0x y  ... (5)
1. Conversion.
On converting the above inequations, we have the following equations

5x + y = 10
 x + y = 6

x + 4y = 12
x = 0, y = 0

2. Drawing of graphs.
The region represented by 5 10x + y  .

5x + y = 10
x 2 0
y 0 10

Point A B

On joining the points A and B, we get the graph of the line 5x + y = 10. Put x = 0, y = 0
in 5 10,x y   then 0 0 10   which is false. So half plane not containing origin represents the

region of the solution set of the inequation 5 10.x y 

The region represented by + 6x y 
  x + y = 6

x 6 0
y 0 6

Point C D
On joining the points C and D, we get the graph of the

line x + y = 6.
Put x = 0, y = 0 in 6,x y   then 0 0 6   which is

false. So the half plane not containing origin represents the
region of the solution set of 6.x y 

The region represented by + 4 12x y 
x + 4y = 12

x 12 0
y 0 3

Point E F
On joining the points E and F we get the graph of the line x + 4y = 12.
Put x = 0, y = 0 in 4 12,x y   then 0 0 12  which is false.
So, the half plane not containing origin represents the region of the solution set of the
inequation 4 12.x y 
The region represented by 0x   and  0.y 
The first quadrant is represented by 0x   and 0.y 
The shaded region is represented by the inequations (2) to (5).

O

B(0, 10)

D (0, 6)

F (0, 3)
2

4

42

6

C (6, 0) E (12, 0)

8

86

10

12

10
A (2, 0)

X

Y

12

Y

X

x
+

y
=

6

5x
+

y
=

10

H (1, 5)

G(4, 2)
x + 4y = 12
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3. Corner Point Method. The coordinates of the vertices of the feasible region are
E (12, 0), G (4, 2), H (1, 5) and B (0, 10) respectively.
Note that the coordinates of G and H are obtained by solving the equations x + y = 6,
x + 4y = 12 and x + y = 6, 5x + y = 10 respectively.
The value of the objective function at these points are given in the following table :

Corner Point (x, y) of the Value of the objective function
feasible region EGHB Z = 3x + 2y

E, (12, 0) 3 × 12 + 2 × 0 = 36
G, (4, 2) 3 × 4 + 2 × 2 = 12 + 4 = 16
H, (1, 5) 3 × 1 + 2 × 5 = 3 + 10 = 13
B, (0, 10) 3 × 0 + 2 × 10 = 0 + 20 = 20

Clearly, H is minimum when x = 1, y = 5.
So, x = 1, y = 5 is the optimal solution of the given L.P.P.
Hence, Z is minimum when x = 1 and y = 5 and the minimum value of Z is Rs. 13.

27.5 ISO-PROFIT OR ISO-COST METHOD (MAXIMUM Z)
Let Z = 3x + 2y be the objective function.
On putting any value of Z (say 12) in

Z = 3x + 2y, we have
12 = 3x + 2y ... (1)

and draw the corresponding line of the
objective function. This line is called Iso-profit or
Iso-cost line, since every point on this line will give
the same value of Z (12) (same profit or same cost).
Draw one more line parallel to (1), within the feasible
region and passing through the farthest point from the
origin.

The value of the Z on the second line is the
maximum value of the Z. It passes through one corner
of the shaded region.

Through the point E (2, 8), the line of objective
function is passing. The point E is on the shaded
region and is vertex of the shaded region and the line
Z = 3x + 2y is farthest from the origin. Here the
maximum value of Z = 3 (2) + 2 (8) = 6 + 16 = 22.
So, the maximum value of the objective function is
22.
27.6. ISO-PROFIT OR ISO-COST METHOD (MINIMUM Z)

Let Z = x + 2y
Let us take three different values
of Z; Z1, Z2 and Z3, we get

Z1 = x + 2y ... (1)
Z2 = x + 2y ... (2)
Z3 = x + 2y ... (3)

The above three lines are parallel
to each other having the same slope

1 .
2

  
 

Y

D

B

O

E (2, 8)

A (10, 0)

(5, 0)

3
+

2
=

22

x
y

(0, 15)

3
+
2

=
12

x
y

X

D(0, 6)

2

C(6, 0) B(12, 0)

Z
=x+2y

2

Z =x+2y
1

x+4y=12

x+y=6

8

12

10

Z
=x+2y

3

Y

X

A(0, 3)
E(4, 2)

O
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Out of these three lines, line (2) is the only line which passes through the point E (4, 2) nearest
to the origin and passing through the feasible region.

Thus, Z2 is the minimum value of Z.
 x = 4 and y = 2 gives the optimal solution.

Z2 = 4 + 2(2) = 4 + 4 = 8
So, the minimum value of Z is 8.
Example 4. Solve graphically the following linear programming problem:

maximize Z = 5x + 3y
subject to the constraints :

300x y  ,   2 360x y  ,   0x  ,    0y 
Solution. We have,

Maximum Z = 5x + 3y ... (1)
Subject to the constraints

300x y  ... (2)
2 360x y  ... (3)

0x  and 0y  ... (4)
1. Conversion
On changing the inequations into equations we get the following equations.

x + y = 300 and 2x + y = 360
2. Drawing of graphs
The region represented by + 300x y 

x + y = 300
x 300 0
y 0 300

Point A B
On joining the points A (300, 0) and B (0, 300) we get the graph of the line AB, x + y = 300.
Put x = 0, y = 0 in 300,x y   then 0 0 300,   which is true. The half plane containing

the origin is the region of the solution set of the inequation 300.x y 

The region represented by 2 + 360.x y 
2x + y = 360

x 180 0
y 0 360

Point C D
On joining the points C (180, 0) and D (0, 360) we get the graph of the line 2x + y = 360.
Put x = 0, y = 0 in 2 360,x y   then 0 0 360,   which is true.
The half plane containing the origin is the region of the solution set of the inequation
2 360.x y 

The region represented by 0x   and 0y  .

The first quadrant is represented by 0,x   and 0.y 
The shaded region OABC is the feasible solution bounded by the inequations (2) to (4).
The coordinates of the corner point of the feasible region are A (180, 0), B (60, 240) and
C (0, 300).
On solving the equations (2) and (3), we get the point of intersection B (60, 240).
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3. Iso-profit or Iso-cost Method.
Now, we take a constant value (say 300)
i.e.,
(20 times the l.c.m. of 5 and 3).
On putting Z = 300 in objective function
(1), we get

      300 = 5x + 3y ... (5)
We draw the graph of the line

  5x + 3y = 300.
Draw one more line parallel to (5) which is
the farthest from the origin and has atleast
one point of the feasible region.
The parallel line to (5) passes through the
farthest point B (60, 240) from the origin.
Here, x = 60 and y = 240 will give the
maximum value of Z.
The maximum value of Z is given by Z = 5 (60) + 3 (240) = 300 + 720 = 1020.
Hence, the maximum value of Z is 1020. Ans.
Example 5. Solve graphically the following L.P.P.

Minimize Z = 5x + 4y
subject to the constraints :

80 100 88x y  , 40 30 36x y  ,   0, 0x y 
Solution. We have,

Minimize Z = 5x + 4y ... (1)
Subject to the constraints

80 100 88x y  ... (2)
40 30 36x y  ... (3)
  0, 0x y  ... (4)

1. Conversion
On converting the inequations into equations, we get

80x + 100y = 88
40x + 30y = 36

2. Drawing of graphs
Region represented by 80 +100 88x y  .

80 x + 100 y = 88
x 1.1 0.0
y 0 0.88

Point A B
On joining the points A (1.1, 0) and B (0.0, 0.88) we get the graph of the line
80x + 100y = 88.
Put x = 0, y = 0 in the inequation 80 100 88x y   then 0 0 88,   which is false.
So, the half plane not containing the origin is the region of solution set of the inequation
80 100 88x y 

60

60

120

120

180

180
A (180, 0) D(300, 0)

240

240

360 E (0, 360)

C (0, 300)

x+
y=300

2x
+

y
=

360

300
X

Y

360

Y

XO

100

B (60, 240)
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Region represented by 40 30 36.x + y 
           40x + 30y = 36
x 0.90 0
y 0 1.2

Point C D
On joining the points C (0.90, 0) and D (0, 1.2),

we get the graph of the line 40x + 30y = 36.
Put x = 0, y  = 0 in the inequation

40 30 36,x y   then 0 0 36,   which is false.
So, the half plane not containing the origin is

the region of solution set of the inequation
40 30 36.x y 

The region represented by 0x   and 0y 
The first quadrant is represented by

0x  and 0.y 
The shaded region ACB represents the feasible solution bounded by the inequations (2) to
(4). On solving (2) and (3), we get the point of intersection of the lines (2) and (3), C (0.6, 0.4).
3. Iso-profit or Iso-cost Method
Now, we take a constant = 20
On putting Z = 20 in (1), we get

                 5x + 4y = 20 ... (5)
Now, we draw the graph of the line 5x + 4y = 20.
Draw one more line parallel to (5), which is the nearest from the origin and has at least one
point of the feasible region.
The parallel line to (5) passes through the nearest point C (0.6, 0.4) from the origin. Here,
x = 0.6 and y = 0.4 will give the minimum value of Z. The minimum value of Z is given by

  Z = 5 (0.6) + 4 (0.4) = 3.0 + 1.6 = 4.6 Ans.
Hence, the minimum value of Z is 4.6.
Example 6. Solve graphically the following L.P.P.

Minimize and maximize Z = 5x + 10y
Subject to

2 120,x y  60x y  ,    2 0x y  , 0, 0x y 
Solution. We have,

Minimize and maximize    Z = 5x + 10y ... (1)
Subject to the constraints :

2 120x y  ... (2)
  60x y  ... (3)

2 0x y  ... (4)
0, 0x y  ... (5)

1. Conversion.
On converting the inequations into equations, we get

x + 2y = 120 ... (6)
 x + y = 60 ... (7)
x – 2y = 0 ... (8)

(0, 0.9)
A (1.1, 0)

C
(0
.6,

0.4
)

5x+
4y=

20
2

1

B(0, 1.2)

(0, 0.88)
80x +100y=

88

40x +
30y=

36

1

Y

Y

X
O(0, 0)

X

B(0,
0.88

)
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2. Drawing of graphs.
Region represented by 2 120x + y  .

x + 2y = 120
x 120 0
y 0 60

Point A B
On joining the points A (120, 0) and B (0, 60), we get the graph of line x + 2y = 120.
Put x = 0, y = 0 in the inequation 2 120,x y   then 0 0 120   which is true.
So, the half plane containing the origin is the region of solution set of the inequation

2 120.x y 
Region represented by + 60x y  .

x + y = 60
x 60 0
y 0 60

Point C D
On joining the points C (60, 0) and D (0, 60), we get the graph of the line x + y = 60.
Put x = 0, y = 0 in the inequation 60,x y  then 0 0 60,   which is false.
So, the half plane not containing the origin is the region of solution set of the inequation

60.x y 

Region represented by – 2 0x y  .
x – 2y = 0

x 0 6
y 0 3
Point O F

On joining O (0, 0) and F (6, 3), we get the graph of the line OF i.e., x – 2y = 0.
Put x = 60, y = 0 in the inequation 2 0,x y   then 60 2(0) 0   60 0,  which is true.
So, the half plane containing the point C (60, 0) is the region of the solution set of the
inequation 2 0.x y 

Region represented by 0x   and 0y  .
The first quadrant is represented by 0x   and 0.y 
The shaded region ACDE is the feasible solution bounded by the inequation (2) to (4).

Y

(0, 60)

x
y

+ 2
=120

5
+10

= 600

x
y

x
y+
=60

(40, 20)

5
+10

=200

x
y

O

x–2y
=0

B

E

A
X

(120, 0)
(60, 0)C

(60, 30)

D

(40, 0)

(0, 20)
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On solving (6) and (8), we get the point of intersection E (60, 30). Also, solving (7) and (8),
we get the point of intersection D (40, 20).

The coordinates of the corner point of the feasible region are A (120, 0), C (60, 0),
D (40, 20) and E (60, 30).

3. Iso-profit or Iso-cost Method.
Now, we take a constant value say 200 for Z.
Putting Z = 200 in (1), we get

5x + 10y = 200
We obtain the line 5x + 10y = 200. This line meets x-axis at the point (40, 0) and meets

y-axis at the point (0, 20). Join these points by dotted lines.
Now, drawn a line parallel to 5x + 10y = 200, and passing through the shaded and also

passing through a point to origin i.e., C (60, 0).
Hence, x = 60 and y = 0 give the minimum value of Z.
The minimum value of Z, is given by

Z = 5 (60) + 10 (0) = 300. Ans.
For maximum value. Draw a line parallel to the objective function passing through the

shaded region and a point E (60, 30) farthest from the origin.
Hence, x = 60 and y = 30 gives the maximum value of Z.
The maximum value of Z is given by

Z = 5 (60) + 10 (30)
   = 300 + 300 = 600 Ans.

EXERCISE 27.2
Solve graphically each of the following linear programming problems :

1. Maximize Z = 10x + 6y subject to the constraints
3 12x y  , 2 5 34x y  , 0, 0x y 

Ans. Maximum : Z = 56; x = 2, y = 6
2. Maximize 60 15Z x y   subject to the constraints

50x y  , 3 90x y  , 0, 0x y 
Ans. Maximum : Z = 1650, x = 20, y = 30

3. Minimize Z = 18x + 10y subject to the constraints
4 20x y  , 2 3 30x y  , 0, 0x y 

Ans. Minimum : Z = 134; x = 3, y = 8
4. Maximize Z = 4x + 9y subject to the constraints

5 200x y  , 2 3 134x y  , 0, 0x y 
Ans. Maximum : Z = 382; x = 10, y = 38

5. Maximize Z = 2x + 7y subject to the constraints
12x y  , 2 30x y  , 0x   and 0y 

Ans. No feasible region.
6. Minimize Z = 3x + 5y subject to the constraints

3 3x y  , 2x y  , , 0x y 

Ans. Minimum 
3 17, ,
2 2

Z x y  

7. Maximize Z = 5x + 2y subject to the constraints
2x y  , 3 3 12x y  , , 0x y 

Ans. No. solution
8. Maximize Z = x + 0.75 y subject to the constraints

0x y  , 2 2x y   , , 0x y 
Ans. Maximum Z = 3.5, x = 2, y = 2
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9. Minimize Z = 20x + 10y subject to the constraints
2 40x y  , 3 30x y 

Ans. Minimum Z = 200, x = 10, y = 0
10. Maximize Z = 5x + 7y subject to the constraints

4x y  , 3 8 24x y  , 10 7 35x y  , , 0x y 

Ans. Maximum 
124 8 12, ,

5 5 5
Z x y  

11. Minimize Z = 30 x + 20 y subject to the constraints
8x y  , 4 12x y  , , 0x y 

Ans. Minimum Z = 60, 0, 3x y 
12. Maximize Z = –x + 2y subject to the constraints

3 10x y   , 6x y  , 2x y  ,      , 0x y 

Ans. Maximum 
20 10, 0,
3 3

Z x y  

13. Minimize Z = x – 5y + 20 subject to the constraints
0x y  , 2 2x y   , 3x  , 4y  ,          , 0x y 

Ans. Minimum Z = 4, x = 4, y = 4
14. Maximize Z = 8x + 6y subject to the constraints

2 1000x y  , 800x y  , 400x  ,  700y  ,   , 0x y 
Ans. Maxmium Z = Rs. 5,200, x = 200, y = 600

15. Maximize Z = 2x + y subject to constraints
5 10 50x y  , 1x y  , 4y  , 0x y  ,   0, 0x y 

Ans. Maximum Z = 10 1010; ,
3 3

x y 

16. Minimize and Maximize
Z = 3x + 9y

subject to constraints
3 60x y  , 10x y  , x y , 0, 0x y 

Ans. Minimum Z = 60, x = 5, y = 5
Maximum (Multiple optimal solutions)

Z = 180; x = 15, y = 15 and x = 0, y = 20.
17. Minimize Z = –50x + 20y subject to the constraints

2 5, 3 3x y x y     , 2 3 12; , 0x y x y  
Ans. Minimum Z = –300; x = 6, y = 0.

18. Show the solution zone of the following inequalities on a graph paper:
5 10x y  , 6x y  , 4 12x y  , 0, 0x y 

Ans. Minimum Z =13, x = 1, y = 5
Find x and y for which 3x + 2y is minimum subject to these inequalities. Use graphical
method.

19. Find the minimum value of 3x + 5y subject to the constraints:
2 4,x y   3,x y  2 2,x y  0, 0x y 

Ans. Minimum Z = – 300, x = 6, y = 0
20. Find the maximum value of 2x + y subject to the constraints:

3 6,x y  3 3,x y  3 4 24x y 
3 2 6,x y   5 5,x y  , 0x y 

Ans. Maximum 43 84 15, ,
3 13 3

Z x y   .
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27.7 SOLUTION OF LINEAR PROGRAMMING PROBLEMS
Here we will solve the linear programming problems.
Working Rule

Step 1. Define the problem mathematically.
Step 2. Graph the constraint inequalities by converting them into equations. Find out their

respective intercept on both the axes and connect them by straight lines.
Step 3. Find out the vertices of the feasible region.
Step 4. Find out the value of the objective function on the vertices.
Step 5. Find out the optimum value of the objective function.
Procedure . The solution of the given LPP should be divided under the following heads:

1. Prepare a table of the data given in the problem.
2. Write down the decision variables.
3. Form the objective function.
4. Write down the constraints.
5. Mathematical formulation.
6. Region represented by inequations.
7. Apply Corner point method/Iso-cost or iso-profit method.

Type I. To maximize the objective Function (Z)
Example 1.If a young man rides his motor cycle at 25 km/hour he had to spend Rs. 2 per

km on petrol. If he rides at a faster speed of 40 km/hour, the petrol cost increases
at Rs. 5 per km. He has Rs. 100 to spend on petrol and wishes to find what is
the maximum distance he can travel within one hour, express this as an L.P.P.
and solve it graphically.

Solution.
The above information are given in the following table :

1. Table
S.N. Speeds Consumption of petrol Total amount Spent

(km per hour) per km. on petrol
1. 25 Rs. 2 Rs. 100
2. 40 Rs. 5

2. Decision Variables: Let the number of km riding motorcycle at the speed of 25k/h = x km
Let the number of km riding motor cycle at the speed of 40 km/hour = y km

3. Objective function
To maximize the distance of the journey.

Z = x + y
4. Constraint (i). The young man has Rs. 100 to spend on petrol.

When the speed is 25 km/hour cost of petrol for 1 km = Rs. 2
When the speed is 25 km/hour cost of petrol for x km = Rs. 2 x
When the speed is 40 km/hour cost of petrol for 1 km = Rs. 5
When the speed is 40 km/hour cost of petrol for y km = Rs. 5 y.

 2 5 100x y 

Constraint (ii) Time 
distance

speed


Time taken in the first journey 
25
x
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Time taken in the second journey 
40
y



         Total time given = 1 hour

 1
25 40
x y
 

Constraint (iii) The distances in the journey are non-negative.
 0x   and 0y 

5. Mathematical Formulation
To maximize, Z = x + y ... (1)
Subject to the constraints :

2 5 100x y  ... (2)

1
25 40
x y
   8 5 200x y  ... (3)

0, 0.x y  ... (4)
6. Region represented by the contraints

  2x + 5y = 100 8x + 5y = 200
x 50 0 x 25 0
y 0 20 y 0 40

Point A B Point C D
We have drawn the graphs of the
following lines :
2x + 5y = 100
8x + 5y = 200
x = 0
y = 0
Feasible region is represented by the
shaded portion OCEBO.

7. Corner Point Method
The coordinates of the vertices of
feasible region OCEBO are O (0, 0),

C (25, 0), 
50 40,
3 3

E  
 
 

 and B (0, 20).

The values of the objective function
at these points are as follows :

Corner Point (x, y) of Value of the objective function
the feasible region Z = x + y

OCEBO
C (25, 0) 25 + 0 = 25

50 40,
3 3

E  
 
 

50 40 90 30
3 3 3
   Maximum

B (0, 20) 0 + 20 = 20

Hence, Z = 30 is maximum when 50
3

x   and 40 .
3

y  Ans.

5 

5 0 10 15 20 25 30

C (25, 0) A
( 5

0,
0)

B (0, 20)

D (0, 40)

x
25

= 1+ y
40

x+ y =100

E 50
3

40
3

35 40 45

y = 0
 X

Y

50

10

15

20

25

30

35

40

,
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Example 2. A factory manufactures two types of screws, A and B; each type requiring the
use of two machines, an automatic and a hand operated. It takes 4 minutes on the automatic
and 6 minutes on hand operated machines to manufacture a package of screws A, while it
takes 6 minutes on automatic and 3 minutes on the hand operated machines to manufacture
a package of screws B. Each machine is available for at the most 4 hours on any day. The
manufacturer can sell a package of screws A at a profit of Rs. 7 and screws B at a profit
of Rs 10. Assuming that he can sell all the screws he manufactures, how many packages of
each type should the factory owner produce in a day in order to maximise his profit ?
Determine the maximum profit.
Solution. The given data can be put in the tabular form as :

1. Table:
    Screws   Machine Automatic Operated Hand Operated Profit (in Rs.)

A 4 min 6 min 7
B 6 min 3 min 10

4 hours 4 hours
2. Decision Variables. Let the manufacturer produce x packages of screws A and y packages

of screws B per day respectively.
3. Objective function.

The profit on one package of screws A type = Rs. 7
The profit on x packages of screws A type = Rs. 7x
The profit on one package of screws B type = Rs. 10
The profit on y packages of screws B type = Rs. 10y
 Total profit = Rs. (7x + 10y)
Let Z denotes the maximum profit, then

Z = 7x + 10y
4. Constraint (i). The time available on automatic machine is 4 hours i.e., 240 minutes.

Time required on automatic machine for one package of screws A = 4 min.
Time required on automatic machine for x packages of screws A = 4x min.
Time required on automatic machine for one package of screws B = 6 min.
Time required on automatic machine for y packages of screws B = 6y min.

4 6 240x y 
Constraint (ii). Similarly, the time available on hand operated machine is 4 hours i.e., 240
minutes.
 6 3 240x y 
Constraint (iii). Since the number of packages can not be negative, therefore

0x   and 0.y 
5. Mathematical formulation.

So, the mathematical form of the L.P.P. is as follows :
Maximize Z = 7x + 10y ... (1)
subject to the constraints :

4 6 240x y  ... (2)
6 3 240x y  ... (3)

0, 0x y  ... (4)
6. Region represented by the inequations:

   4x + 6y = 240 6x + 3y = 240
x 60 0 x 40 0
y 0 40 y 0 80

Points A B Points C D
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We draw the lines 4x + 6y = 240 and 6x + 3y = 240 on suitable scales:
(i) Put x = 0, y = 0 in 4 6 240,x y   then

0 0 240,   which is true. We shade the
half plane containing the origin.

(ii) Put x = 0, y = 0 is 6 3 240,x y   then

0 0 240,   which is true. We shade the
half plane containing the origin.
The shaded region is represented by the
inequations (2) to (4).

7. Corner Point Method
The coordinates of the vertices O, C, E
and B of the feasible region OCEBO are O
(0, 0), C (40, 0), E (30, 20) and B (0, 40).
The coordinates of E are obtained by
solving the equations 4x + 6y = 240 and
6x + 3y = 240.
The value of the objective function at these
points are given in the following table.
Corner point (x, y) of the Value of the objective function
feasible region OCEBO. Z = 7x + 10y

C (40, 0) 7(40) + 10(0) = 280
E (30, 20) 7 (30) + 10(20) = 410 Maximum
B (0, 40) 7(0) + 10(40) = 400

Hence, Z is maximum when x = 30 and y = 20 and the maximum value of Z is Rs. 410.
Ans.

Example 3. A dietician wishes to mix together two kinds of food X and Y in such a way that
the mixture contains atleast 10 units of vitamin A, 12 units of vitamin B and
8 units of vitamin C. The vitamin contents of one kg. food is given below:

Food Vitamin A Vitamin B Vitamin C Cost per kg.
X 1 2 3 16
Y 2 2 1 20

Mixture 10 12 8
One kg. of food X costs Rs. 16 and one kg. of food Y costs Rs. 20. Find the least

cost of the mixture which will produce the required diet?
    Solution.

1. Decision variables.
Let x kg. of food X and y kg of food Y are mixed together to make the mixture.

2. Objective function.
It is given that one kg. of food X costs Rs. 16 and one kg. of food Y cost Rs. 20. So, x

kg. of food X and y kg of food Y will cost Rs. (16x + 20y).
 Z = 16x + 20y

3. Constraint (i) Since one kg. of food X contains one unit of vitamin A
 x kg. of food X contains x units of vitamin A

Since one kg. of food Y contains 2 units of vitamin A
 y kg. of food Y contains 2y units of vitamin A

Therefore, the mixture contains x + 2y units of vitamin A. But the mixture should con-
tain at least 10 units of vitamin A.

 2 10x y 

10

10

20

20

30

30

40

40

50

60

70

80

Y

6x+3y=240

4x+6y =240

50
X

Y

O 60

E (30, 20)

B(0, 40)

D(0, 80)

C(40, 0) A(60, 0)

7
X
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Constraint (ii).
Similarly, the mixture of x kg. of food X and y kg. of food Y contains (2x + 2y) units of

vitamin B.
But the mixture should contain at least 12 units of vitamin B.

 2 2 12x y 
Constraint (iii).

x kg. of food X and y kg. of food Y contains 3x + y units of vitamin C.
But the mixture should contain at least 8 units of vitamin C.

 3 8.x y 
Constraint (iv).

Since the quantity of food X and food Y can not be negative:
0x  and 0.y 

4. Mathematical Formulation.
Thus the given L.P.P. is
Minimize Z = 16x + 20y ...(1)
Subject to 2 10x y  ...(2)

2 2 12x y  ...(3)
3 8x y  ...(4)

and 0,x  0y  ...(5)
5. Region Represented by the inequations.

To solve this L.P.P. we draw the lines
          x + 2y = 10 2x + 2y = 12            and  3x + y = 8

x 10 0 x 6 0 x
8
3 0

y 0 5 y 0 6 y 0 8
Points A B Points C D Points E F

The feasible region of the L.P.P. is shaded in the adjoining figure.
6. Corner Point Method

The coordinates of the corner points are A(10, 0), Q (2, 4), P(1, 5) and F (0, 8).
Now, we evaluate Z = 16x + 20y at the
corner points.
Corner points Corresponding

of the values of
feasible Z = 16x + 20y
region

A (10, 0) Z = 16(10) + 20(0) = 160
Q (2, 4) Z = 16(2) + 20(4) = 112
P (1, 5) Z = 16(1) + 20(5) = 116
F (0, 8) Z = 16(0) + 20 (8) = 160

The minimum value of Z = 112 at the point
x = 2, y =  4.
Hence, the least cost of the mixture is Rs. 112. Ans.
Example 4. An oil company requires 13,000, 20,000 and 15,000 barrels of high grade,
medium grade and low grade oil respectively. Refinery P produces 100, 300 and 200 barrels
per day of high, medium and low grade oil respectively whereas the Refinery Q produces

1

1

2

2

3

3

4

4

5

6

7

8

9

B(0, 5)

5O 6 7

C(6, 0)

8 9 10
X

Y

3x
+

y
=

8

2x + 2y=
12E

8
3

0,

x + 2y =10

Q(2, 4)

P(1, 5)
D(0, 6)

F(0, 8)

A (10, 0)
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200, 400 and 100 barrels per day respectively. If P costs Rs. 400 per day and Q costs Rs.
300 per day to operate, how many days should each be run to minimise the cost of require-
ment?
Solution. The given data can be put in the tabular form as:

1. Table:
             Refinery P Q Minimum

Grade Requirement
High grade 100 200 13,000
Medium grade 300 400 20,000
Low grade 200 100 15,000
Cost per day Rs. 400 per Rs. 300 per

day day
2. Decision variables.

Let the refineries A and B should run for x and y days respectively to minimize the total
cost.

3. Objective function.
The cost of refinery P running for one day = Rs. 400.
The cost of refinery P running for x days = Rs. 400x.

The cost of refinery Q running for one day = Rs. 300
The cost of refinery Q running for y days = Rs. 300y

  Total cost = 400x + 300 y
Let Z denote the minimum cost, then

Z = 400x + 300y
4. Constraint (i).

Since the minimum daily requirement of high grade oil is 13,000 barrels, then
100 200 13,000x y 

Constraint (ii).
Since the minimum daily requirement of medium grade oil is 20,000 barrels, then

300 400 20,000x y 
Constraint (iii).
Since, the minimum daily requirement of low grade oil is 15,000 barrels, then

200 100 15,000x y 

Constraint (iv). The number of days can not be negative. i.e., 0,x  0y 
5. Mathematical Formulation.

So, the mathematical formulation of given L.P.P. is as follows:
Minimize Z = 400x + 300y ...(1)
Subject to the constraints:

100 200 13,000x y  ...(2)
300 400 20,000x y  ...(3)
200 100 15,000x y  ...(4)

and          , 0x y  ...(5)
6. Region represented by the inequations.

           100x + 200y = 13,000           300x + 400y = 20,000        200x + 100y = 15,000
x 130 0 x 200/3 0 x 75 0
y 0 65 y 0 50 y 0 150

   Point A B Point C D Point E F

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Linear Programming 1269

We draw the lines 100x + 200y = 13,000;
300x + 400y = 20,000 and
300x + 100y = 15,000 on suitable scales.
Then the shaded region AHF will be
represented by the inequations (2) to (5).

7. Corner Point Method: The coordinates of the
vertices A, H and F of the feasible region AHF

are 
170 110(130, 0), ,

3 3
A H  

 
 

 and F (0, 150)

respectively.
Note that  the coordinates of H are obtained by
solving the equations
100x + 200y = 13000 and 200x + 100y = 15000.
The value of the objective function at these
points are given in the following table:

Corner Point (x, y) of the Value of the objective function
feasible region Z = 400x + 300y

A(130, 0) 400 × 130 + 300(0) = 52000
 
 
 

170 110,
3 3

H 170 110 68000 33000400 300
3 3 3 3

    

101000= = 33666.67
3

(0, 150)F 400 × 0 + 300 × 150 = 45000

Clearly, cost is minimum when 170 ,
3

x  110 .
3

y   Thus, 170 ,
3

x 
110

3
y   is the optimal

solution of the given L.P.P.

Hence, the total cost is minimum when the refinery P will run for 
170

3
x   days and

refinery Q will run for 110
3

y   days and the minimum cost = Rs. 33,666.67. Ans.

TYPE III. TRANSPORTATION PROBLEMS
Example 5. An oil company has two depots A and B with capacities of 7000 l and 4000 l
respectively. The company is to supply oil to three petrol pumps, D, E and F, whose
requirements are 4500 l, 3000 l and 3500 l respectively. The distances (in km) between the
depots and the petrol pumps is given in the following table:

Distance in (km.)
From/To A B

D 7 3
E 6 4
F 3 2

Assuming that the transportation cost of 10 litres of oil is Re. 1 per km, how should the
delivery be scheduled in order that the transportation cost is minimum ? What is the
minimum cost?

20

20

40

40

D(0, 50)

C
(200/3, 0)

A(130, 0)

300x+400y =20,000

100

120

200x
+

100y
=
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140

160

100E(75, 0)
O
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Y
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70
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)
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Solution. The given information can be
exhibited diagrammatically as follows:

1. Table.
2. Decision Variables.

Decision variables are the litres
of oil to be supplied from depots
to the petrol pumps.

Let Depot A supplies x litres of
oil to petrol pump D and y litres
of oil to petrol pump E and

 7000 – ( )x y  litres of oil to

petrol pump F.

Constraint (i). 7000 ( ) 0x y  

               7000x y 

0, 0x y 
Constraint (ii) The remaining requirement (4500 – x) litres of oil is supplied from the depot
B to the petrol pump D,  (3000 – y) litres of oil to petrol pump E and
4000 – [(4500 – x) + (3000 – y)] litres of oil to petrol pump F.

4500 – 0x   4500x 
3000 – 0y   3000y 

4000 – 4500 + x – 3000 + y   0  3500x y 
3. Objective function.

The transportation cost from depot A to the petrol pump D, E and F is Rs. ,
10
x

 Rs. 
6
10

y

and 
3. (7000 – – )

10
Rs x y .

Similarly, the transportation cost from depot B to petrol pump D, E and F is

Rs. 
3

10 (4500 – x), 4. (3000 – )
10

Rs y and 2Rs. [ – 3500].
10

x y

So, the total cost of transportation = Z

  Z
7 6 3 3 4 2Rs. (7000 – – ) (4500 – ) (3000 – ) ( – 3500)
10 10 10 10 10 10

x y x y x y x y        
 


7 3 3 2 6 3 4 2– – – – 2100 1350

10 10 10 10 10 10 10 10
Z x y           

   
+ 1200 – 700

3 1Rs. 3950
10 10

x y    
 

7000 l

4500 l 3500 l

4000 l

Depot B

or

{4
00

0–(4
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0–x)
– (3

00
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4. Mathematical formulation.

Minimize 3 1 3950
10 10

Z x y    ...(1)

Subject to constraints

7000x y       ...(2)

3500x y       ...(3)

    4500x      ...(4)

    3000y      ...(5)

     0x  , 0y      ...(6)

5. Region represented by the inequations.
x + y = 7000 x + y = 3500

x 7000 0 x 3500 0
y 0 7000 y 0 3500

Point A B Point C D
The shaded region C E F G H C represented by the inequations (2) to (7).

6. Corner Point method.
The coordinates of the vertices C, E, F, G, H and C of the feasible region CEFGHC are

C(3500, 0), E(4500, 0), F(4500, 2500), G(4000, 3000) and H (500, 3000) respectively.
The coordinates of F are obtained by solving x + y = 7000 and x = 4500, coordinates of
G are obtained by solving x + y = 7000 and y = 3000, the coordinates of H are obtained
by solving x + y = 3500 and y = 3000. The value of the objective function at these points
are given in the following table.

Corner points (x, y) of the Value of the objective function

feasible region C E F G H C
3 1 3950

10 10
Z x y  

C (3500, 0)
3

10  (3500) + 
1 (0)

10  + 3950 = 5000

E (4500, 0)
3 1(4500) (0) 3950 5300

10 10
  

F (4500, 2500)
3 1(4500) (2500) 3950 5550

10 10
  

G (4000, 3000)
3 1(4000) (3000) 3950 5450

10 10
  

H (500, 3000)
3 1(500) + (3000) + 3950 = 4400

10 10
Hence, Z is minimum when x = 500 and y = 3000; and the minimum value of Z is 4400. Ans.

EXERCISE 27.3
1. A manufacturer produces two items X and Y. X needs two hours on machine A and 2 hours

on machine B. Y needs 3 hours on machine A and 1 hour on machine B. If machine A can
run for a maximum of 12 hours per day and machine B for 8 hours per day and profits from
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X and Y are Rs. 4 and Rs. 5 per item respectively. Formulate the problem as a linear
programming problem and solve it graphically.

Ans. Maximum profit = Rs. 22, Number of item x = 3, Number of item y = 2.
2. An aeroplane can carry a maximum of 200 passengers. A profit of Rs. 400 is made on each

first class ticket and a profit of Rs. 300 is made on each economy class ticket. The airline
reserves at least 20 seats for first class. However, Passengers who prefer to travel by
economy class is four times as compared to passengers to the first class. Determine how
many each type of tickets must be sold in order to maximize the profit for the airline. What
is the maximum profit ?

Ans. Maximum profit = Rs. 64000, First class tickets = 40. Economy class tickets = 160.
3. A manufacturer is trying to decide on the product quantities of two products, tables and

chairs. There are 98 units of material and 80 labour-hours available. Each table requires 7
units of material and 10 labour-hours, while each chair requires 14 units of material and 8
labour-hours per chair. The profit on a table and a chair is Rs. 25 and Rs. 20, respectively.
How many tables and chairs should be produced to have maximum profit?
(Hint: Use Iso-profit method).

Ans. Maximum profit = Rs. 200, Tables = 8, chairs = 0 or Tables = 4, chairs = 5.
4. A firm manufactures two products, X and Y, each requiring the use of three machines M1,

M2 and M3. The time required for each product in hours and total time available in hours
on each machine are as follows:

Machine Product X Product Y Available time
(in hours)

M1 2 1 70
M2 1 1 40
M3 1 3 90

If the profit is Rs. 40 per unit for product X and Rs. 60 per unit for product Y. How many
units of each product should be manufactured to maximize profit ?

Ans. Maximum profit = Rs. 2100, Product x = 15, Product y = 25.
5. A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of

type A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs
of type B require 8 minutes each for cutting and 8 minutes each for assembling. There are
3 hours 20 minutes available for cutting and 4 hours for assembling. The profit is 50 paise
each for type A and 60 paise each for type B souvenirs. How many souvenirs of each type
should the company manufacture in order to maximize the profit ?

Ans. Maximum profit = Rs. 16, Type A = 8, Type B = 20.
6. A factory owner purchases two types of machines, A and B, for his factory. The

requirements and limitations  for the machines are as follows:
Machine Area occupied Labour force for Daily output

by the machine each machine in units
A 1000 sq. m 12 men 60
B 1200 sq. m 8 men 40

He has an area of 9000 sq. m available and 72 skilled men who can operate the machines.
How many machines of each type should he buy to maximize the daily output ?

Ans. Maximum output = 360 units (i) Type A = 6, type B = 0.
(ii) Type A = 4, type B = 3.

7. A manufacturer makes two products. A and B. Product A sells at Rs. 200 each and takes 
1
2

hour to make. Product B sells at Rs. 300 each and takes 1 hour to make. There is a
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permanent order for 14 units of product A and 16 units of product B. A working week
consists of 40 hours and the weekly turnover must not be less than Rs. 10000. If the profit
on each of product A is Rs. 20 and on product B is Rs. 30, then how many of each should
be produced so that the profit is maximum ? Also find the maximum profit.

Ans. Maximum profit = Rs. 1440, Product A = 48, Product B = 16.
8. A toy company manufactures two types of dolls, A and B. Each doll of type B takes twice

as long as to produce one of type A. If the Company produces only type A, it can make a
maximum of 2000 dolls per day. The supply of plastic is sufficient to produce 1500 dolls
per day. Type B requires a fancy dress which cannot be available for more than 600 dolls
per day. If the company makes profits of Rs. 3 and Rs. 5 per doll respectively on dolls A
and B, how many of each should be produced per day in order to maximize the profit ?

Ans. Maximum profit = Rs. 5500, Doll A = 1000, Doll B = 500.
9.  A shopkeeper deals in two items, thermosflasks and air tight containers. A flask costs him

Rs. 120 and an air tight container costs him Rs. 60. He has at the most Rs. 12,000 to invest
and has space to store a maximum of 150 items. The profit on selling a flask in Rs. 20 and
an air tight container is Rs. 15. Assuming that he will be able to sell all things he buys, how
many of each item should he buy to maximise his profit? Solve the problem graphically.

Ans. Maximum profit = Rs. 2500, Flasks = 50, Containers = 100
10. Sudhanshu wants to invest atmost Rs. 12000 in Saving Certificate and Bonds. According to

rules, he has to invest atleast Rs. 2000 in Certificates and atleast Rs. 4000 in Bonds. If the
rates of interest in Certificates and Bonds are 8% and 10% p.a. respectively, how much
money should he invest to earn maximum yearly income. Find also his maximum yearly
income.

Ans. Certificates : Rs. 2000; Bonds: Rs. 10,000; Income: Rs. 1160.
11.  A manufacturer has 3 machines installed in his factory. Machines I and II are capable of

being operated for atmost 12 hours whereas machine III must operate atleast for 5 hours a
day. He produces only two items, each requiring the use of three machines.
The number of hours required for producing 1 unit each of the items on the three machines
is given in the following table:
                           Number of hours required by the machines

Item I II III
A 1 2 1
B 2 1 1.25

He makes a profit of Rs. 6 and Rs. 4 on items A and B respectively. Assuming that he can
sell all that he produces, how many of each item should he produce so as to maximize his
profit ? Determine his maximum profit.

Ans. 4 units of A; 4 units of B; Rs. 40
12. A company manufactures two types of toys–A and B. Toy A requires 4 minutes for cutting

and 8 minutes for assembling and Toy B requires 8 minutes for cutting and 8 minutes for
assembling. There are 3 hours and 20 minutes available in a day for cutting and 4 hours for
assembling. The profit on a piece of toy A is Rs. 50 and that on toy B is Rs. 60. How many
toys of each type should be made daily to have maximum profit? Solve the problem
graphically.

Ans. Maximum profit = Rs. 1700, Toys A = 10, Toys B = 20
13. A firm manufactures two types of products A and B and sells them at a profit of Rs. 5 per

unit of type A and Rs. 3 per unit of type B. Each product is processed on two machines M1
and M2. One unit of type A requires one minute of processing time on M1 and two minutes
of processing time on M2; whereas one unit of type B requires one minute of processing
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time on M1 and one minute on M2. Machines M1 and M2 are respectively available for
atmost 5 hours and 6 hours in a day. Find out how many units of each type of product should
the firm produce a day in order to maximize the profit. Solve the problem graphically.

Ans. Maximum profit = Rs. 1020, 60 units of type A and 240 units of type B.
14. A company manufactures two articles A and B. There are two departments through which

these articles are processed : (i) assembly and (ii) finishing departments. The maximum
capacity of the first department is 60 hours a week and that of the other department is 48
hours a week. The production of each article A requires 4 hours in asembly and 2 hours in
finishing and that of each unit of B requires 2 hours in assembly and 4 hours in finishing.
If the profit is Rs. 6 for each unit of A and Rs. 8 for each unit of B, find the number of
units of A and B to be produced per week in order to have maximum profit.

Ans. Maximum profit = Rs. 120, Articles A = 12, Articles B = 6
15. A factory owner wants to purchase two types of machines, A and B, for his factory. The

machine A requires an area of 1000 m2 and 12 skilled men for running it and its daily output
is 50 units, whereas the machine B requires 1200 m2 area and 8 skilled men, and its daily
output is 40 units. If an area of 7600 m2 and 72 skilled men be available to operate the
machine, how many machines of each type should be bought to maximise the daily output?

Ans. Maximum output = 320, machine A = 4, machine B = 3
16. A manufacturer makes two types of cups, A and B. Three machines are required to manufacture

the cups and the time in minutes required by each is as given below:
Type of Machines

Cup
I II III

A 12 18 6
B 6 0 9

Each machine is available for a maximum period of 6 hours per day. If the profit on each
cup A is 75 paise, and on B it is 50 paise, show that 15 cups of type A and 30 cups of type
B should be manufactured per day to get the maximum profit.

Ans. Maximum profit = Rs. 26.25, Type A = 15, Type B = 30 cups
17. A company manufactures two types of toys A and B. Type A requires 5 minutes each for

cutting and 10 minutes each for assembling. Type B requires 8 minutes each for cutting and
8 minutes each for assembling. There are 3 hours available for cutting and 4 hours available
for assembling in a day. The profit is Rs. 50 each on type A and Rs. 60 each on type B.
How many toys of each type should the company manufacture in a day to maximise the
profit ?

Ans. Maximum profit = Rs. 1500, Type A = 12, Type B = 15.
18. A producer  has 20 and 10 units of labour and capital respectively which he can use to

produce two kinds of goods X and Y. To produce one unit of goods X, 2 units of capital
and 1 unit of labour is required. To produce one unit of goods Y, 3 units of labour and 1
unit of capital is required. If X and Y are priced at Rs. 80 and Rs. 100 per unit respectively,
how should the producer use his resources to maximize the total revenue? Solve the problem
graphically.

Ans. Maximum Revenue: Rs. 760; X : 2 units; Y : 6 units.
19. A farm is engaged in breeding goats. The goats are fed on various products grown on the

farm. They need certain nutrients, named as X, Y and Z. The goats are fed on two products
A and B. One unit of product A contains 36 units of X, 3 units of Y and 20 units of Z, while
one unit of product B contains 6 units of X, 12 units of Y and 10 units of Z. The minimum
requirement of X, Y and Z is 108 units, 36 units and 100 units respectively. Product A costs
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Rs. 20 per unit and product B costs Rs. 40 per unit. How many units of each product must
be taken to minimize the cost?

Ans. Minimum cost = Rs. 160, Product A = 4 units, Product B = 2 units.
20. A company producing soft drinks has a contract which requires that a minimum of 80 units

of chemical A and 60 units of chemical B are to go in each bottle of the drink. The
chemicals are available in a prepared mix from two different suppliers. Supplier X has a mix
of 4 units of A and 2 units of B that costs Rs. 10 and the supplier Y has a mix of 1 unit
of A and 1 unit of B that costs Rs. 4. How many mixes from X and Y should the company
purchase to honour contract requirement and yet minimize the cost?

Ans. Minimum cost = Rs. 260. Mix of type A = 10 units, Mix of type B = 40 units.
21. To maintain one’s health, a person must fulfil minimum daily requirements for the following

three nutrients–calcium, protein and calories. His diet consists of only food items I and II
whose prices and nutrient contents are shown below:

Food I Food II Minimum
Price Rs. 0.60 per unit Re. 1 per unit requirements
Calcium 10 4 20
Protein 5 5 20
Calories 2 6 12

Find the combination of food items so that the cost may be minimum.
Ans. Minimum cost = Rs. 2.80, Food I = 3 units, Food II = 1 unit.

22. A diet for a sick person must contain at least 4000 units of vitamin, 50 units of minerals
and 1400 units of calories. Two foods A and B are available at a cost of Rs. 4 and Rs. 3
per unit respectively. If one unit of A contains 200 units of vitamin, 1 unit of mineral and
40 units of calories and one unit of food B contains 100 units of vitamin, 2 units of minerals
and 40 units of calories, find what combination of foods should be used to have the least
cost?

Ans. Minimum cost = Rs. 110, Food A = 5 units, Food B = 30 units.
23. A dietician wishes to mix two types of food in such a way that the vitamin contents of the

mixture contain at least 8 units of vitamin A and 10 units of vitamin C. Food 1 contains 2
units/ kg of vitamin A and 1 unit /kg of vitamin C while food II contains I unit/kg of vitamin
A and 2 units/kg of vitamin C. It costs Rs. 5 per kg to purchase food I and Rs. 7 per kg
to purchase food II. Determine the minium cost of such a mixture.

Ans. Minimum cost = Rs. 38, Food I = 2 kg, Food II = 4 kg.
24. A medical company has factories at two places, A and B. From these places, supply is made

to each of its three agencies situated at P, Q and R. The monthly requirements of the
agencies are, respectively, 40, 40 and 50 packets of the medicines, while the production
capacity of factories, A and B are 60 and 70 packets, respectively. The transportation cost
per packet from the factories to the agencies are given below:

Transportation cost per packet (in Rs.)
        From A B

        To
P 5 4
Q 4 2
R 3 5
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How many packets from each factory be transported to each agency so that the cost of
transportation is minimum? Also find the minimum cost.

Ans. Minimum cost = Rs. 400, From A : 10 packets, 0 packets, 50 packets to P, Q, R,
respectively, From B : 30 packets, 40 packets and 0 packets to P, Q, R, respectively.

25. Two godowns A and B have grain storage capacity of 100 quintals and 50 quintals respectively.
They supply to three ration shopes D, E and F whose requirements are 60, 50 and 40
quintals respectively. The cost of transportation per quital from the godown to the shops are
given in the following table:

From Godown Godown
        To A B

D 6.00 4.00
E 3.00 2.00
F 2.50 3.00

How should the supplies we transported in order that the transportation cost is minimum.
Ans. From A : 10 quintals, 50 quintals and 40 quintals to D, E and F respectively

From B : 50 quintals, 0 quintal and 0 quintal to D, E and F respectively.
26. There is a factory located at each of the two places P and Q. From these locations, a certain

commodity is delivered to each of these depots situated at A, B and C. The weekly
requirements of the depots are respectively 5, 5 and 4 units of the commodity while the
production capacity of the factories at P and Q are respectively 8 and 6 units. The cost of
transportation per unit is given below:

To Cost (in Rs.)
       From A B C

P 16 10 15
Q 10 12 10

How many units should be transported from each factory to each depot in order that the
transportation cost is minimum. Formulate the above L.P.P mathematically and then solve
it.

Ans. Minimum cost = Rs. 155,
From P : 0, 5, 3 units to depots at A, B, C respectively

From Q : 5, 0 and 1 units to depots at A, B and C respectively.
27. A brick manufacturer has two depots, A and B with stock of 30,000 and 20,000 bricks

respectively. He receives orders from three builders P, Q and R for 15,000, 20,000 and
15,000 bricks respectively. The cost in Rs. transporting 1000 bricks to the builders from the
depots are given below:

From
        To P Q R

A 40 20 30
B 20 60 40

How should the manufacturer fulfil the orders so as to keep the cost of transportation
minimum.

Ans. Minimum cost = Rs. 1200
From A : 0, 20 and 10 thousand bricks to builders P, Q and R.
From B : 15, 0 and 5 thousand bricks to builders P, Q and R.
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28. A firm manufacturers headache pills in two sizes A and B. Size A contains 2 grains of
aspirin 5 grains of bicarbonate and 1 grain of codeine; size B contains 1 grain of aspirin,
8 grains of bicarbonate and 66 grains of codeine. It has been found by users that it requires
at least 12 grains of aspirin, 7.4 grains of bicarbonate and 24 grains of codeine for providing
immediate relief. Determine graphically the least number of pills a patient should have to
get immediate relief. Determine also the quantity of codeine consumed by patient.

Ans. 2 pills of size A, 8 pills of size B; Quantity of codeine = 50 grains
29. A manufacturer of patient medicines is preparing a production plan on medicines A and B.

There are sufficient raw materials available to make 20,000 bottles of A and 40,000 bottles
of B, but there are only 45000 bottles into which either of the medicines can be bottled.
Further, it takes 3 hours to prepare enough material to fill 1000 bottles of A, it takes 1 hour
to prepare enough material to fill 1000 bottles of B and there are 66 hours available for this
operation. The profit is Rs. 8 per bottle for A and Rs. 7 per bottle for B. How should the
manufacturer schedule his production in order to maximize his profit?

Ans. Maximum profit = Rs. 3,25,500, 10,500 bottles of A, 34,500 bottles of B.
30. A dietician has to develop a special diet using two foods P and Q. Each packet of food P

contains 12 units of calcium, 4 units of iron, 6 units of cholesterol and 6 units of vitamin
A, while each packet of the same quantity of food Q contains 3 units of calcium, 20 units
of iron, 4 units of cholesterol, and 3 units of vitamin A. The diet requires atleast 240 units
of calcium, atleast 460 units of iron and at most 300 units of cholesterol. How many packets
of each food should be used to minimize the amount of vitamin A in the diet? What is the
minimum amount of vitamin A?

Ans. Minimum amount of vitamin A = 150 units;
15 packets of food P

20 packets of food Q.
31. A manufacturing company makes two models A and B of a product. Each piece of Model

A requires 9 labour hours for fabricating and 1 labour hour for finishing while each piece
of Model B requires 12 labour hours for fabricating and 3 labour hours for finishing. For
fabricating and finishing, the maximum labour hours available are 180 and 30 per week
respectively. The company makes a profit of Rs. 8000 on each piece of model A and Rs.
12000 on each piece of Model B. How many pieces of Model A and Model B should be
manufactured per week to realise maximum profit? What is the maximum profit for week?

Ans. Maximum profit = Rs. 1,68,000; 12 pieces of model A and 6 pieces of model B.

27.8 SIMPLEX METHOD
We have learnt to solve linear programming problems involving two variables x and y

graphically. A linear programming problem involving more than two variables can be solved by
algebraic method. This algebraic method is known as Simplex Method.

This method consists of a number of steps. In first step we get the value of Z which is equal
to the value at one vertex by graphical solution. In the next step the value of Z will be better than
previous one and is equal to at the next adjoining vertex and so on. Since, the number of vertices
is finite, the Simplex Method also consists of finite number of steps to get the optimal solution.
Consider the following problem:

Maximize Z = 4x + 5y ...(1)
Subject to the constraints:

  2 3 12x y  ...(2)
   2 8x y  ...(3)

0,x    0y  ...(4)
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Inequalities (1) and (2) are converted into equations by adding non negative quantities s1 and
s2 is known as slack variables.

The original variables are decision variables.
Z = 4x + 5y + 0  s1 + 0  s2 = 0     – 4x – 5y – 0s1 – 0s2 + Z = 0 ...(5)

       2x + 3y + s1 = 12 ...(6)
        2x + y + s2 = 8 ...(7)

where, 0, 0,x y    1 0s  and 2 0.s 
Variables s1 and s2 each occur in exactly one equation and they have a coefficient + 1. We

call these basic variables.
Basic variables are those variables that have a coefficient of + 1 in only one equation and

coefficient of zero in the remaining equations.
The remaining variables are called non-basic variables (implicit variables).
Note: In inequalities sometimes some non-negative variables are subtracted to form equations.

These variables are called Surplus Variables.
Initial Basic Feasible solution:
On putting decision variables x and y equal to zero in (5), (6) and (7), we get initial basic

feasible solution.
0 + 0 + s1 = 12      s1 = 12
0 + 0 + s2 = 8  s2 = 8

s1 = 12 and s2 = 8
and the objective function Z = 4x + 5y = 0 + 0 = 0  Z = 0

This information is given in the following table:
Coefficients of

x y s1 s2 Z Value
Z – 4 – 5 0 0 1 0
s1 2 3 1 0 0 12 ... (8)
s2 2 1 0 1 0 8

Step 2. If the Z row of table (8) contains no negative entries of column x and y we get an
optimal solution otherwise not.

To increase the value of Z there are two possibilities
 (i) Put x = 0 and y greater than zero in (1) or first row of table (8).
(ii) Put y = 0 and x greater than zero in (1) or first row of (8).
To determine which of these alternatives (i) and (ii) is better
 (i) Put x = 0 and y = 1 in (1) or first row of (8), we get z = 5.
(ii) Put y = 0 and x = 1 in (1) or first row of (8), we get z = 4.
Thus, the better alternative is to keep x fixed at x = 0 and increase y.
The variable (y) to be increased is called the entering variable. The entering variable is

marked with an arrow at the top of the table.
The coefficient of entering variable in the first row of table (8) is the most negative.
Step 3. To increase Z the value of entering variable (y) should be positive it means y

becomes basic variable (since basic variables are positive and non basic variables are zero). Now,
a basic variables (s1 or s2) is to be converted as non-basic variable, and is called Departing
Variable.
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Selection of departing variable.
(i) In the second row, we find the ratio of the value in the last column and the coefficient

of the entering variable i.e.
12 4
3


(ii) Similarly, In the third row again we find the ratio of the last value and coefficient of

the entering variable; i.e. 
8 8.
1


Here, the ratio are 4 and 8. Since, 4 is smaller non-negative  of these ratios and is in the
s1-row, therefore the departing variable is s1.
The departing variable is marked with an arrow on the left side of the table.

 Entering Variable
x y s1 s2 Z Value Ratio

Z – 4 – 5 0 0 1 0

Departing s1 2 3 1 0 0 12
12 4
3
 ... (9)

variable

s2 2 1 0 1 0 8
8 8
1


The new basic variables are Z, y and s2 and non-basic variables are x and s1.
The intersection of column of the entering variable and the row of departing variable gives
the pivot entry. Here the pivot entry is 3 which is placed in the box.
The pivot entry is to be converted into 1.

Here, we have to multiply the departing variable-row by 
1
3  to get 1 at the pivot entry..

x y s1 s2 Z Value
Z – 4 – 5 0 0 1 0

y
2
3 1

1
3 0 0 4 ... (10)

2s 2 1 0 1 0 8

We multiply the second row by 5 and add to the first row to get 0 above the pivot entry.
Again we subtract the second row from the third row to get 0 below the pivot entery.

x y s1 s2 Z Value

Z
2–
3 0

5
3 0 1 20

y
2
3 1

1
3 0 0 4 ... (11)

s2
4
3 0

1–
3 1 0 4

Since, in the first row (Z row) there is a negative entry in the x-column. So, we have not

obtained optimal solution. Since the coefficient of x in the first row is 
2–
3  the most negative.

Therefore, x is the new Entering Variable.
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The ratio of y in the second row is 
4 6.2
3



In the third row the ratio is 4 34
3

 .

Here, 3 is the smallest non-negative ratio in the s2-row. Thus, s2is the new departing variable.
Entering Variable

x y s1 s2 z Ratio

Z – 2
3 0

5
3 0 1 20

y
2
3 1

1
3 0 0 4

4 6
2
3


...(12)

Departing s2
4
3 0

1–
3 1 0 4

4 3
4
3



variable

Now third row is multiplied by 
3
4

 to get 1 at the pivotal entry of x – Column.

x y s1 s2 z Value

Z
2–
3 0

5
3 0 1 20

y
2
3 1

1
3 0 0 4      ... (13)

s2 1 0
1–
4

3
4

0 3

Multiplying third row by 
2
3  and adding to the first row to get zero in the x-column. Again

we multiply the third row by 
2–
3  and add to second row to get zero in the x-column.

x y s1 s2 Z Value

Z 0 0
3
2

1
2

1 22 ... (14)

y 0 1
1
2

1–
2

0 2

x 1 0
1–
4

3
4

0 3

Since, Z row of table (14) has no negative entry in the columns of variables. Therefore, this
is the case of optimal solution. From the last column of table (14), we have

x = 3,     y = 2,      s1 = 0, s2 = 0
and the maximum value of Z = 22.
Working Rule of Simplex Method
Step 1. Construct the initial table by putting decision variables equal to zero.
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Step 2. If we get optimal solution we stop, otherwise proceed to step 3.
Step 3. Find the Entering Variable whose coefficient in the Z-row is most negative.
Step 4. Find the Departing Variable i.e. the basic variable in the row where the quotient is

as small as possible, yet non-negative.
Step 5. Find the pivotal entry at the intersection of the entering variable column and the

departing variable-row.
Step 6. Use pivotal element for elemination (to get 0) and construct new table and return

step 2.
Example 1. Using Simplex method solve the L.P.P.
Maximize Z = 8x + 6y ...(1)
subject to 8 4 18x y  ...(2)

   2x  ...(3)
   1.25y  ...(4)

, 0.x y 
Solution. Inequalities (2), (3) and (4) are converted into equations by adding non-negative

quantities s1, s2, s3.
– 8x – 6y + 0s1 + 0s2 + 0s3 + Z = 0
8x + 4y + s1 = 18 ...(5)
x + s2 = 2 ...(6)

y + s3 = 1.25 ...(7)
where , 0,x y  1 0,s  2 0s  , 3 0.s 
If s1, s2 and s3 = 0 the optimal solution is

x = 2, y = 1.25
On putting decision variables x and y equal to zero in (5), (6) and (7), we get

s1= 18,   s2 = 2  and  s3 = 1.25  and   Z = 0.
This is initial basic feasible solution.
Step 1. The above information is given in the following table.

Coefficients of
x y s1 s2 s3 Z Value

Z – 8 – 6 0 0 0 1 0
s1 8 4 1 0 0 0 18 ... (8)
s2 1 0 0 1 0 0 2
s3 0 1 0 0 1 0 1.25

Step 2. The coefficient of x and y in the Z-row are – 8 and – 6. Since the coefficient (–8)
of x is the most negative. Therefore, x is Entering variable.

Step 3. Selection of Departing variable
In the second row find the ratio of the value of the last row and the coefficient

(–8) of the entering  variable i.e. 18 9 .
8 4


In the third row 2 2.
1


Thus the smallest non-negative ratio is 2 in s2 – row. Therefore, the departing element is s2.
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Step 4.
       Entering variable

x y s1 s2 s3 Z Value Ratio
Z – 8 – 6 0 0 0 1 0

s1 8 4 1 0 0 0 18
18 9
8 4


Departing s2 1 0 0 1 0 0 2
2 2
1
 ... (9)

variable
s3 0 1 0 0 1 0 1.25

Step 5.
On multiplying the third row by 8 and adding to the first row we get 0 in the x-column.
On multiplying the third row by – 8 and adding to second row we get 0, in the x-column.

x y s1 s2 s3 Z Value

Z 0 – 6 0 8 0 1 16
s1 0 4 1 – 8 0 0 2 ... (10)
x 1 0 0 1 0 0 2
s3 0 1 0 0 1 0 1.25

Since, the coefficient of y is (– 6) most negative. So the entering variable is y.

The ratio in the second row = 
2 1
4 2
 = 0.5

The ratio in the the fourth row = 
1.25 1.25

1


The smallest ratio is 
1
2

 in the s1-row. So, the departing element is s1.

Entering variable
x y s1 s2 s3 Z Value Ratio

Z 0 – 6 0 8 0 1 16

Departing s1 0 4 1 – 8 0 0 2
2 1
4 2
 ...(11)

Variable x 1 0 0 1 0 0 2

s3 0 1 0 0 1 0 1.25
1.25 1.25

1


Dividing second row by 4, we get
x y s1 s2 s3 Z Value

Z 0 – 6 0 8 0 1 16

y 0 1
1
4

– 2 0 0
1
2

... (12)

x 1 0 0 1 0 0 2
s3 0 1 0 0 1 0 1.25
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Multiplying second row by 6 and adding to the first row we get 0 in the y-column.
Subtracting second row from the fourth row we get 0 in the y-column.

x y s1 s2 s3 Z Value

Z 0 0
3
2

– 4 0 1 19

y 0 1
1
4

– 2 0 0
1
2

  ... (13)

x 1 0 0 1 0 0 2

s3 0 0
1–
4

2 1 0 0.75

Here, the coefficient of s2 is – 4 most negative.   So, s2 is entering variable.

The ratio in the second row = 
1 1 1– –
2 2 4
   
 

The ratio in the third row 
2 2
1

 

The ratio in the fourth row = 
0.75 3

2 8


Thus, 
3
8  is the smallest non-negative ratio. Therefore, the departing variable is s3.

Entering variable
x y s1 s2 s3 Z Value Ratio

Z 0 0
3
2

– 4 0 1 19

y 0 1
1
4

– 2 0 0
1
2

1
12 –

–2 4


x 1 0 0 1 0 0 2
2 2
1
 ...(14)

Departing s3 0 0
1–
4

2 1 0 0.75
0.75 3

2 8


variable

On multiplying the fourth row by 
1
2

 we get 1 in the pivot entry..

x y s1 s2 s3 Z Value

Z 0 0
3
2

– 4 0 1 19

y 0 1
1
4

– 2 0 0
1
2

... (15)

x 1 0 0 1 0 0 2

s2 0 0
1–
8 1

1
2

0 .375
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On multiplying fourth row by 4 and adding to first row we get 0 in s1 column.
On multiplying fourth row by 2 and adding to second row we get 0 in the column of s2.
On subtracting fourth row from third row, we get 0 in x-row

x y s1 s2 s3 Z Value
Z 0 0 1 0 2 1 20.5

y 0 1 0 0 1 0
5
4

x 1 0
1
8 0

1
2

 0 1.625 ... (16)

s2 0 0
1
8

 1
1
2

0 0.375

Since, Z row of table (16) has non-negative entries in the column of variables.
Therefore, this is the case of optimal solution. From the last column of table (16), we have

x = 1.625,
5
4

y 

And the maximum value of Z = 20.5
Example 2. Using Simplex method solve the following L.P.P. Ans.

Maximize Z = x1 + x2 + 3x3 ...(1)
Subject to 3x1 + 2x2 + x3   3 ...(2)

2x1 + x2 + 2x3   2 ...(3)
x1, x2, x3  0. ...(4)

Solution. Inequalities (2), (3) and (4) are converted into equations by adding non-negative
variables s1, s2.

Z = x1  +  x2 + 3x3 + 0s1 + 0s2   –x1   –  x2 – 3x3 + 0s1 + 0s2 + Z = 0     ...(5)
   3x1   +  2x2 + x3 +  s1            = 3 ...(6)
   2x1   +   x2 + 2x3 +         s2    = 0 ...(7)

where,   x1,  0,   2 0x  ,     1 0s  ,    2 0s  .
On putting decision variables x1, x2, x3 equal to zero in (5), (6) and (7), we get

0 – 0 – 0 – 0 – 0 0Z   Z = 0

       10 – 0 – 0 3s   1 3s 

      20 0 0 2s     2 2s 

                Entering variable

x1 x2 x3 s1 s2 Z Value Ratio
Z – 1 – 1 (– 3) 0 0 1 0

Departing
s1 3 2 1 1 0 0 3

3 3
1
 ... (8)

variable s2 2 1 2 0 1 0 2
2 1
2


Since coefficient (–3) of x3 is most negative, so x3 is entering variable.
The smallest ratio is 1 in the s2-row, therfore s2 is departing variable. The pivot entry (2) is

at the intersection of x3-column and s2-row.
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To make pivot entry (1), we multiply third row by 
1
2

, we get

x1 x2 x3 s1 s2 Z Value
Z – 1 – 1 – 3 0 0 1 0
s1 3 2 1 1 0 0 3 ... (9)

x3 1
1
2

1 0
1
2

0 1

Applying 1 1 33R R R   and 2 2 1,R R R   we get

x1 x2 x3 s1 s2 Z Value

Z 2
1
2

0 0
3
2

1 3

s1 2
3
2

0 1
1–
2

0 2 ... (10)

x3 1
1
2

1 0
1
2

0 1

Since, Z row of the table (10) has non-negative entries in the column of variables, therefore,
this is the case of optimal solution. From the last column of the table we have x1 = 0, x2 = 0 and
x3 = 1 and the maximum value of Z = 3. Ans.

Example 3. Using Simplex Method solve the L.P.P.:
Maximize Z = 3x1 + 2x2 ...(1)
Subject to the constraints

x1 + x2   1 ...(2)

1 2 7x x  ...(3)

1 22 10x x  ...(4)

2 3x  ...(5)

1 0,x  2 0x 

Solution.
1. Conversion of the inequality   into   inequality

Convert (2) and (4) into ( )  type, multiplying by –1.

1 2– – –1x x 

1 2– – 2 –10x x 

2. Express the problem in standard form:
Introducing slack variables s1, s2, s3, s4, we get
Maximize Z = 3x1 + 2x2 + 0s1 + 0s2 + 0s3 + 0s4 ...(6)
 –3x1 – 2x2 – 0s1 – 0s2 – 0s3 – 0s4 + Z = 0
Subject to the constraints:

  1 2 1– – –1x x s  ...(7)
  1 2 2 7x x s   ...(8)
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1 2 3– – 2 –10x x s  ...(9)
        2 4 3x s  ...(10)

1 2 1 2 3 4, , , , , 0.x x s s s s 
3. Initial Basic solution
Putting the decision variables x1 and x2 equal to zero in (6), (7), (8), (9) and (10), we get
         – 0 – 0 0 0 0 0Z       0Z 

1– 0 – 0 –1s   1 –1s 

20 0 7s    2 7s 

3– 0 – 0 –10s   3 –10s 

40 3s   4 3s 
4. Let us construct the initial table

             Entering
            variable

x1 x2 s1 s2 s3 s4 Z Value Ratio
Z (–3) – 2 0 0 0 0 1 0

Departing s1 –1 – 1 1 0 0 0 0 –1
–1 1
–1

  smallest
Variable

s2 1 1 0 1 0 0 0 7
7 7
1


s3 –1 –2 0 0 1 0 0 –10
–10 10
–1



s4 0 1 0 0 0 1 0 3

In the above table coefficient of x1 is most negative. So, it is entering variable. The ratio of
s1-row is the smallest non-negative. So s1 in the departing variable.

Applying 2 2 1 1 2 3 3 2 4 4 2– , 3 , ,R R R R R R R R R R R         
         Entering
         variable

x1 x2 s1 s2 s3 s4 Z Value Ratio
Z 0 1 – 3 0 0 0 1 3

x1 1 1 – 1 0 0 0 0 1
1 –1
–1



Departing s2 0 0 1 1 0 0 0 6
6 6
1
  smallest

Variable
s3 0 – 1 – 1 0 1 0 0 – 9

– 9 9
–1



s4 0 1 0 0 0 1 0 3
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Departing variable
In the above table coefficient of s1 is most negative. So s1 is the entering variable. The ratio

of s2-row is the smallest non-negative. So s2 is the departing variable.
Applying  1 1 3 2 2 3 4 4 33 , , ( )R R R R R R R R R     

x1 x2 s1 s2 s3 s4 Z Value
Z 0 1 0 3 0 0 1 21
x1 1 1 0 1 0 0 0 7
s1 0 0 1 1 0 0 0 6
s3 0 –1 0 1 1 0 0 – 3
s4 0 1 0 0 0 1 0 3

Since, the first row (Z-row) has no negative entry in the columns of variables. Therefore, this
is the case of optimal solution. From the last column of above table, we have

x1 = 7, x2 = 0
Maximum value of z = 21 Ans.

27.9. DEGENERACY
In locating the pivot row we may face two difficulties.
 (i) In an initial Simplex table one or more entries in the last column may be zero. If the

variable to be replaced is already zero then it is difficult to construct next table.
(ii) If the ratio for two or more variables is indentical, then  there is a problem of selecting

the pivot row.
The above two conditions give rise to phenomenon called degeneracy.
Here, a degenerate linear programming problem can either be solved by an arbitrary
selection of one of the tied variables in finite number of steps or problem will begin to
cycle.

Example 4. Maximize Z = 20x1 + 6x2 + 8x3 ... (1)
Subject to the constraints:

1 2 38 2 3 200x x x   ...(2)
      1 24 3 150x x  ...(3)
        1 32 50x x  ...(4)
        1 2 3, , 0x x x 

Solution. Inequalities (2), (3), (4) are converted into equations by adding non-negative
variables s1, s2 and s3.

1 2 3 1 2 320 6 8 0 0 0Z x x x s s s       1 2 3 1 2 3–20 – 6 – 8 – 0 – 0 – 0 0x x x s s s Z     ...(5)

    1 2 3 18 2 3 200x x x s    ...(6)

1 2 24 3 150x x s   ...(7)

1 3 32 50x x s   ...(8)
On putting decision variables x1, x2 and x3 equal to zero in (5), (6), (7) and (8), we get

0 – 0 – 0 – 0 – 0 – 0 0Z    Z = 0

          10 0 0 200s     1 200s 

     20 0 150s    2 150s 

   0 + 0 + s3 = 50  3 50s 
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Let us construct initial feasible table.
Coefficient of

x1 x2 x3 s1 s2 s3 Z Value Ratio
Z – 20 – 6 – 8 0 0 0 1 0

s1 8 2 3 1 0 0 0 200
200 25
8



s2 4 3 0 0 1 0 0 150
150 37.5

4
 ...(9)

s3 2 0 1 0 0 1 0 50
50 25
2


From the above table the ratios of the IInd and IVth rows are identical i.e. 25. So, there is
a tie between the non-negative ratios of s1-row and s3-row.

Case I. Let us choose s3 row as the pivot row.
             Entering variable

x1 x2 x3 s1 s2 s3 Z Value
Z – 20 – 6 – 8 0 0 0 1 0
s1 8 2 3 1 0 0 0 200 ... (10)

Departing s2 4 3 0 0 1 0 0 150
variable s3 2 0 1 0 0 1 0 50 Pivot row

     Pivot column

Apply 4 4 1 1 4 2 2 4 3 3 4
1 , 20 , – 8 , – 4 ;
2

R R R R R R R R R R R           this yields following table:

    Entering variable
x1 x2 x3 s1 s2 s3 Z Value Ratio

Z 0 – 6 2 0 0 10 1 500

Departing s1 0 2 – 1 1 0 – 4 0 0
0 0
2
 ...(11)

variable

s2 0 3 – 2 0 1 – 2 0 50
50
3

x1 1 0
1
2

0 0
1
2

0 25
25 25
1


Applying 2 2 1 1 2 3 3 2
1 , 6 , – 3 ;
2

R R R R R R R R       we get the following table:

          Entering variable
x1 x2 x3 s1 s2 s3 Z Value Ratio

Z 0 0 – 1 3 0 – 2 1 500

x2 0 1
1–
2

1
2

0 – 2 0 0
0 –
–2

ve

Departing s2 0 0
1–
2

3–
2

1 4 0 50
50 12.5
4
 ...(12)

variable

x1 1 0
1
2

0 0
1
2

0 25
25 50
½
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Applying 3 3
1 ,
4

R R  1 1R R  + 32 ,R 2 2 32R R R  , 4 4 3
1– ;
2

R R R  this gives

Entering variable
x1 x2 x3 s1 s2 s3 Z Value Ratio

Z 0 0 – 5
4

9
4

1
2

0 1 525

x2 0 1
3–
4

1–
4

1
2

0 0 25
325 – –
4

ve   
 

...(13)

Departing

s3 0 0
1–
8

3–
8

1
4

1 0
25
2

25 1– –
2 8

ve   
 

variable x1 1 0
9

16
3

16
1–
8 0 0

75
4

75 9 100
4 16 3

   
 

Apply 4 4
16 ,
9

R R    
 

1 1 4
5 ,
4

R R R    2 2 4
3 ,
4

R R R  3 3 4
1 ;
8

R R R    
 

 this gives

x1 x2 x3 s1 s2 s3 Z Value

Z
20
9 0 0

8
3

2
9 0 1

1700
3

x2
4
3 1 0 0

1
3 0 0 50 ... (14)

s3
2
9 0 0

1–
3

2
9 1 0

50
3

x3
16
9 0 1

1
3

2–
9 0 0

100
3

Since Z row of table (14) has non-negative entries in the column of variables, therefore this
is the case of optimal solution.

From the last column of the table, we have

x1 = 0, x2 = 50, 3
100

3
x  and the maximum value of 1700

3
Z  Ans.

Case II. Now, we can choose s1-row as pivot row, and we can solve L.P.P. by the method
used in case I.
MAXIMIZATION PRINCIPLE

If an objective function is to minimize then it can be converted into a maximization problem
simply by multiplying the objective function by (–1).

Example 5.
Minimize Z = – 4x + 2y
subject to constraints

6 2 18x y 

3 2 6x y 

0, 0x y 
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Solution. Since the problem is that of minimizing the objective function, we convert it into
that of maximizing by multiplying Z by (–1).

– Z = Maximizing Z 
4 2Z Z x y    

By adding slack variables, the inequalities are converted into equations.

1 24 2 0 0Z x y s s        1 24 2 0 0 0x y s s Z       ...(1)

  1 26 2 0 18x y s s    ...(2)
3x – 2y + 0s1 + s2 = 6 ...(3)

       1 20, 0, 0, 0x y s s   
On putting decision variables x = 0, y = 0 in (1), (2) and (3), we get
0 – 0 – 0 – 0 + Z = 0  0Z  
       10 0 0 18s     1 18s 

    0 – 0 + 0 + s2 = 6  2 6s 
The initial table is

     Entering
              variable

x y s1 s2 Z Value Ratio

Z – 4 2 0 0 1 1 0

Departing s1 6 2 1 0 0 18 18  6 = 3 ... (4)
 variable s2 3 –2 0 1 0 6 6  3 = 2

Since, the coefficient of x is most negative, so x is entering variable. Since the ratio (2) is
the smallest in s2-row, so s2 is departing variable. Pivot entry (3) is at the intersection of x-row and
s2-column.

To make pivot entry (1) we multiply the third row by 
1
3  to get 1.

x y s1 s2 Z Value

Z  – 4 2 0 0 1 0
s1 6 2 1 0 0 18 ... (5)

s2 1
2–
3 0

1
3 0 2

Multiply the third row by 4 and add to the first row.
Multiply the third row by – 6 and add to the second row.

       Entering variable
x y s1 s2 Z Value Ratio

Z 0 
2
3 0

4
3 1 8

Departing s1 0 6 1 –2 0 6 6  6 = 1 ... (6)
variable

x 1
2
3

 0
1
3 0 2 22 3

3
ve       
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Since the coefficient 
2
3

  
 

 of y is most negative, so y is the entering variable.

Since the ratio (1) is the smallest in s1-row, so Departing variable is s1.
The pivot entry is at the intersection of y-column and s1-row.

Multiply the second row by 
1
6  to get 1.

x y s1 s2 Z  Value

Z  0
2–
3 0

4
3 1 8

s1 0 1
1
6

2–
3 0 1 ...(7)

x 1
2–
3 0

1
3 0 2

Multiplying the second row by 
2
3  and add to the first row

Multiplying the second row by 
2
3  and add to the third row

x y s1 s2 Z value

Z 0 0
1
9

8
9 1

26
3

y 0 1
1
6

2
3

 0 1 ...(8)

x 0 0
1
9

1
9

 0
8
3

Since there is no negative entry in the Z row, we have arrived at an optimal solution.

Optimal solution is 8 ,
3

x  y = 1, s1 = 0, s2 = 0

The maximum value of 
26
3

Z  

or

the minimum value of 
26
3

Z   Ans.

EXERCISE 27.4
Using Simplex method, solve the following L.P.P.

1. Maximize Z = x1 + 3x2

Subject to 1 22 10,x x  10 5,x  20 4x  Ans. x1 = 2, x2 = 4, Max. Z = 14
2. Maximize Z = 4x1 + 10x2

Subject to 1 2 1 22 50, 2 5 100x x x x    , 1 2 1 22 3 90, , 0x x x x  
Ans. x1 = 0, x2 = 20, Max. Z = 200

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



1292 Linear Programming

3. Maximize Z = 4x1 + 5x2

Subject to 1 2 1 2 1 22 2, 2 6, 2 5,x x x x x x         1 2 1 22, , 0.x x x x   

Ans. 1 2
7 4, , M ax. 16.
3 3

x x Z  

4. Maximize Z = 10x1 + x2 + 2x3
Subject to 1 2 2 1 2 32 10, 4 20,x x x x x x          1 2 3, , 0.x x x 

Ans. x1 = 5,    x2 = x3 = 0;   Max. Z = 50
5. Maximize Z = 5x1 + 3x2

Subject to 1 2 1 22, 5 2 10,x x x x       1 2 1 23 8 12, , 0.x x x x  
Ans. x1 = 2,   x2 = 0;   Max.Z = 10.

6. Maximize Z = 10x1 + 12x2
Subject to 1 22 150x x  ,    1 2 100x x  ,    1 2, 0.x x 

Ans. Max.Z = 1100,   x1 = 50,   x2 = 50
7. Maximize Z = 2x1 + 5x2

Subject to the constraints  1 2 1 2 1 24 5, 4, , 0.x x x x x x      
Ans. Unbounded solution

8. Maximize Z = 3x1 + 5x2
Subject to the constraints  1 2 1 2 22 5 132, 3 2 100; 0x x x x x      and x1 unrestricted in sign.

Ans. Max. 1 2
1688 236 196, ,

11 11 11
Z x x  

9. Minimize Z = 4x1 + 3x2
Subject to constraints 1 2 1 2 1 2200 100 4000, 2 50, 40 40 1400x x x x x x      , 1 2, 0x x 

Ans. Min. Z = 110, x1 = 5, x2 = 30
10. Minimize Z = 5x + 4y

Subject to the constraints 80 10 88, 40 30 36, 0, 0x y x y x y     
Ans. Min. Z = 4.6, x = 0.6, y = 0.4.

27.10 DUALITY
With every L.P.P. there is always associated another L.P.P. called the dual problem. We call

the given probelm as primal problem. If the primal problem requires maximization the dual problem
is one of the minimizing problem and vice-versa.
27.11 DUAL OF L.P.P.

Suppose the primal problem is that of maximization of the total net revenue. The dual
problem be that of minimization of cost of raw material in a factory.

Example 1. A goldsmith specilizes in the production of three products chain, ring and
bangles. The three products require silver and labour where supplies are limited. The following
table gives the details

Units of silver Units of labour Price
required required (in Rs.)

Chain 2 4 500
Ring 1 5 100
Pair of Bangles 3 6 600
Available Resources 1000 150
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Solution. Let x1, x2 and x3 denote the number of chains, rings and pair of bangles
respectively.

The mathmatical formulation of the above problem is:
Maximize Z = 500x1 + 100x2 + 600x3 ... (1)
Subject to the constraints:

1 2 32 3 1000x x x   ... (2)

1 2 34 5 6 150x x x   ... (3)

      1 2 3, , 0x x x 
This is a resource allocation problem.
Let y1 and y2 be the price of unit value of silver and labour.
The dual of the above problem would be :
Minimize 1 21000 150Z y y   ... (4)
Subject to constraints :

   1 22 4 500y y  ... (5)

    1 25 100y y  ... (6)

   1 23 6 600y y  ... (7)

       1 2, 0.y y 
The 5th inequality, therefore, means that the total value of silver and labour required to

produce a chain must be at least equal to the price of the chain. A similar interpretion can be given
to 6th and 7th inequalities corresponding to the ring and pair of bangles.
WORKING RULE FOR DUAL PROBLEM
Step 1. If the objective function Z of the primal problem is to be maximized, then the objective

function Z   of the dual problem is to be minimized and vice-versa.
Step 2. If in the primal problem the set of variables x1, x2, x3 is used then the set of variables

used in dual problem are y1, y2 and y3.
Step 3. The inequalities   of the constraints must be   in the dual problem and vice-versa.
Step 4. The constants on the right hand side of the constraints are written in a coloumn. These

constants from top to bottom become the coefficients of y1, y2, y3 in the objective
function from left to right in a row.

Step 5. The coefficients in the constraints from left to right are placed from top to bottom i.e.,
first row becomes the first column and second row becomes the second column and so
on.

Step 6. Number of variables x1, x2, x3 ... in primal problem = Number of constraints in the dual
problem.
Number of constraints in the primal problem = Number of variables y1, y2, y3 .... in the
dual problem.

Note : The optimal value of Z   in the dual is the optimal value of Z of the primal and vice-
versa.

Example 2. Write the dual of the following primal problems:
(i) Maximize Z = x1 – x2 + 3x3
    Subject to the constraints :

1 2 3 10x x x  

    1 32 2x x 
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      1 2 32 2 3 6x x x  

  1 2 3, , 0x x x 
(ii) Minimize Z = 2x1 + 2x2

 Subject to the constraints
  1 22 4 1x x 

   1 22 1x x 

   1 22 1x x 

      1 2, 0x x 
Solution
(i) Let y1, y2 and y3 be the dual variables then the dual problem of the given primal problem

is
Minimize 1 2 310 2 6Z y y y   
Subject to the constraints:

     1 2 32 2 1y y y  

   1 32 1y y  

        1 2 33 3y y y  

  1 2 3, , 0y y y 
(ii) Let y1, y2 and y3 be the dual variables then the dual problem of the given primal probelm

is
Maximize 1 2 3Z y y y   
Subject to the constraints

1 2 32 2 2y y y  

1 2 34 2 2y y y  

     1 2 3, , 0.y y y  Ans.
Example 3.Write the dual of the following primal problem and solve it.

Minimize  Z = 4x1 + 2x2
Subject to the constraints

    1 2 3x x 

     1 2 2x x 

      1 2, 0x x 
Solution. Let y1 and y2 be the dual variables of the given primal problem:

Maximize     1 23 2Z y y   ... (1)
Subject to the constraints

   1 2 4y y  ... (2)

    1 2 2y y  ... (3)
      1 2, 0y y  ... (4)

Inequalities (2), (3) and (4) are converted into equations by adding slack variables s1 and s2.
Maximize 1 2 1 23 2 0 0Z y y s s      1 2 1 23 2 0 0 0y y s s Z       ... (5)
Subject to the constraints

y1 + y2 + s1 = 4 .. (6)
y1 – y2 + s2 = 2 ... (7)

1 2 1 2, , , 0y y s s 
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On putting decision variables y1, y2 equal to zero in (5), (6) and (7), we get
0Z  

 s1 = 4
 s2 = 2

The initial table is constructed as below
     Entering
     variable

y1 y2 s1 s2 Z Value Ratio

Z –3 –2 0 0 1 0

Departing

s1 1 1 1 0 0 4
4 4
1


variable s2 1 –1 0 1 0 2
2 2
1


Since the cofficient of y1 is most negative, so y1 is the entering variable. The ratio (2) is the
smallest in s2-row, so s2 is departing variable.

(1) is the pivotal entry at the interection of y-column and s2-row.
Apply  1 1 3 2 2 33 ,R R R R R R   

  Entering
  variable
y1 y2 s1 s2 Z Value Ratio

Z 0 –5 0 3 1 6

Departing s1 0 2 1 –1 0 2
2 1
2


variable

y1 1 –1 0 1 0 2
2
1

ve 


Since coefficient of y2 is most negative, so y2 is entering variable.
The ratio (1) is smallest in the s1-row, so s1 is departing variable.
The pivotal entry (2) is at the intersection of y-column and s-row.

Apply 2 2 1 1 2 3 3 2
1 , 6 ,
2

R R R R R R R R      

y1 y2 s1 s2 Z Value

Z 0 0
5
2

1
2

1 11

y2 0 1
1
2

1
2

 0 1

y1 1 0
1
2

1
2

0 3

Since, Z row of above table has no negative entry in the column of variables.
Therefore this is the case of optimal solution from the last column.
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The maximum value of Z   is 11.
Therefore, the minimum value of Z is also 11. Ans.
Example 4. Using duality solve the following problem

Minimize Z = 0.7x1 + 0.5x2
Subject to the constraints

1 24, 6x x  ,       1 22 20x x  , 1 22 18x x 
Solution. 1. The dual of the primal problem is

Maximize 1 2 3 44 6 20 18Z y y y y    
Subject to the constraints

1 3 42 0.7y y y   , 2 3 42 0.5y y y   , 1 2 3 4, , , 0y y y y 
2. Standard form Introducing slack variables the dual probelm in the standard form becomes
Maximize 1 2 3 4 1 24 6 20 18 0 0Z y y y y s s       ... (1)
      – 4y1 – 6y2 – 20y3 – 18y4 – 0s1 – 0s2 + Z = 0
Subject to the constraints

     1 2 3 4 1 20 2 0 0.7y y y y s s      ... (2)
 0y1 + y2 + 2y3 + y4 + 0s1 + s2 = 0.5 ... (3)

1 2 3 4, , , 0y y y y 
3. Initial Basic feasible solution
Putting non-basic variables y1, y2, y3, y4 each equal to zero in equations (1), (2) and (3), we
get

y1 = y2 = y3 = y4 = 0 (Non-basic variables)
s1 = 0.7, s2 = 0.5 (Basic variables)

4. Initial table
       Entering
       variable

y1 y2 y3 y4 s1 s1 Z Value Ratio

Z –4 –6 –20 –18 0 0 1 0

Departing
s1 1 0 1 2 1 0 0 0.7

0.7 0.7
1

 ... (4)

Variable s2 0 1 2 1 0 1 0 0.5
0.5 0.25
2



In the table-4 coefficient (–20) of y3 is the most negative. So, y3 is entering variable. The
ratio of s2-row is smallest non-negative. So, s2 is the departing variable. The pivotal entry (2) is
at the intersection of the y3-column and s2-row.

Applying 3 3 1 1 3 2 2 3
1 , 20 ,
2

R R R R R R R R     

    Entering
    variable

y1 y2 y3 y4 y1 y2 Z Value Ratio
Z –4 4 0 –8 0 5 1 5

Departing s1 1
1
2

 0
3
2

1
1
2

 0 0.45
0.45 0.3
1.5


variable smallest ... (5)

y3 0
1
2

1
1
2

0
1
2

0 0.25
0.25 0.5
0.5



Since, the  coefficient (–8) of y4 is the most negative, so y4 is the entering variable.
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Since, the ratio (0.3) is the smallest ratio in s1-row, so s1 is the departing variable.

The pivotal entry 
3
2

 
 
 

 is at the intersection of y4-column and s1-row..

Apply 2 2 1 1 2 3 3 2
2 1, 8 ,
3 2

R R R R R R R R      

1 2 3 4 1 2

4

3

Value
4 4 16 70 0 1 7.4
3 3 3 3
2 1 2 10 1 0 0.3
3 3 3 3
1 1 1 21 0 0 0.1
3 6 3 3

y y y y s s Z

Z

y

y





 

 

... (6)

Since, the first row (Z row) has no negative entry in the column of the variables, therefore
this is the case of optimal solution.

From the last column of the table (6), we have
y1 = 0
y2 = 0
y3 = 0.1
y4 = 0.3

Maximum value of 7.4Z  
Hence, an optimal basic feasible solution to the given primal is
Minimum of Z = 7.4 Ans.

TRANSPORTATION PROBLEMS
27.12. NORTH WEST CORNER METHOD

Let ai and bi be the capacities of the supplier si and destinations Di.
D1 D2 D3 D4

S1 a1
S2 a2
S3 a3
S4 a4

b1 b2 b3 b4

Step 1. Fill up the upper left hand (North-West) corner of the transportation table. The maximum
feasible amount is allocated there.

(1, 1) Box = Min (a1, b1)
If a1 > b1 then (1, 1) Box = b1
In this way either the capacity of supplier s1 is exhausted or the requirement of destination D1.

D1 D2 D3 D4

S1 b1 a1

S2 a2

S3 a3

S4 a4

b2 b3 b4

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



1298 Linear Programming

Step 2. Fill up the box of first row and second column by (a1– b1).
D1 D2 D3 D4

S1 b1 a1 – b1

S2 a2

S3 a3

S4 a4

b2 b3 b4

Step 3. If 2 1 1– ,b a b then 2 1 1– ( – )b a b is entry in the lower box i.e. of second row and second column.

D1 D2 D3 D4

S1 b1 a1 – b1

S2 b2 – (a1–b1) a2

S3 a3

S4 a4

b3 b4

Step 4. If a2 > b2 – a1 + b1, then a2 – (b2 – a1 + b1) is the entry in the box of second row and
third column.

D1 D2 D3 D4

S1 b1 a1 – b1

S2 b2 – (a1–b1) a2–(b2–a1+ b1) a2

S3 a3

S4 b4 a4
and so on.
Example 5. Find the initial Basic feasible solution of the following transportation problem

by North West corner method.

1 2 3 4

1

2

3

Ware house Production of
Factory Factories

21 16 25 13 11
17 18 14 23 13
32 27 18 41 19

Capacity of the
6 10 12 15 43

ware house

W W W W

F
F
F

First Method. (North-West Corner Method)
Solution. The first box occupies the upper left hand (North-West) corner of the transportation
table. We allocate 6 units in the box of first row and first column. This is the requirement
of ware house W1. The remaining 5 units are to be allocated in the box of first row and
second column.
The ware house W2 requires 10 units of which 5 units have been supplied by factory F1. Thus
the remaining (10 – 5) i.e. 5 units from factory F2 to the box second row and second column.
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The remaining production of F2(13 – 5) i.e. 8 units are allocated to the box in the second
row and third column.
The remaining capacity (12 – 8) i.e. 4 units of ware house W2 is allocated to the box third
row and third column.
The remaining production (19–4) i.e.; 15 units of factory F3 is allocated to the box third row
and fourth column.

Ware house W1 W2 W3 W4 Production of
Factory   Factories

F1 21 16 25 13 11

F2 17 18 14 23 13

F3 32 27 18 41 19

Capacity of the 06 10 12 15 43
ware houses

Clearly, the initial solution constraints of six boxes:
x11 = 6, x22 = 5, x33 = 4
x12 = 5, x23 = 8, x34= 15

Total cost of transportation = Rs. (21× 6) + (16 × 5) + (18 × 5) + (14 × 8) + ( 18 × 4) + (41 × 15)
       = Rs. 1095 Ans.

27.13 VOGEL’S APPROXIMATION METHOD (VAM)
Let Si be the supplier, Di destination and Cij is the cost of transportation from Si to Dj. If

the supply and demand are equal the problem is balanced.
Step 1. Construct transportaton table.

D1 D2 D3 D4 D5

S1 C11 C12 C13 C14 C15 a1

S2 C21 C22 C23 C24 C25 a2

S3 C31 C32 C33 C34 C35 a3

S4 C41 C42 C43 C44 C45 a4

S5 C51 C52 C53 C54 C55 a5

b1 b2 b3 b4 b5

Step 2. Initial Basic Feasible Solution
The initial allocation should satisfy the demand at each project site without violating the
capacities of the suppliers and also meeting the restrictions.
The Vogel’s Approximation Method (VAM) also takes care of the least cost of transportation.

(i) Write the difference between the least and the next to the least cost in each row, to
the right of row in brackets. Similarly write the differences for each column below
the column in brackets.

(ii) Identify the row or column with the largest-difference in row and column.
If the largest difference corresponds to ith row and Cij is the lowest cost in the ith
row, allocate min (ai, bi) to (i, j)th box.

6 5

5 8

4 15
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In case of a tie allocate to the box with next lower cost.
(iii) Repeat the above step 2 on the reduced table.

Step 3. Check for optimality.
Note. VAM is better than North-West Corner Method since in solving a transportation problem

by VAM, lowest cost is also considered. But there is no consideration of cost in North
West Corner Method.

Example 6. Find the initial Basic feasible solution of the following transportation problem
by VAM.

1 2 3 4

1

2

3

Ware-house Production of
Factory Factories

21 16 25 13 11
17 18 14 23 13
32 27 18 41 19

Capacity of the
6 10 12 15 43

ware-house

W W W W

F
F
F

Solution. Second Method (Vogel’s approximation method) (VAM)
Step 1. Here, the total production of the factories and total capacities of the ware-houses

being the same i.e. 43, the problem is balanced.
Step 2. Initial Basic Feasible solution.

By VAM the difference between the smallest and next to the smallest costs in each
row and each column are computed and written within brackets against the respective
rows and column of table 1.

  Table -1
21 16 25 11  13  11,  (16 – 13 = 3)
17 18 14 23 13,  (17 – 14 = 3)
32 27 18 41 19,  (27 – 18 = 9)
6 10 12 13

(21 – 17 = 4)  (18 – 16 = 2)  (18–14 = 4) (23–13 = 10)
From table-1,
Largest difference (10) corresponds to 4th column. In this column, first row corresponds to

lowest cost (13). So allocate to (1, 4) box with min (11, 23) ie 11.
The first row is exhausted. The reduced table 1 is written below

  Table-2
17 18 14 4   23 13,  (17 – 14 = 3)
32 27 18  41 19,  (27 – 18 = 9)
6 10 12 15 – 11 = 4

(32 – 17 = 15) (27 –18 = 9) (18 – 14 = 4) (41 – 23 = 18)

From table-2,
Largest difference 18 corresponds to 4th column. In this column first row corresponds to the

lowest cost (13). So allocate to (1, 4) box min (4, 13) i.e. 4.
Fourth column is exhausted. The reduced table is written below

Table-3
6  17 18 14 9 = 13 – 4, (17 – 14 = 3)
   32 27 18 19,  (27 – 18 = 9)
    6 10 12

       (32 – 17 = 15)   (27 – 18 = 9)       (18 – 14 = 4)
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From table 3, largest difference (15) corresponds to first column. In this column first row
corresponds to the lowest cost (17). So allocate to the (1, 1) box with the min (6, 9) ie 6.

First column of table - 3 is exhausted and the reduced table 4 is written below.
 Table - 4

3   18 14 3 = 9 – 6, (18 – 14 = 4)

    27 18 19, (27 – 18 = 9)

    10 12

          (27 – 18 = 9)      (18 – 14 = 4)
The largest difference (9) occurs at two places. So there is a tie here. Costs on both largest
differences are identical choose any one. Allocate (1, 1) box with min (3, 10) i.e. 3.
First row of table-4 is exhausted. The reduced table 4 is written below:
From table 5, largest difference (27) corresponds to first column and is written in the box
of first column and first row.

  Table 5
 7   27 18 19, (27 – 18 = 9)

10 – 3 = 7 12

      (27 – 0  = 27)   (18 – 0 = 18)
First column of table 5 is exhausted. The reduced table 6 has only one box.
From table 6, minimum of 12 and 12 is 12 and is written in this box.

         Table 6
12    18 19 – 7 = 12

      12

Finally the initial basic feasible solution is given in the table 7
Table 7

21 16 25 11 13

6     17  3       18    14 4 23

32 7 27 12 18   41

Checking of optimality
We apply Modi-Method for checking of optimality as the number of allocation = m + n –
1 (i.e. 6).

(i) Taking r for row and c for column, we have the following equations:
r2   +  c1 = 17 Let  r2 = 0, c1 = 17 r2 + c2 = 18  r2 = 0, c2 = 18
   r3 + c2 = 27  c2 = 18, r3 = 9 r3 + c3 = 18  r3 = 9, c3 = 9
   r2 + c4 = 23   r2 = 0, c4 = 23 r1 + c4 = 13   c4 = 23, r1 = – 10

(ii) Net Evaluation Eij = (ri + cj) – bij for all empty boxes
E11 = r1 + c1 – b11 = – 10 + 17 – 21 = –14
E12 = r1 + c2 – b12 = – 10 + 18 – 16 = – 8
E13 = r1 + c3 – b13 = – 10 + 9 – 25 = – 26
E23 = r2 + c3 – b23 = 0 + 9 – 14 = – 5

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



1302 Linear Programming

E31 = r3 + c1 – b31 = 9 + 17 – 32 = – 6
E34 = r3 + c4 – b34 = 9 + 23 – 41 = – 9

Since all the net evaluations are negative, so this solution is optimal.
Table- 8

11      13 

6          17 3      18   4       23

7      27   12      18   

Transportation charges = Transported units × transportation charges per unit
(iii) Optimal (minimum) transportation cost

= (11 × 13) + ( 6 × 17) + ( 3 × 18) + (4 × 23) + (7 × 27) + (12 × 18)
= 143 + 102 + 54 + 92 + 189 + 216
= Rs. 796 Ans.

EXERCISE 27.5
Obtain the dual of the following L.P.P.

1. Maximize Z = x1 + 2x2     Subject to the constraints

1 22 3 3x x  , 1 24 4x x   , 1 2, 0x x 

Ans. Minimize 1 23 4Z y y     Subject to the constraints

1 22 4 1y y  ,   1 23 2y y   ;   1 2, 0.y y 
2. Maximize Z = 5x1 + 2x2 + 6x3 + 3x4   Subject to the constraints

1 2 3 4 140x x x x    , 1 2 3 42 5 6 260x x x x    ,

1 2 3 43 2 180x x x x    , 1 2 3 4, , , 0x x x x 

Ans. Minimize 1 2 3140 260 180Z y y y    Subject to the constraints:

1 2 32 5y y y   ,   1 2 35 3 2y y y   ,   1 2 36 6y y y  

1 2 32 3y y y   ,    1 2 3, , 0y y y 
3. Maximize Z = 2x1 + 2x2 + 4x3   Subject to the constraints

1 2 32 3 5 2x x x   , 1 2 33 7 3x x x   ,   1 2 34 6 5x x x   ,   1 2 3, , 0x x x 

Ans. Minimize 1 2 32 3 5Z y y y        Subject to the constraints

1 2 32 3 2y y y   ,   1 2 33 4 2y y y   ,   1 2 35 7 6 4y y y   ,   1 2 30, 0, 0y y y  
4. Maximize  Z = 3x1 – 2x2 + 4x3  subject to the constraints

1 2 33 5 4 7x x x   , 1 2 36 3 4x x x   , 1 2 37 2 10x x x   ,

1 2 32 5 3x x x   , 1 2 34 7 2 2x x x   , 1 2 3, , 0x x x 

Ans. Minimize 1 2 3 4 57 4 10 3 2Z y y y y y         Subject to the constraints

1 2 3 4 53 6 7 4 3y y y y y     ,   1 2 3 4 55 2 2 7 2y y y y y     

1 2 3 4 54 3 5 2 4y y y y y     ,   1 2 3 4 5, , , , 0y y y y y 
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5. Maximize Z = 3x1 + 2x2
subject to the constraints

1 2 1x x  1 2 7x x  1 22 10x x  1 2, 0x x 

Ans. Minimize 1 2 37 10Z y y y      Subject to the constraints

1 2 3 3y y y   ,   1 2 32 2y y y   ,  1 2 3, , 0y y y 
6. Maximize Z = 4x1 + 3x2

subject to the constraints

1 22 9 180x x  , 1 23 6 120x x  , 1 2 180x x  ,   1 2, 0.x x 

Ans. Min 1 2 3180 120 180Z y y y        Subject to the constraints

1 2 32 3 4y y y   ,   1 2 39 6 3y y y   ,    1 20, 0y y 
Using duality solve the following problems

7. Maximize Z = 2x1 + x2  subject to the constraints

1 2 1 2 1 22 10, 6, 2x x x x x x      1 2 1 22 1, , 0x x x x  
Ans. x1 = 4, x2 = 2, Maximum Z = 10

8. Maximize Z = 3x1 + 2x2 subject to the constraints

1 2 1 2 1 2 2,1, 7, 2 10 3;xx x x x x x       1 2, 0xx 
Ans. x1 = 7,  x2 = 0, Max. Z = 21

9. Minimize Z = 3x1 + 4x2 subject to the constraints

1 25 10 800x x  , 1 215 10 1200x x  , 1 2, 0x x 
Ans. Minimum Z = 480,

10. Maximize Z = 5x1 + 2x2 subject to the constratins

1 210 2 2100x x  , 1 20.5 600x x  , 2 800x  , 1 2, 0x x 
Ans. Max. Z = 1850, x1 = 50, x2 = 800

11. A company has factories F1, F2, F3 which supply ware-houses at W1, W2 and W3. Weekly
factory capacities, weekly ware-house requirements and unit shipping costs (in rupees)
are as follows:

Ware-houses W1 W2 W3 Supply
Factories

F1 16 20 12 200
F2 14 8 18 160
F3 26 24 16 90

Demand 180 120 150 450

Determine the optimal distribution for this company to minimize shipping costs.
Ans. By North-West corner method,  x11 = 180, x12 = 20, x22 = 100, x23 = 60,

x33 = 90, Min. cost = Rs. 6600.
By V.A.M. x11 = 140, x13 = 60, x21 = 40, x12 = 120, x33 = 90, Min. cost = Rs. 5920.

12. Solve the following transportation problem:
          Suppliers A B C Available
Consumers

I 6 8 4 14
II 4 9 8 12
III 1 2 6 5

Requirement 6 10 15 31
Ans. By North-West Method : x11 = 6, x12 = 8, x22 = 2, x23 = 10, x33 = 5, Min. cost = Rs. 228.
By V.A.M: x13 = 14, x21 = 6, x22 = 5, x22 = 5, x23 = 1, x32 = 5, Min. cost = Rs. 143
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TRIGONOMETRY

sin 2  = 2 sin   cos  , cos 2  = 2 cos2 1  , cos sin2 1 2 2  

Angle 0° 30° 45° 60° 90° 180° sin( ) sin , cos( ) cos       

sin 0
1
2

1
2

3
2

1 0 sin ( ) cos90    (change)

cos 1
3

2

1
2

1
2 0 –1 sin ( )   = sin (No change)

tan 0
1
3 1 3  0

Hyperbolic Functions

sinh x = 
e ex x 

2
, cosh x = 

e ex x 

2
, cosh2 x – sinh2 x = 1

  
d
dx

x x d
dx

x x(sinh ) cosh , ( ) sinh cosh ,

sin , cosx e e
i

x e eix ix ix ix





 

2 2
 sinh ix = i sin x, i sinh x = sin ix, cash ix = cos x, cosh x = cos ix

Binomial Theorem 2 3( 1) ( 1)( 2)(1 ) 1 ...
2! 3!

n n n n n nx nx x x  
     

Polar coordinates x r y r cos , sin ,  r x y y
x

2 2 2 1   , tan

x r sin cos ,  y r sin sin ,  z r i x cos
Median is the line joining the vertex to the mid point of the opposite side of a triangle.
Centroid or C.G. is the point of intersection of the medians of a triangle.
Incentre is the point of intersection of the bisectors of the angles of a triangle.
Circumcentre is the point of intersection of the perpendicular bisectors of the sides of a triangle.
Orthocentre is the point of intersection of the perpendiculars drawn from vertex to the opposite sides of

a triangle.
Asymptote is the tangent to a curve at infinity.

DIFFERENTIAL CALCULUS
d
dx

x nxn n( )  1 d
dx

x
xe(log )  1 d

dx
x x(sin ) cos ,

d
dx

x x(cos ) sin 
d
dx

x x(tan ) sec 2 d
dx

x x(cot ) cos  ec2

d
dx

x x x(sec ) sec tan
d
dx

x x x(cos ) cos cotec ec 
d
dx

a a ax x
e( ) log

d
dx

e ex x( ) 
d
dx

x
x

(sin ) 


1
2

1

1

d
dx

x
x

(cos ) 




1
2

1

1
d
dx

x
x

(tan ) 


1
2

1
1

d
dx

x
x

(cot )  


1
2

1
1

d
dx

x
x x

(sec ) 


1
2

1

1
d
dx

x
x x

(cos )ec 




1
2

1

1
d
dx

x x(sinh ) cosh
d
dx

x x(cosh ) sinh

d
dx

x x(tanh ) sec h2 d
dx

x x(coth )  cosech2
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d
dx

x x x(sec ) sec tanhh h 
d
dx

x x x(cos ) cos cothech ech 

INTEGRAL CALCULUS

x dx x
n

n
nz 


1

1
1
x

dx xez log e dx ex xz 

a dx a ex x
az log sin cosxdx x z cos sinxdx xz

tan logsecxdx xz cot logsinxdx xz dx
a x a

a x
a x2 2

1
2



z log

sec log tan log(sec tan )xdx x x x F
HG

I
KJ  z 2 4


sinh coshxd x xz

cos log tan log(cos cot )ec ecx dx x x x  z 2
cosech2xdx x z coth

sec tan secx xdx xz cos cot cosec ecx xdx x z
dx

a x

x
a

dx

a x

x
a

dx

x a

x
a2 2

1
2 2

1
2 2

1








z z z  sin sinh cosh

dx
a x a

x
a2 2

11


z tan 


z dx

x a a
x
a2 2

11 cot
dx

x x a a
x
a2 2

11


z sec




z dx

x x a a
x
a2 2

11 cosec cosh sinhxdx xz sec tanhh2z xdx x

sec tanh sech hx x dx x z cosech cosechx xdx xcoth  z
a x dx x a x a x

a
2    z 2 2 2

2
1

2 2
sin                          a x dx x a x a x2 2 2 2

2
1

2 2
   z sinh

2
2 2 2 2 1cosh

2 2
x a xx a dx x a

a
   

PARTIAL DIFFERENTIATION
Euler's Theorem: If z is a homogeneous function in x, y of degree n,

then x z
x

y z
y

nz x z
x

xy z
x y

y z
y

n n z












 





 ; ( )2
2

2

2
2

2

22 1

Deduction I If (i) z = f (u)    (ii)  
n yz x

x
     , Then ( )

( )
u u f ux y n
x y f u

 
 

 

Deduction II x u
x

xy u
x y

y u
y

g u g u2
2

2

2
2

2

22 1





 





  ( )[ ( ) ] ,   Where   g u n f u

f u
( ) ( )

( )











z
t

z
dx

dx
dt

dz
dy

dy
dt  if z f x y x t y t  ( , ), ( ), ( ) 1 2

dy
dx

f
x
f
y

 






 if f x y c( , )  , 
d y
dx

q r pqs p t
q

2

2

2 2

3
2

 
 

   P f
x

q f
y

r f
x

s f
x y

t f
y















 





, , , ,

2

2

2 2

2

Taylor's Series: f a h b k f a b h
x

k
y

f h
x

k
y

f( , ) ( , )
!

   







F
HG

I
KJ 








F
HG

I
KJ 

1
2

2

......
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f x y f x f
x

y f
y

x f
x

xy f
x y

y f
y

( , ) ( , )
!

...
( , ) ( , )

 







F
HG

I
KJ 







 






F
HG

I
KJ 0 0

1
2

2
0 0

2
2

2

2
2

2

2
0 0

Maximum or minimum: (i) 




f
x

0,  (ii) 




f
y

0,  (iii) 










 

F
HG

I
KJ

2

2

2

2

2 2
f

x
f

y
f

x y
. .

For Maximum:





2

2 0
f

x
,  for minimum: 






2

2 0
f

x
Lagranges Method for f (x, y, z) to be maximum/minimum, if ( , , )x y z  0

     
























f
x x

f
y y

f
z z








0 0 0, ,

Jacobian

J u v w
x y z

u v w
x y z

u
x

u
y

u
z

v
x

v
y

v
z

w
x

w
y

w
z

, ,
, ,

( , , )
( , , )

F
HG

I
KJ 

































 (i) 








( , )
( , )

( , )
( , )

u v
x y

x y
u v

1

(ii) 











( , )
( , )

( , )
( , )

( , )
( , )

u v
x y

u v
r s

r s
x y ,      (iii) if 





( , , )
( , , )
u v w
x y z

0  then u, v, w are functionally related.

dxdy r d dr  2 sindxdydz r d r d d  

Area = dx dy
y

y

x

x

1

2

1

2 zz , Volume = dx dy dz
z

z

y

y

x

x

1

2

1

2

1

2 zzz , dxdy x y
r

dr d


( , )
( , )



Centre of gravity

, ,
x dxdy dz y dx dy dz z dx dy dz

x y z
dx dy dz dxdy dz dxdy dz

  
  

  
        
        

Moment of Inertia about x – axis = 2 2( )y z dx dy dz   

Moment of Inertia about y – axis = ( )x z dxdydz2 2zzz
Moment of Inertia about z – axis = ( )x y dxdydz2 2zzz
Centre of pressure      , A

A A

y dx dyx d xd y
x y

dx dy dxdy


 

 
  

   
11 , 1 ,
2

n n n n n     

Gamma Function: e x dx nx n


z  L
0

1

Beta Function:    ( , ) ( )l m x x dx l m
l m

l m  
L L
L 




z 1

0

11 ,  
2

0

1 1
2 2sin cos

22
2

m n

m n

d
m n



  

 


 

Dirichlet's Integral = 1 1 1

1
l m n l m nx y z dx dy dz

l m n
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Liouville's Extension of Dirichlet theorem

2

1

1 1 1 1( ) ( )
1

hl m n l m n
h

l m nf x y z x y z dxdy dz f u u du
l m n

       
  

     . .

Error function = 
2 2

0
e t dt

x
z .

    
d

d
f x y dx d

dx
f x dx d

d
f d

d
f


 


  




  
 

 

 

 
( , ) ( , ) [ ( ), ] [ ( ), ]

( )

( )

( )

( )z zRST
UVW






L
NM

O
QP


Differential equations

  (i) Variables separable: f y dy x dx( ) ( ) ,  f y dy x dx c( ) ( ) zz 

(ii) Homogeneous Equation: 
dy
dx

f x
x


( )
( )  where each term of f (x) and ( )x  are of the same degree.

Put y vx  so that 
dy
dx

v x dv
dx

  .

(iii) Reducible to homogeneous: 
dy
dx

ax by c
Ax By C


 
 

Put x X h y Y k   ,  if 
a
A

b
B

 ,     Put  ax by z a
A

b
B

  if

Linear differential equation: 
dy
dx

Py Q   where P and Q are not functions of y.

Integrating factor = e
pdxz , then y e Qe dx c

Pdx pdx
. ( )z z z

Rules to find Complementary Function

1. when roots of A.E. = m1, m2;   C.F. = c e c em x m x
1 21 2

2. when roots are equal;  C.F. = ( )c c x emx
1 2

3. when roots are complex a ib ;   C.F. = e c bx c bxax[ cos sin ]1 2
Rules to Find Particular Integral:

(i)
1 1

f D
e

f a
eax ax

( ) ( )
 , if f (a)  0; 

1 1
f x

e x
f a

eax ax
( ) ( )


  if f a( )  0

(ii)
1 1

f D
x f D xn n

( )
[ ( )]  , Expand [f (D)]–1 and then operate

(iii) 2 2 2 2
1 1 1 1sin sin cos cos

( ) ( ) ( ) ( )
ax ax ax ax

f D f a f D f a
 

 

If f a( ) 2  = 0 then 
1 1

2 2f D
ax x

f a
ax

( )
sin

( )
sin

 
  (iv)  

1 1
f D

e x e
f D a

xax ax
( )

. ( ) .
( )

( ) 


(v) 1 1 1
f D

x x x
f D

f D
f D

x
( )

( )
( )

( )
( )

( )    
L
NM

O
QP         (vi)  1

D a
x e e x dxax ax


  z ( ) ( )

Variation of Parameters C.F. = Ay By1 2  then P.I. = uy vy1 2

Where 
2 1

1 2 1 2 1 2 1 2

y Xdx y Xdxu v
y y y y y y y y

  
     

Homogeneous Differential Equation  x d y
dx

x dy
dx

y x2
2

2
42 4  

Put x ez , x dy
dx

Dy , x d y
dx

D D y2
2

2 1 ( ) ,  where  
dD
dz



dD
dz
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Matrices
Types of equations, Ax = B; C = {A, B}
(1) Consistent equation If Rank of C = Rank of A

(a) Unique solution If Rank of C = Rank of A = Number of unknowns
(b) Infinite solution If Rank of C = Rank of A < Number of unknowns

(2) Inconsistent equation. If Rank of C   Rank of A.
Eigen values are the roots of the characteristics equation | |A I  0
Cayley Hamilton Theorem.  Every square matrix satisfies its own characteristics equation.
Diagonalisation P–1 AP = D, where P is the modal matrix containing eigen vectors, D is the diagonal

matrix containing eigen values.

VECTORS  If r xi yj zk    then | |r x y z  2 2 2

AB


 = Position vector of B – Position vector of A, Ratio formula c mb na
m n





Scalar Product: a b a b. | | | |cos  ,  Work done = 
1 .

. , cos
| || |

a bF r
a b

 

Vector Product a b a b  | | | |sin .  . 
Area of parallelogram = a b ;   Moment of a force = ;r F V w r


  

a b c
a a a
b b b
c a c

.( ) 
L

N
MMM

O

Q
PPP

1 2 3

1 2 3

1 2 3
,

         Volume of parallelopiped = a b c.( ) , if a b c.( )  = 0 then a b c, ,  are coplanar.

( ) ( ) [ ] [ ] [ ] [ ]a b c d abd c abc d bcd a acd b       

Velocity = 
dr
dt

, Acceleration = 
d r
dt

2

2 ,             Tangent vector = 
dr
dt

, Normal vector = 

Gradient                     Directional derivative = 
Divergence f f . ,  If divergence f  = 0, then f is called solenoidal vector.

Curl f f   ,  If  curl f  = 0, f  is called Irrotational vector..

Green's Theorem: 
c s

dx dy dxdy
x y
 

 
  

        , Stokes Theorem: ˆ. curl .
c s

F dr F ds 
Gauss theorem of Divergence: F ds div f dxdy dz

vs
.  zzzzz

COMPLEX VARIABLE FUNCTION
Analytic function A single valued function which is differentiable at z = z0 is said to be analytic at the

point z = z0

       C – R Equations: 














u
x

v
y

u
y

v
x

, . And 
1 ;u v u vr

r r r 
   

  
   

To find conjugate function, dv v
x

dx v
y

dy





  = 

u udx dy
y x

 


   if u is given

Milne Thomson Method f (z) =  1 20 0( , ) ( , )z dz z dzz z ,  where 1 2( , ) , ( , )
u ux y x y
x y
 

   
 

     f z z dz z dz( ) ( , ) ( , ) z z 1 10 0 , where  1 2( , ) , ( , ) .x y v
y

x y v
x









Cauchy's Integral Theorem f z dz
c

( )z  0  if f (z) is analytic function within C.

Cauchy's Integral formula
f z dz
z a

if a
c

( ) ( )


z 2 , if f (z) is analytic in c, and a is a point within C.

( ).( ) . .
. .

a b c d a c a d
b c b d

  

a b c a c b a b c   ( ) ( . ) ( . )
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Residue (i) Res f (a) = lim ( ) ( ),
z a

z a f z


 (ii) Res (a) = 



( )
( )
a
a ,

(iii) Res (a) = 
1

1

1
( ) ( )

1

n
n

n

d z a f z
n dz





 
 

  
, (iv) Res (a) = coefficient of 

1
t  where t = z – a

Residue Theorem f z dz i
c

( ) z 2  (Sum of the residues at the poles written C)

f d(sin , cos )  


0

2z , put sin 1 1 1 1[ ], cos ,
2 2

dzz z d
i z z iz

 
         

C is the circle of radius one.
f x
f x

dx1

2

( )
( )

z , consider f z dz
c

( )z  where f x f x
f x

( )
( )
( )

 1

2
 and c is the semicircle with real axis.

Bessel's Equation x d y
dx

x dy
dx

x n y2
2

2
2 2 0   ( ) ,   

2

0

( 1)( )
21

n rr

n
r

xJ x
r n r





       


Recurrence Formula
  (i) xJ nJ x Jn n n   1           (ii) xJ nJ xJn n n    1                     (iii) 2 1 1   J J Jn n n

(iv) 2 1 1nJ x J Jn n n  ( )   (v) 
d
dx

x J x Jn
n

n
n( ) 
  1 (vi) 

d
dx

x J x Jn
n

n
n( )  1

Legendre’s Equation  ( ) ( )1 2 1 02
2

2    x d y
dx

x dy
dx

n n y

P x n
n

x n n
n

x n n n n
n n

xn
n n n( )

. . ...( ) ( )
( )

( )( )( )
( )( ) .

...


N 




  
 


L
NM

O
QP

 135 2 1 1
2 1 2

1 2 3
2 1 2 3 2 4

2 4

Rodrigue's formula P x
n

d
dx

xn n

n

n
n( ) ( ) N 

1
2

12

Generating Function
1

2 2(1 2 ) ( ) n
nxz z P x z


   

Orthogonality Property P x P x dxn m( ). ( )


z 1

1
 = 0, m n  and P x dx

nn
2

1

1 2
2 1

( ) 


z
Recurrence Formulae (i) 1 1( 1) (2 1)n n nn P n P nP      (ii) nP xP Pn n n   1

(iii) ( )2 1 1 1n P P Pn n n      (iv)     P xP n Pn n n1 1

(v) ( ) [ ]x P n xP Pn n n
2

11     (vi) 2
1( 1) ( 1) ( )n n nx P n P x P   

Partial differential equation
dx dy dzPp Qq R
P Q R

      we can also use multipliers.

Homogeneous equations a z
x

a z
x y

a z
y0

2

2 1

2

2

2

2 0





 





   A.E. is a m a m a0

2
1 2 0  

Case I. If m = m1, m = m2, C.F. = f y m x f y m x1 1 2 2( ) ( )  

Case II. If m m m 1 2   C.F. = 1 1 2 1( ) ( )f y m x x f y m x  

(i) Particular Integral  = 
1 1

f D D
e

f a b
eax by ax by

( , ) ( , )
 

,

 (ii) P.I. = 2 2 2 2

1 sin( )sin( )
( , , ) ( , , )

ax byax by
f D DD D f a ab b


 

  

(iii) P.I. = 
1

( , )
( , )

f x y
f D D , use Binomial Theorem
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 (iv) P.I. = 
1

f D mD
f x y f x c mx dx

( )
( , ) ( , )

 
 z

Non Homogeneous Equations Monges' Method Rr Ss Tt v    (i)

r dp sdy
dx

t dq sdx
dy







,  substitute the value of r and t in (ii).

Rdy S dxdy T dx2 2 0  

Applications (i) 









2

2
2

2

2
u

t
c u

x
 (wave eq.) (ii) 









u
t

c u
x

2
2

2  (One dimension heat flow)

(iii) 









2

2

2

2 0u
x

u
y  (Two dimensions heat flow)

STATISTICS A M fx
f

. .

 , A.M. = a fd

f


 , A.M. = a f d

f
i




S.D. = 



f x x

f
( ) 2

, S.D. = 






fd
f

fd
f

2 2


F
HG

I
KJ , Variance = (S.D.)2

Coefficient of correlation = 


 

( ) ( )

( ) ( )

x x y y

x x y y

 

 2 2

Equation of line of regression of y on x is y y r x xy

x
  




( )

Equation of regression of x on y is x x r y yx

y
  




( )

  Probability:
Numberof favourable ways

totalnumber of equally likelyways
P  p + q = 1,

p (A or B) = p (A) + p (B), p (A and B) = p (A) . p (B)
Binomial Distribution: p r nc p qr

r n r( )        Mean = np, Var = npq

Poisson Distribution: p (r) = 
e m

r

m r

N
.

Mean = m, var = m

Normal Distribution: f (x) = 
1
2

2

22
 


e

x


( )

Standard Variate = z = 
x  


FOURIER SERIES

f x a a x a x a nx b x b x b nxn n( ) cos cos .... cos ... sin sin ... sin ...          0
1 2 1 22

2 2

Where a f x dx a f x nxdxn0
0

2

0

21 1
 z z 

 
( ) , ( ) cos , b f x nx dxn  z1

0

2




( ) sin

For even function: a f x dx a f x n x dxn0
0 0

2 2
 z z 

 
( ) , ( ) cos , bn = 0

For odd function: a a b f x nxdxn n0
0

0 0 2
   z, , ( ) sin





For arbitrary function:

     a
c

f x dx a
c

f x n x
c

dxn
c c

0
0

2

0

21 1
 z z( ) , ( ) cos  b

c
f x n x

c
dxn

c
 z1

0

2
( )sin 

sin , cos ( )n n n   0 1

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



1312 Useful Formulae

uvdx uv u v u v u v      z 1 2 3 4....  (General formula for integration by parts)
LAPLACE TRANSFORMATION

  1. L
s

( )1 1
   2. 1

!( )n
n
nL t

s 
   3. L e

s a
at( ) 


1

  4. L (cosh at) = 
s

s a2 2
  5. L (sinh a t) = 

a
s a2 2

  6. L (sin a t) = 
a

s a2 2

  7. L (cos a t) = 
s

s a2 2
  8. Le f t F s aat ( ) ( )    9. L f t sLf t f   1 0( ) ( ) ( )

10. 2( ) ( ) (0) (0)L f t s Lf t sf f     11. L f t dt
s

F s( ) ( )
0

1 1zLNM O
QP
   12. [ ( )] ( 1) [ ( )]

n
n n

n

dL t f t F s
ds

 

13. 1
( ) ( )

s
L f t F s ds

t
            14. u t a

t a
t a

( ) 



RST
0
1

when
when

15. L u t a e
s

ax
[ ( )] 



16. [ ( ). ( )] ( )asL f t a u t a e F s       17. L t( ) 


1 1
           18. ( ) axL t a e  

19. Lf t
e f t dt

e

st
T

sT( )
( )







z0

1
20. L t

a
at s

s a2 2 2 2sin
( )


          21. Lt at s a

s a
cos

( )






2 2

2 2 2

22. L
a

at at at
s a

1
2

1
3 2 2 2(sin cos )

( )
 

                     23. L
a

at at at s
s a

1
2

2

2 2 2(sin cos )
( )

 


CONVOLUTION THEOREM 1 2 1 20
( ) ( ) ( ) * ( )

t
L f x f t x dx F s F s    

INVERSE LAPLACE TRANSFORM

  1. L
s

 F
HG

I
KJ 

1 1 1   2. 
1

1 1
( 1)!

n

n
tL
ns


 

   3. L
s a

eat


1 1

  4. L s
s a

at


1

2 2 cosh   5. L
s a a

at


1

2 2
1 1 sinh   6. L

s a a
at


1

2 2
1 1 sin

  7. L s
s a

at


1

2 2 cos   8. L F s a e f tat  1 ( ) ( )

  9. L
s a a

at at at


 1

2 2 2 3
1 1

2( )
(sin cos )

10. L s
s a a

t at


1

2 2 2
1

2( )
sin 11. L s a

s a
t at 


1

2 2

2 2 2( )
cos

12. L s
s a a

at at at


 1

2

2 2 2
1

2( )
(sin cos )

13. 1[ ( )] ( ) (0)dL sF s f t f
dt

   14. L
s

F s f t dt
t

 L
NM

O
QP  z1

0

1 ( ) ( )

15. L F s a e f tat  1 ( ) ( ) 16. L e F s f t a u t aas    1 ( ) ( ) ( )

17. L d
ds

F s t f t L
NM

O
QP  1 ( ) ( ) 18. L F s ds f t

ts


zLNM O
QP
1 ( ) ( )

19. L f x f t x dx F s F s
s

  z1 1 2
0

1 2( ) ( ) ( ). ( )   20. f (t) = sum of the residues of est F (s) at the poles of F (s)

21. L F s
G s

F
G

ei

ii

n
it



L
NM

O
QP  1

1

( )
( )

( )
( )
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INDEX

A
Abel’s Test 1157
Addition of complex numbers 468
Addition of matrices 272
Adjoint matrix 283
Alternating series 1152
Analytic function 512
Angular velocity 376
Area in polar co-ordinates 106
Area under Normal curve 815
Argand diagram 467
Argument 474

B
Ber and Bei Functions 649
Bessel equation 632

— Function 633
— Integral 645

Beta Function 1161
Bilinear transformation 569
Binomial distribution 781

— Mean 787
— Moment 791
— Standard deviation 787

C
Calculus of variations 1042
Cayley-Hamilton Theorem 329
Cauchy Integral formula 550

— For derivative 551
Cauchy Integral Theorem 548

—Condensation test 1149
— Integral Test 1141
— Root Test 1142

Centre of gravity 110, 112, 132
Centre of pressure 135
Change of order of integration 99
Characteristic equation 326

— Polynomial 326
— Roots 326
— Vectors 335

Charpit’s Method 688
Circular function 481
Chi-Square distribution 839
Chebyshev Polynomials 1189
Crout’s method 996
Clairaut’s equation 162
Co-factors 225
Complementary function 169, 691
Complex integration 544
Complex number 467

Complex variable 481
Confidential limits 828
Conformal transformation 559
Conjugate element 253
Conjugate number 470
Continuity 508
Continuous distribution 806
Contraction Theorem 1060
Consistent equations 304
Convolution Theorem 903, 951, 1099
Coplanarity 378
Correlation 745
Cross Product 375
Crout’s Method 996
Cumulants 797
Cramer’s Rule 257
Curl 403
Curve Fitting 1232

D
D’Alembert’s Test 1131
De Moivre’s Theorem 482
De Morgans Test 1148
Degree of freedom 840
Determinants 223

— Applications 256
— Laplace method 255
— Properties 231

Diagonal matrix 269
Diagonalisation of a matrix 344
Differential, Partial 6

— Total 26
— Vectors 383

Differential equation 138
— Exact 154
— Formation 138
— Homogeneous 142
— Higher Degree 161
— Laplace transformation 917
— Simultaneous 195

— of the type ( )
n

n

d y f x
dx

   202

— of the type ( )
n

n

d y f y
dx

   203

— do not cantain ‘y’ directly 205
— do not cantain ‘x’ directly 207

1313
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1314 Index

— whose one solution is known 208
— Normal form (Removal of first derivative)

 213
— Changing the independent variable 216
— Variables Separable 140
— Variation of parameters 193

Dirichlet’s condition 851
Directional derivative 387
Divergence of a vector function 398
Dot Diagram 746
Dot Product 381
Double Integration 91

E
Eigen values 335
Eigen vector 335
Electric circuits 166
Elementary transformations 287
Elliptic Integrals 1176
Equal likely events 763
Equation of continuity 399
Equations

— Consistent 305
— Inconsistent 305
— Infinite solutions 305
— Unique solution 305

Errors 46, 827
Error function 1179
Euler’s Equation 1042
Euler’s Method 1014

— Theorem 16
Euler’s Modified formula 1016
Exact differential equations 154
Extremal 1045

F
Factor Theorem 248
False position 989
F-Distribution 846
Fisher Z-distribution 847
Flux 428
Formation of Differential equation 138, 671
Fourier Bessel Expansion 647
Fourier Complex Integral 936
Fourier Integral, Theorem 934
Fourier Legendre expansions 666
Fourier series 850

— Half range 864
Fourier sine and cosine Integrals 935
Fourier Transform 938
Fourier sine and cosine transforms 939
Fourier transform of derivatives 958
Frobenius method 623
Functions of complex variables 481
Fuzzy set 1203

G
Gamma Function 1158
Gauss method 289
Gauss Test 1140
Gauss theorem or Divergence theorem 452
Gauss seidel Method 1002
Generating function for Legendre’s polynomials 657
Generating function for Jn (x) 642
Geometrical interpretation 44
Gradient 386
Goodness of fit 840
Green’s Theorem 431

H
Harmonic Analysis 880
Harmonic Functions 523
Heat flow – one dimensional 720

— Two dimensional 725
Hermitian Matrix 271
Hilbert Transform 1230
Homogeneous diff. eq. 142
Homogeneous function 16
Hyperbolic functions 489

I
Impulse function 898
Inconsistent equations 304
Independent events 763
Infinite series 1119
Infinite solution 305
Integral Transforms 933
Integration

— Change of order 99
— Double 91
— Triple 114
— of vectors 421

Inverse Hyperbolic Functions 500
Inversion and Reflection 566
Isoperimetric Problem 1049
Iteration method 993

J
Jacobians 53
Jacobi’s method 1000

K
Kirchhoff’s law 166
Kronecker Tensor 1063

L
Lagrange’s Linear Equation 674

— Method by underterminal multipliers 81
Laguerres Differential Equation 668
Laplace transformation 885

— of Bessel function 903
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— of derivative 889
— of integral 890
— of inverse 913
— properties 887
— solution of diff. eq. 917

Least Squares
— Principle 1234
— Method 1235

Legendre’s equation 651
— Polynomial 653
— Orthogonality 659

Leibnitz’s Rule 1149, 1181
Level of significance 827
Linear diff. eq. 147
Linear Programming, 1243

— Corner point Method, 1251
— Degeneracy, 1287
— Diet problem, 1246
— Duality, 1292
— Feasible solution, 1252
— Graphical Method 1251
— Iso-cost or Iso-profit Method, 1256
— North West corner method, 1297
— Objective Function, 1244
— Optimal value, 1245
— Simplex Method, 1277
— Transportation Problem, 1247, 1269
— Vogel’s Method, 1299

Liouville’s Theorem, 1174
Logarithmic Functions 498
Logarithmic Test 1145

M
Matrices

— Addition 272
— Adjoint 283
— Conjugate 363
— Diagonal 269
— Hermitian 363
— Idempotent 367
— Identity 270
— Inverse 289
— Involuntary 272
— Multiplication 275
— Nilpotent 272
— Non singular 282
— Null 269
— Orthogonal 270
— Periodic 367
— Quadratic form 351
— Rank 292
— Skew Hermitian 365
— Skew symmetric 270
— Symmetric 270

— Transpose 270
— Triangular 270
— Unit 270
— Unitary 368

Maxima 74
Mean Deviation of Poisson Destribution 796
Milne Thomson Method 533
Minor 225
Modulus of complex number 474
Moment 376
Moment Generating Function 791, 797
Moment of Inertia 133
Monge’s Method 704
Multiplication of matrices 275

— of complex numbers 469
— law of probability 767

Multiplier method 677
Mutually Exclusive Event 764

N
Newton-Raphson Method 984
Nilpotent matrix 272
Non-Homogeneous Linear Equations 700
Non-singular matrix 292
Normal curve 809

— Area 815
— Distribution 809
— Mean 810
— Mean deviation 811
— Median 811
— Mode 811
— Moment 812
— Properties 810
— Standard deviation 810
— Table 814

Null Hypothesis 827
Numerical Techniques 982

O
One dimensional heat flow 720
Orthogonal matrix 270
Orthogonality of Bessel function 641

— Legendre polynomials 659
— Eigen Function 669

P
Parseval’s Identity 951
Partial differentiation 6
Partial diff. eq. 671

— Homogeneous 691
— Non linear 700

Particular integral 174
Periodic function 899
Physical Interpretation of divergence 398
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Physical meaning of a Curl 403
Picard’s method 1010
Pivotal Condensation Method 250
Poisson distribution 794

— Mean 794
— Standard deviation 795

Pole 556
Population  824
Position Vectors 373
Power series 618

— Validity 622
Practical Harmonic Analysis 880
Probability 763
Product of two vectors 374

— Scalar 374
— Vector 375

Properties of Laplace transforms 888
R

Raabe’s Test 1132
Random experiment 763
Rank of matrix 292
Recurrence formulae 635, 662, 792, 798
Regression 752
Regula Falsi 989
Residue 589
Rodrigue’s formula 654
Runge’s formula 1017

— Third order 1018
— Fourth order 1019

S
Sampling 824
Sampling distribution 825
Sample space 763
Scalar Product 381
Scalar Triple Product 396
Schwarz- Christoffel Transformation 558
Second shifting Theorem 896
Singular point 585
Skew symmetric matrix 270
Skewness 743
Solenoidal vector function 399
Solution of Bessel’s Eq. 632
Spearman’s Rank Correlation 750
Special function 618
Sphere 1331
Spherical co-ordinates 403
Standard deviation of

— Binomial dist. 787
— Normal dist. 810
— Poisson dist. 795

Standard error 825

Statistics 735
Stokes Theorem 446
Strum Liouville’s 668
Student t distribution 831
Surface Area 128
Surface Integral 428
Sylvester’s Theorem 349
Symmetric matrix 270

T
Taylor’s series 67

— method 1006
Taylor’s Theorem 575, 1006
t-distribution 831
Tensor 1055

— Fundamental Property 1062
Testing a Hypothesis 827
Test of significance 828
Three dimensional Co-ordinates 1243
Transformation 558

— Bilinear 569
— Conformal 559
— Elementary 287

Translation 562
Transmission line equations, 732
Transpose matrix 270
Triangular matrix 270
Two dimensional heat flow 725

U
Unit step function 895
Unitary matrix 368
Unique solution 304

V
Vectors 372

— Addition 372
— Coplanar 388
— Position 373

Vector point function 385
Velocity angular 376
Vibrating String 712
Volume Integral 430
Volume of parallelopiped 375

W
Wave equation 710
Work done 374

X
x2 curve 839

Z
Z-Transform 1085

— Inverse, 1096
— Shifting Property, 1096
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